
Notify/Query Primitive

The notify() function provides a means for a PA to notify an RA that a certain event has occurred. The notify primitive acts in the following fashion:

RA

PA

NotifyReq() --->

-
NotifyResp()

. . .

-
Notify()

…

-
Notify()

…

NotifyCancel()


NotifyResp()

A NotifyReq() registers an “event” that the RA wishes to be informed about. An “event” is defined to be a specific set of conditions that must occur simultaneously. When those conditions are met, a Notify() message is sent to the Requesting Agent identifying the event conditions that triggered the event. A NotifyReq() is governed by the standard authorization architecture of the NSI- i.e. the information that must be accessed to assess the event must be authorized before the NotifyReq() is registered and confirmed. Upon successfully authorizing the NotifyReq(), a NotifyResp() with status = 0 is returned to indicate that the request has been successfully registered by the PA.

[John] Will we also return some type of notification subscription identifier returned in the NotifyResp() for use in future NotifyCancel() requests? It might also be useful to return this identifier in the Notify() message so that the RA can correlate the Notify() to the original subscription.

If the NotifyReq() cannot be registered, a NotifyResp() with status=1 is returned to indicate that the request has been rejected. No further information regarding the rejection is required (for security reasons).

[John] I believe that an appropriate error code and error message could be returned identifying the reason for the failure. The PA should take security into consideration and not expose information to the RA that it does not have permission to view.

A Notify() message is sent to the registered RA when the specified event occurs. Once a Notify() message has been sent to each registered RA for that specific event, no further notify() messages will be sent until the event “resets”. I.e. an event is triggered when all the conditions are met. The event is reset when one or more of the conditions is no longer met. For example, an RA may register for an event defined as ConnectionState==Down. If the connection state ever goes to Down, the event is triggered. One message will be sent to each RA registered for that event. The event will be reset when the ConnectionState<>Down. If, after reset, the ConnectionState again transitions to Down, a Notify() message will be sent again.

Upon receiving a Notiify() message, the receiving RA does not respond to acknowledge the notification.

[John] Does this imply the underlying transport mechanism is guaranteeing delivery of the notification?

A NotifyCancel() message is sent to indicate that an RA is no longer to be notified of a specific event.

It should be noted that the notify primitive is intended to be associated with specific events. It is NOT intended to be a catchall for broad based requests. The nature of the events that trigger a notification will define the overhead associated with Notify() processing. Initially, the internal representation of events, the number of registered RAs, and the number of conditions associated with the event and the domain of those parameters, and the mechanisms needed to detect that all conditions are met, may be expensive in terms of implementation. So the Notify() primitive for NSI Version 1.0 should be constrained in certain ways.

In NSI v1.0, the Notify primitive registers exactly one Requesting Agent, duly authorized, per request. Further, the Notify primitive will only register the RA issuing the NotifyReq() message. i.e. no third party registrations. (the restriction on 3rd party registration is due to the potential security threat it poses. A 3rd party registration would require acknowledgement of the registration by the 3rd party, which poses additional protocol complexity that is not deemed necessary at this stage.)

Specification of the event conditions is necessary. In general an event is defined as follows:

Event := boolcondition (“,” boolcondition)*

Boolcondition := Parameter relation value

For example, an event could be:

 ConnectionID=”MyConnection” && BytesTransmitted>1e10.

For this notify request, the RA will be notified when RA/MyConnection exceeds 10 billion bytes transmitted. Note: this event will never reset short of some other process clearing the Bytes transmitted counter. The implication is that whenever the bytesTransmitted count is updated, a condition is tested and an event state updated. After the event had been triggered and notified, that condition will continue to be checked even though there may never be a reset that would throw another subsequent notify(). And since byte counters are updated often, the overhead will likewise increase directly with the frequency that a parameter value changes. For this reason, notify() primitive can be quite expensive. Indeed, simply checking for conditions may generate considerable processing overhead, potentially far exceeding the actual notification processing performed when the event is finally triggered.

Some conditions are less overhead intensive. For instance, a condition that checks the connection’s state will only be checked when the state changes – which is rare.

Another consideration regarding events is trying to register for broad based events such as ConnectionID==* && ConnectionState==Provisioning. Such a broadly defined event would cover all future connections as well as those in existence at the time of the registeration. This brings up the need to identify when a registered event applies to a new service instance (or not), and would further require all the same authorization checks to insure the broad registration is authorized to see that information. In theory, such notification requests can be handled in a scalable fashion, but the added implementation complexity for the NSA is substantial and so it is recommended that there be no “wild cards” in v1.0 for Notify events. An event must be specified

[John] I disagree on the no wildcard restriction. For example, as a RA I would like to register for all ConnectionState events on connections I have requested (ConnectionID==* && ConnectionState==*) and for all PA system events of interest (shutdown, restart, etc.). From an implementation perspective this generic registration is quite useful and allows the RA to set up a single event registration for information it is interested in monitoring. If we didn’t support the wildcard then I would be sending hundreds of messages to register for everything I am interested in monitoring. Analysis of this method would probably show more processing overhead than supporting wildcards.

Finally, because the event conditions specify parameters associated with the service, these parameters must be defined internally in such a way as to indicate that whenever that parameter is modified, that a check against registered events is made. A chain of events that reference that parameter must be constructed and maintained, How this is done is beyond the scope of this write up.

The definition of parameters that can form Notify() conditions should be specified in the Service Definition. A small set of required parameters may be stipulated in the NSI protocol specification. The base set of required parameters should be small and in general parameters that change less often. Such a minimalist set will minimize overhead.

[John] Having just gone through a year of notification hell I will provide some additional questions that will need to be addressed in the specification.

1. Are notification subscriptions persistent and will they survive restarts of the PA?

If they are not persistent then an RA will need a mechanism to determine when a PA has restarted so that it could re-register for all notifications of interest.

2. Notification error handling - does the PA continue to send notifications to an RA even after notification delivery failures have occurred? Should the PA automatically remove the notification subscriptions after a threshold of failures have been crossed? How does the RA determine there was an issue? This could happen for something as simple as a temporary data communications failure.

3. If an RA restarts how does it determine the notification subscription status on the PA? Have some or all subscriptions been cleaned up do to failure? Did the PA even notice the RA restarted? A NotifyList() operation could provided a solution to this issue allowing an RA to query a PA for active subscriptions.

4. Has the RA missed events generated by a PA? If notification delivery is not guaranteed then an notification sequence number per RA/PA association would allow an RA to determine if an event was missed when the next one arrives. A NotifyGet() would allow an RA to request a PA for specific missed events, however, this will require the PA to keep an event buffer.
5. When an RA is attempting to perform a graceful shutdown how will it unsubscribe for all notifications quickly? Perhaps a NotifyCancelAll() or a parameter in the NotifyCancel() that identifies all active subscriptions.

6. How does the PA handle notification subscriptions that are not longer syntactically valid? For example, if we use your example of (ConnectionID=”MyConnection” && BytesTransmitted>1e10) but “MyConnection” is no longer a valid connection should the notification event be automatically removed by the system?

The Query() Primitive

The Query() primitive is intended to request information from a PA and present it to the requesting RA. The QueryReq() specifies a set of conditions that are to be matched and a set of one or more parameters that are to be provided back. This is, in effect, a database query.

The fundamental operation of the Query() is as follows:

RA

PA

QueryReq() 

 QueryResp()

Note: The RA and PA relationships are relative only to the Query primitive. i.e. there is no implied relationship to the information that may be used to key the query or the information provided in response. For example, there is no implied RA or PA relationship to a QueryReq() for a particular connectionID. The RA for the Query is the agent issueing the QueryReq() message, and the PA is the NSA responding to that request with the QueryResp() message.

A QueryReq() submits a request for some information that meets a specific set of conditions. For example: Query ConnectionID=MyConnection, bytesTransmitted; Or to use an SQL construct:

SELECT BytesTransmitted

FROM ConnectionTable

WHERE ConnectionID=”WDC-CPH”;

An NSA receiving a QueryReq() may need to form “sub-Query’s” to other NSAs, much in the tree or chain processes described n the NSI architecture. However, the tree or chain that results may not be directly related to a particular connection instance. The tree or chain so constructed is relative to the information being requested at the root.

A Query Request is subject to NSI authorization architecture, i.e. information being accessed in order to evaluate the query must all pass muster under applicable Policy rules (e.g. authentication and authorization) at each NSA down the tree/chain.

Depending upon the request, the size of the response may be quite large. For instance, a Query request for log entries from the last month pertaining to Provisioning and In_service state changes might generate hundreds or thousands of entries. Therefore, the RA should be prepared for a large response, or, the Request should stipulate the maximum size of a response.

In the case of a large response, it may be desirable to transfer the data in a sequence of responses. This gets more complex. In order to send multiple responses, some indication of the size of the whole response should be communicated to the RA in order for the RA to properly accommodate the information. Further, the PA will need to retain the selected set of information until it has all been sent or some other indication is received that it is no longer needed to be retained.

[John] Many protocols support multi-block/chunk/page/message responses without having to specify the total size up front. Instead they start streaming the data back to the requestor identifying the related messages though an identifier common to all, and perhaps a sequence number to identify the message as part of the whole. The final response message can be identified by either zero length contents, or a special valued sequence number (0, -1, etc).

This type of mechanism is especially useful when doing distributed queries where results are being forwarded back to the initial RA without having to collect all query responses at the head-end PA first. It also works similarly well when doing database queries with paged results being returned. Data from each page can be sent back to the RA individually without having to read all database results into memory first.
The actual parameters that may be queried may be organized in different manners. For instance, a RDB Table may exist for connections in the PA, a similar table may exist for Log Entries, or for Policy rules. Therefore, it is recommended that the NSI protocol WG consider a MIB that describes the basic data constructs and how they relate to one another.

