
OGF OCCI-WG Deliverables
OCCI-WG

OGF OCCI-WG Deliverables
OCCI-WG

Publication date July 2009

1

Use Cases for Infrastructure as a
Service based Clouds
Name of use case

Description: 3 paragraphs with brief description and figure

Functional Requirements

• TBD

Non-functional Requirements

• TBD

2

Requirements for an Cloud API
Functional Requirements

This section deals with the funtional requirements. The requirments have been split up in tables and
prioritized.

Table 1. Functional requirements on VM description

ID Description Usecases Priority

Table 2. Functional requirements on VM management

ID Description Usecases Priority

Table 3. Functional requirements on Network management

ID Description Usecases Priority

Table 4. Functional requirements on Storage management

ID Description Usecases Priority

Table 5. Functional requirements on Image management

ID Description Usecases Priority

Table 6. Identifications/References

ID Description Usecases Priority

Non-functional Requirements
This section deals with all the non-funtional requirements.

Table 7. Security requirements

ID Description Usecases Priority

Table 8. Quality of Service

ID Description Usecases Priority

Requirements for an Cloud API

3

Table 9. Syntax

ID Description Usecases Priority

Table 10. Backup/Disaster recovery

ID Description Usecases Priority

4

OCCI Walkthrough
Overview

This document may lag behind the actual specification

The Open Cloud Computing Interface (OCCI) is an API for managing cloud infrastructure services
(also known as Infrastructure as a Service or IaaS) which strictly adheres to REpresentational State
Transfer (REST) principles and is closely tied to HyperText Tranfer Protocol (HTTP). For simplicity
and scalability reasons it specifically avoids Remote Procedure Call (RPC) style interfaces and can
essentially be implemented as a horizontally scalable document repository with which both nodes and
clients interact.

This document describes a step-by-step walkthrough of performing various tasks as at the time of
writing.

Getting Started

Connecting
Each implementation has a single OCCI end-point URL (we'll use http://example.com/) and everything
you need to know is linked from this point - configuring clients is just a case of providing this
parameter. In the simplest case the end-point may contain only a single resource or type of resource
(e.g. a hypervisor burnt into the BIOS of a motherboard exposing compute resources, a network switch/
router exposing network resources or a SAN exposing storage resources) and at the other end of the
spectrum it may provide access to a global cloud infrastructure (e.g. the "Great Global Grid" or GGG).
You will only ever see those resources to which you have access to (typically all of them for a private
cloud or a small subset for a public cloud) and flexible categorisation and search provide fine-grained
control which resources are returned, allowing OCCI to handle the largest of installations. You will
always connect to this end-point over HTTP(S) and given the simplicity of the interface most user-
agents are suitable, including libraries (e.g. urllib2, LWP), command line tools (e.g. curl, wget) and
full blown browsers (e.g. Firefox).

Authenticating
When you connect you will normally be challenged to authenticate via HTTP (this is not always the
case - in secure/offline environments it may not be necessary) and will need to do so via the specified
mechanism. It is anticipated that most implementations will require HTTP Basic Authentication over
SSL/TLS so at the very least you should support this (fortunately almost all user-agents already
do), but more advanced mechanisms such as NTLM or Kerberos may be deployed. Certain types
of accesses (such as a compute resource querying OCCI for introspection and configuration) may
be possible anonymously (having already been authenticated by interface and/or IP address). Should
you be redirected by the API to a node, storage device, etc. (for example, to retrieve a large binary
representation) then you should either be able to transparently authenticate or a signed URL should
be provided. That is, a single set of credentials is all that is required to access the entire system from
any point.

Representations
As the resource itself (e.g. a physical machine, storage array or network switch) cannot be transferred
over HTTP (at least not yet!) we instead make available one or more representations of that resource.
For example, an API modeling a person might return a picture, fingerprints, identity document(s) or
even a digitised DNA sequence, but not the person themselves. A circle might be represented by SVG
drawing primatives or any three distinct points on the curve. For cloud infrastructure there are many
useful representations, and while OCCI standardises a number of them for interoperability purposes,

OCCI Walkthrough

5

an implementation is free to implement others in order to best serve the specific needs of their users
and to differentiate from other offerings. Other examples include:

• Open Cloud Computing Interface (OCCI) descriptor format (application/occi+xml)

• Open Virtualisation Format (OVF) file (application/ovf+xml?)

• Open Virtualisation Archive (OVA) file (application/x-ova?)

• Screenshot of the console (image/png)

• Access to the console (application/x-vnc)

The client indicates which representation(s) it desires by way of the URL and/or HTTP Accept headers
(e.g. HTTP Content Negotiation) and if the server is unable to satisfy the request then it should return
HTTP 406 Not Acceptable.

Descriptors
In addition to the protocol itself, OCCI defines a simple key/value based descriptor format for cloud
infrastructure resources:

compute Provides computational services, ranging from dedicated physical
machines (e.g. Dedibox) to virtual machines (e.g. Amazon EC2)
to slices/zones/containers (e.g. Mosso Cloud Servers).

network Provides connectivity between machines and the outside world.
Usually virtual and may or may not be connected to a physical
segment.

storage Provides storage services, typically via magnetic mass storage
devices (e.g. hard drives, RAID arrays, SANs).

Given the simplicity of the format it is trivial to translate between wire formats including plain text,
JSON, XML and others. For example:

occi.compute.cores 2
compute.speed 3200
compute.memory 2048

Identifiers
Each resource is identified by its dereferenceable URL which is by definition unique, giving
information about the origin and type of the resource as well as a local identifier (the combination of
which forms a globally unique compound key). The primary drawback is that the more information
that goes into the key (and therefore the more transparent it is), the more likely it is to change. For
example, if you migrate a resource from one implementation to another then its identifier will change
(though in this instance the source should provide a HTTP 301 Moved Permanently response along
with the new location, assuming it is known, or HTTP 410 Gone otherwise).

In order to realise the benefit of transparent, dereferenceable identifiers while still being able to track
resources through their entire lifecycle an immutable UUID attribute should be allocated which will
remain with the resource throughout its life. This is particularly important where the same resource
(e.g. a network) appears in multiple places.

New implementations should use type 4 (random) UUIDs anyway, as these can be safely allocated
by any node without consulting a register/sequence, but where existing identifiers are available they
should be used instead (e.g. http://amazon.com/compute/ami-ef48af86).

OCCI Walkthrough

6

Operations

Create
To create a resource simply POST it to the appropropriate collection (e.g. /compute, /network or /
storage) as an HTML form (supported by virtually all user agents) or in another supported format
(e.g. OVF):

POST /compute HTTP/1.1
Host: example.com
Content-Length: 35
Content-Type: application/x-www-form-urlencoded

compute.cores=2&compute.memory=2048

Rather than generating the new resource from scratch you may also be given the option to GET a
template and POST or PUT it back (for example, where "small", "medium" and "large" instances or
pre-configured appliances are offered).

Retrieve
The simplest command is to retrieve a single resource by conducting a HTTP GET on its URL (which
doubles as its identifier):

GET /compute/b10fa926-41a6-4125-ae94-bfad2670ca87 HTTP/1.1
Host: example.com

This will return a HTTP 300 Multiple Choices response containing a list of available representations
for the resource as well as a suggestion in the form of a HTTP Location: header of the default
rendering, which should be HTML (thereby allowing standard browsers to access the API directly).
An arbitrary number of alternatives may also be returned by way of HTTP Link: headers.

If you just need to know what representations are available you should make a HEAD request instead
of a GET - this will return the metadata in the headers without the default rendering.

Some requests (such as searches) will need to return a collection of resources. There are two options:

Pass-by-reference A plain text or HTML list of links is provided but each needs to
be retrieved separately, resulting in O(n+1) performance.

Pass-by-value A wrapper format such as Atom is used to deliver [links to] the
content as well as the metadata (e.g. links, associations, cahching
information, etc.), resulting in O(1) performance.

Update
Updating resources is trivial - simply GET the resource, modify it as necessary and PUT it back where
you found it.

Delete
Simply DELETE the resource:

DELETE /compute/b10fa926-41a6-4125-ae94-bfad2670ca87 HTTP/1.1
Host: example.com

OCCI Walkthrough

7

Sub-resource Collections
(For want of a better name)

Each resource may expose collections for functions such as logging, auditing, change control,
documentation and other operations (e.g. http://example.com/compute/123/log/456) in addition to any
required by OCCI. As usual CRUD operations map to HTTP verbs (as above) and clients can either
PUT entries directly if they know or will generate the identifiers, or POST them to the collection if
this will be handled on the server side (using POST Once Exactly (POE) to ensure idempotency).

Requests
Requests are used to trigger state changes and other operations such as backups, snapshots, migrations
and invasive reconfigurations (such as storage resource resizing). Those that do not complete
immediately (returning HTTP 200 OK or similar) must be handled asynchronously (returning HTTP
201 Accepted or similar).

POST /compute/123/requests HTTP/1.1
Host: example.com
Content-Length: 35
Content-Type: application/x-www-form-urlencoded

state=shutdown&type=acpioff

The actual operation may not start immediately (for example, backups which are only handled daily
at midnight) and may take some time to complete (for example a secure erase which requires multiple
passes over the disk). Clients can poll for status periodically or use server push (or a non-HTTP
technology such as XMPP) to monitor for events.

8

OCCI Core
Introduction

The Open Cloud Computing Interface is an open community consensus API, initially targeting cloud
infrastructure services or "Infrastructure as a Service (IaaS)". A "Resource Oriented Architecture
(ROA)", it is as close as possible to the underlying HyperText Transfer Protocol (HTTP), deviating
only where absolutely necessary. Each resource (identified by a canonical URL) can have multiple
representations which may or may not be hypertext (e.g. HTML). Metadata including associations
between resources is exposed via HTTP headers (e.g. the Link: header), except in the case of
collections where Atom is used as the meta-model.

Table 1. Common Attributes

Attribute Type Description

id String (Typically UUID Type 4) Random, immutable unique
identifier (atom:id)

title String Human readable title
(atom:title)

summary String Summary (atom:summary)

Basics

URL Namespace
An OCCI interface is defined by a single URL entry point (and optionally, suitable credentials
for HTTP based authentication schemes). Implementors should also expose an AtomPub service
document at the root to enable enumeration of resource types, supported formats and categories.

Nouns, Verbs and Attributes
Interfaces expose "nouns" which have "attributes" and on which "verbs" can be performed. The
attributes are exposed as key-value pairs and appropriate verbs as links, following HATEOAS
principles.

CRUD Operations
Create, Retrieve, Update and Delete (CRUD) operations map to the POST, GET, PUT and DELETE
HTTP verbs respectively. HEAD and OPTIONS verbs may be used to retrieve metadata and
valid operations without the entity body to improve performance. Additionally, all existing HTTP
functionality is available for caching, proxying, gatewaying and other advanced functionality.

POST (Create) POSTing a representation (e.g. OVF) to a collection (e.g. /
compute) will result in a new resource being created (e.g. /
compute/123) and returned in the Location: header. POST is also
used with HTML form data to trigger verbs (e.g. restart)

GET (Retrieve) GETting a resource (e.g. /compute/123) will return a
representation of that resource in the most appropriate supported
format specified by the client in the Accept header. Otherwise
"406 Not Acceptable" will be returned.

PUT (Update) PUTting a representation (e.g. OVF) to a URL (e.g. /
compute/123) will result in the resource being created or updated.

OCCI Core

9

The URL is known or selected by the client (in which case UUIDs
should be used), in contrast to POSTs where the URL is selected
by the server.

DELETE (Delete) DELETE results in the deletion of the resource (and everything
"under" it, as appropriate).

Collections
Operations that return multiple resources (e.g. categories, searches) are rendered as an Atom feed with
an Atom entry per resource. Metadata that would normally appear in the HTTP headers appears in
standard Atom elements with the entity-body itself being passed by reference or by value in the Atom
content element.

Versioning
Clients and servers should expose the protocol version (e.g. OCCI/1.0) via the User-Agent and Server
HTTP headers respectively. Should second or subsequent versions of the descriptor format be required
the version will be added to the Internet media type (e.g. application/occi2+xml).

Extensions
Caching

Caching information improves performance by allowing clients to track freshness of cached objects.

Table 2. Caching Attributes

Attribute Type Description

etag String ETag (must match HTTP
headers where present)

updated Date Time last updated
(atom:updated)

Categories
Categories allow for simple, flexible organisation of information.

Table 3. Category Attributes

Attribute Type Description

category[i].term Token Category name (atom:term)

category[i].scheme URI Category vocabulary/schema
(atom:scheme)

category[i].label String Human readable label
(atom:label)

Links
Linking allows resources to refer to:

• Alternative representations

• Sub-collections

• Other nouns

OCCI Core

10

• Related resources

Table 4. Linking Attributes

Attribute Type Description

link[i].href URI Link target
(atom:link[@href])

link[i].rel URI Link relation
(atom:link[@rel])

link[i].title String Human readable title
(atom:link[@title])

Status
Status reporting allows clients to monitor the status of a given task.

Table 5. Status Attributes

Attribute Type Description

status.message String Human readable status message

status.percentage Float (0..100) Percentage complete (0=not
started, 100=finished)

status.rate.average Float Average rate of progress

status.rate.current Float Current rate of progress

status.rate.units String Units (e.g. MB/s)

status.work.completed Float Work completed

status.work.remaining Float Work remaining

status.work.units String Units (e.g. MB)

status.time.start Date/Time Start time

status.time.finish Date/Time Finish time (may be an estimate)

status.time.remaining Time Remaining time (may be an
estimate)

Tasks
Asynchronous operations ("tasks") immediately return HTTP 202 Accepted with a Location:
header pointing to a simple task [sub]resource. This allows tasks to be monitored (GET), updated (PUT)
and canceled (DELETE). Completed tasks may be deleted immediately, after a reasonable period of
time (allowing clients to retrieve status) or retained indefinitely for audit purposes.

The collection of tasks for a given resource (including the entry-point itself for global tasks) is
advertised under the http://purl.org/occi#tasks link relation and new tasks should be
submitted via HTTP POST to the supplied href.

Table 6. Task Attributes

Attribute Type Description

task.type Token Task type (e.g. backup)

task.sub-type Token Task sub-type (e.g.
incremental)

task.schedule[i] String Task schedule (e.g. "every
Friday at 21:00")

OCCI Core

11

Examples
The following is an example of an OCCI resource in application/occi+txt format:

Examples

Plain Text
The following is an example of an OCCI resource in application/occi+txt format:

id: 2acf3e85-33cb-493b-ab5c-7ef878032657
title: Resource #1
summary: Web resource for demonstration purposes
etag: "46dd20-23-464015228e7c0"
category[0].term: widget
category[0].scheme: http://example.com/products
category[0].label: Widgets
link[0].href: http://example.com/products/1234
link[0].rel: self
link[0].title: Link to myself

JSON (application/occi+json)
The following is an example of an OCCI resource in application/occi+json format:

{
 "id": "f63aaa26-30b7-4a30-91ca-1d03c1e52214",
 "title": "Resource #1",
 "summary": "Web resource for demonstration purposes",
 "etag": "d260e0b71609d8403d564a4b220814d4",
 "category": [{
 "term": "widget",
 "scheme": "http://example.com/products",
 "label": "Widgets"
 }],
 "link": [{
 "href": "http://example.com/products/1234",
 "rel": "self",
 "title": "Link to myself"
 }]
}

XML (application/occi+xml)
The following is an example of an OCCI resource in application/occi+xml format:

TBD

References
The following standards are referenced by this implementation.

• RFC 2616 Hypertext Transfer Protocol -- HTTP/1.1

• RFC 4287 The Atom Syndication Format

OCCI Core

12

• RFC 5023 The Atom Publishing Protocol

Additionally RFC 2119 Requirement Levels are used throughout.

Registration

IANA Considerations
The following media types are to be registered:

• application/occi+txt

• application/occi+json

• application/occi+xml

13

OCCI Infrastructure
OCCI Infrastructure defines three nouns and various extensions relating to management of cloud
infrastructure services (IaaS).

Table 1. Common Attributes

Attribute Type Description

hostname String Valid DNS hostname for the
resource (may be FQDN)

Nouns
Cloud infrastructure can be modeled using three primary nouns: compute, network and storage.

Compute
A compute resource is capable of conducting computations (e.g. a virtual machine).

Table 2. Compute Attributes

Attribute Type Description

compute.cpu.arch Enum (x86, x64) CPU Architecture (e.g. x64)

compute.cpu.cores Integer Number of CPU cores (e.g. 1, 2)

compute.cpu.speed Float (10^9 Hertz) Clock speed in gigahertz (e.g.
2.4)

compute.memory.size Float (10^6 bytes) RAM in megabytes (e.g. 2048)

compute.memory.speed Float (10^9 bps) RAM speed in Gbit/s (e.g. 256)

compute.memory.reliabilityEnum (standard, checksum) Qualitative measure of RAM
reliability (e.g. ECC)

Network
A network resource is capable of transferring data (e.g. a virtual network or VLAN).

Table 3. Network Attributes

Attribute Type Description

network.vlan-id Integer (0..4095) 802.1q VLAN ID (e.g. 4095)

network.vlan-tag Token Tag based VLANs (e.g.
external-dmz)

network.ipv4[i].gatewayIPv4 Address IPv4 gateway address (e.g.
192.168.0.1)

network.ipv4[i].netmaskIPv4 Address IPv4 netmask address (e.g.
255.255.255.0)

network.ipv4[i].networkIPv4 Address IPv4 network address (e.g.
192.168.0.0)

network.ipv4[i].cidr Integer (0..32) Netmask in CIDR notation (e.g.
24)

OCCI Infrastructure

14

Storage
A storage resource is capable of mass storage of data (e.g. a virtual hard drive).

Table 4. Storage Attributes

Attribute Type Description

storage.reliability Enum (transient, persistent,
reliable)

Qualitative device persistence
(e.g. transient)

storage.size Integer (10^9 bytes) Drive size in gigabytes (e.g. 40)

Extensions
Various extensions provide for more advanced management functionality such as billing, monitoring
and reporting.

State machine (state)
The state machine extension allows for the modeling of arbitrarily complex state machines and
associated transitions (e.g. start, stop, restart).

15

OCCI Registries
Table 1. HTTP Status Codes

Code Description Example

200 OK Request completed successfully Response is returned

201 Created Request completed successfully,
resource was created

Pointer to new resource returned

202 Accepted Request accepted, processing
not completed

Workload starting but not yet
active

301 Moved Permanently Resource has been assigned a
new permanent URI

Workload migrated to another
installation

302 Found Resource resides temporarily
under a different URI

Alias pointing to UUID can be
updated

304 Not Modified Conditional GET on resource
that is unchanged

Client already has the latest
version of the resource

400 Bad Request Request could not be understood
by the server due to malformed
syntax

Client sent a representation that
was unable to be understood

401 Unauthorized The request requires user
authentication

Client must retry with
authentication

402 Payment Required The server has refused to fulfill
the request

Credit limit exceeded

403 Forbidden The server understood the
request, but is refusing to fulfill it

Attempt to access resource
without permission

404 Not Found The server has not found the
resource

Feed or entry unknown

405 Method Not Allowed The method specified is not
allowed for the resource

Attempt to delete an immutable
resource

406 Not Acceptable The resource is not capable of
requested content characteristics

Unsupported output format
requested

409 Conflict Request is in conflict with the
current state of the resource

Resource updated by a third-
party in the interim

410 Gone Resource is gone, no forwarding
address

Resource was deleted

500 Internal Server Error Server encountered an
unexpected condition

An unknown failure has
occurred (e.g. out of memory)

501 Not Implemented Functionality required to fulfill
request is not implemented

A missing extension was called

502 Bad Gateway An invalid response was
received from an upstream
server

The gateway received a
malformed response from a node

503 Service Unavailable Server is temporarily unable to
handle the request

Server may be overloaded or
down for maintenance

504 Gateway Timeout No response was received from
an upstream server

The gateway did not receive
a response within the timeout
period

16

Legal Notices
Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other rights
that might be claimed to pertain to the implementation or use of the technology described in this
document or the extent to which any license under such rights might or might not be available; neither
does it represent that it has made any effort to identify any such rights. Copies of claims of rights
made available for publication and any assurances of licenses to be made available, or the result of
an attempt made to obtain a general license or permission for the use of such proprietary rights by
implementers or users of this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to practice
this recommendation. Please address the information to the OGF Executive Director.

Disclaimer
This document and the information contained herein is provided on an “As Is” basis and the OGF
disclaims all warranties, express or implied, including but not limited to any warranty that the use
of the information herein will not infringe any rights or any implied warranties of merchantability or
fitness for a particular purpose.

Full Copyright Notice
Copyright (C) Open Grid Forum (2009). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works. However, this document
itself may not be modified in any way, such as by removing the copyright notice or references to the
OGF or other organizations, except as needed for the purpose of developing Grid Recommendations
in which case the procedures for copyrights defined in the OGF Document process must be followed,
or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its
successors or assignees.

