
Draft Ralf Nyrén, Independent1

OCCI-WG Andy Edmonds, ICCLab, ZHAW2

Thijs Metsch, Intel3

Boris Parák, CESNET February 4, 20134

Updated: March 19, 20155

Open Cloud Computing Interface - HTTP Protocol6

Status of this Document7

This document is a draft providing information to the community regarding the specification of the Open8

Cloud Computing Interface.9

Copyright Notice10

Copyright c©Open Grid Forum (2013-2015). All Rights Reserved.11

Trademarks12

OCCI is a trademark of the Open Grid Forum.13

Abstract14

This document, part of a document series, produced by the OCCI working group within the Open Grid Forum15

(OGF), provides a high-level definition of a Protocol and API. The document is based upon previously gathered16

requirements and focuses on the scope of important capabilities required to support modern service offerings.17

GFD-R March 19, 2015

Contents18

1 Introduction 419

2 Notational Conventions 420

3 OCCI RESTful HTTP Protocol 521

4 Namespace 522

4.1 Bound and Unbound Paths . 523

5 Headers and Status Codes 524

5.1 Requests Headers . 525

5.2 Response Headers . 626

5.3 Versioning . 627

5.4 Status Codes . 628

6 Pagination 729

7 HTTP Methods Applied to Query Interface 730

7.1 GET Method . 831

7.2 PUT Method . 832

7.3 POST Method . 833

7.4 DELETE Method . 834

8 HTTP Methods Applied to Entity Instance 835

8.1 GET Method . 836

8.2 PUT Method . 937

8.2.1 Create . 938

8.2.2 Replace . 939

8.3 POST Method . 940

8.3.1 Partial Update . 941

8.3.2 Trigger Action . 1042

8.4 DELETE Method . 1043

9 HTTP Methods Applied to Collection 1044

9.1 GET Method . 1045

9.2 PUT Method . 1146

9.3 POST Method . 1147

9.3.1 Create Entity Instance . 1148

9.3.2 Associate Mixin with Entity Instance . 1149

9.3.3 Trigger Action . 1150

9.4 DELETE Method . 1251

9.4.1 Delete Entity Instances . 1252

9.4.2 Disassociate Mixin from Entity Instances . 1253

occi-wg@ogf.org 2

GFD-R March 19, 2015

10 Security Considerations 1254

11 Glossary 1355

12 Contributors 1356

13 Intellectual Property Statement 1457

14 Disclaimer 1458

15 Full Copyright Notice 1459

occi-wg@ogf.org 3

GFD-R March 19, 2015

1 Introduction60

The Open Cloud Computing Interface (OCCI) is a RESTful Protocol and API for all kinds of management tasks.61

OCCI was originally initiated to create a remote management API for IaaS1 model-based services, allowing62

for the development of interoperable tools for common tasks including deployment, autonomic scaling and63

monitoring. It has since evolved into a flexible API with a strong focus on interoperability while still offering a64

high degree of extensibility. The current release of the Open Cloud Computing Interface is suitable to serve65

many other models in addition to IaaS, including PaaS and SaaS.66

In order to be modular and extensible the current OCCI specification is released as a suite of complimentary67

documents, which together form the complete specification. The documents are divided into four categories68

consisting of the OCCI Core, the OCCI Protocols, the OCCI Renderings and the OCCI Extensions.69

• The OCCI Core specification consists of a single document defining the OCCI Core Model. The OCCI70

Core Model can be interacted through renderings (including associated behaviours) and expanded through71

extensions.72

• The OCCI Protocol specifications consist of multiple documents each describing how the model can be73

interacted with over a particular protocol (e.g. HTTP, AMQP etc.). Multiple protocols can interact with74

the same instance of the OCCI Core Model.75

• The OCCI Rendering specifications consist of multiple documents each describing a particular rendering76

of the OCCI Core Model. Multiple renderings can interact with the same instance of the OCCI Core77

Model and will automatically support any additions to the model which follow the extension rules defined78

in OCCI Core.79

• The OCCI Extension specifications consist of multiple documents each describing a particular extension80

of the OCCI Core Model. The extension documents describe additions to the OCCI Core Model defined81

within the OCCI specification suite.82

The current specification consists of seven documents. This specification describes version 1.2 of OCCI and83

is backward compatible with 1.1. Future releases of OCCI may include additional protocol, rendering and84

extension specifications. The specifications to be implemented (MUST, SHOULD, MAY) are detailed in the85

table below.86

Table 1. What OCCI specifications must be implemented for the specific version.

Document OCCI 1.1 OCCI 1.2

Core Model MUST MUST
Infrastructure Model SHOULD SHOULD
Platform Model MAY MAY
SLA Model MAY MAY
HTTP Protocol MUST MUST
Text Rendering MUST MUST
JSON Rendering MAY MUST

2 Notational Conventions87

All these parts and the information within are mandatory for implementors (unless otherwise specified). The key88

words ”MUST”, ”MUST NOT”, ”REQUIRED”, ”SHALL”, ”SHALL NOT”, ”SHOULD”, ”SHOULD NOT”,89

”RECOMMENDED”, ”MAY”, and ”OPTIONAL” in this document are to be interpreted as described in RFC90

2119 [1].91

The following terms [2] are used when referring to URL components:92

1Infrastructure as a Service

occi-wg@ogf.org 4

GFD-R March 19, 2015

http://example.com:8080/over/there?action=stop#xyz93

__/ ______________/_________/ _________/ _/94

| | | | |95

scheme authority path query fragment96

3 OCCI RESTful HTTP Protocol97

This document specifies the OCCI HTTP Protocol, a RESTful protocol for communication between OCCI98

server and OCCI client. The OCCI HTTP Protocol support multiple different data formats as payload. Data99

formats are specified an separate documents.100

4 Namespace101

The OCCI HTTP Protocol maps the OCCI Core model into the URL hierarchy by binding Kind and Mixin102

instances to unique URL paths. Such a URL path is called the location of the Kind or Mixin. A provider is free103

to choose the location as long as it is unique within the service provider’s URL namespace. For example, the104

Kind instance2 for the Compute type may be bound to /my/occi/api/compute/.105

Whenever a location is rendered it MUST be either a String or as defined in RFC6570 [3].106

A Kind instance whose associated type cannot be instantiated MUST NOT be bound to an URL path. This107

applies to the Kind instance for OCCI Entity which, according to OCCI Core, cannot be instantiated [4].108

4.1 Bound and Unbound Paths109

Since a limited set of URL paths are bound to Kind and Mixin instances the URL hierarchy consists of both110

bound and unbound paths. A bound URL path is the location of a Kind or Mixin collection.111

An unbound URL path MAY represent the union of all Kind and Mixin collection ‘below’ the unbound path.112

5 Headers and Status Codes113

OCCI clients and Servers MUST include a minimum set of mandatory HTTP headers in each request and114

response in order to be compliant. There is also a minimum set of HTTP status codes which MUST be115

supported by an implementation of the OCCI HTTP Protocol.116

5.1 Requests Headers117

Accept An OCCI client SHOULD specify the media types of the OCCI data formats it supports in the Accept118

header.119

Content-type If an OCCI client submits payload in a HTTP request the OCCI client MUST specify the media120

type of the OCCI data format in the Content-type header.121

User-Agent An OCCI client SHOULD specify the OCCI version number in the User-Agent header. See122

Section 5.3.123

2http://schemas.ogf.org/occi/infrastructure#compute

occi-wg@ogf.org 5

GFD-R March 19, 2015

5.2 Response Headers124

Accept An OCCI server SHOULD specify the media types of the OCCI data formats it supports in the Accept125

header.126

Content-type An OCCI server MUST specify the media type of the OCCI data format used in an HTTP127

response.128

Server An OCCI server MUST specify the OCCI version number in the Server header. See Section 5.3.129

5.3 Versioning130

Information about the OCCI version supported by a server implementation MUST be advertised to a client on131

each response. The version field in the response MUST include the value OCCI/X.Y, where X is the major132

version number and Y is the minor version number of the implemented OCCI version. The server response133

MUST relay versioning information using the HTTP ‘Server’ header.134

HTTP/1.1 200 OK135

Server: occi-server/1.1 (linux) OCCI/1.2136

[...]137

Complementing the server-side behavior of an OCCI implementation, a client SHOULD indicate the version it138

expects to interact with. In a client, this information SHOULD be advertised in all requests it issues. A client139

request SHOULD relay versioning information in the ‘User-Agent’ header. The ‘User-Agent’ header MUST140

include the same value (OCCI/X.Y) as advertised by the server.141

GET /-/ HTTP/1.1142

Host: example.com143

User-Agent: occi-client/1.1 (linux) libcurl/7.19.4 OCCI/1.2144

[...]145

If an OCCI implementation receives a request from a client that supplies a version number higher than the146

server supports, the server MUST respond back to the client with an HTTP status code indicating that the147

requested version is not implemented. The HTTP 501 Not Implemented status code MUST be used.148

OCCI implementations compliant with this version of the document MUST use the version string OCCI/1.2.149

Versioning of extensions is out of scope for this document.150

5.4 Status Codes151

The below list specifies the minimum set of HTTP status codes an OCCI client MUST understand. An OCCI152

server MAY return other HTTP status codes but the exact client behavior in such cases is not specified. The153

return codes are specified by [5] and [6].154

200 OK indicates that the request has succeeded.155

201 CREATED indicates that the request has been fulfilled and has resulted in one or more new resources156

being created.157

400 Bad Request indicates that the server cannot or will not process the request due to something that is158

perceived to be a client error159

401 Unauthorized indicates that the request has not been applied because it lacks valid authentication160

credentials for the target resource.161

403 Forbidden indicates that the server understood the request but refuses to authorize it.162

occi-wg@ogf.org 6

GFD-R March 19, 2015

404 Not Found indicates that the origin server did not find a current representation for the target resource163

or is not willing to disclose that one exists164

405 Method Not Allowed indicates that the method received in the request-line is known by the origin165

server but not supported by the target resource.166

406 Not Acceptable indicates that the target resource does not have a current representation that would be167

acceptable to the user agent168

409 Conflict indicates that the request could not be completed due to a conflict with the current state of169

the resource170

413 Request Entity Too Large indicates that the request is larger than the server is willing or able to171

process.172

500 Internal Server Error indicates that the server encountered an unexpected condition that prevented it173

from fulfilling the request.174

501 Not Implemented indicates that the server does not support the functionality required to fulfill the175

request.176

503 Service Unavailable indicates that the server is currently unable to handle the request due to a temporary177

overload or maintenance of the server178

6 Pagination179

To request partial results of an otherwise large collection message response, pagination SHOULD be used to180

reduce the load on both the client and the service provider. This is done in the following manner.181

The HTTP GET verb is used when accessing a URL of a collection and the query parameters of page and182

number MUST be used. page is an indexed integer that refers to a sub-collection of the requested collection.183

number is an integer of items that SHOULD be displayed in one paged response.184

If number is too large for the provider to handle (policy, technical limitations) then an HTTP 413 Request185

Entity Too Large response status code MUST be issued to the requesting client.186

If there is no more content to be served, the response status code issued to the requesting client MUST be an187

HTTP 200 OK and the response body MUST contain an empty collection.188

7 HTTP Methods Applied to Query Interface189

This section describes the HTTP methods used to retrieve and manipulate category instances. With the help190

of the query interface it is possible for the client to determine the capabilities of the OCCI implementation he191

refers to.192

The query interface MUST be implemented by all OCCI implementations. It MUST be found at:193

/-/194

Implementations MAY also adopt RFC5785 [7] compliance to advertise this location. Should implementations195

wish to advertise the Query Interface using the .well-known mechanism then they MUST use the following196

path served from the authority:197

/.well-known/org/ogf/occi/-/198

The renderings for the category instance and category collection are defined in [8] and [9].199

occi-wg@ogf.org 7

GFD-R March 19, 2015

7.1 GET Method200

Client GET request201

The request MAY include a possible filter rendering.202

Server GET response203

The response MUST include a category collection rendering.204

Upon a successfully request a 200 OK status code MUST be used.205

7.2 PUT Method206

N/A207

7.3 POST Method208

Client POST request209

The request MUST include at least one full category instance rendering. It MAY include a category collection210

rendering.211

Server POST response212

Upon a successful processing of the request, the 200 OK status code MUST be returned.213

7.4 DELETE Method214

Client DELETE request215

The request MUST include at least one full category instance rendering. It MAY include a category collection216

rendering.217

Server DELETE response218

Upon a successful processing of the request, the 200 OK status code MUST be returned.219

8 HTTP Methods Applied to Entity Instance220

This section describes the HTTP methods used to retrieve and manipulate individual entity instances. An221

entity instance refers to an instance of the OCCI Resource type, OCCI Link type or a sub-type thereof [4].222

Each HTTP method described is assumed to operate on an URL referring to a single element in a collection,223

an URL such as the following:224

http://example.com/compute/012d2b48-c334-47f2-9368-557e75249042225

The renderings for the entity and action instances are defined in [8] and [9].226

8.1 GET Method227

The HTTP GET method retrieves a rendering of a single (existing) entity instance.228

occi-wg@ogf.org 8

GFD-R March 19, 2015

Client GET request229

N/A230

Server GET response231

The response MUST contain an entity instance rendering.232

Upon a successful processing of the request, the 200 OK status code MUST be returned.233

8.2 PUT Method234

The HTTP PUT method either creates a new or replaces an existing entity instance at the specified URL.235

8.2.1 Create236

Client PUT request237

The request MUST contain an entity instance rendering.238

Server PUT response239

The OCCI implementation MAY return either the 201 Created or 200 OK status code. If the OCCI implemen-240

tation returns the 200 OK status code, an entity instance rendering MUST be included as well. In case of the241

201 Created status code, a location (as defined in RFC7231 [5]) MUST be included.242

8.2.2 Replace243

Any OCCI Links associated with an existing OCCI Resource MUST be left intact.244

Client PUT request245

The request MUST contain an entity instance rendering.246

Server PUT response247

The OCCI implementation MAY return either the 201 Created or 200 OK status code. If the OCCI implemen-248

tation returns the 200 OK status code, an entity instance rendering MUST be included as well. In case of the249

201 Created status code, a location (as defined in RFC7231 [5]) MUST be included.250

8.3 POST Method251

The HTTP POST method either partially updates an existing entity instance or triggers an action on an252

existing entity instance.253

8.3.1 Partial Update254

Client POST request255

The request MUST contain a partial entity instance rendering of the entity instance to be changed.256

Server POST response257

The OCCI implementation MAY return either the 201 Created or 200 OK status code. If the OCCI implemen-258

tation returns the 200 OK status code, an entity instance rendering MUST be included as well. In case of the259

201 Created status code, a location (as defined in RFC7231 [5]) MUST be included.260

occi-wg@ogf.org 9

GFD-R March 19, 2015

8.3.2 Trigger Action261

Actions are triggered using the HTTP POST verb and by adding a query string to the URL. This query MUST262

contain a key-value pair. The key MUST be ‘action’. The value MUST equal to the Action’s term.263

Client POST request264

The request MUST contain an action invocation rendering.265

Server POST response266

The response of the HTTP GET response MUST contain an entity instance rendering.267

Upon a successful processing of the request, the 200 OK status code MUST be returned.268

8.4 DELETE Method269

The HTTP DELETE method deletes an entity instance270

Client DELETE request271

N/A272

Server DELETE response273

Upon a successful processing of the request, the 200 OK status code MUST be returned.274

9 HTTP Methods Applied to Collection275

This section describes the HTTP methods used to retrieve and manipulate collections. A collection refers to a276

set of entity instances.277

Each HTTP method described is assumed to operate on an URL referring to a collection, an URL such as the278

following:279

http://example.com/compute/280

The renderings for the entity instance, entity collection and action instances are defined in [8] and [9].281

9.1 GET Method282

The HTTP GET method retrieves a rendering of a collection of existing entity instances.283

Client GET request284

The request MAY include a possible filter rendering.285

Server GET response286

The response MUST include an entity collection rendering.287

Upon a successful processing of the request, the 200 OK status code MUST be returned.288

occi-wg@ogf.org 10

GFD-R March 19, 2015

9.2 PUT Method289

The HTTP PUT is only defined for a collection defined by a Mixin. It makes replacing the collection possible.290

Client PUT request291

The request MUST include an entity collection rendering.292

Server PUT response293

The response MUST include an entity collection rendering.294

Upon a successful processing of the request, the 200 OK status code MUST be returned.295

9.3 POST Method296

The HTTP POST method is defined for creation of an entity instance, association of entity instance with a297

Mixin and triggering actions.298

9.3.1 Create Entity Instance299

Client POST request300

The request MUST include at least one full entity instance rendering. It MAY include an entity collection301

rendering.302

Server POST response303

The OCCI implementation MAY return either the 201 Created or 200 OK status code. If the OCCI implemen-304

tation returns the 200 OK status code, an entity instance rendering or collection rendering MUST be included305

as well. In case of the 201 Created status code, an entity instance location (as defined in RFC7231 [5]) or a306

list of entity instance locations MUST be included.307

9.3.2 Associate Mixin with Entity Instance308

This operation MUST only be available for collections defined by a Mixin.309

Client POST request310

The request MUST include an entity collection rendering which require the Mixin to be applied.311

Server POST response312

On successful operation the server replies with the 200 OK HTTP status code it MUST include an entity313

collection rendering.314

9.3.3 Trigger Action315

Actions are triggered using the HTTP POST verb and by adding a query string to the URL. This query MUST316

contain a key-value pair. The key MUST be ‘action’. The value MUST equal to the Action’s term.317

Client POST request318

The request MUST contain an action invocation rendering.319

occi-wg@ogf.org 11

GFD-R March 19, 2015

Server POST response320

The response of the HTTP GET response MUST contain an entity collection rendering.321

Upon a successful processing of the request, the 200 OK status code MUST be returned.322

9.4 DELETE Method323

The HTTP delete method is used to either delete all entity instances in a collection or disassociate entity324

instance from a collection defined by a Mixin.325

9.4.1 Delete Entity Instances326

Client DELETE request327

N/A328

Server DELETE response329

Upon a successful processing of the request, the 200 OK status code MUST be returned.330

9.4.2 Disassociate Mixin from Entity Instances331

This operation MUST only be available for collections defined by a Mixin.332

Client DELETE request333

The request MAY include entity collection rendering which requires the Mixin to be disassociated.334

Server DELETE response335

Upon a successful processing of the request, the 200 OK status code MUST be returned.336

10 Security Considerations337

The OCCI HTTP rendering assumes HTTP or HTTP-related mechanisms for security. As such, implementations338

SHOULD support TLS 3 for transport layer security.339

Authentication SHOULD be realized by HTTP authentication mechanisms, namely HTTP Basic or Digest340

Auth [10], with the former as default. Additional profiles MAY specify other methods and should ensure that341

the selected authentication scheme can be rendered over the HTTP or HTTP-related protocols.342

Authorization is not enforced on the protocol level, but SHOULD be performed by the implementation. For343

the authorization decision, the authentication information as provided by the mechanisms described above344

MUST be used.345

Protection against potential Denial-of-Service scenarios is out of scope of this document; the OCCI HTTP346

Protocol specification assumes cooperative clients that SHOULD use selection and filtering as provided by347

the Category mechanism wherever possible. Additional profiles to this document, however, MAY specifically348

address such scenarios; in that case, best practices from the HTTP ecosystem and appropriate mechanisms as349

part of the HTTP protocol specification SHOULD be preferred.350

As long as specific extensions of the OCCI Core and Model specification do not impose additional security351

requirements than the OCCI Core and Model specification itself, the security considerations documented above352

apply to all (existing and future) extensions. Otherwise, an additional profile to this specification MUST be353

provided; this profile MUST express all additional security considerations using HTTP mechanisms.354

3http://datatracker.ietf.org/wg/tls/

occi-wg@ogf.org 12

GFD-R March 19, 2015

11 Glossary355

Term Description
Action An OCCI base type. Represents an invocable operation on a Entity sub-type instance

or collection thereof.
Attribute A type in the OCCI Core Model. Describes the name and properties of attributes

found in Entity types.
Category A type in the OCCI Core Model and the basis of the OCCI type identification

mechanism. The parent type of Kind.
capabilities In the context of Entity sub-types capabilities refer to the Attributes and Actions

exposed by an entity instance.
Collection A set of Entity sub-type instances all associated to a particular Kind or Mixin

instance.
Entity An OCCI base type. The parent type of Resource and Link.
entity instance An instance of a sub-type of Entity but not an instance of the Entity type itself. The

OCCI model defines two sub-types of Entity, the Resource type and the Link type.
However, the term entity instance is defined to include any instance of a sub-type
of Resource or Link as well.

Kind A type in the OCCI Core Model. A core component of the OCCI classification
system.

Link An OCCI base type. A Link instance associates one Resource instance with another.
Mixin A type in the OCCI Core Model. A core component of the OCCI classification

system.
mix-in An instance of the Mixin type associated with an entity instance. The “mix-in”

concept as used by OCCI only applies to instances, never to Entity types.
OCCI Open Cloud Computing Interface.
OGF Open Grid Forum.
Resource An OCCI base type. The parent type for all domain-specific Resource sub-types.
resource instance See entity instance. This term is considered obsolete.
tag A Mixin instance with no attributes or actions defined. Used for taxonomic organi-

sation of entity instances
template A Mixin instance which if associated at instance creation-time pre-populate certain

attributes.
type One of the types defined by the OCCI Core Model. The Core Model types are

Category, Attribute, Kind, Mixin, Action, Entity, Resource and Link.
concrete type/sub-type A concrete type/sub-type is a type that can be instantiated.
URI Uniform Resource Identifier.
URL Uniform Resource Locator.
URN Uniform Resource Name.

356

357

12 Contributors358

We would like to thank the following people who contributed to this document:359

occi-wg@ogf.org 13

GFD-R March 19, 2015

Name Affiliation Contact
Michael Behrens R2AD behrens.cloud at r2ad.com
Mark Carlson Toshiba mark at carlson.net
Augusto Ciuffoletti University of Pisa augusto.ciuffoletti at gmail.com
Andy Edmonds ICCLab, ZHAW edmo at zhaw.ch
Sam Johnston Google samj at samj.net
Gary Mazzaferro Independent garymazzaferro at gmail.com
Thijs Metsch Intel thijs.metsch at intel.com
Ralf Nyrén Independent ralf at nyren.net
Alexander Papaspyrou Adesso alexander at papaspyrou.name
Boris Parák CESNET parak at cesnet.cz
Alexis Richardson Weaveworks alexis.richardson at gmail.com
Shlomo Swidler Orchestratus shlomo.swidler at orchestratus.com
Florian Feldhaus NetApp florian.feldhaus at gmail.com

360

Next to these individual contributions we value the contributions from the OCCI working group.361

13 Intellectual Property Statement362

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that363

might be claimed to pertain to the implementation or use of the technology described in this document or the364

extent to which any license under such rights might or might not be available; neither does it represent that365

it has made any effort to identify any such rights. Copies of claims of rights made available for publication366

and any assurances of licenses to be made available, or the result of an attempt made to obtain a general367

license or permission for the use of such proprietary rights by implementers or users of this specification can be368

obtained from the OGF Secretariat.369

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications,370

or other proprietary rights which may cover technology that may be required to practice this recommendation.371

Please address the information to the OGF Executive Director.372

14 Disclaimer373

This document and the information contained herein is provided on an “As Is” basis and the OGF disclaims all374

warranties, express or implied, including but not limited to any warranty that the use of the information herein375

will not infringe any rights or any implied warranties of merchantability or fitness for a particular purpose.376

15 Full Copyright Notice377

Copyright c© Open Grid Forum (2009-2015). All Rights Reserved.378

This document and translations of it may be copied and furnished to others, and derivative works that comment379

on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in380

whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph381

are included on all such copies and derivative works. However, this document itself may not be modified in382

any way, such as by removing the copyright notice or references to the OGF or other organizations, except383

as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights384

defined in the OGF Document process must be followed, or as required to translate it into languages other385

than English.386

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors or387

assignees.388

occi-wg@ogf.org 14

GFD-R March 19, 2015

References389

[1] S. Bradner, “Key words for use in RFCs to Indicate Requirement Levels,” RFC 2119 (Best Current Practice),390

Internet Engineering Task Force, Mar. 1997. [Online]. Available: http://www.ietf.org/rfc/rfc2119.txt391

[2] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource Identifier (URI): Generic392

Syntax,” RFC 3986 (Standard), Internet Engineering Task Force, Jan. 2005. [Online]. Available:393

http://www.ietf.org/rfc/rfc3986.txt394

[3] J. Gregorio, R. Fielding, M. Hadley, M. Nottingham, and D. Orchard, “URI Template,” RFC 6570,395

Internet Engineering Task Force, Mar. 2012. [Online]. Available: http://www.ietf.org/rfc/rfc6570.txt396

[4] R. Nyrén, A. Edmonds, A. Papaspyrou, and T. Metsch, “Open Cloud Computing Interface – Core,”397

GFD-P-R.183, April 2011. [Online]. Available: http://ogf.org/documents/GFD.183.pdf398

[5] R. Fielding and J. Gettys, “Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content,” RFC399

7231, Internet Engineering Task Force, Jun. 2014. [Online]. Available: http://www.ietf.org/rfc/rfc7231.txt400

[6] R. Fielding, Y. Lafon, and J. Gettys, “Hypertext Transfer Protocol (HTTP/1.1): Authentication,” RFC401

7235, Internet Engineering Task Force, Jun. 2014. [Online]. Available: http://www.ietf.org/rfc/rfc7235.txt402

[7] M. Nottingham, “Defining Well-Known Uniform Resource Identifiers (URIs),” RFC 5785403

(Proposed Standard), Internet Engineering Task Force, Apr. 2010. [Online]. Available: http:404

//www.ietf.org/rfc/rfc5785.txt405

[8] T. Metsch and A. Edmonds, “Open Cloud Computing Interface – Text Rendering,” Draft, March 2015.406

[Online]. Available: TBD407

[9] R. Nyren and F. Feldhaus, “Open Cloud Computing Interface – JSON Rendering,” Draft, March 2015.408

[Online]. Available: TBD409

[10] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, E. Sink, and L. Stewart,410

“HTTP Authentication: Basic and Digest Access Authentication,” RFC 2617 (Standard), Internet411

Engineering Task Force, 1999. [Online]. Available: http://www.ietf.org/rfc/rfc2617.txt412

occi-wg@ogf.org 15

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc6570.txt
http://ogf.org/documents/GFD.183.pdf
http://www.ietf.org/rfc/rfc7231.txt
http://www.ietf.org/rfc/rfc7235.txt
http://www.ietf.org/rfc/rfc5785.txt
http://www.ietf.org/rfc/rfc5785.txt
http://www.ietf.org/rfc/rfc5785.txt
TBD
TBD
http://www.ietf.org/rfc/rfc2617.txt

	Introduction
	Notational Conventions
	OCCI RESTful HTTP Protocol
	Namespace
	Bound and Unbound Paths

	Headers and Status Codes
	Requests Headers
	Response Headers
	Versioning
	Status Codes

	Pagination
	HTTP Methods Applied to Query Interface
	GET Method
	PUT Method
	POST Method
	DELETE Method

	HTTP Methods Applied to Entity Instance
	GET Method
	PUT Method
	Create
	Replace

	POST Method
	Partial Update
	Trigger Action

	DELETE Method

	HTTP Methods Applied to Collection
	GET Method
	PUT Method
	POST Method
	Create Entity Instance
	Associate Mixin with Entity Instance
	Trigger Action

	DELETE Method
	Delete Entity Instances
	Disassociate Mixin from Entity Instances

	Security Considerations
	Glossary
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice

