
Describing a monitoring infrastructure with an

OCCI-compliant schema

Augusto Ciuffoletti - Dept. of Computer Science - Univ. of Pisa

September 20, 2012

1 Introduction

This document describes the structure of a monitoring infrastructure using the OCCI restful
model. It is intended as a first step towards the definition of a protocol to manage and verify
Service Level Agreement.

One relevant fact about monitoring infrastructures, is that it is extremely difficult to give a
detailed framework for them that extends its validity to any reasonable use case or provider. The
reason is that each use case and provider exhibits local variants that cannot be generalized. Also,
the metrics that are used to evaluate the performance of the system are many, and subject to
continuous changes due to the introduction of new technologies. Thus we have made an effort
to introduce a generic schema that can be adapted to describe the structure of a monitoring
infrastructure, but without going into details that depend on a specific environment.

The OCCI Core Model [2] is well suited for the task, since it embeds the tools needed to
extend a framework with provider specific details: this enables the description of the abstract
model, leaving to a further specification the task of making explicit the details, targeting a specific
provider or technology. Given that this document abstracts from the details that characterize
specific infrastructure resources, the model can be applied in environments other than computing
infrastructures.

The concept that makes the model extensible is the mix-in, in the way it is defined in OCCI:
it is used to specify only the basic features of a concept, leaving the option to refine its definition
with further provider or application specific details. In OCCI terms, we will define Resources and
Links omitting those Attributes that are considered as provider or application specific. We consider
that the Mix-ins including specific features are going to be related to those abstract Resources,
and described in separate schemas. For instance, we define a Tool Resource to represent a generic
monotoring tool, that is later associated with a Ping Mixin in a network monitoring specific
framework.

The mix-in abstraction is also used to assemble custom collections of entities that form a more
complex one.

The basic category defined in this document is the OCCI-Sensor: it represents an activity
that aims at collecting a group of metrics that characterize an aspect of a computation, and
at delivering them to the interested parties. For instance, an OCCI-Sensor may focus on the
operation of a shared storage, monitoring the seek time of the disks, the frequency of read errors,
the workload of the server, and the performance of the related network trunk. Since it is a
collection of many simpler activities, the OCCI-Sensor is defined as a Mix-in. Its components may
vary in time, according with operational conditions of the monitored infrastructure. We use two
sub-types of Resources to define them: the OCCI-Tool, and the OCCI-Filter. They are related
with the OCCI-Sensor with a composition relation, and their operation is triggered according with
OCCI-Sensor parameters.

The OCCI-Tool represents a specific monitoring tool, whose details are moved into a related
Mixin, for instance a Ping. The Mixin that defines the specific tool (Ping in the example detailed

1



Figure 1: The UML model of the infrastructure monitoring service

Model attribute value
scheme http://ogf.schemas.sla/occi/monitoring#
term sensor
attributes (see table 2)

Table 1: Model attributes of the OCCI-Sensor mixin

in table 5) has attributes that define the input parameters that control the operation of the tool,
and the resulting output measurements.

To bind the OCCI-Tool to the monitored Resources in the infrastructure we use a Link entity
named OCCI-Monitor. The source of an OCCI-Monitor instance is an OCCI-Tool instance, while
the target is a Resource in the monitored infrastructure.

The OCCI-Filter and the OCCI-Publish represent the way results produced by the OCCI.Tools
are processed and delivered. The OCCI-Filter is a Resource that operates on the measurements
to produce another set of values, and the OCCI-Publish is a Link that specifies the modalities
used to publish such values. The OCCI-Filter embeds a script that takes as parameters the values
measured by the OCCI.Tools, and assigns new values to the local attributes of the OCCI-Filter.
An OCCI-Filter may have a memory of past measurements, while the OCCI-Tool is considered
as stateless. The OCCI-Publish link takes the values of the attributes produced by the trigger,
and delivers them as specified: its operation is controlled by OCCI-Sensor parameters as well.

Note that the schema is transparent to the existence of a standard for the naming of the mea-
sured metrics: if one exists, the interoperability of distinct monitoring infrastructures is certainly
improved. We consider that the user that interacts with the monitoring infrastructures either
knows about the identifiers used by the provider, or uses an interface (e.g., a SLA negotiation
service) that translates provider specific identifiers into interoperable ones.

The UML view of the overall model is described in figure 1.

2 Performance sensors for OCCI-Resources

An OCCI-Sensor is defined as a Mixin: it is a collection of OCCI-Tools and OCCI-Filters that
implement its activity. In table 1 there is a summary of its model attributes.

An OCCI-Sensor is characterized by attributes that define the rate with which new observations
are produced, and by the scheduling times of its operation.

2



name type mut. req. def. Description
occi.sensor.period number yes yes - The time between two following

measurements
occi.sensor.periodgranularity number yes no - The granularity of period mea-

surement
occi.sensor.periodaccuracy integer yes no - The accuracy with which the pe-

riod is measured
occi.sensor.periodexponent integer no yes 0 The base-10 exponent used to

convert to seconds
occi.sensor.timestart integer yes yes - The delay after which the session

is planned to start, or (did) start
occi.sensor.timestop integer yes yes - The delay after which the session

is planned to stop or (did) stop
occi.sensor.timebase integer no yes - Unix seconds
occi.sensor.timegranularity integer no no - The granularity of period mea-

surement
occi.sensor.timeaccuracy integer no no - The accuracy with which the pe-

riod is measured
occi.sensor.timeexponent integer no yes 0 The server clock of last POST on

timestart

Table 2: OCCI Attributes defined for the sensor mixin

The execution rate is defined using three attributes: the rate itself, the granularity with which
the rate is measured, and the accuracy of rate measurement. Such attributes must not be confused
with similar attributes that may characterize the measurement.

The execution of the sensor is controlled by two attributes, that describe the scheduling of
sensor activity: to schedule the execution of the sensor the user modifies the starttime with a
value indicating how far in the future the OCCI-Sensor is going to start its activity. The server
keeps an attribute corresponding to the reference time of the start time.

All time values are represented as numbers. Except for the timebase, that is expressed as Unix
seconds, all timing values use a floating point notation. The ”exponent” attribute is the base-10
conversion that has to be used to obtain a value in seconds. A distinct exponent is used for period
and scheduling purposes.

2.1 The monitoring tool

An instance of a monitoring tool is used to describe the capabilities of a given sensor: this is
obtained associating one or more OCCI-Tools to an OCCI-Sensor instance. A monitoring tool
MUST contain a related attribute pointing to an OCCI-Sensor instance.

A monitoring tool is characterized by a number of specific attributes that control its operation:
for instance, a ping tool is controlled by an attribute that controls the size of the exchanged packet.
In addition the OCCI-Tool MUST contain one attribute for each metric it can deliver, whose last
observed value is recorded in the attribute itself.

To introduce the needed flexibility the OCCI-Tool is defined as a mix-in: in our example,
the length of the packet will be described in a specific Ping mixin related to an OCCI-Tool.
For discovery purpose, OCCI-Tool mixins MUST be grouped in a ToolSet Mixin defined in the
provider space (see figure 2).

In table 3 there is the list of model attributes for an OCCI-Tool.
In table 4 we examplify a ping mixin defined in provider’s space: in our perspective, other

providers may define a functionally identical plugin using different identifiers, or use the same
identifiers for a different meaning. The attributes other than those that are inherited are in table
5.

3



Figure 2: The class diagram with a provider that offers a ”ping” monitoring tool, a Exponentially
Weighted Moving Average filter, and a UDP streaming publication facility. Attributes have been
omitted, and the user and occi namespaces have been highlighted. Green classes are Mixins, red
classes are Links, and white classes are Resources.

Model attribute value
scheme http://ogf.schemas.sla/occi/monitoring#
term tool
attributes -
related http://ogf.schemas.sla/occi/core#resource

Table 3: Model attributes of the OCCI-Tool resource

Model attribute value
scheme http://schemas.provider.com/monitoring#
term ping
attributes (see table 5)

Table 4: Model attributes of the Ping mixin

name type mut. req. def. Description
com.provider.schema.ping.period number yes yes 1 The time between two following

measurements (in seconds)
com.provider.schema.ping.packetsize number yes yes 56 The size of the probe packet (in

bytes)
com.provider.schema.ping.timestamp number yes yes - The timestamp (seconds) of the

last observation
com.provider.schema.ping.roundtrip number no yes - The last roundtrip time (in

msecs)
com.provider.schema.ping.packetloss number no yes - The frequency of packet loss

events (percent)

Table 5: Attributes defined for the Ping mixin

4



Model attribute value
scheme http://ogf.schemas.sla/occi/monitoring#
term monitor
source URI
target URI
attributes -
related http://ogf.schemas.sla/occi/core#link

Table 6: Attributes of the OCCI-Monitors link

Model attribute value
scheme http://ogf.schemas.sla/occi/monitoring#
term filter
attributes -
related http://ogf.schemas.sla/occi/core#resource

Table 7: Model attributes of the OCCI-Filter resource

A OCCI-Tool instance usually operates on one or more Resources of the monitored infras-
tructure, for instance a Compute Resource. This relationship is represented with Links that are
subtypes of the OCCI-Monitors Link entity. OCCI-Tools are characterized by a number of related
resources that depends on their functionality. For instance, an OCCI-Tool representing a ping ses-
sion may originate two links, one for each of the network interfaces involved in the measurement,
whereas a tool measuring the effectiveness of a load balancing service may be linked to a variable
number of nodes.

An OCCI-Monitor instance has its source on a OCCI-Tool, and its target on a monitored
resource: it is defined as in table 6. The model attributes consist of a source and a target, and
the provider may define mixins to enrich the basic type.

The soundness of the OCCI-Links originating from an OCCI-Tool — integrated with a Mixin
— with respect to the resulting activity can be verified only at runtime: for instance, a ping
tool has to be linked to two resources, but in the case that only one link exists, the problem is
detected, and an error is generated, only when the tool starts its operation. This is a limit of the
current scheme: it would be preferable to have a way to make a static check, but this is apparently
inconsistent with the need of a dynamic configurability.

2.2 Measurement aggregation and inference

As a general rule, data made available by the Tools have to be processed before being delivered to
the user: this happens, for instance, when a flag has to be raised whenever a number of conditions
hold, or when the user wants a robust indicator (like an EWMA) instead of a instantaneous mea-
suremnt. For this reason an OCCI-Sensor MAY be associated with a functionality that processes
the measurements collected by the OCCI-Tools: this component is called OCCI-Filter, and an
OCCI-Sensor may contain several distinct OCCI-Filters. Each piece of data produced by an
OCCI-Filter is made available through an attribute. To provide the needed flexibility to the
functionality of the OCCI-Filter, it is left totally abstract, and the user creates and applies a
custom Mixin.

The formula used to transfom raw measurements is represented by a script: the OCCI-
Attributes that are used as input and output for the script are represented, inside the script,
as variables. The syntax used for such association is not dealt with in this document, and depends
on the scripting language. The script language should be extended so that OCCI-Sensor timing
triggers appear as asynchronous manageable events.

Similarly to the tool Mixins, also OCCI-Filters must be grouped inside a unique FilterSet

Mixin inside provider and user namespaces.

5



Model attribute value
scheme http://ogf.schemas.sla/occi/monitoring#
term publish
attributes -
related http://ogf.schemas.sla/occi/core#resource

Table 8: Model attributes of the Publish link

2.3 Delivering monitoring results

The way measurements are delivered is described with a OCCI-Publish Link: for the sake of
flexibility it is defined as an empty framework, that is finalized by way of Mixins. For instance,
one mixin may indicate the repository where measurements are made available, another may
indicate that measurements are piped to a destination, another that the last measurement is
available with a GET. The available mixins, as well as the associated semantics, depend on the
specific provider. An OCCI-Sensor MUST be related with at least one OCCI-Publish Link. The
list of its model attributes is in table 8.

Also in this case, a PublishSet Mixin is defined in provider’s space to make discoverable the
way of publishing the monitoring results.

3 Monitoring infrastructure construction and discovery

Here the OCCI prefix is omitted.
Summarizing, a user that wants to instantiate a monitoring infrastructure starts from iden-

tifying the Resources and the metrics of interest. Next it searches in the ”provider/#ToolSet”
the Tools that offer such metrics. Next it instantiates the Tools needed to perform the required
measurements: there may be the need of several tools of the same kind (more than one ”ping”).
Next the Monitor links are built for each Tool instance towards the resources it monitors. A new
Sensor is created, and all the tools needed to compute the measurements are linked to the new
Sensor. More than one OCCI-Sensor can be instantiated if the monitoring activity is partitioned
for some reason. A number of Filters is added to each Sensor, to compute the derivate metrics
that are considered of interest. Finally, the Channel resource is instantiated from the namespace
”provider/#PublishSet”, and its attributes are configured through mixins. Whenever the sensor
is activated (according with its starttime attribute) a flow of data starts to be available to the
user through the defined channel.

4 Service Level Agreement

A Service Level Agreement (OCCI-Sla) is a contract between a user and a provider: the terms
of the contract are in a form that may be provider-independent, and they are published as an
OCCI-Resource in a specific namespace ”occi/#sla” possibly refined with mixins.

The Service Level Agreement is an aggregate of many Resources, that describe financial, ad-
ministrative, security aspects and much more. Among such Resources, there are the Service
Objectives (SLO). Their function is to specify the meaning of ”quality of service” for the specific
infrastructure. This concept is translated in a function of standard parameters of operation.

In order to monitor the compliance to the SLA, the SLA management infers what are the
available metrics that need to be measured to compute the standard parameters of operation,
and instantiates the corresponding Tools. The appropriate Filters are also instantiated to derive
standard metrics from the locally available ones measured by the Tools, that represent the level of
conformance of the service to the SLO. Finally, the Filters are connected to the SLA monitoring
functionality through a specific Publish link. The SLA resource contains the instructions to
associate an action to a given SLO pattern.

6



5 Related works works

The model is reminiscent of a monitoring infrastructure that I designed and implemented in the
CoreGRID EU-project [1], that in its turn is inspired by various other works (see the bibliography
in the paper). The reading of the CompatibleOne prototype [?] has been enlightening concerning
(among the rest) the need and possibility of modularizing the monitoring part. The 2012 revision
of the OCCI core model [2] has been used as a reference.

References

[1] Augusto Ciuffoletti, Yari Marchetti, Antonis Papadogiannakis, and Michalis Polychronakis.
Prototype implementation of a demand driven network monitoring architecture. In Proceedings
of the CoreGRID Integration Workshop, Hersonissos (Greece), April 2008. Available through
www.slideshare.net.

[2] Iain James Marshall and Jean-Pierre Laisn. CompatibleOne Resource Description System,
2012.

[3] Open Grid Forum. Open Cloud Computing Interface - Core, June 2011. Available from
www.ogf.org.

6 References

OCCI Core
Articolo mio
compatibleone

7


