

SLA Agreement, Negotiation, Execution
and Monitoring using OCCI

Thijs Metsch (Platform), Victor Bayon (Intel), Andy Edmonds (Intel), Alexander Papaspyrou
(TUDO).

Introduction
This document describes how the Open Cloud Computing Interface (OCCI) can be extended to
support mechanisms for Monitoring and SLA agreement negotiation. It is a first step towards
creating extensions to the current version of the OCCI specification (Version 1.1) which enable
OCCI-based Services to offer these features. This work is influenced by WS-Agreement & WS-
Negotiation as well as several monitoring frameworks.

This specification contains both details on SLAs and monitoring since these two aspects are
closely related. It should be noted that—although related—the two specifications can exist
independently. Ideally, where a system implements the OCCI notion of an SLA, it should also
realise the exposure of a monitoring API with this specification’s contained description of
monitoring.

After describing the terminology, this document will introduce the negotiation of agreements,
followed by the description of a Monitoring extension for OCCI.

Terminology
Throughout the document, we will use the following terms:

● Service Level Agreement (SLA) - An agreement which defines a dynamically-
established and dynamically managed automated contract/agreement between between
a service provider and a customer. The representation of this SLA is machine readable.

● Service Level Objective (SLO) - a technical clause that specify a non-functional
guarantee in legally bounding document (SLA), specifying the terms and conditions of
service provisioning.

● Agreement - A set of SLOs (reflected in a resource instances) on which the client and
service provider ‘agree’ (Part of an SLA).

● Negotiation - The process of creating an agreement. This process can be part- or fully-
automated.

● Template - An agreement template is a representation used by the agreement
responder (normally the service provider) to advertise the types of service requests or

offers a service provider is (possibly) willing to accept/provide. A template can be
thought of the serivce providers invitation to offers.

● Offer - what the client requests of the provider through an instance of a template.

Negotiation and Provisioning of Agreements
The following sections deal with the negotiation of agreements and therefore also the creation of
the SLAs. The process of reaching an agreement - signing an SLA - and managing resources
under this agreement can be described by following this workflow:

1. Negotiation phase - The customer retrieves the Templates. After populating a suitable
template with required values the customer can Negotiate with the Service Provider.

2. Agreement phase - The service provider can decide whether to accept the filled out
template (the offer) or not. It is also possible to provide a counter-offer to the customer.

3. Execution phase - When the agreement has been accepted the Agreement is in place
and (newly) created resource can be marked as falling under and associated with the
reached agreement.

4. Monitoring & Notification phase - Finally once the resources are provisioned they can
be monitored. Upon violation of the SLAs a Notification mechanism should be used to
notify the customer.

Proposal to support SLA Negotiation & Provisioning in OCCI
OCCI provides means for defining types through Categories which define Kinds, Actions and
Mixins. The following Kind and Mixin definitions are considered useful for this Agreement
Negotiation proposal.

Agreement Kind Definition
This later will represent the kind ‘Agreement’ through a resource instance.

Term agreement

Scheme http://schemas.ogf.org/occi/sla#

Title An agreement

Related http://schemas.ogf.org/occi//core#resource

Actions agree, terminate

Attributes

Attribute Type Multiplicity Mutability Description

state enum 1 Immutable The state the
agreement is

in

hash string 1 Immutable a hash to
verification
reasons filled
after agree

The following states for the agreement phase are defined for the agreement instance:

● offered - not agreed upon, agreed upon by the ‘server side’
● agreed - agreement in agree state
● invalid - agreement became invalid
● terminated - agreement got terminated
● renegotiate - agreement needs to renegotiate (initialized by the ‘server side’)

The end, updated and create date can be added in as an audit-Mixin (See below).

AgreementLink Kind Definition
This link will associate resource instances with the agreement. Here the Service provider needs
to ensure that certain criteria are met by the resource (e.g. Can it fall under the agreement, does
it have the right monitoring mix-ins applied etc.)

Term agreement_link

Scheme http://schemas.ogf.org/occi/sla#

Title An link between an agreement and resource instances

Related http://schemas.ogf.org/occi/core#link

Actions N/A

Attributes

Attribute Type Multiplicity Mutability Description

The, updated and create date can be added in as an audit-Mixin (See below).

Templates Mixin Definitions
OCCI’s Template mixin can be used to define Templates as they are used in this document.
The following table shows an template.

Term template

Scheme http://schemas.ogf.org/occi/sla#

Title OCCI SLA Template Mixin

Related None

Actions None

Attributes None

A template can be associated with other types of Mixins, for example an OS template. A simple
example of a provider-specific SLA template is shown below:

Term gold

Scheme http://www.provider.com/infrastucture/templates#

Title An example template

Related http://schemas.ogf.org/occi/sla#agreement_template

Actions N/A

Attributes1

Attribute Type Multiplicity Mutability Description

occi.compute.cores Integer 1 Immutable Number of
CPUs -
default 8

occi.compute.memory float 1 Immutable 8.0

1 These attributes are defined and set by the provider.

SLA Negotiation & Provisioning in OCCI

Based on those 3 Categories the following scenario can be realized:

1. The customer (from now on referred to as User) requests a if the Agreement kind,
available Templates (for SLOs and Metrics) and the Agreement link are available in the
service provider’s QI. The user can use all the query interface capabilities such as
filtering to accomplish this job.

a. HTTP GET /.well-known/org/ogf/occi/
2. The User tries creates an instance of the kind Agreement with the help of the provided

templates. This is known as the offer. If the service provider agrees with the offer it’ll
return a 200/201 OK and create the Agreement. If the service provider chooses to reject
Bad Request is returned. If the service provider wants to make a counter-offer 302 is
used (This is part of the negotiation phase). A Location with a temporary agreement
should be created

a. HTTP POST /agreement/ or HTTP PUT /agreement/123 (with Category
agreement;scheme... and templates as Mixin definitions if applicable)

3. When the user finally wants to agree upon the agreement he needs to trigger the agree
Action. The state of the agreement will change according the life cycle. Now resources
can be put under this agreement.

a. HTTP POST /agreement/123?action=agree

4. Existing or newly created resources can now be bound to the agreement using the
AgreeementLink.

a. HTTP POST /agreement/ (with Category of the resource and a link description)
b. HTTP POST /agreement/link/ (with Kind of the AgreementLink and source and

target attributes)
c. HTTP POST /agreement/123 (with the Link definition)

An Audit-Mixin
This mixin allows for date stamping of certain operations related to SLA establishment, updates
and termination.

Term date_audit

Scheme http://schemas.ogf.org/occi/audit#

Title Adds the date-time stamping to an associated instance

Related None

Actions None

Attributes
Attribute Type Multiplicity Mutability Description

end string 0..1 Mutable ISO8601

created string 1 Immutable ISO8601

updated string 0..1 Immutable ISO8601

Instance Monitoring

Once a service consumer has running instances with a provider, the next thing that this
consumer should be able to do is monitoring those instances to proactively manage potential
problems. As such—from a point of view of manageability—monitoring is essential. The
approach taken in this monitoring extension is to keep things as simple as is possible and stay
compatible with the Core model in that the defined Mixin can be validly applied to all instances
of Entity.

Note on Monitoring and SLAs
Before continuing into the specification of monitoring, it is valuable to discuss how monitoring
and SLAs are related. In order for a provider to offer SLAs (a set of SLOs), he needs to be
monitoring his service instance offerings with respect to certain basic (e.g. network receive per
second) and/or calculated metrics (e.g. uptime). Such metrics, expressed as SLOs, then form
the basis of service offerings that the provider is willing to guarantee. Note that, these do not
necessarily resemble the service provider’s internal representation of those SLOs. When a
service consumer accepts an SLA for which the provider asserts he can satisfy the conditions,
and the consumer creates service instances based on that Agreement, the service provider
MUST setup the required monitoring on those instances so that the related metrics be collected
and verified (through logic and rules) by internal SLA management systems of the provider.
Those metrics SHOULD be exposed to the consumer, and—as a basic minimum the SLOs
within the agreed SLA—SHOULD be offered for inspection by the consumer. The consumer
COULD access these SLOs as metrics using the OCCI monitoring specification.

Representing Metric
A metric is represented by an instance of OCCI Mixin. A metric has a set of associated
attributes. It should be kept in mind that a Metric is in effect an Attribute of the resource being
monitored and so their formulation is very much the same as what is seen with X-OCCI-
Attribute.

Metric Mixin Definition

Term metric

Scheme http://schemas.ogf.org/occi/monitoring#

Title A metric mixin

Related None

Actions

Attributes

Attribute Type Multiplicity Mutability Description

value string 1 Immutable Based on unit, infer
the value’s type.

timestamp string 1 Immutable ISO8601

samplerate float 0..1 Mutable hertz?

resolution string 0..1 Mutable SI prefix

unit string 1 Immutable if the metric being
monitored is an OCCI
attribute (e.g.
occi.compute.memory)
then the designated
unit is used.
Otherwise, use
provider defined
appropriate unit.

Example Metric Mixins

Compute Metrics
Compute Metrics Available in prototype:

● cpu.user, cpu.sys, cpu.wait, cpu.lavg1, cpu.intsec, cpu.ctxsec,
● mem.tot, mem.buf, mem.used, mem.free, mem.cached, mem.swap

These all MUST have their rel attribute set to “http://schemas.ogf.org/occi/monitoring#metric”

Title Term Scheme

cpu.user user http://iolanes.eu/occi/infrastructure/metric/compute/cpu#

cpu.sys sys http://iolanes.eu/occi/infrastructure/metric/compute/cpu#

cpu.wait wait http://iolanes.eu/occi/infrastructure/metric/compute/cpu#

cpu.lavg1 lavg1 http://iolanes.eu/occi/infrastructure/metric/compute/cpu#

cpu.intsec intsec http://iolanes.eu/occi/infrastructure/metric/compute/cpu#

cpu.ctxsec ctxsec http://iolanes.eu/occi/infrastructure/metric/compute/cpu#

mem.tot tot http://iolanes.eu/occi/infrastructure/metric/compute/memory#

mem.buf buf http://iolanes.eu/occi/infrastructure/metric/compute/memory#

mem.used used http://iolanes.eu/occi/infrastructure/metric/compute/memory#

mem.free free http://iolanes.eu/occi/infrastructure/metric/compute/memory#

mem.cached cached http://iolanes.eu/occi/infrastructure/metric/compute/memory#

mem.swap swap http://iolanes.eu/occi/infrastructure/metric/compute/memory#

Network Metrics
Network Metrics Available in prototype:

● net.rxkbtot, net.txkbtot

Title Term Scheme

net.rxkbtot rxtot http://iolanes.eu/occi/infrastructure/metric/network#

net.txkbtot txtot http://iolanes.eu/occi/infrastructure/metric/network#

Storage Metrics
Storage Metrics Available in the prototype:

● dsk.readtot, dsk.writetot, dsk.readkbtot,dsk.writekbtot

Title Term Scheme

dsk.readtot readtot http://iolanes.eu/occi/infrastructure/metric/storage#

dsk.writetot writetot http://iolanes.eu/occi/infrastructure/metric/storage#

dsk.readkbtot readkbtot http://iolanes.eu/occi/infrastructure/metric/storage#

dsk.writekbtot writekbtot http://iolanes.eu/occi/infrastructure/metric/storage#

Monitoring Behaviour

Discovery of Metrics
Sample Query Interface Rendering of Two Metrics offered by the provider

> GET /-/ HTTP/1.1

...
< Category: metric; scheme=”http://iolanes.eu/occi/infrastructure#”; class=”mixin”; title=”The
metric mixin”; attributes=”timestamp{immutable} samplerate resolution unit”
< Category: rxtot; scheme=”http://iolanes.eu/occi/infrastructure/metric/network#”; class=”mixin”;
title=”net.rxkbtot”; attributes=”timestamp{immutable} samplerate resolution unit”;
rel=”http://iolanes.eu/occi/infrastructure#metric”; location=”/metric/network/rxtot”
< Category: user; scheme=”http://iolanes.eu/occi/infrastructure/metric/compute/cpu#”;
class=”mixin”; title=”cpu.user”; attributes=”timestamp{immutable} samplerate resolution unit”;
rel=”http://iolanes.eu/occi/infrastructure#metric”; location=”/metric/compute/cpu/user”
…

Activate Specific Metrics
Add a mixin
> PUT /$RESOURCE/123-123-123

> category: rxtot; scheme='http://iolanes.eu/occi/infrastructure/metric/network#'; class='mixin'
> category: user; scheme='http://iolanes.eu/occi/infrastructure/metric/compute/cpu#';
class='mixin'

Update (configure) specific Resource Metric Parameters
By saying update, we mean to update the attributes of the metric and not the values that they
represent. Only those metric attributes that are signalled as mutable can be modified.

Full Update
> PUT /$RESOURCE/123-123-123

Partial Update
> POST /$RESOURCE/123-123-123

Deactivate specific Resource Metric
PUT the resource representation without those metrics to be deactivated.
> PUT /$RESOURCE/123-123-123

< category: occi.compute.memory; scheme='http://iolanes.eu/infra/metrics#'; class='mixin'
< category: occi.compute.speed; scheme='http://iolanes.eu/infra/metrics#'; class='mixin'

Retrieve a Instantaneous Metric Value
> GET /service/123-123?attribute=occi.service.messages.throughput
< 204 OK HTTP/1.1
…
< x-occi-attribute: occi.service.messages.throughput=2.0

alternative:
> GET /compute/123-123-123

> Category: occi.service.messages.throughput; scheme='http://iolanes.eu/infra/metrics#';
class='mixin'

< x-occi-attribute: occi.service.messages.throughput = 2.0

Retreive all Instantaneous Metric Values
> GET /service/123-123
< 200 OK HTTP/1.1
< Category: occi.service.messages.throughput; scheme='http://iolanes.eu/infra/metrics#';
class='mixin'
<
< x-occi-attribute: occi.compute.memory = 2.0
< x-occi-attribute: occi.compute.cores = 2
< x-occi-attribute: occi.service.messages.throughput = 2.0

Response Content as CSV
Content-type: text/csv
Sample data file

Monitoring Push Notification
● What about the use of streamed HTTP traffic e.g. how node.js does some streaming

operations for output?
○ Can a client can signal their preference?

Proposed changes to the OCCI
specification

● Alter the Query Interface so default values can be defined for templating
○ add default value and include enums

● Add Notification mechanisms (look at SNIA’s DDMI)
○ Also to chunked transfer encoding

