
GWD-R Ralf Nyrén
OCCI-WG

September 16, 2011
Updated: February 21, 2012

Open Cloud Computing Interface - JSON Rendering

Status of this Document

This document provides information to the community regarding the specification of the Open Cloud Com-
puting Interface. Distribution is unlimited.

Copyright Notice

Copyright c©Open Grid Forum (2012). All Rights Reserved.

Trademarks

OCCI is a trademark of the Open Grid Forum.

Abstract

This document, part of a document series, produced by the OCCI working group within the Open Grid Forum
(OGF), provides a high-level definition of a Protocol and API. The document is based upon previously gathered
requirements and focuses on the scope of important capabilities required to support modern service offerings.

Comments

GWD-R February 21, 2012

Contents

1 Introduction 3

2 Notational Conventions 3

3 JSON representation 4

3.1 Mandatory HTTP headers . 4

3.2 Introduction . 4

3.3 Syntax and Semantics of the JSON Rendering . 4

3.3.1 Rendering of the OCCI Category, Kind and Mixin Types 4

3.3.2 Rendering of OCCI Entity Attributes . 6

4 HTTP methods applied to resource instance URLs 8

4.1 GET resource instance . 8

4.1.1 Client GET request . 8

4.1.2 Server GET response . 8

4.2 PUT resource instance . 8

4.2.1 Client PUT request . 8

4.2.2 Server PUT response . 9

4.3 POST resource instance with“action” query parameter . 9

4.3.1 Client POST action request . 9

4.3.2 Server POST action response . 10

4.4 POST resource instance without any query parameters . 10

4.5 DELETE resource instance . 10

4.5.1 Client DELETE request . 10

4.5.2 Server DELETE response . 10

5 HTTP methods applied to collections URLs 10

5.1 GET collection . 11

5.1.1 Client GET request . 11

5.1.2 Server GET response . 12

5.2 POST collection . 12

5.2.1 Client POST request . 12

5.2.2 Server POST response . 12

5.3 POST collection with “action” query parameter . 13

5.4 PUT collection . 13

5.5 DELETE collection . 13

6 More examples 13

occi-wg@ogf.org 2

GWD-R February 21, 2012

1 Introduction

The Open Cloud Computing Interface (OCCI) is a RESTful Protocol and API for all kinds of management
tasks. OCCI was originally initiated to create a remote management API for IaaS1 model-based services,
allowing for the development of interoperable tools for common tasks including deployment, autonomic scaling
and monitoring. It has since evolved into a flexible API with a strong focus on interoperability while still offering
a high degree of extensibility. The current release of the Open Cloud Computing Interface is suitable to serve
many other models in addition to IaaS, including PaaS and SaaS.

In order to be modular and extensible the current OCCI specification is released as a suite of complimentary
documents, which together form the complete specification. The documents are divided into three categories
consisting of the OCCI Core, the OCCI Renderings and the OCCI Extensions.

• The OCCI Core specification consists of a single document defining the OCCI Core Model. The OCCI
Core Model can be interacted with renderings (including associated behaviours) and expanded through
extensions.

• The OCCI Rendering specifications consist of multiple documents each describing a particular rendering
of the OCCI Core Model. Multiple renderings can interact with the same instance of the OCCI Core
Model and will automatically support any additions to the model which follow the extension rules defined
in OCCI Core.

• The OCCI Extension specifications consist of multiple documents each describing a particular extension
of the OCCI Core Model. The extension documents describe additions to the OCCI Core Model defined
within the OCCI specification suite. They do not require changes to the HTTP Rendering specifications
as of this version of the specification.

The current specification consists of three documents. This specification describes version 1.1 of OCCI. Future
releases of OCCI may include additional rendering and extension specifications. The documents of the current
OCCI specification suite are:

OCCI Core describes the formal definition of the the OCCI Core Model [?].

OCCI HTTP Rendering defines how to interact with the OCCI Core Model using the RESTful OCCI API
[?]. The document defines how the OCCI Core Model can be communicated and thus serialised using
the HTTP protocol.

OCCI Infrastructure contains the definition of the OCCI Infrastructure extension for the IaaS domain [?].
The document defines additional resource types, their attributes and the actions that can be taken on
each resource type.

2 Notational Conventions

All these parts and the information within are mandatory for implementors (unless otherwise specified). The
key words ”MUST”, ”MUST NOT”, ”REQUIRED”, ”SHALL”, ”SHALL NOT”, ”SHOULD”, ”SHOULD
NOT”, ”RECOMMENDED”, ”MAY”, and ”OPTIONAL” in this document are to be interpreted as described
in RFC 2119 [?].

This document uses the Augmented Backus-Naur Form (ABNF) notation of RFC 2616 [?], and explicitly
includes the following rules from it: quoted-string, token, SP (space), LOALPHA, DIGIT.

1Infrastructure as a Service

occi-wg@ogf.org 3

GWD-R February 21, 2012

3 JSON representation

3.1 Mandatory HTTP headers

HTTP headers which MUST be present in every JSON-rendered request and response.

Mandatory HTTP request headers:

Accept: application/occi+json

Content-Type: application/occi+json

Mandatory HTTP response headers:

Content-Type: application/occi+json

3.2 Introduction

The OCCI HTTP Rendering uses many of the features the HTTP and underlying protocols offer and builds
upon the Resource Oriented Architecture (ROA). ROA’s use Representation State Transfer (REST) [?] to cater
for client and service interactions. These interactions are detailed in the OCCI HTTP Rendering document.

3.3 Syntax and Semantics of the JSON Rendering

All data transferred using the application/occi+json content type is structured text. These rendering structures
are compliant with and follow the rules of HTTP headers [?]. Four specific rendering structures are only ever
used:

• Category

• Link

• X-OCCI-Attribute

• X-OCCI-Location

The application/occi+json content type renders the rendering structures in the body of the HTTP re-
quest/response according to RFC 4627.

3.3.1 Rendering of the OCCI Category, Kind and Mixin Types

The following terms defined in ABNF will be used for the specification of the JSON category rendering:

term = LOALPHA *(LOALPHA | DIGIT | "-" | "_")

scheme = URI

type-identifier = scheme term

attribute-name = attr-component *("." attr-component)

attr-component = LOALPHA *(LOALPHA | DIGIT | "-" | "_")

action = type-identifier

All category renderings MUST be rendered as a JSON Object with one or more of the following entries:

occi-wg@ogf.org 4

GWD-R February 21, 2012

Field Name Type Description Requirement
kinds JSON Array List of all OCCI Kinds Mandatory2

mixins JSON Array List of all OCCI Mixins Mandatory3

categories JSON Array List of all OCCI Categories (e.g. categories for describing
Actions)

Mandatory4

Each entry in the category, kind and mixin lists MUST be rendered as

Field Name Type Description Requirement
term JSON String Value MUST be rendered as term Mandatory
scheme JSON String Value MUST be rendered as scheme Mandatory
title JSON String Value MAY contain any character. Quotes inside the

value MUST be escaped.
Optional

related JSON String Value MUST be rendered as type-identifier Optional
location JSON String Location MUST be rendered as URI Optional
attributes JSON Object key/value pairs of attributes and their description Optional
actions JSON Array List of action type identifiers Optional

The attribute key/value pairs are rendered as

Field Name Type Description Requirement
attribute-name JSON Object Key MUST be rendered according to

attribute-name . Value MUST be rendered
according to Attribute property rendering

Required

Attribute property rendering

Field Name Type Description Requirement
mutable true or false true when attribute is modifiable by the client Mandatory
required true or false true if attribute MUST be specified by the client Mandatory
type JSON String MUST be one of the following types:

string integer float boolean

Mandatory

range JSON String Specify a range for the attribute value. The range
should either be a list of allowed entries enclosed in
curly brackets and separated by a pipe (e.g. {x86|x64})
or alternatively two numbers sparated by two dots. For
strings the minimum and maximum length should be
specified (e.g. 4..12 characters), for integers and floats
the minimum and maximum values (e.g. 1..4 or -
2.5..5.0) should be specified

Optional

default JSON String The default value should be specified here. This can
be used for specifying a provider default for kinds or to
create mixin templates.

Optional

The following example illustrates a rendering of the Kind instance assigned to the Compute type [?]:

{

"kinds": [

{

"term": "compute",

"scheme": "http://schemas.ogf.org/occi/infrastructure#",

"title": "Compute Resource",

"related": "http://schemas.ogf.org/occi/core#resource",

"attributes": {

"occi.compute.architecture": {

"mutable": true,

"required": false,

2if filtering is used, only the filtered categories are mandotry
3see above
4see above

occi-wg@ogf.org 5

GWD-R February 21, 2012

"type": "string",

"range": "{x86|x64}",

"default": "x86"

},

"occi.compute.cores": {

"mutable": true,

"required": false,

"type": "integer",

"range": "1..16",

"default": "1"

},

"occi.compute.hostname": {

"mutable": true,

"required": false,

"type": "string"

"range": "1..256",

},

"occi.compute.speed": {

"mutable": true,

"required": false,

"type": "float",

"range": "1.0..2.8",

"default": "2.2"

},

"occi.compute.memory": {

"mutable": true,

"required": false,

"type": "float"

"range": "1..16",

"default": "4"

},

"occi.compute.state": {

"mutable": false,

"required": false,

"type": "string"

"range": "{active|inactive|suspended}",

"default": "inactive"

}

},

"actions": [

"http://schemas.ogf.org/occi/infrastructure/compute/action#start",

"http://schemas.ogf.org/occi/infrastructure/compute/action#stop",

"http://schemas.ogf.org/occi/infrastructure/compute/action#restart",

"http://schemas.ogf.org/occi/infrastructure/compute/action#suspend"

],

"location": "/api/compute/"

}

]

}

3.3.2 Rendering of OCCI Entities

Entities MUST be rendered as JSON Objects containing the following entries:

occi-wg@ogf.org 6

GWD-R February 21, 2012

Field Name Type Description Requirement
kind JSON Object Short category rendering Mandatory
mixins JSON Array Array of short category renderings Optional
actions JSON Array List of applicable actions as JSON Objects Mandatory
attributes JSON Object key/value pairs of attributes Mandatory
links JSON Array list of links as JSON Objects Mandatory
location JSON String URI Mandatory

The short category rendering must be rendered as follows:

Field Name Type Description Requirement
term JSON String term Mandatory
scheme JSON String scheme Mandatory

Each entry of the list of applicable actions MUST be rendered as:

Field Name Type Description Requirement
title JSON String Title of the action Optional
uri JSON String URI Mandatory
type JSON String type-identifier Mandatory

Each attribute MUST be rendered as:

Field Name Type Description Requirement
attribute-name JSON String or JSON Number Value of the attribute Mandatory

Each entry of the list of links MUST be rendered as:

Field Name Type Description Requirement
title JSON String Title of the Link Optional
target JSON String URI Mandatory
target type JSON String URI Mandatory
location JSON String URI Mandatory
type JSON String URI Mandatory
attributes JSON Object key/value pairs of attributes Mandatory

{

"kind": {

"term": "compute",

"scheme": "http://schemas.ogf.org/occi/infrastructure#",

},

"actions": [

{

"title": "Start Compute Resource",

"uri": "/api/compute/3e09b631-dc81-4495-b307-dca15e14c374?action=start",

"type": "http://schemas.ogf.org/occi/infrastructure/compute/action#start"

}

],

"attributes": {

"occi.core.id": "3e09b631-dc81-4495-b307-dca15e14c374",

"occi.compute.architecture": "x86_64",

"occi.compute.speed": 2.6699999999999999,

"occi.compute.memory": 1.0,

"occi.compute.state": "inactive"

}

}

occi-wg@ogf.org 7

GWD-R February 21, 2012

4 HTTP methods applied to resource instance URLs

This section describes the HTTP methods used to retrieve and manipulate individual resource instances. Each
HTTP method described is assumed to operate on an URL referring to a single element in a collection, an
URL such as the following:

http://example.com/compute/012d2b48-c334-47f2-9368-557e75249042

An OCCI client MUST supply the mandatory headers described in section 3.1 with every HTTP request.

4.1 GET resource instance

The HTTP GET method retrieves the JSON representation of an OCCI resource instance.

4.1.1 Client GET request

The body of the HTTP GET request MUST be empty.

GET /compute/012d2b48-c334-47f2-9368-557e75249042 HTTP/1.1

Host: example.com

Accept: application/occi+json

User-Agent: occi-client/x.x OCCI/1.1

4.1.2 Server GET response

HTTP/1.1 200 OK

Server: occi-server/x.x OCCI/1.1

Category: compute;

scheme="http://schemas.ogf.org/occi/infrastructure#";

class="kind";

title="Compute Resource"

Content-Type: application/occi+json; charset=utf-8

{

"kind": { ... },

"mixins": [...],

"actions": [...],

"links": [...],

"attributes": { ... },

"location": "http://example.com/compute/012d2b48-c334-47f2-9368-557e75249042"

}

4.2 PUT resource instance

The HTTP PUT method creates or replaces the resource instance at the specified URL. Since the resource
identifier is supplied in the request URL an OCCI server MAY refuse to create a new instance.

4.2.1 Client PUT request

The full JSON representation of the resource instance MUST be supplied in the HTTP body of the request.

RN: Including Links in the request breaks the rule of PUT being idempotent. Simply prohibit Links in PUT
requests?

occi-wg@ogf.org 8

GWD-R February 21, 2012

PUT /compute/012d2b48-c334-47f2-9368-557e75249042 HTTP/1.1

Host: example.com

Accept: application/occi+json

User-Agent: occi-client/x.x OCCI/1.1

Content-Type: application/occi+json; charset=utf-8

{

"kind": { ... },

"mixins": [...],

"attributes": { ... },

}

4.2.2 Server PUT response

Upon success an OCCI server MUST return HTTP status code 200 and a complete JSON representation of
the created/replaced resource instance. The response MUST be identical5 of the to that of a subsequent
GET request same URL.

HTTP/1.1 200 OK

Server: occi-server/x.x OCCI/1.1

Category: compute;

scheme="http://schemas.ogf.org/occi/infrastructure#";

class="kind";

title="Compute Resource"

Content-Type: application/occi+json; charset=utf-8

{

"kind": { ... },

"mixins": [...],

"actions": [...],

"links": [...],

"attributes": { ... },

"location": "http://example.com/compute/012d2b48-c334-47f2-9368-557e75249042"

}

4.3 POST resource instance with“action” query parameter

An OCCI Action is invoked using the HTTP POST method together with query parameter named “action”.

4.3.1 Client POST action request

POST /compute/012d2b48-c334-47f2-9368-557e75249042?action=stop HTTP/1.1

Host: example.com

Accept: application/occi+json

User-Agent: occi-client/x.x OCCI/1.1

Content-Type: application/occi+json; charset=utf-8

{

"action": {

"term": "stop",

"scheme": "http://schemas.ogf.org/occi/infrastructure/compute/action#",

},

"attributes": {

5Provided the resource instance was not changed in the meantime.

occi-wg@ogf.org 9

GWD-R February 21, 2012

"method": "graceful"

},

}

4.3.2 Server POST action response

HTTP/1.1 204 OK

Server: occi-server/x.x OCCI/1.1

4.4 POST resource instance without any query parameters

RN: This would imply a partial update of the resource instance. While it is easy to supply only the attributes
to be updated the question is if there are any valid use cases for partial updates using JSON?

4.5 DELETE resource instance

The HTTP DELETE method destroys a resource instance and any OCCI Links associated with the resource
instance.

4.5.1 Client DELETE request

DELETE /compute/012d2b48-c334-47f2-9368-557e75249042 HTTP/1.1

Host: example.com

Accept: application/occi+json

4.5.2 Server DELETE response

HTTP/1.1 204 OK

Server: occi-server/x.x OCCI/1.1

5 HTTP methods applied to collections URLs

This section describes the HTTP methods used to manipulate collections. Each HTTP method described is
assumed to operate on an URL referring to a collection of elements, an URL such as the following:

http://example.com/storage/

A collection consist of a set of resource instances and there are three different types of collections which may
be exposed by an OCCI server. The request and response format is identical for all three types collections
although the semantics differ slightly for the PUT and POST methods.

Kind locations The location associated with an OCCI Kind instance represents the collection of all resource
instances of that particular Kind.

Mixin locations The location of an OCCI Mixin instance represents the collection of all resource instances
associated with that Mixin.

Arbitrary path Any path in the URL namespace which is neither a Kind nor a Mixin location. A typical
example is the root URL e.g. http://example.com/. Such a path combines all collections in the
sub-tree starting at the path. Therefore the root URL is a collection of all resource instances available.

occi-wg@ogf.org 10

GWD-R February 21, 2012

5.1 GET collection

The HTTP GET method retrieves a list of all resource instances in the collection. Filtering and pagination
information is encoded in the query string of the URL.

5.1.1 Client GET request

The query string of the request URL MUST have the following format:

query-string = ""

| "?" query-parameter *("&" query-parameter)

query-parameter = attribute-filter

| category-filter

| pagination-start

| pagination-count

attribute-filter = "q=" attribute-search *("+" attribute-search)

attribute-search = 1*(string-urlencoded |

attribute-name "%3D" string-urlencoded)

category-filter = "category=" string-urlencoded

pagination-start = "start=" 1*(DIGIT)

pagination-count = "count=" 1*(DIGIT)

attribute-name = attr-component *("." attr-component)

attr-component = LOALPHA *(LOALPHA | DIGIT | "-" | "_")

string-urlencoded = *(ALPHA | DIGIT | "-" | "_" | "." | "~" | "%")

Filtering A search filter can be applied to categories and attributes of resource instances in a collection. An
OCCI server SHOULD support filtering. The query parameters MUST be URL encoded.

Attribute filters are specified using the q query parameter. A filter such as q=ubuntu+inactive would match
all resource instances whose combined set of attribute values includes both the word “ubuntu” and “inactive”.
It is also possible to match on specific attributes by preceding the search term with the attribute name and
an equal sign, for example occi.core.title%3Dubuntu+occi.compute.state%3Dinactive.

The category filter is specified using the category query parameter and represent a single Kind, Mixin or
Action category to be matched. The following query would include only resource instances of the Compute
type: category=http%3A%2F%2Fschemas.ogf.org%2Focci%2Finfrastructure%23compute

Pagination An OCCI client MAY request that the server only return a subset of a collection. This is
accomplished using the start and count query parameters. An OCCI server MUST support pagination.

The start parameter specifies the offset into the collection. A value of zero, start=0 indicates the beginning
of the collection. The count parameter sets the maximum number of elements to include in the response.
For example ?start=20&count=10 would indicate the third page with a limit of 10 elements per page.

Example request

GET /storage/?q=ubuntu+server&start=0&count=20 HTTP/1.1

Host: example.com

Accept: application/occi+json

User-Agent: occi-client/x.x OCCI/1.1

occi-wg@ogf.org 11

GWD-R February 21, 2012

5.1.2 Server GET response

HTTP/1.1 200 OK

Server: occi-server/x.x OCCI/1.1

Content-Type: application/occi+json; charset=utf-8

{

"start": 0,

"count": 3,

"collection": [

{

"kind": { ... },

"mixins": [...],

"actions": [...],

"links": [...],

"attributes": { ... },

"location": "http://example.com/storage/e3578467-b6ba-448b-8032-5203278d54db"

},

{ ... },

{ ... }

]

}

5.2 POST collection

The HTTP POST method is used to create/update one or more resource instances in a single atomic request.
An OCCI server MUST identify existing resource instances using the occi.core.id attribute.

5.2.1 Client POST request

POST /storage/ HTTP/1.1

Host: example.com

Accept: application/occi+json

User-Agent: occi-client/x.x OCCI/1.1

Content-Type: application/occi+json; charset=utf-8

{

"collection": [

{

"kind": { ... },

"mixins": [...],

"links": [...],

"attributes": { ... },

},

{ ... },

{ ... }

]

}

5.2.2 Server POST response

HTTP/1.1 204 OK

Server: occi-server/x.x OCCI/1.1

occi-wg@ogf.org 12

GWD-R February 21, 2012

RN: Should we support HTTP 200 returning the whole collection? Or maybe just the resource instances
created/updated?

5.3 POST collection with “action” query parameter

todo

5.4 PUT collection

Replace the entire collection with a new one. RN: Should we support this?

5.5 DELETE collection

Delete the entire collection. RN: Should we support this?

6 More examples

The OCCI demo instance of occi-py6 running at http://www.nyren.net/api/ has an early version of the
draft JSON rendering available. Feel free to play around with it. However, please note the following limitations:

• It does not support request data in JSON.

• Filtering and pagination is not yet supported.

A few example queries using curl:

curl -i -H ’accept: application/occi+json’ http://www.nyren.net/api/-/

curl -i -H ’accept: application/occi+json’ http://www.nyren.net/api/link/

curl -i -X POST -H ’accept: application/occi+json’ http://www.nyren.net/api/compute/

6http://github.com/nyren/occi-py

occi-wg@ogf.org 13

