Problem

During design of NSI CS version 2 the majority of error states were removed from
the state machine and a new set of notifications were added to inform the uRA of
issues with a reservation that did not directly effect the new state machine.
Removing the majority of error states help simplify the state machine, and reduce
the spontaneous state machine transitions previously triggered by error conditions.

As a result of this new strategy, there is no way for a uRA to determine if an error
notification was generated against a reservation if that uRA is not listening to
notifications on that reservation. This situation may occur if the RA is using a
polling mechanism, or is recovering from a communications problem with the peer
provider NSA. As you can imagine, this is a serious issue that needs to be addressed
before NSI CS version 2 can be declared ready for prime time.

To help remedy this issue, it was agreed that a new mechanism should be added to
the existing NSI CS version 2 protocol that will allow an RA to query a reservation
and determine if there have been any error notifications raised against that
reservation. Specifically, we need to allow for the handling of ErrorEventType,
ReserveTimeoutRequestType, and messageDeliveryTimeout notifications as these
will require corrective action from the uRA. The dataPlaneStateChange notification
need not be handed as this state is modeled in the dataPlaneStatus element already
available in the reservation query.

Four solutions will be proposed and the recommended solution identified in the
conclusion.

Solution #1a

This solution uses the existing query commands to return an ordered list of
notifications received by the provider NSA for the reservation queried. Notification
ordering is maintained from the most recently received error notification to the
oldest being stored by the provider NSA. Figure 1 below shows the query confirmed
structure with the notification list included. In this case, a reservation query
operation would return a complete list of notifications in the query confirmed
response with no additional operations required.

@ [tns:QuerySummaryResultType

connectionld ®
Type tns:ConnectionldType

globalReservationid

Type tns:ClobalReservationldType |

description ‘

@
Type xsd:string |

0.0 | Criteria
Type tns'QuervSummarvResuerriteriaTypeJ

requesterNSA ®
@J Type ftypes:NsaldType

. connectionStates ®

Type tns:ConnectionStatesType

@ [] tns:NotificationListType
@ [] tns:OrderedNotificationType

[e] attributes

order
]
Type xsdint

notifications 0.2 naotification

‘@ o © tns:errorEvent
Type tns:NotificationListType Type tns:OrderedNotificationType
—— _— Type ms:ErrorEventTvpe
tns:reserveTimeout
Type tns:ReserveTimeoutRequestType,

&o—®)

tns:messageDeliveryTimeout
Type tns:MessageDeliveryTimeoutRequestType, i
iz

Figure 1 - Query with notification list returned in results.

The advantage of this solution is that with a single query we get all supported
notifications returned, however, this is at a cost of message size as including all
notifications can be expensive. In addition, the requester NSA would need to receive
the full list at each query, even though they may only be interested in the most
recent notification received. Reducing the list to the most recent notification only
can result in a loss of valuable notifications if the RA polling interval is not quick
enough to catch each notification as they arrive.

Solution #1b

This solution is an optimization of solution #1a where we introduce modeling of
notifications with individual identifiers, then provide additional control of the
notifications returned through a modification to the query operation. Figure 2
shows the notificationld element added to the query results for each of the
notifications returned. This notificationld can be used in subsequent reservation
query operations to reduce the list of returned notification results.

oo
connectionld)
Type tns:ConnectionldType
globalReservationld ®
Type tns:GlobalReservationldType
description

]
Type xsdistring

0.0 | Criteria
Type ms:QuarvSummarvResu\(Cr\(ar\aTvpeJ

requesterNSA o
(J Type ftypes:NsaldType

connectionStates.

©
Type tns:ConnectionStatesType

© [] tns:NotificationListType

@ [] tns:OrderedNotificationType

(] attributes

notifications. 0.. notification
o 1} = © o [7 xsd:string
Type tns:NotificationListType Type tns:OrderedNotificationType

order
@
Type xsdint
notificationld
Type xsd:string
Built-in primitive type. The string datatype represents
character strings in XML.

tns:errorEvent ®
Type _tnsErrorkventType L

tns:reserveTimeout l

Type tns:ReserveTimeoutRequestType

tns:messageDeliveryTimeout
Type tns:MessageDeliveryTimeoutRequestType,

Figure 2 - Query notification confirmation querySummaryResultType.

In Figure 3, we see the introduction of notificationld to the existing querySummary
operation. This notificationld conveys to the provider NSA additional constraints on
returning query results. When the notificationld is specified in the query request it
the provider NSA will only return notifications newer than the supplied
notificationld. If no notificationld is specified in the query operation, then all
notifications for the connectionld will be returned. This will allow the client to
retrieve the initial notification list and then only retrieve any new notifications
when they occur.

@ [tns:QueryType

@ [tns:ConnectionFilterType

connectionld]

E Type tns:ConnectionldType

l globalReservationld ®
Quegsummagy e_.e 0.0 | connectionFilter @__.e Type tns:GlobalReservationldType
Type tns:QueryType

Type tns:ConnectionFilterType

notificationld
Type tns:GIobaIReservationIdTypeJ

Figure 3 - querySummary operation for notification retrieval.

This solution addresses the concern of ongoing notification message overhead we
introduced with solution 1a by providing an additional level of query control.
However, we have overloaded the query request/response by introducing the
notification messages and control mechanism. If we seriously consider plans to
introduce a notification service in NSI CS version 3.0, then modification of the query

request may not be the best choice of solutions, since we do not have clear
separation between reservation information retrieval and notification retrieval.

Solution #2a

This solution takes a different approach to providing access to notification
messages, and thereby reduces the query overhead associated with returning a full
list of notifications messages in the query result. Instead returning a list of
notification messages in the reservation query confirmation, a list of unique
notification identifiers associated with the notifications is returned. These
identifiers can in turn be used to retrieve the individual notifications through use of
a new notification query operation. In this solution the provider NSA generates a
notification identifier that is unique within the context of that provider NSA. A
separate notification query operation is introduced that allows the requester NSA to
retrieve the error notifications of interest. Figure 4 shows the query results
structure for this solution.

© [] tns:QuerySummaryResultType

connectionld ®
Type tns:ConnectionldType

globalReservationld |

®
Type tns:GlobalReservationldType |

description |

®
Type xsd:string |

O.m Criteria

Type tns:QuerySummaryResultCriteriaType |

requesterNSA ®
@J Type ftypes:NsaldType
connectionStates ®
Type tns:ConnectionStatesType

@ [tns:NotificationListType

© [] tns:OrderedNotificationType

(o] attributes

order ®
notifications @ 0..e | notification o Type xsd:int
Type tns:NotificationListTvpeJ . Type tns:OrderedNotificationType ‘
) @O natificationid ®
Type xsd:string

Figure 4 - Query confirmation with notification Id list.

The newly defined queryNotificationSyncConfirmed operation provides retrieval of
notifications based on supplied list of notificationld. We model this after the
standard querySummarySync operation by accepting a list of notificationlds of
interest, with the queryNotificationSyncConfirmed result carrying the matching
notification messages. In addition, we support the retrieval of all notifications
against a supplied connectionld as a convenience function. Figure 5 shows this
operation structure.

© [] tns:QueryNotificationType

notificationld
Type xsd:string

1.0

© [] tns:QueryNotificationConnectionFilterType

queryNotificationSync
r— © ©
Type tns:QueryNotificationType

connectionld

Type ftypes:ConnectionldType

connectionFilter startNotificationld
- - o——(@)o ®
Type tns:QueryNotificationConnectionFilterType Type xsd:string

endnNotificationld

®
Type xsd:string

Up to and including,

Figure 5 - Query notification operation queryNotificationSync.

The connectionFilter elements allow an RA to retrieve notifications messages based
on notificationlds, or by specifying a connectionld and a range of notificationlds.
Figure 6 shows the queryNotificationConfirmedType and the ordered notification
messages.

© [] tns:QueryNotificationConfirmedType
@ [] tns:NotificationType

[S] attributes

order ‘
Type xsdint

ueryNotificationSyncConfirmed notification

Jusry yncCon : @e Q.0 o o notificationld

Type tns:QueryNotificationConfirmedType Type tns:NotificationType -
Type xsdstring

tns:errorEvent ®

Type ms‘ErrorEventTvpe

tns:reserveTimeout
Type tns:ReserveTimeoutRequestType 1
2]

tns:messageDeliveryTimeout
Type tns:MessageDeliveryTimeoutRequestType, s

Figure 6 - Query notification confirmation QueryNotificationConfirmedType.

This is a very clean solution with little impact on the size of the original reservation
query message. By utilizing a list of notification identifiers, we provide a mechanism
that permits a requester to check the current list against a previously retrieved list
to determine if a new error notification was received. We also provide a mechanism
to allow retrieval of all notifications against a connectionld, and to retrieve only new
notifications since a specific notificationld. It should be noted that in this solution
notifications are modeled as separate entities with their own identifiers but
relationships still maintained to the reservation or connection Id. The downside of
this solution is that it requires a second query to get at the error notifications.

Solution #2b

This solution is an optimization of solution #2a where we simplify notificationld
handling. There are a few key changes:

We change the definition of a notificationld to be a linearly increasing integer
unique in the context of a connectionld, removing the need for a separate
ordering attribute.

We return the most recent notificationld against the connection instead of
providing a list of notificationlds in the query result.

We modify the queryNotificationSync parameters to support only the range
based queries.

Figure 7 shows the querySummaryConfirmed with the single optional notificationld.
This notificationld is only present if a notification message has been generated
against the reservation.

© [] tns:QuerySummaryConfirmedType

@ [] tns:QuerySummaryResultType

connectionld ®
Type ftypes:ConnectionldType

globalReservationld

Type tns:GlobalReservationldType

description

Type xsd:string)

querySummaryConfirmed o .e 0.0 | reservation o .@ 0. Criteria ®
Type tns:QuerySummaryConfirmedType Type tns:QuerySummaryResultType Type tns.QuervSummaryResuItCriteriuTvpeJ

requesterNSA ®

Type ftypes:NsaldType
connectionStates ®
Type tns:ConnectionStatesType

notificationld

Type xsdint)

Type containing the set of reservation parameters associated with a
‘Summary” query result. Elements: connectionld -...

Figure 7 - Query confirmation with single notification Id QuerySummaryConfirmedType.

We simplify the queryNotificationSync operation by removing the ability to query a
list of notificationlds since this is no longer required. An RA can control the
retrieval of notification messages in multiple ways:

1.

2.

3.

Get all the notifications messages against a connectionld by specifying the
connectionld but no start or end notificationld.

Get a single notification message by specifying connectionld with both start
and end notificationld set to the single notificationld.

Get all notification messages up to and including the specified notificationld
by specifying the connectionld, and end notificationld set to the specified
notificationld.

Get all notification messages after but also including the specified
notificationld by specifying the connectionld, and start notificationld set to
the specified notificationld.

This level of control allows an RA to fill in possible gaps it may encounter in the
notification message stream when first detecting a notificationld against a
reservation, as well as retrieving new notification messages encountered over the

life of the reservation. Figure 8 shows this optimized queryNotificationSync
message.

© [] tns:QueryNotificationType

connectionld
Type ftypes:ConnectionldType

queryMotificationSync o .@ startMotificationld
Type tns:QueryMotificationType Type xsdint

endNaotificationld

Type xsdint

Figure 8 - Query notification operation queryNotificationSyncType.

In this solution the queryNotificationSyncConfirmed message is also modified to
provide connectionld context, since the notificationld is no long unique provider
wide.

@ [] tns:QueryNatificationConfirmedType

© [] tns:NotificationType

connectionld
Type frypes:ConnectionldType

queryNotificationSyncConfirmed o .G) 0. | notification o .
Type tns:QueryNotificationConfirmedType Type tns:NotificationType

tns:reserveTimeout

©]
Type tns'ReserveTimenutRequEstTvpel

tns:messageDeliveryTimeout
Type tns:MessageDeliveryTimeoutRequestType, L

Figure 9 - Query notification confirmation QueryNotificationSyncConfirmedType.

This solution minimizes the impact on the reservation query message confirmation
message requiring only a single optional notificationld. In addition, a separate
queryNotificationSync operation provides flexibility in accessing all needed
notification messages based on a connectionld and a range of notificationld. It has
all the advantages of solution #2a, but in an even more compact representation.

Conclusion

Solution #1a would provide a path of least resistance to implementation, as we
introduce no new operations and no unique notification identifier; however, the
additional size overhead for every query when notifications are present will make
this solution extremely expensive.

Solution #1b addresses the issue of notification message overhead by providing
notification retrieval control within the reservation query message. The main
drawback of this solution is that we are overloading the reservation query operation
with notification messages when separation of concerns may be the better path
given our plans for NSI CS version 3.0.

Solution #2a optimizes the query operation by including a list of notificationlds
against the reservation and allowing the RA to retrieve the full notification messages
through a separate notification query operation. This results in both a smaller
message size on the initial query of the reservation, and more control on the results
returned for a notification query. Well worth the additional code logic required to
retrieve the notifications separate from the schedule query.

Solution #2b is a further improvement on solution #2a, modeling notifications in
the context of a connectionld and optimizing query capabilities based on projected
RA requirements for query behaviors.

Recommendation: Solution #2b. Using a separate notification interface will reduce
reservation query overhead and reduce code churn within the NSA when a separate
notification service is introduced in version 3.0 of the protocol.

