
Draft GFD-P-R.183 Ralf Nyrén, Aurenav1

OCCI-WG Andy Edmonds, Intel2

Alexander Papaspyrou, TU Dortmund University3

Thijs Metsch, Platform Computing4

April 7, 20115

Update: September 24, 20136

Open Cloud Computing Interface - Core7

Status of this Document8

This document is a draft including proposed errata updates to the OCCI Core [1] specification. The errata9

updates are summarized in section A.10

Copyright Notice11

Copyright c© Open Grid Forum (2009-2012). All Rights Reserved.12

Trademarks13

OCCI is a trademark of the Open Grid Forum.14

Abstract15

This document, part of a document series, produced by the OCCI working group within the Open Grid Forum16

(OGF), provides a high-level definition of a Protocol and API. The document is based upon previously gathered17

requirements and focuses on the scope of important capabilities required to support modern service offerings.18



Draft GFD-P-R.183 September 24, 2013

Contents19

1 Introduction 420

2 Notational Conventions 421

3 Terms and definitions 422

4 OCCI Core 523

5 OCCI Core Model 624

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625

5.2 Mutability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726

5.3 Classification and Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727

5.3.1 Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728

5.3.2 Attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 829

5.3.3 Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 930

5.3.4 Mixin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031

5.3.5 Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1132

5.3.6 Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1233

5.3.7 Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1234

5.3.8 Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1235

5.3.9 Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1336

5.4 The OCCI Core Base Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1337

5.4.1 Entity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1338

5.4.2 Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1439

5.4.3 Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1540

5.5 Extensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1541

5.5.1 Category instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1642

5.5.2 Sub-typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1643

5.5.3 Mix-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1644

6 Security Considerations 1645

7 Glossary 1746

8 Contributors 1747

9 Intellectual Property Statement 1948

10 Disclaimer 1949

11 Full Copyright Notice 1950

occi-wg@ogf.org 2



Draft GFD-P-R.183 September 24, 2013

A Errata 2151

A.1 Introducing the OCCI Attribute type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2152

A.2 OCCI Attributes versus model attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2153

A.3 Action definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2154

A.4 Rename “resource instance” to “entity instance” . . . . . . . . . . . . . . . . . . . . . . . . 2155

occi-wg@ogf.org 3



Draft GFD-P-R.183 September 24, 2013

1 Introduction56

The Open Cloud Computing Interface (OCCI) is a RESTful Protocol and API for all kinds of management57

tasks. OCCI was originally initiated to create a remote management API for IaaS1 model-based services,58

allowing for the development of interoperable tools for common tasks including deployment, autonomic scaling59

and monitoring. It has since evolved into a flexible API with a strong focus on interoperability while still offering60

a high degree of extensibility. The current release of the Open Cloud Computing Interface is suitable to serve61

many other models in addition to IaaS, including PaaS and SaaS.62

In order to be modular and extensible the current OCCI specification is released as a suite of complimentary63

documents, which together form the complete specification. The documents are divided into three categories64

consisting of the OCCI Core, the OCCI Renderings and the OCCI Extensions.65

• The OCCI Core specification consists of a single document defining the OCCI Core Model. The66

OCCI Core Model can be interacted through renderings (including associated behaviours) and expanded67

through extensions.68

• The OCCI Rendering specifications consist of multiple documents each describing a particular rendering69

of the OCCI Core Model. Multiple renderings can interact with the same instance of the OCCI Core70

Model and will automatically support any additions to the model which follow the extension rules defined71

in OCCI Core.72

• The OCCI Extension specifications consist of multiple documents each describing a particular extension73

of the OCCI Core Model. The extension documents describe additions to the OCCI Core Model defined74

within the OCCI specification suite. They do not require changes to the HTTP Rendering specifications75

as of this version of the specification.76

The current specification consists of three documents. This specification describes version 1.1 of OCCI. Future77

releases of OCCI may include additional rendering and extension specifications. The documents of the current78

OCCI specification suite are:79

OCCI Core describes the formal definition of the the OCCI Core Model [1].80

OCCI HTTP Rendering defines how to interact with the OCCI Core Model using the RESTful OCCI API81

[2]. The document defines how the OCCI Core Model can be communicated and thus serialised using82

the HTTP protocol.83

OCCI Infrastructure contains the definition of the OCCI Infrastructure extension for the IaaS domain [3].84

The document extends the OCCI Core Model with additional Entity sub-types and their associated85

attributes and actions.86

2 Notational Conventions87

All these parts and the information within are mandatory for implementors (unless otherwise specified). The88

key words ”MUST”, ”MUST NOT”, ”REQUIRED”, ”SHALL”, ”SHALL NOT”, ”SHOULD”, ”SHOULD89

NOT”, ”RECOMMENDED”, ”MAY”, and ”OPTIONAL” in this document are to be interpreted as described90

in RFC 2119 [4].91

3 Terms and definitions92

Section 7 provides a glossary of all terms and definitions with a specific meaning to the OCCI specification93

suite. However, for reader convenience, a sub-set of the glossary is provided here as well. The following94

terminology has specific meaning in the OCCI context:95

1Infrastructure as a Service

occi-wg@ogf.org 4



Draft GFD-P-R.183 September 24, 2013

capabilities In the context of Entity sub-types capabilities refer to the OCCI Attributes and OCCI Actions96

exposed by a entity instance.97

entity instance An instance of a sub-type of Entity but not an instance of the Entity type itself. The OCCI98

model defines two sub-types of Entity, the Resource type and the Link type. However, the term entity99

instance is defined to include any instance of a sub-type of Resource or Link as well.100

mix-in An instance of the Mixin type associated with an entity instance. The “mix-in” concept as used by101

OCCI only applies to instances, never to Entity types. See section 5.3.4.102

model attribute An internal attribute of a the Core Model which is not client discoverable. Examples are103

Entity.id, Link.source and Link.target. A model attribute is not identified by an Attribute instance.104

OCCI Attribute A client discoverable attribute identified by an instance of the Attribute type. Examples are105

occi.core.title and occi.core.summary. See section 5.3.2.106

OCCI base type(s) The OCCI base types are Entity, Resource and Link. See section 5.4.107

template A mechanism to provide default values for a entity instance. See section 5.3.7.108

type A type refer to one of those defined by the OCCI Core Model. The OCCI Core Model types are Category,109

Attribute, Kind, Mixin, Action, Entity, Resource and Link.110

concrete type/sub-type A concrete sub-type is a type that can be instantiated.111

4 OCCI Core112

The Open Cloud Computing Interface is a boundary protocol and API that acts as a service front-end to a113

provider’s internal management framework. Figure 1 shows OCCI’s place in a provider’s architecture.114

Service Provider
 Domain

Resource 
Management 
Framework

Resources

OCCI

Service 
Consumer

Comm. 
is HTTP

Comm. is 
related to IMF 
interface reqs

Comm. is 
internal

most 
interoperable

least
 interoperable

Proprietary
API

Figure 1. OCCI’s place in a provider’s architecture.

Service consumers can be both end-users and other system instances. OCCI is suitable for both cases. The115

key feature is that OCCI can be used as a management API for all kinds of resources while at the same time116

maintaining a high level of interoperability.117

This document, the OCCI Core specification, defines the OCCI Core Model. This model is the core of the118

specification suite and it can be interacted with by renderings (including associated behaviours) and expanded119

through extensions. In itself, the core model is only useful for a very limited set of use cases. However, it120

provides the basis for renderings and extensions to build upon.121

occi-wg@ogf.org 5



Draft GFD-P-R.183 September 24, 2013

5 OCCI Core Model122

The OCCI Core Model defines a representation of instance types which can be manipulated through an OCCI123

rendering implementation. It is an abstraction of real-world resources, including the means to identify, classify,124

associate and extend those resources.125

A fundamental feature of the OCCI Core Model is that it can be extended in such a way that any extension126

will be discoverable and visible to an OCCI client at run-time. An OCCI client can connect to an OCCI127

implementation using an extended OCCI Core Model, without knowing anything in advance, and still be able128

to discover and understand, at run-time, the various instance types supported by that implementation. For129

example, a web-based OCCI client could easily be reused as the management tool for a wide variety of services.130

The OCCI Core Model can be extended through inheritance but also using a “mix-in” like concept.131

Mixins first appeared in the Symbolics’ object-oriented Flavors [5] system (developed by Howard132

Cannon), which was an approach to object-orientation used in Lisp Machine Lisp.2133

The mix-in model only applies at the instance level, i.e. the “object level”, and thereby differs from the more134

common uses of the mix-in concept. A mix-in in OCCI can never be applied to a type, only to an instance.135

5.1 Overview136

The UML class diagram shown in figure 2 gives an overview of the OCCI Core Model. It must be noted that137

the UML diagram in itself is not a complete definition of the model. The diagram is merely provided as an138

overview to help understanding the model.139

Category
scheme: URI
term: String
title: String [0..1]

Kind
 

Mixin
 

Action
 

Entity
 id: URI

Resource
 

Link
 

Attr ibute
name: String
type: String [0..1]
mutable: Boolean [0..1]
required: Boolean [0..1]
default: String [0..1]
description: String [0..1]

0..1 *actions 1* actions

  *
          mixins

* entit ies

1
          kind

*entit ies

1 target

1 source *links

      0..1
          parent

*

  *
                               depends

*

1 *attr ibutes

*                     applies

Figure 2. UML class diagram of the OCCI Core Model. The diagram provides an overview of the OCCI Core Model but is not
a standalone definition thereof.

The heart of the OCCI Core Model is the Resource type. Any resource exposed through OCCI is a Resource140

or a sub-type thereof. A resource can be e.g. a virtual machine, a job in a job submission system, a user, etc.141

The Resource type contains a number of common attributes that Resource sub-types inherit. The Resource142

type is complemented by the Link type which associates one Resource instance with another. The Link type143

contains a number of common attributes that Link sub-types inherit.144

2http://en.wikipedia.org/wiki/Mixin.

occi-wg@ogf.org 6



Draft GFD-P-R.183 September 24, 2013

Entity is an abstract type, which both Resource and Link inherit. Each sub-type of Entity is identified by a145

unique Kind instance.146

The Kind type is the core of the type classification system built into the OCCI Core Model. Kind is a147

specialisation of Category and introduces additional capabilities in terms of Actions. An Action identifies an148

invocable operation applicable to an entity instance.149

Attribute describe the name and properties of the OCCI Attributes found in Entity and its sub-types.150

The last type defined by the OCCI Core Model is the Mixin type. An instance of Mixin can be associated151

with an entity instance to “mix-in” additional capabilities at run-time.152

For compliance with OCCI Core, all of the types defined in the OCCI Core Model MUST be implemented.153

The following sections of the specification contain the formal definition of the OCCI Core Model.154

5.2 Mutability155

Attributes of an OCCI Core Model type instance are either client mutable or client immutable. If an attribute156

is noted to be mutable this MUST be interpreted that a client can create an instance that is parametrised by157

the attribute. Likewise, if an attribute is mutable, a client can update that instance’s mutable attribute value158

and the server side MUST support this. If an attribute is marked as immutable, it indicates that the server159

side implementation MUST manage these exclusively. Immutable attributes MUST NOT be modifiable by160

clients under any circumstance.161

5.3 Classification and Identification162

The OCCI Core Model provides a built-in type classification system allowing for safe extension towards domain-163

specific usage (e.g. infrastructure). This system is the OCCI type system and offers the means to be easily164

and transparently (i.e. no format translation required) exposed over either a text- or binary-based protocol.165

The classification system can be summarised with the following key features:166

• Each OCCI base type and extension thereof is assigned a unique type identifier (a Kind instance), which167

allow for dynamic discovery of available types. All Entity sub-types, including core model extensions,168

are assigned a unique Kind instance.169

• The inheritance structure of Entity, Resource and Link is client discoverable. This also applies to any170

sub-type of Resource and Link and therefore an OCCI client can discover the type inheritance structure171

used by a particular OCCI implementation. The discovery of the inheritance structure is made possible172

through the relationship of Kind instances.173

• The classification system allows Mixin instances to be associated to entity instances in order to assign174

additional capabilities in terms of Attributes and Actions at run-time.175

• Tagging of entity instances is supported through the association of Mixin instances. A tag is simply a176

Mixin instance, which defines no additional capabilities.177

• A collection of associated entity instances is implicitly defined for each Kind and Mixin instance. That178

is, all entity instances associated with a particular Kind or Mixin instance form a collection.179

5.3.1 Category180

The Category type is the basis of the type identification mechanism used by the OCCI classification system.181

It MUST be implemented. There are no instances of the Category type itself in the OCCI Core Model. The182

Category type is only used through its sub-types Kind, Mixin and Action. Table 1 defines the model attributes183

the Category type MUST implement to be compliant.184

A Category instance is uniquely identified by concatenating the categorisation scheme with the category term,185

e.g. http://example.com/category/scheme#term. This is done to enable discovery of Category definitions in186

occi-wg@ogf.org 7



Draft GFD-P-R.183 September 24, 2013

Table 1. Model attributes defined for the Category type.

Model attribute Type Multiplicity Client Mutability Description

term String 1 Immutable Unique identifier of the Category instance within the
categorisation scheme.

scheme URI 1 Immutable The categorisation scheme.
title String 0..1 Immutable The display name of an instance.
attributes Attribute 0..* Immutable Set of Attribute instances.

text-based renderings such as HTTP. All renderings MUST make use of and understand concatenated unique187

type identifiers of Category instances. Sub-types of Category such as Kind, Mixin and Action inherit this188

property.189

The categorisation schemes defined in the OCCI specification all use the http://schemas.ogf.org/occi/ base190

URL. This base URL is reserved for OCCI an MUST NOT be used by service provider extensions.191

A Category instance3 have zero or more associated Attribute instances. Each Attribute, see section 5.3.2,192

describes the name and properties of single attribute.193

5.3.2 Attribute194

The Attribute type has a composite relationship to Category and defines the name and properties of client195

discoverable OCCI Attributes. Table 2 defines the model attributes the Attribute type MUST implement to196

be compliant.197

Table 2. Model attributes defined for the Attribute type.

Model attribute Type Multiplicity Client Mutability Description

name String 1 Immutable OCCI Attribute name.
type Enum {string,

number, boolean}
0..1 Immutable OCCI Attribute type.

mutable Boolean 0..1 Immutable OCCI Attribute mutability.
required Boolean 0..1 Immutable Whether the OCCI Attribute must be supplied

by the client at instance creation-time.
default String 0..1 Immutable OCCI Attribute default value.
description String 0..1 Immutable A description of the OCCI Attribute.

An OCCI Attribute name MUST be defined by Attribute.name. The OCCI Attribute namespace is flat and the198

“occi.” prefix is reserved for the OCCI specification. Domain-specific OCCI Attribute names MUST NOT199

contain the “occi.” prefix, instead they SHOULD use a prefix consisting of the provider’s reverse domain200

name. E.g. “com.example.”.201

An Attribute MAY specify the following properties in addition to the OCCI Attribute name. Attribute prop-202

erties are OPTIONAL but MUST be client discoverable if used.203

type The type of the OCCI Attribute. The types supported are “String”, “Number” and “Boolean”.204

mutable Whether a OCCI client can change the OCCI Attribute value. See section 5.2.205

required If an OCCI Attribute is “required” a client MUST specify an value at instance creation-time.206

default The default value given to an OCCI Attribute if the client does not specify a value at instance207

creation-time. The default property is used to implement templates, see section 5.3.7.208

description A summarising description of the OCCI Attribute to complement the attribute name. For ex-209

ample, an interactive OCCI client may use the description property when presenting the content of an210

entity instance.211

3Also applies to Kind, Mixin and Action instances.

occi-wg@ogf.org 8



Draft GFD-P-R.183 September 24, 2013

5.3.3 Kind212

The Kind type, together with the Mixin type, defines the classification system of the OCCI Core Model. It213

MUST be implemented. The Kind type represents the type identification mechanism for all Entity types214

present in the model. Sub-types MUST NOT be derived from the Kind type.215

A unique Kind instance MUST be assigned to each and every Entity sub-type defined in an OCCI implemen-216

tation.217

Every instance of Kind represents a unique type identifier for a particular sub-type of Entity. Consequently,218

when an Entity sub-type is instantiated the entity instance MUST be associated with its type identifier, i.e. the219

Kind instance. An entity instance MUST remain associated with its Kind instance throughout its lifetime.220

For example an instance of Resource MUST always be associated with the Kind instance which identifies the221

Resource type.222

In the initial instantiation of the OCCI Core Model, with no core model extensions, three instances of Kind223

will be present: one for Entity, another for Resource and the last one for Link.224

Table 3. Model attributes defined for the Kind type.

Model attribute Type Multiplicity Client Mutability Description

actions Action 0..* Immutable Set of Action instances defined by the Kind instance.
parent Kind 0..1 Immutable Another Kind instance which this Kind relates to.
entities Entity 0..* Immutable Set of entity instances. Instances of the particular En-

tity sub-type which is uniquely identified by this Kind
instance.

The Kind type inherits the Category type. To be compliant the Kind type MUST implement the model225

attributes defined in table 3 and the inherited model attributes defined in table 1. The following rules apply226

to all instances of the Kind type:227

• A unique Kind instance MUST be assigned to each and every sub-type of Entity, including Entity itself.228

• A Kind instance MUST expose the discoverable attributes defined for the Entity sub-type it identifies.229

The Entity attributes are described by Attribute instances stored in the “attributes” model attribute230

inherited from Category. E.g. the Kind instance identifying the Resource type has Kind.attributes231

populated with a single Attribute instance where Attribute.name is "occi.core.summary".232

• A Kind instance MUST expose the Actions defined for its Entity sub-type. Actions are exposed through233

the Kind.actions model attribute which represent the association between a Kind instance and the234

Action instances it defines.235

• A Kind instance MUST have the Kind instance of Entity4 as its direct or indirect parent. The236

Kind.parent model attribute represent the relationship to another Kind instance.237

• If type B inherits type A, where A is a sub-type of Entity, the Kind instance of B MUST have its238

parent attribute set to the Kind instance of A. See Kind Relationships below.239

Kind Relationships Kind relationships are defined through the “parent” model attribute present in every240

Kind instance. The “parent” model attribute define which other Kind instance a particular Kind is related241

to.242

A Kind instance identifies a unique type, either the Entity type itself or a sub-type thereof. Each Kind instance243

MUST be related to the Kind of the parent type.244

The OCCI base types Resource and Link both extend Entity and therefore their identifying Kind instances245

MUST have the Entity Kind instance as its parent.246

These rules imply a hierarchy of related Kind instances. The Kind relationships thus mirror the type inheritance247

structure of the OCCI Core Model and any extension thereof.248

4http://schemas.ogf.org/occi/core#entity

occi-wg@ogf.org 9



Draft GFD-P-R.183 September 24, 2013

compute : Kind
 term = compute
 scheme = http://schemas.ogf.org/occi/infrastructure#
 title = Compute Resource
 attributes: Attribute = [occi.compute.cores, occi.compute.memory, ...]
 actions: Action = [...]
 parent: Kind = http://schemas.ogf.org/occi/core#resource
 entities: Compute = []

resource : Kind
 term = resource
 scheme = http://schemas.ogf.org/occi/core#
 title = Resource
 attributes: Attribute = [occi.core.summary]
 actions: Action = []
 parent: Kind = http://schemas.ogf.org/occi/core#entity
 entities: Resource = []

entity : Kind
 term = entity
 scheme = http://schemas.ogf.org/occi/core#
 title = Entity
 attributes: Attribute = [occi.core.title]
 actions: Action = []

Figure 3. Object diagram illustrating the Kind instances involved for the Entity, Resource and Compute types. The Compute
type is an extension to the OCCI Core Model defined in the OCCI Infrastructure document [3].

Figure 3 illustrates the relationship of the Kind instances assigned to the Entity, Resource and Compute5 types.249

Compute inherits Resource and therefore the Kind instance assigned to Compute has the Kind instance of250

Resource as its parent. The same applies to the Resource type which inherit Entity.251

As can be seen in figure 3 the Kind instance relationships mirror the inheritance structure of the types.252

5.3.4 Mixin253

The Mixin type complements the Kind type in defining the OCCI Core Model type classification system. It254

MUST be implemented. The Mixin type represent an extension mechanism, which allows new capabilities to255

be added to entity instances both at creation-time and/or run-time. Sub-types MUST NOT be derived from256

the Mixin type.257

A Mixin instance can be associated with any existing entity instance and thereby identify new capabilities,258

i.e. Attributes and Actions, for the entity instance. However, a Mixin can never be applied to a type. In the259

initial instantiation of the OCCI Core Model, with no extensions, no Mixin instances are present.260

A Mixin instance MAY be associated with an entity instance either at instance creation-time or at run-time.261

Restrictions on which entity instances a particular Mixin can be associated to SHOULD be advertised through262

the Mixin.applies model attribute.263

When a client attempts to associate a Mixin instance to an entity instance at a stage not supported by a264

particular provider’s OCCI implementation, the provider MUST notify the client it has issued a bad request.265

For example a “bandwidth” Mixin may only be applicable to instances of the Network6 type. An OCCI266

provider SHOULD advertise such a restriction by setting Mixin.applies to the Kind instance of the Network267

type7.268

Table 4. Model attributes defined for the Mixin type.

Model attribute Type Multiplicity Client Mutability Description

actions Action 0..* Immutable Set of Action instances defined by the Mixin instance.
depends Mixin 0..* Immutable Set of Mixin instances this Mixin instance depends on.
applies Kind 0..* Immutable Set of Kind instances this Mixin instance applies to.
entities Entity 0..* Mutable Set of entity instances associated with the Mixin in-

stance.

The Mixin type inherits the Category type. To be compliant the Mixin type MUST implement the model269

attributes defined in table 4 and the inherited model attributes defined in table 1. The following rules apply270

to all instances of the Mixin type:271

5The Compute type is defined in the OCCI Infrastructure document [3].
6The Network type is defined in OCCI Infrastructure [3].
7http://schemas.ogf.org/occi/infrastructure#network

occi-wg@ogf.org 10



Draft GFD-P-R.183 September 24, 2013

• A Mixin instance MUST only be associated with entity instances, not types, either at creation-time or272

run-time.273

• A Mixin instance is only a type identifier. It MUST NOT provide the implementation of the new274

capabilities it introduces. For example, a Mixin instance never contains the value of an OCCI Attribute.275

• A Mixin instance MAY introduce additional Attributes when applied to an entity instance. The276

name and properties of those OCCI Attributes MUST be exposed through Mixin.attributes in-277

herited from Category. E.g. a Location Mixin defining the “com.example.location” OCCI Attribute278

MUST have Location.attributes populated with a single Attribute instance where Attribute.name is279

"com.example.location".280

• A Mixin instance MAY define Action instances that will identify additional invocable operations on281

any entity instance associated with the Mixin. Actions defined by a Mixin are exposed through the282

Mixin.actions model attribute that represent the association between a Mixin instance and the Action283

instances it defines.284

• A Mixin instance MAY depend on another Mixin instance. If Mixin B depends on Mixin A, any entity285

instance associated with Mixin B will receive the capabilities defined by both Mixin B and Mixin A. See286

Mixin Relationships below.287

• A Mixin instance defining no additional capabilities is considered to be a tag.288

• A Mixin instance MAY be used as a template. A template defines default values for OCCI Attributes289

to be applied at entity instance creation-time. See section 5.3.7.290

• A Mixin instance MAY restrict which Kind instances it applies to using the applies model attribute.291

If Mixin.applies is unspecified the Mixin may be associated to any entity instance, i.e. equivalent of292

having Mixin.applies set to the Kind instance of Entity.293

Mixin Relationships A Mixin instance MAY be depend on other Mixin instances. Mixin relationships are294

implemented using the Mixin.depends model attribute. For example a set of operating system templates,295

implemented as Mixin instances, could be related to an “OS-template” Mixin in order to help identification.296

Attributes and Actions defined by different Mixin instances are combined when Mixin relationships are present.297

Therefore an entity instance associated with a particular Mixin will receive the additional capabilities defined298

by any related Mixin instances as well as those defined by the Mixin associated.299

5.3.5 Action300

The Action type is the final part of the OCCI type classification system and identifies invocable operations on301

individual entity instances and collections. It MUST be implemented. Each Action instance identifies a single302

invocable operation. The Action instance is only an identifier and does not represent the implementation of303

the operation.304

The Action type inherit the Category type. To be compliant the Action type MUST implement the inherited305

model attributes defined in table 1.306

Table 5. Example of an Action instance which identifies a “resize” operation.

Model attribute Value

term resize
scheme http://schemas.ogf.org/occi/infrastructure/storage/action#

title Resize virtual disk
attributes Attribute("resize")

An Action instance MUST always bound to either a Kind or a Mixin instance through a composite association.307

An Action is considered to be a capability of the Kind or Mixin instance it is associated with. The operation308

occi-wg@ogf.org 11



Draft GFD-P-R.183 September 24, 2013

identified by an Action MAY be invoked on any entity instance associated with the Kind or Mixin instance309

defining the Action. An OCCI implementation MAY however refuse an the operation from being invoked if310

currently not applicable.311

The operation identified by an Action instance MAY be invoked on a collection of Entity sub-type instances.312

The Action is only considered valid if all entity instances of the collection are associated with the Kind or313

Mixin defining the Action instance.314

An Action instance MAY identify OCCI Attributes which correspond to parameters of the invocable operation.315

The mechanism to define OCCI Attributes is inherited from Category and follow the same semantics. The316

namespace restrictions imposed on entity instance attributes (see 5.3.2) does however not apply to Actions.317

Table 5 shows an example of a “resize” operation defined for a Storage instance. The operation has a318

“size” parameter which represent the size argument of the resize operation. In that example the identifying319

Action instance would have Action.attributes populated with an Attribute instance where Attribute.name320

= "size".321

5.3.6 Instantiation322

To create an entity instance a client MUST supply the concrete Entity sub-type by a submitting a reference to323

the type-identifying Kind. The reference MUST consist of the term and categorisation scheme which uniquely324

identify the Kind instance, see section 5.3.1. All OCCI implementations MUST understand these requests.325

A client MAY also submit any number of references to Mixin instances to be associated with the instance to326

be created. A Mixin reference submitted by a client MUST consist of the term and categorisation scheme327

which identify the Mixin instance, see section 5.3.1.328

5.3.7 Templates329

A template is a mechanism to provide default values for entity instances. OCCI supports templates through330

Mixins.331

A Mixin instance associated at entity instance creation-time MAY provide default values for OCCI Attributes.332

Each default value is specified through Attribute.default.333

A Mixin instance MAY provide default values for OCCI Attributes already defined by a Kind. A Mixin’s334

Attribute.default overrides the default specified by the Kind.335

5.3.8 Collections336

One or more entity instances associated with the same Kind or Mixin instance, automatically form a collection.337

Each Kind and Mixin instance in the system identifies a collection consisting of all different entity instances338

associated with the same Kind or Mixin.339

An entity instance is always a member of the collection indicated by the Entity sub-type’s unique Kind340

instance. The Kind.entities model attribute implements the collection of entity instances for a specific341

Entity sub-type.342

A Kind instance maintains the collection of all entity instances (of the type identified by the Kind).343

Since a Mixin instance can be associated to any entity instance, a collection can contain entity instances of344

different Entity sub-types. For example, an instance of the Resource type will always be associated to the345

Kind instance http://scheme.ogf.org/occi/core#resource and thus part of the collection implied by that Kind346

instance.347

Adding an entity instance to a collection is accomplished by associating the entity instance to the corre-348

sponding Mixin instance.349

Removing an entity instance from a collection is accomplished by disassociating the entity instance from350

the corresponding Mixin instance.351

occi-wg@ogf.org 12



Draft GFD-P-R.183 September 24, 2013

An OCCI implementation MUST allow a client to navigate collections. The following basic navigation oper-352

ations MUST be supported:353

• Retrieve the whole collection.354

• Retrieve a specific item in a collection.355

• Retrieve a subset of a collection.356

The details of collection navigation is rendering specific.357

5.3.9 Discovery358

An OCCI client MUST be able to discover all instances of Kind, Mixin and Category a particular service359

provider’s OCCI implementation has defined. By examining these instances a client MUST be able to, at a360

minimum, deduce the following information:361

• The Entity sub-types available from the service provider, including core model extensions. This infor-362

mation is provided through the Kind instances of the OCCI implementation.363

• The attributes defined for each Entity sub-type. The identifying Kind instance provide this information.364

• The invocable operations, i.e. Actions, defined for each Entity sub-type. The identifying Kind instance365

provide this information.366

• Any Mixin instances that can be associated to entity instances.367

• Additional capabilities defined by a particular Mixin instance, i.e. Attributes and Actions.368

The above requirements comprise the OCCI discovery mechanism. It MUST be implemented.369

The details of exactly how the Category, Kind and Mixin instances are exposed to an OCCI client is specific370

to the particular rendering used. The relevant details can be found in the OCCI Rendering documents.371

5.4 The OCCI Core Base Types372

The following sections describe the OCCI base types defined by the OCCI Core Model. The base types are373

Entity, Resource, Link. All base types MUST be implemented.374

An instance of the Resource type, the Link type or one of their sub-types is called a entity instance. Each375

entity instance within an OCCI system MUST have a unique identifier8 stored in the id model attribute of376

the Entity type, as defined in table 6. The structure of these identifiers is opaque and the system should377

not assume a static, pre-determined scheme for their structure other than the rules imposed by the Uniform378

Resource Identifier (URI) [6] syntax.379

Although every unique entity instance identifier MUST be valid URI it is RECOMMENDED to use the Uniform380

Resource Name (URN) [7] syntax.381

For example Entity.id could be urn:uuid:de7335a7-07e0-4487-9cbd-ed51be7f2ce4.382

5.4.1 Entity383

The Entity type is an abstract type of the Resource type and the Link type. It MUST be implemented.384

Table 6 defines the model attributes the Entity type MUST implement to be compliant.385

Entity enforces for all sub-types an optional OCCI Attribute named occi.core.title, see table 7.386

Every sub-type of Entity MUST be assigned a Kind instance, see section 5.3.3. Entity itself is assigned the387

8An entity instance identifier MUST be unique within the service provider’s name-space. It is RECOMMENDED to use
globally unique identifiers.

occi-wg@ogf.org 13



Draft GFD-P-R.183 September 24, 2013

Table 6. Model attributes defined for the Entity type.

Model attribute Type Multiplicity Client
Mutability

Discover-
able

Description

id URI 1 Immutable Yes A unique identifier (within the service provider’s name-
space) of the Entity sub-type instance.

kind Kind 1 Immutable No The Kind instance uniquely identifying the particular En-
tity sub-type of this instance.

mixins Kind 0..* Mutable No The Mixin instances associated to this entity instance.
Consumers can expect the Attributes and Actions of the
associated Mixins to be exposed by the instance.

Table 7. OCCI Attributes defined by the Entity type.

OCCI Attribute Type Multiplicity Client
Mutability

Discover-
able

Description

occi.core.title String 0..1 Mutable Yes The display name of the instance.

Table 8. The Kind instance assigned to the Entity type.

Model attribute Value

term entity
scheme http://schemas.ogf.org/occi/core#

title Entity type
attributes Attribute("occi.core.title")
actions –

Kind instance http://schemas.ogf.org/occi/core#entity for type identification, see table 8. Being an abstract388

type Entity itself can never be instantiated.389

An Entity sub-type instance, also referred to as an entity instance, MAY be associated with one or more Mixin390

instances.391

An Entity sub-type instance MUST expose its identifying Kind instance and any associated Mixin instances392

together with the Attributes and Actions defined by them.393

5.4.2 Resource394

The Resource type inherits Entity and describes a concrete resource that can be inspected and manipulated.395

It represents a general object in the OCCI model and MUST be implemented. A Resource is suitable to396

represent real world resources, e.g. virtual machines, networks, services, etc. through specialisation.397

Table 9. Model attributes defined for the Resource type.

Model attribute Type Multiplicity Client Mutability Description

links Link 0..* Mutable A set of Link compositions. Being a composite relation the re-
moval of a Link from the set MUST also remove the Link in-
stance.

The Resource type MUST implement all model attributes and OCCI Attributes inherited from Entity as well398

as the model and OCCI Attributes defined in table 9 and 10 in order to be compliant.399

Table 10. OCCI Attributes defined for the Resource type.

OCCI Attribute Type Multiplicity Client Mutability Description

occi.core.summary String 0..1 Mutable A summarising description of the Resource instance.

occi-wg@ogf.org 14



Draft GFD-P-R.183 September 24, 2013

The Resource type is assigned the Kind instance http://schemas.ogf.org/occi/core#resource, see table 11.

Table 11. The Kind instance assigned to the Resource type.

Model attribute Value

term resource
scheme http://schemas.ogf.org/occi/core#

title Resource
attributes Attribute(occi.core.summary)
actions –

400

Resource enforces the inheritance of a set of common attributes into sub-types. Moreover, it introduces401

relationships to other Resource instances through instances of the Link type.402

The Resource type is the first of three entry points to extend the OCCI Core Model, see section 5.5.403

5.4.3 Link404

An instance of the Link type defines a base association between two Resource instances. It MUST be405

implemented. A Link instance indicates that one Resource instance is connected to another.406

The Link type MUST implement all attributes inherited from the Entity type together with the model attributes407

defined in table 12 in order to be compliant.408

Table 12. Model attributes defined for the Link type.

Model attribute Type Multiplicity Client Mutability Description

source Resource 1 Mutable The Resource instances the Link instance originates from.
target Resource 1 Mutable The Resource instances the Link instance points to.

The Link type is assigned the Kind instance http://schemas.ogf.org/occi/core#link.409

Table 13. The Kind instance assigned to the Link type.

Model attribute Value

term link
scheme http://schemas.ogf.org/occi/core#

title Link
attributes –
actions –

The source and target attribute of a Link instance MUST refer to Resource instances within the service410

provider’s namespace. A Link MAY refer to an external Resource instance, i.e. a resource of which the service411

provider has no direct control, if and only if that external resource is mapped into an Entity sub-type instance.412

A provider MAY however introduce a sub-type of Link with different semantics, e.g. having a target attribute413

containing an URI and thus the ability of linking with external resources.414

The Link type is the second of three entry points to extend the OCCI Core Model, see section 5.5.415

5.5 Extensibility416

The OCCI Core Model has a flexible yet fairly simple extension mechanism based on the type classification417

system described in section 5.3.418

The OCCI Core Model can be extended using two different methods, sub-typing and mix-in. Custom sub-419

typing require provider-specific Kind instances and custom mix-ins require provider-specific Mixin instances.420

occi-wg@ogf.org 15



Draft GFD-P-R.183 September 24, 2013

Both methods MAY involve the use of provider-specific Action instances. The following sections define the421

rules for extending the OCCI Core Model.422

The rules defined in section 5.3 and 5.4 are REQUIRED for all extensions of the OCCI Core Model.423

5.5.1 Category instances424

Provider-specific instances of Category, Kind and Mixin MAY be introduced by an OCCI implementation.425

Since Kind and Mixin both inherit Category the extension rules for Category, defined below, applies to them426

as well.427

A Category instance defined outside of the OCCI specification MUST use a Category scheme unique to the428

provider, e.g. http://example.com/occi#. The term of a provider-specific Category instance can be any429

string corresponding to a “token” as defined by the OCCI Rendering documents.430

An OCCI Attribute introduced by a provider-specific Category MUST use an attribute name prefix. This431

prefix MUST NOT be the “occi.” prefix which is reserved for the OCCI specification. Domain-specific OCCI432

Attribute names SHOULD use a prefix consisting of the provider’s reverse domain name, e.g. “com.example.”.433

5.5.2 Sub-typing434

The OCCI Core Model MAY be extended through sub-typing. Two OCCI Core Model types MAY be sub-typed,435

those are Resource and Link.436

In order to define a new sub-type of Resource or Link, a provider-specific Kind instance MUST be defined437

and assigned to the new sub-type. This provider-specific Kind instance MUST have its Kind.parent model438

attribute equal to the Kind instance of the type extended. See figure 3 for an example of Kind relationships.439

5.5.3 Mix-ins440

The OCCI Core Model MAY be extended using a “mix-in” like concept by defining provider-specific Mixin441

instances. A Mixin instance can be associated with any entity instance although a provider MAY apply442

restrictions.443

In order to support user-defined tags9 an OCCI implementation must allow custom Mixin instances to be444

created and destroyed by request of a client. There is no limitation in the OCCI Core Model from doing445

so but it is RECOMMENDED to assign a separate Category scheme for each user’s Mixin instances (e.g.446

per-user schemes).447

6 Security Considerations448

Since the OCCI Core and Model specification describes a model, not an interface or protocol, no specific449

security mechanisms are described as part of this document. However, the elements described by this specifi-450

cation, namely type instance attribute mutability, Category, Kind, and Mixin instantiations; Entity, Resource,451

and Link subtypes, whether direct or indirect; resource or collection manipulation; and the discovery mecha-452

nism need to implement a proper authorization scheme, which MUST be part of a concrete OCCI rendering453

specification, part of an OCCI specification profile, or part of the specific OCCI implementation.454

Concrete security mechanisms and protection against attacks SHOULD be specified by OCCI rendering speci-455

fication. In any case, OCCI rendering specifications MUST address transport level security and authentication456

on the protocol level.457

All security considerations listed above apply to all (existing and future) extensions of the OCCI Core and458

Model specification.459

9A tag is a Mixin instance, which does not introduce additional capabilities.

occi-wg@ogf.org 16



Draft GFD-P-R.183 September 24, 2013

7 Glossary460

Term Description
Action An OCCI base type. Represents an invocable operation on a Entity sub-type in-

stance or collection thereof.
Attribute A type in the OCCI Core Model. Describes the name and properties of attributes

found in Entity types.
Category A type in the OCCI Core Model and the basis of the OCCI type identification

mechanism. The parent type of Kind.
capabilities In the context of Entity sub-types capabilities refer to the OCCI Attributes and

OCCI Actions exposed by an entity instance.
Client An OCCI client.
Collection A set of Entity sub-type instances all associated to a particular Kind or Mixin

instance.
Entity An OCCI base type. The parent type of Resource and Link.
entity instance An instance of a sub-type of Entity but not an instance of the Entity type itself.

The OCCI model defines two sub-types of Entity, the Resource type and the Link
type. However, the term entity instance is defined to include any instance of a
sub-type of Resource or Link as well.

Kind A type in the OCCI Core Model. A core component of the OCCI classification
system.

Link An OCCI base type. A Link instance associates one Resource instance with another.
Mixin A type in the OCCI Core Model. A core component of the OCCI classification

system.
mix-in An instance of the Mixin type associated with an entity instance. The “mix-in”

concept as used by OCCI only applies to instances, never to Entity types.
model attribute An internal attribute of a the Core Model which is not client discoverable.
OCCI Open Cloud Computing Interface.
OCCI base type One of Entity, Resource, Link or Action.
OCCI Action see Action.
OCCI Attribute A client discoverable attribute identified by an instance of the Attribute type.

Examples are occi.core.title and occi.core.summary.
OCCI Category see Category.
OCCI Entity see Entity.
OCCI Kind see Kind.
OCCI Link see Link.
OCCI Mixin see Mixin.
OGF Open Grid Forum.
Resource An OCCI base type. The parent type for all domain-specific Resource sub-types.
resource instance See entity instance. This term is considered obsolete.
tag A Mixin instance with no attributes or actions defined.
template A Mixin instance which if associated at instance creation-time pre-populate certain

attributes.
type One of the types defined by the OCCI Core Model. The Core Model types are

Category, Attribute, Kind, Mixin, Action, Entity, Resource and Link.
concrete type/sub-type A concrete type/sub-type is a type that can be instantiated.
URI Uniform Resource Identifier.
URL Uniform Resource Locator.
URN Uniform Resource Name.

461

462

8 Contributors463

occi-wg@ogf.org 17



Draft GFD-P-R.183 September 24, 2013

We would like to thank the following people who contributed to this document:464

Name Affiliation Contact
Michael Behrens R2AD behrens.cloud at r2ad.com
Mark Carlson Oracle mark.carlson at oracle.com
Andy Edmonds Intel - SLA@SOI project andy at edmonds.be
Sam Johnston Google samj at samj.net
Gary Mazzaferro OCCI Counselour - AlloyCloud, Inc. garymazzaferro at gmail.com
Thijs Metsch Platform Computing, Sun Mi-

crosystems
tmetsch at platform.com

Ralf Nyrén Aurenav ralf at nyren.net
Alexander Papaspyrou TU Dortmund University alexander.papaspyrou at tu-

dortmund.de
Alexis Richardson RabbitMQ alexis at rabbitmq.com
Shlomo Swidler Orchestratus shlomo.swidler at orchestratus.com
Florian Feldhaus GWDG florian.feldhaus at gwdg.de

465

Next to these individual contributions we value the contributions from the OCCI working group.466

occi-wg@ogf.org 18



Draft GFD-P-R.183 September 24, 2013

9 Intellectual Property Statement467

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that468

might be claimed to pertain to the implementation or use of the technology described in this document or the469

extent to which any license under such rights might or might not be available; neither does it represent that470

it has made any effort to identify any such rights. Copies of claims of rights made available for publication471

and any assurances of licenses to be made available, or the result of an attempt made to obtain a general472

license or permission for the use of such proprietary rights by implementers or users of this specification can473

be obtained from the OGF Secretariat.474

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications,475

or other proprietary rights which may cover technology that may be required to practice this recommendation.476

Please address the information to the OGF Executive Director.477

10 Disclaimer478

This document and the information contained herein is provided on an “As Is” basis and the OGF disclaims all479

warranties, express or implied, including but not limited to any warranty that the use of the information herein480

will not infringe any rights or any implied warranties of merchantability or fitness for a particular purpose.481

11 Full Copyright Notice482

Copyright c© Open Grid Forum (2009-2012). All Rights Reserved.483

This document and translations of it may be copied and furnished to others, and derivative works that comment484

on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in485

whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph486

are included on all such copies and derivative works. However, this document itself may not be modified in487

any way, such as by removing the copyright notice or references to the OGF or other organizations, except488

as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights489

defined in the OGF Document process must be followed, or as required to translate it into languages other490

than English.491

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors or492

assignees.493

References494

[1] R. Nyrén, A. Edmonds, A. Papaspyrou, and T. Metsch, “Open Cloud Computing Interface – Core,”495

GFD-P-R.183, April 2011. [Online]. Available: http://ogf.org/documents/GFD.183.pdf496

[2] T. Metsch and A. Edmonds, “Open Cloud Computing Interface – HTTP Rendering,” GFD-P-R.185,497

April 2011. [Online]. Available: http://ogf.org/documents/GFD.185.pdf498

[3] ——, “Open Cloud Computing Interface – Infrastructure,” GFD-P-R.184, April 2011. [Online]. Available:499

http://ogf.org/documents/GFD.184.pdf500

[4] S. Bradner, “Key words for use in RFCs to Indicate Requirement Levels,” RFC 2119501

(Best Current Practice), Internet Engineering Task Force, Mar. 1997. [Online]. Available:502

http://www.ietf.org/rfc/rfc2119.txt503

[5] D. A. Moon, “Object-oriented programming with flavors,” SIGPLAN Not., vol. 21, pp. 1–8, June 1986.504

[Online]. Available: http://doi.acm.org/10.1145/960112.28698505

occi-wg@ogf.org 19



Draft GFD-P-R.183 September 24, 2013

[6] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource Identifier (URI): Generic506

Syntax,” RFC 3986 (Standard), Internet Engineering Task Force, Jan. 2005. [Online]. Available:507

http://www.ietf.org/rfc/rfc3986.txt508

[7] R. Moats, “URN Syntax,” RFC 2141 (Proposed Standard), Internet Engineering Task Force, May 1997.509

[Online]. Available: http://www.ietf.org/rfc/rfc2141.txt510

occi-wg@ogf.org 20



Draft GFD-P-R.183 September 24, 2013

A Errata511

The corrections introduced by the September 24, 2013 errata update are summarized below. The follow-512

ing sub-sections describe the possible impact of the corrections on existing implementations and associated513

dependent specifications such as OCCI HTTP Rendering [2] and OCCI Infrastructure [3].514

• Introduce an explicit Attribute type to expose the discoverable attribute properties already defined for515

the OCCI base types Entity, Resource, Link and their sub-types.516

• Distinguish between discoverable OCCI Attributes and internal model attributes.517

• Correct the previously unclear definition of OCCI Action. The Action type inherits Category and is only518

an identifier of an invocable operation. It does not represent the operation itself. The Action definition519

now aligns with its use in the OCCI HTTP Rendering [2].520

• Clarify the format of the unique entity instance identifier defined in OCCI Entity. Incorporate the521

description and recommendations from the OCCI HTTP Rendering [2].522

• Clarify that an OCCI Mixin instance is only a type identifier. The Core Model does not specify how a523

mixed-in attribute is implemented. The Mixin instance only states that the attribute exists.524

• Rename the term resource instance to entity instance. An entity instance refers to an instance of either525

OCCI Resource, OCCI Link or a sub-type of either type. The resource instance term, while defined526

identically, was due to its name a source of misinterpretations in the specification.527

• Rename Kind.related to Kind.parent and Mixin.related to Mixin.depends. Clarify the use of Kind528

and Mixin relationships.529

• Add a new model attribute Mixin.applies to optionally advertise which entity instances a Mixin instance530

may be associated to.531

A.1 Introducing the OCCI Attribute type532

The Attribute type formalizes how attribute properties are represented in the OCCI Core Model. Since533

all attribute properties are optional no modifications are necessary in existing implementations to remain534

compliant.535

OCCI Infrastructure [3] defines attribute properties for its sub-types of Entity. The errata corrections allows536

these attribute properties to be represented in the Core Model. However, the definitions remain the same.537

OCCI HTTP Rendering [2] already exposes the “required” and “mutable” attribute properties.538

A.2 OCCI Attributes versus model attributes539

The change is editorial and does not affect existing implementations. The OCCI Infrastructure [3] specification540

only defines discoverable OCCI Attributes although this is not explicitly stated.541

A.3 Action definition542

The corrected definition of OCCI Action has no impact on neither discovery nor invocation of Actions in existing543

implementations. The OCCI HTTP Rendering [2] is better aligned with OCCI Core after the corrections since544

it already uses type="action" in its rendering of categories.545

A.4 Rename “resource instance” to “entity instance”546

The change is editorial and does not affect existing implementations. The glossary contains both terms for547

compatibility with the OCCI HTTP Rendering [2] specification.548

occi-wg@ogf.org 21


