OpenGridForum

OPEN FORUM | OPEN STANDARDS

NSI CS Protocol State Machine
Message Handling

OGF 37

Coordinator and Message Transport Layer (MTL)

-

NSA

~

NSI Stack

(Coordinator)

il

Message Transport
Layer

Coor is a part of NSI stack, and uses MTL to
send/receive messages

Coor is primarily responsible for keeping track
of messaging state, e.g.
« Who was the message sent to

« Was the message received (i.e. ack’ed or
MTL timeout)

« Who has not replied to the message (e.g. *.cf,
*fl, etc)

« MTL is primarily responsible for sending and receiving messages, and
notifying Coor if the message was received, or if a (MTL) timeout occurs

« MTL interface (to Coor) has 2 simple operations:

Send: waits for ack to be returned by destination MTL, or timeout happens.
Timeout value is implementation dependent. NB: The MTL may be
implemented to retry sending messages, but this is opaque to the Coor

Receive: a thread in Coor is invoked when a message is received

Request Workflow Tree Example °
JOpenGridForum

OPEN FORUM | OPEN STANDARDS

4)
NSA
(ultimate)
Requester Agent
Coordinator
Message (N S A \
Transport Layer
l‘ Aggregator
\ Agent
‘\
\\ Coordinator
\
\\ J14
4 N\ s~ Message
NSA Transport Layer
T
(ultimate) A
Provider Agent ,l \\
' Coordinat ' l' \\
- oordinator
,"' ,/ \\\
i O ’ AN
I ’/ ~
1 Message e
|| Transport Layer
\
| Network Resource

Manager

© 2007 Open Grid Forum

Dual function NSA
(e.g. AG and uPA)

NSA
Aggregator (ultimate)
Agent Provider Agent
Coordinator Coordinator N
| Y

OAr

Message

Transport Layer

\
\
\

OAr

Message

Transport Layer

Network Resource

Manager

R

NSA

(ultimate)
Provider Agent

UAr

Message
Transport Layer

Network Resource
Manager

' Coordinator ' I~

>

-—_-_—’

Message ack, reply and timeouts

NSA

Requeste
r Agent

Coor g
L request

Provider
Agent

o= l’
|

return

X_T

Iy
'} | reply

<_‘T‘

notification

‘—T

NSA
MTL g Coor
message
] _fequest
& Tack
reply
message
A\
13/
ack
return j
notificationJ
message| €T
1k
i/
ack 3

return]
v

() : MTL timeout may happen
O : Coor timeout may happen

Ack is sent by MTL for each
message

— If ack is not returned in a
certain period of time, MTL
timeout occurs

Reply is sent by Coor (via
MTL) and is either confirm,
fail or not_applicable

— Coor can timeout if expected

reply is not received from a
child

Timeouts

Message transport layer (MTL) timeout
— Underlying MTL (http/tcp) initiates a MTL timeout
— Happens when an ack is not returned for a message.

Coordinator timeout
— Coor can timeout if a reply message is not returned in a certain period
of time

Coor notifies both MTL and Coor timeouts to the parent RA

When a MTL/Coor timeout is notified, uRA can either retry or
terminate the connection.

— Retry is requested by NSI__messageRetry.rq, which has the original
request message's id (correlation id) as a parameter

— Coor keeps not-yet-replied requests in a table, so that it can re-send
the request.

Notifications: Activation related

 There are no activateComplete.nt nor
deactivateComplete.nt

* A general error message is used to notify following
events. Those error are sent up the tree to uRA
immediately

— activateFailed: Activation failed at the time when uPA should
activate its data plane

— deactivateFailed: Deactivation failed at the time when uPA
should deactivate its data plane

— dataplaneError: Data plane is deactivate when deactivation is
not expected. The error is recoverable.

— forcedEnd: Something unrecoverable is happened in uPA/NRM

Notifications: modify timeout and

MTL failure

 NSI_modifyTimeout.nt

* NSI _genericEvent.nt

— Message delivery failure will be notified by this
message (to be defined)
* When a MTL/Coor timeout is notified, uRA can
either retry or terminate the connection.
— Retry is requested by NSI_messageRetry.rqg, which

has the original request message's id (correlation
id) as a parameter

Data plane activation

Data plane should be activated if the PSM is in “Provisioned”
state AND start_time < current_time < end_time

Activation is done at the timing of following events (if the

above condition is met), using the latest reservation
information

— PSM transits to “Provisioned”
— At the start_time
— Reservation is updated (by commit of modify)

— Data plane is recovered from an error

Data plane activation/deactivation are notified by
DataPlaneStateChange.nt notification messages.

Errors are notified by a generic error message

DataPlaneStateChage.nt (1)

 PA and aggregator has DataPlaneStatus information

— (Boolean) Active: True if data plane is active. For an aggregator, this
flag is true when data plane is activated in all participating children

— (Int) Version: For a uPA, current (latest) reservation version number.

For an aggregator, the largest version number of the participating
children. This field is valid when Active is true.

— (Boolean) VersionConsistent: Always true for uPA. For an aggregator,

If version numbers of all children are the same, This flag is true. This
field is valid when Active is true.

 When a valid filed of DataPlaneStatus is changed,
DataPlaneStatusChange.nt is sent up.

DataPlaneStatus

Active
Version
VersionConsistent

DataPlaneStateChange.nt(2)

* An aggregator keeps an array of statuses of its children,
ChildrenDataPlaneStatus[1..n]

 Aggregator’s DataPlaneStatus is determined by the following rule

if all of ChildrenDataPlaneStatus[1..n].Active are true

then
{

DataPlaneStatus.Active = true

DataPlaneStatus.Version =
maximum_ of(ChildrenDataPlaneStatus[1..n].Version)

If all ChildrenDataPlaneStatus[1..n].Version are the same, and all
of ChildrenDataPlaneStatus[1..n].VersionCosistent are true

then DataPlaneStatus.VersionConsistent = true

else DataPlaneStatus.VersionConsistent = false

ChildrenDataPlaneStatus

}
Active | Active
Ver. Ver.
VC VC
Child1 Child 2

Active

Ver.

VC

Child n

DataPlaneStatus

Active
Ver.
VC

Information tracked by Coordinator

Information generated per Reservation (Connection)

Information generated per NSI Request (Message)

List of Connection Reservations
connection_list(Conn_ID)

List of (summary) NSI Requests
associated with a Connection
Request
request_list(Conn_ID, Corr_ID)

r { 11Corr_ID, Status }
1.2 v

Conn_ID, A-Z STPs, Parameters

A connection reservation
will consist of one or more
NSI Requests

A connection reservation may

L . be broken down into several Each NSA segment NSI
. smaller segment requests to - Request s associated to the
other (children) NSAs corresponding child NSA

e o Connectlon Reservatlon

List of children NSAs associated with a Connection Reservatior'i”“'

connection_segment_list(Conn_ID, NSA)

{ TINSA, Conn_ID, A-Z STPs, Parameters, RSM, PSM, LSM, Data_PIanel}
' 12NSA, Conn_ID, A-Z STPs, Parameters, RSM, PSM, LSM, Data_Plane }

{ .'NSA, Conn_ID, A-Z STPs, Parameters, RSM, PSM, LSM, Data_PIanel}

-
-
-~

-
-
-~

.
-
-
Pta
-
-
-
-
R
PR
-

PR
-
-
-
-
-
-
-

pe>
-
PR
-
-
e
-

P
P

A

request_segment_list(Conn_ID, NSA, Corr_ID)

—

An NSI request may e
result in several distinct
child NSA NSI Requests

List of child NSA NSI Requests associated with a
(summary) NSI Request

«' 111Corr_ID, Status

4' 112Corr_ID, Status

P
R
-

]
I

i

]

e 1

o I

- i

e]
-)

-
d“
-

PR
-
-
-
-
e
-

.4 11nCorr_ID, Status |

f“
>
-
-

1 '21Corr_ID, Status
4 22Corr_ID, Status

1.2nCorr_ID, Status

