		July 13, 2015

Network Service Interface Document Distribution Service
Status of This Document
Grid Working Document - Recommendation (GWD-R)
Copyright Notice
Copyright © Open Grid Forum (2012-2014). Some Rights Reserved. Distribution is unlimited.
[bookmark: _Ref525097868][bookmark: _Toc259951540][bookmark: _Toc299283653]Abstract
This document describes the Network Service Interface (NSI) Document Distribution Service version 1.0, a protocol to distribute meta-data documents throughout an interconnected network of Network Service Agents (NSA) in the Service Plane. This protocol addresses the dynamic data distribution within an NSI Service Plane by providing a flooding based protocol for exchange of documents published by an NSA about itself and its Networks. By abstracting the protocol used for exchange of meta-data from the meta-data itself, a more generic protocol is provided which meets the requirements for distribution of NSA Description documents, NSI Topology documents, and NSI Service Definition documents. This document should be read in conjunction with GFD.213, Network Services Framework v2.0 [GFD.213].
[bookmark: _Toc259951541][bookmark: _Toc299283654]Notational Conventions
 The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described in [RFC 2119]. Words defined in the glossary are capitalized (e.g. Connection). NSI protocol messages and their attributes are written in camel case and italics (e.g. reserveConfirmed)

[bookmark: _Toc259951542][bookmark: _Toc299283655]Contents
Abstract	1
Notational Conventions	1
Contents	1
1	Introduction	3
2	NSI Service Framework	5
3	Documents	7
3.1	Document Payload Sizes	8
3.2	Document rate of change	9
4	Time to Live	10
5	Subscriptions	10
6	Operations	13
7	NSA Bootstrap Procedure	17
8	Peer flooding and version sequencing	18
9	REST-based Protocol Profile	19
9.1	Content Encodings	20
9.2	Operations	21
9.2.1	getDocuments	21
9.2.2	getLocalDocuments	23
9.2.3	addDocument	24
9.2.4	getDocument	26
9.2.5	updateDocument	27
9.2.6	getSubscriptions	29
9.2.7	addSubscription	31
9.2.8	getSubscription	32
9.2.9	editSubscription	34
9.2.10	deleteSubscription	35
9.2.11	Notifications	36
10	Security Considerations	38
11	Glossary	38
12	Contributors	40
13	Intellectual Property Statement	40
14	Disclaimer	40
15	Full Copyright Notice	40
16	References	40
17	Appendix I – Aggregator DDS Pseudo Code	41
18	Appendix II – NSI Document Distribution Service Schema	49
Abstract	1
Notational Conventions	1
Contents	1
1	Introduction	3
2	NSI Service Framework	5
3	Documents	7
3.1	Document Payload Sizes	8
3.2	Document rate of change	9
4	Time to Live	9
5	Subscriptions	10
6	Operations	12
7	NSA Bootstrap Procedure	16
8	Peer flooding and version sequencing	17
9	REST-based Protocol Profile	18
9.1	Content Encodings	19
9.2	Operations	20
9.2.1	getDocuments	20
9.2.2	getLocalDocuments	22
9.2.3	addDocument	23
9.2.4	getDocument	25
9.2.5	updateDocument	26
9.2.6	getSubscriptions	28
9.2.7	addSubscription	30
9.2.8	getSubscription	31
9.2.9	editSubscription	32
9.2.10	deleteSubscription	34
9.2.11	Notifications	35
10	Security Considerations	37
11	Glossary	37
12	Contributors	38
13	Intellectual Property Statement	38
14	Disclaimer	39
15	Full Copyright Notice	39
16	References	39
17	Appendix I – NSI Document Distribution Service Schema	40
GFD-R	John MacAuley, ESnet
NSI-WG	
nsi-wg@ogf.org	July 13, 2015
-P	
NSI-WG	February 5, 2014

[bookmark: _GoBack]
author@email.address		2
[bookmark: _Toc259951543][bookmark: _Toc299283656]Introduction
Within the Network Services Framework (NSF) [GFD.213] the Network Services Agent (NSA) is an entity that offers network services. Peer NSA entities communicate using the Network Service Interface (NSI) protocols, a suite of individual protocols providing the infrastructure needed to offer network services. Part of these network services is supporting dissemination of meta-data documents which clients access in order to properly utilize the offered service. One such document is the NSA Description Document [OGF NSI-ND], which is a meta-data schema designed to enable self-description of all NSI services and associated protocol interfaces offered by these NSA. Other information relating to the NSA itself, such as software versions, administrative contacts, location, peerings, and managed networks is also defined as part of the meta-data profile.

This type of dynamic data-discovery mechanism is a key element of large-scale distributed systems. By making the NSI protocol and its agents more self-descriptive, new documents, features, protocols, or protocol versions can be added to agents within the Service Plane and then be discovered by peer agents through this meta-data service. As new features come on line, agents supporting the capabilities can discover compatible peer agents, and then negotiate the use of these new features, while older versions of agents within the Service Plane remain unaffected. Similarly, newer versions of agents can still negotiate features and communicate with older agent versions using mutually supported versions of the protocol as described in the discovered meta-data.

The NSI Document Distribution Service is part of the NSF suite of protocols, and is a peer-to-peer flooding protocol for exchange and distribution of these types of data documents between NSA within the interconnected network or “document space”. It supports both polling and subscription based notification mechanisms for exchange of documents. For the purpose of this recommendation, a DDS requester is any application or Network Service Agent (NSA) that is participating as a client in the document distribution protocol (client role). A DDS provider is any Network Service Agent (NSA) that is participating in the protocol as a server for the document space (server role). NSA can participate in both the requester and provider roles of the document distribution protocol. A DDS requester/provider could also be deployed independent of a Connection Service NSA if so desired.

A requester utilizes the provider’s Document Distribution Service API to query documents stored within the Ddocument Sspace (DS). The requester can also subscribe to document discovery and documents updates within the document space. There is also a Document Distribution Service API to publish, update, and delete documents to/from a local provider.

[image: Macintosh HD:Users:hacksaw:Desktop:Screen Shot 2014-02-13 at 3.00.34 PM.png]
[bookmark: _Ref254365297]Figure 1 – Simple document get operation.

Figure 1 shows the simple getDocuments() operation that is invoked by the requester on the provider NSA to retrieve a set of documents from the document space. These simple document operations follow the standard request/response model.

[image: Macintosh HD:Users:hacksaw:Desktop:Screen Shot 2014-02-13 at 4.24.26 PM.png]
[bookmark: _Ref254365358]Figure 2 – Document change notification.
Figure 2 illustrates the interaction of the asynchronous publish/subscribe model supported by the document distribution protocol’s notification interface. In this example, the requester NSA requests a subscription supplying a filter to identify the documents of interest. In this subscription request the requester NSA also supplies a callback protocol endpoint that will receive the notifications delivered from the provider NSA. When there is a document event matching the subscription filter, the provider NSA will deliver the document to the requester NSA using the callback endpoint.

We define the Global Document Space (GDS) as the collection of all documents published within the Document Space of each provider participating in a DDS deployment. The DDS protocol uses a flooding mechanism to propagate all documents published locally within a provider to all other providers participating in the GDS. This flooding mechanism allows all participating providers to eventually receive a consistent version of all documents within the GDS.

In Figure 3, an example flow showing how a document updated on one NSA gets propagated throughout the space via NSA peering relationships, so that in the end, all peer NSAs within the space have an accurate version of each document within the space. In this example, the requester issues an update (version 1.2) to a document sourced on NSA A by using the updateDocument() operation. NSA A updates the local document space with the new version of the document, and looks through its subscription list to see if there are any NSA interested in the document. In this case, NSA B has registered for events on all documents within NSA A. NSA A issues a notification to NSA B with the updated document version 1.2. Similarly, NSA B will update its local document space and issue update notifications to NSA C and D who are also registered with NSA B for events on all documents. In this example, NSA D will receive update notifications for document version 1.2 from both NSA B and NSA C, however, NSA D will see that the document version for the two different notifications is identical, and discard the duplicate. NSA D then issues a notification to NSA E, which has registered for events on all documents within NSA D. NSA E updates its local document space, and since there are no further NSAs to update, the flow for this update completes. It is key to note that an NSA does not propagate a document notification event back to the NSA from which it was originally received, as this NSA would just discard the update.

[image: Macintosh HD:Users:hacksaw:Desktop:Screen Shot 2014-02-18 at 12.09.08 PM.png]
[bookmark: _Ref254365379]Figure 3 – Document propagation through space.
Additional operations, and more details on the document propagation mechanism are described in more detail in the coming sections.
[bookmark: _Toc259951544][bookmark: _Toc299283657]NSI Service Framework
A basic overview of the functional components of the NSF architecture is described here to provide context to the reader. Addition detail can be found in [GFD.213].

An NSA is said to be a requester if the NSA is capable of issue service requests, while it is a provider if it can receive service requests. An NSA may act as both a requester and a provider. The NSF defines three distinct roles for an NSA within the architecture:

· uRA: The ultimate Requester Agent is an NSA that originates but does not respond to service requests. The uRA could, for example, exist in a middleware application.
· uPA: The ultimate Provider Agent is an NSA that services requests by coordinating with the local Network Resource Manager (NRM) to manage network resources. The uPA responds to service requests, but never initiates them.
· AG: The Aggregator Agent (AG) is an NSA that has no physical network resources, but can orchestrate end-to-end network services on behalf of a user by utilizing the connection services exposed by an associated uPA or one or more child NSA. By definition the AG is both a requester and a provider NSA.

Figure 4 shows a pictorial representation of the three NSA roles within the NSF architecture.

[image:]
[bookmark: _Ref254358973]Figure 4 – Hierarchical NSA relationships.

An Aggregator NSA participating in the NSI Connection Service [OGF NSI-CS] requires access to a number of documents distributed by NSA through the NSI Document Distribution Service to perform basic functions such as:

· Bootstrapping communications with peer NSA (uRA, uPA, and other AG) using the NSA Description Document [OGF NSI-ND].
· Processing and validating connection service requests using NSI Service Definition Documents [OGF NSI-SD].
· Performing intelligent path finding for a requested connection service using NSI Topology Documents [OGF NSI-TS].

An ultimate Provider NSA participating in the NSI Connection Service does not require access to documents, but is required to distribute the following documents through the NSI Document Distribution Service:

· An NSA Description Document describing itself in detail, including supported interfaces, features, and networks.
· NSI Service Definition Documents for all services being offered by the local Network managed by the associated NRM.
· NSI Topology Documents of all advertised topology for the local Network managed by the associated NRM.

An ultimate Requester NSA participating in the NSI Connection Service does not produce any documents, however, it can optionally use the following documents from the NSI Document Distribution Service:

· The NSA Description Document from peer provider NSA to discover identity, supported interfaces, features, and networks.
· The NSI Service Definition Documents to determine available service types being offered within the Network.
· The NSI Topology Documents if discovery of network ports or intelligent path finding is implemented by the uRA.
[bookmark: _Toc259951551][bookmark: _Toc299283658]Documents
A document within the GDS can contain any information that needs to be distributed to all peers participating in the Document Distribution Service. A document is enclosed in meta-data within the space to allow for identification and maintenance. The original document contents and associated annotated meta-data are propagated untouched throughout the document spaceGDS.

A document’s meta-data entry MUST include the following attributes:

	nsa
	The source NSA associated with the generation and management of the document within the network. This is assumed to be the NSA to which the document relates, however, there may be situations such as proxy publishing where this assumption is not true.

For example, if the document being generated is the NSA Description Document for NSA “urn:ogf:network:example.com:2013:nsa:vixen”, then the nsa element should contain is the NSA identifier “urn:ogf:network:example.com:2013:nsa:vixen”.

	type
	The unique string identifying the type of this document. A document type is defined by the type and release of a data document. For example, NSI Topology version 1.0 and a NSI Topology version 2.0 would be considered two different document types:
· vnd.ogf.nsi.topology.v1+xml
· vnd.ogf.nsi.topology.v2+xml

The NSA Description Document 1.0 is defined as the type:
· vnd.ogf.nsi.nsa.v1+xml

	id
	The identifier of the document. This value must be unique in the context of the nsa and type element values.

	version
	The version of the document, or more specifically, the date this version of the document was created. Any updates to the document must be tagged with a new version.

	expires
	The date this version of the document expires and should be deleted from document space and any clients caching the document. More information is provided in Section 4.

	signature
	An OPTIONAL digital signature of the document contents.

	content
	The content of the document modeled by this document meta-data.

A document is uniquely identified by the tuple of NSA Identifier (nsa), Document Type (type), and Document Identifier (id). The Document Identifier need only be unique in the context of the NSA Identifier and Document Type. This allows for different types of documents to share the same identifier if they are considered directly related. It also implies that Document Identifiers do not need to be globally unique to be distributed or resolved in the document space.

Each meta-data entry contains a version attribute based on the date and time that version of the document was generated. As each new version is added to the space, it replaces the existing version and is propagated to all interested peers.

Meta-data also contains an expires attribute indicating when the document is no longer valid. Any clients caching a document that has expired MUST consider the information invalid and discard the document. An NSA within the space MAY keep the expired document for a period of time to guarantee all peers (both polling and subscriptions) have had time to receive the document after it has expired to cover the delete race condition described later in this document.

A document MAY also be digitally signed, generating a signature that can be associated with the document within the space. Clients of the space can use the signature to verify the originator and contents of the document. It is recommended that the document being signed includes the identifier, version, and expires meta-data attributes within the document itself so these values can also be verified if needed.

An NSA MUST not modify the contents of a document before propagating on to a peer unless that NSA is the owner of the document.
[bookmark: _Toc259951552][bookmark: _Toc299283659]Document Payload Sizes
With any flooding-based protocol it is important to understand both the behavior and volume of data to be exchanged by the protocol. By building these data models it is possible to determine the operational parameters of the protocol, and understand the limiting factors. In the case of the NSI Document Distribution Service Protocol there are two documents currently defined that will need to be supported by the protocol. These documents and associated sizes are shown in Table 1.

	Document
	Uncompressed
	Compressed

	NSA Discovery
	5 KB
	2 KB

	NSI Topology (1,000 ports)
	1.5 MB
	85 KB

	NSI Topology (300 ports)
	450 KB
	26 KB

[bookmark: _Ref255578191]Table 1 – Physical document sizes.
The NSA Description Document [OGF NSI-ND] is a relatively small XML document with an estimated upper limit of 5 Kbytes in size, and a compressed size of 2 Kbytes. The larger of the two documents is the NML Topology Document [OGF NSI-NML], which is directly dependent on the number of logical ports being modeled within a Network. In Table 1 a fully specified NSI Topology Document was defined using the XML representation for a Network of 1,000 bidirectional ports using PortGroup summarization. This reference model assumed 30% E-NNI (inter-domain) and 70% UNI (client) ports. When all 1,000 ports were modeled it resulted in an uncompressed document size of 1.5 Mbytes and a compressed size of 85 Kbytes. If only the E-NNI ports were modeled for path computation, then the document size was reduced to 450 Kbytes uncompressed and 26 Kbytes compressed. Reducing the information model will have impact on advanced path finding (i.e. adaptation) and is open for further study.

To further reduce document sizes an alternative representation such as JSON could be used to remove the verbosity of the current XML definitions.

 It should be noted that the driving reasons for document sizes is the NSI Topology Documents represent the bulk of document data held within the GDS. associated withThe volume of this data is directly related to the number of Networks advertised by uPAs, and the number of ports publically visible within these networks within the network. Aggregator NSAs only generate NSA Description Documents, while RA generate no documents.

	Global network size
	Combined sizes (uncompressed)
	Combined sizes (compressed)

	10,000 networks
	14.6 GB
	850 MB

	5,000 networks
	7.3 GB
	425 MB

	1,000 networks
	1.5 GB
	85 MB

	500 networks
	750 MB
	42 MB

[bookmark: _Ref255581353][bookmark: _Ref298493309]Table 2 – Combined document sizes for average network size of 1,000 ports.
Table 2 shows the combined document sizes for interconnected Network sizes ranging from 500 Networks through 10,000 Networks each advertising 1,000 ports within their NSI Topology Documents. Numbers are provided for both uncompressed and compressed document contents.

	Global network size
	Combined sizes (uncompressed)
	Combined sizes (compressed)

	10,000 networks
	4.3 GB
	273 MB

	5,000 networks
	2.2 GB
	137 MB

	1,000 networks
	444 MB
	27 MB

	500 networks
	222 MB
	14 MB

[bookmark: _Ref255582509]Table 3 – Combined document sizes for average network size of 300 ports.
In Table 3 we see similar numbers but with each Network only reporting 300 ports within their NSI Topology Documents. These numbers would represent the advertising of only the inter-network E-NNI ports.
[bookmark: _Toc259951553][bookmark: _Toc299283660]Document rate of change
The DDS protocol does not dictate a specific period to update or refresh a document. This behavior is dependent on the type of data being modeled within the document published to the GDS. When a new version of a document is available, it is published into the GDS using a new version. If an NSA would like to refresh the current version of a document, publishing the same document into the DDS will result in verification the document is present within the GDS. If this version of the document is not present it will be added to the GDS following the defined document versioning rules.

The DDS protocol is agnostic to document contents and has no facility to provide a mechanism for incremental document updates. This is left for further study.

There is an expectation that larger documents distributed by the DDS protocol will be relatively static in nature requiring infrequent updates. The more frequent a document requires updating the more impact it has on bandwidth consumed for flooding between providers. Taking the maximum (850 MB) and minimum (42 MB) values from Table 2 we can see a large gap in the bandwidth requirements if all documents within the GDS were updated once a day.

· 850 MB over 24-hour period is an average 81 Kb/s * # of peers.
· 42 MB over 24-hour period is an average 4 Kb/s * # of peers.

Based on the relatively static nature of the NSA Description and the NSI Topology documents we can expect updates less frequently that once a day. As new document types are defined and propagated through the DDS care will need to be given to avoid excessive strain on resources.
[bookmark: _Ref254099701][bookmark: _Ref254099706][bookmark: _Toc259951554][bookmark: _Toc299283661]Time to Live
The Document Distribution Service uses the concept of Time To Live (TTL) to set an expiry date on documents exchanged through the protocol. There is no explicit delete operation within the protocol, so the TTL mechanism will ensure old documents eventually expire and are purged from the Network. The three primary use cases for this feature are:

· An NSA has had a Network removed from its configuration, resulting in the removal of a Topology Document; however, the associated Topology Document was previously announced into the GDS.

· An NSA has had a Network name change has occurred, resulting in a new Topology Document being created and announced into the etworkGDS. This new document has a different unique identifier in the GDS than the ; however, a Topology Document under the old Network name. As a result, the was previously announced document will not be refreshed when the new one is announced, resulting in a stale Topology Document within the GDS. When the TTL on the old Topology Document document is reached, all NSA holding a copy will purge it from the GDS.

· An NSA is removed from the Service Plane etwork resulting in the removal of all associated opology ocumentsassociated Networks from the Data Plane; however, the associated Topology Documents associated with the NSA’s Networks were were previously announced into the Network that are now invalid. When the TTL on the document is reached, all NSAs holding a copy will purge it from the GDS.

In all scenarios, when the TTL on the document is reached, all NSAs holding a copy will purge it from their local networkDS instance. This will guarantee that the Network will eventually return to an accurate state. In the case where the NSA knows a document should be deleted, it can perform an updated on the document, issuing a new version with the expires time set to a short period in the future. This update will propagate through the GDS and expire the document at the specified time instead of the original time,

An NSA MUST provide an expires time with each document published.

Enforcement of expires time MUST be based off of a network-synchronized clock.

The expires time SHOULD be a reasonable value computed based on the rate of expected change on the document.

An NSA MUST issue an updated document version to the GDS before the expiry time of the existing document. A reasonable lead-time should be provided to allow propagation of the new document throughout the Network before the expiry of the existing version.
[bookmark: _Toc259951555][bookmark: _Toc299283662]Subscriptions
To help support a more dynamic document distribution environment a publish/subscribe model is defined. A provider NSA allows requesters to subscribe to document events by specifying specific filters, that when matched, will generate document notifications to the subscriber. Requesters can also publish documents into a specific provider’s document space based on local security policies, which can then result in notification events to subscribed requesters if their registered filters match the event.

Each provider NSADDS provider also participates in the GDS as a DDS requester, subscribing to document events on peer NSA DDS for any document sourced by other NSA DDS within the GDS. Through this subscription mechanism the DDS provider requester NSA can dynamically build a global view of the document space without the need to perform document-polling operations on all peer NSADDS providers.

A subscription entry on a DDS provider NSA is composed of the following attributes:

	id
	The provider assigned subscription identifier that uniquely identifies the subscription in the context of the provider.

	version
	The version of the subscription. Indicates the last time the subscription was modified by the DDS requester.

	requesterId
	The identifier of the DDS requester client that created the subscription. A DDS requester agent associated with ann NSA must should use its the NSA’s unique NSA identifier for requesterId. For those DDS that are not directly associated with an NSA should utilize a unique identifier following similar name rules as NSA identifiers.

	callback
	The protocol endpoint on the DDS requester that will receive the notifications delivered for this subscription.

	filter
	The OPTIONAL filter criteria to apply to document events to determine if a notification should be sent to the client.

A document event that matches the supplied filter will generate notifications that will be delivered to the DDS requester’s protocol endpoint specified in the callback attribute. Only document events matching the filter criteria will generate a notification event to the subscriber. All other events will be discarded.

Subscription filters allow a subscriber to control the content delivered to their registered notification endpoint. A subscription request without a filter will result in a valid subscription that will match no document events. This can be used to create this initial subscription shell, which can later be modified to add filter criteria as needed.

The filter supports basic criteria:

include – Include notifications matching these criteria.

exclude - Exclude the notifications matching these criteria.

The include element specifies the document event match criteria to include, while the exclude element specifies those to specifically exclude. The include element will be evaluated first, then the exclude element will be applied. Each of the include and exclude criteria element are composed of:

event – The type of document event that will generate a notification. Currently only three events are supported (All, New, Updated). At least one of event criteria must be supplied. The default event criteria is All.

or – Any document matching any of the supplied nsa, document type, or document id values.

and - Any document matching all of the supplied nsa, document type, or document id values.

The following filter subscribes for all document events (All) for all discovered documents:

<filter>
 <include>
 <event>All</event>
 </include>
</filter>

The filter shown above describes the minimum filter criteria for an Aggregator NSA. This filter allows the aggregator to receive all document events from a peer NSA’s DDS provider, building a complete view of documents discovered within the GDS. Multiple peers could deliver the same document events, however the aggregator could should discard any duplicates. As the aggregator receives these duplicate events it may decide to modify the filter on the DDS provider NSA issuing the duplicate events. The following filter is an example of a filter where the subscriber is still registered for all events, however, it has applied an exclude criteria to stop documents issued by NSA “urn:ogf:network:example.com:2013:nsa:dasher” from being sent to the subscriber endpoint:

<filter>
 <include>
 <event>All</event>
 </include>
 <exclude>
 <event>All</event>
 <or><nsa>urn:ogf:network:example.com:2013:nsa:dasher</nsa></or>
 </exclude>
</filter>	Comment by Guy Roberts: Is this correct? Exclude all events?

An alternative strategy for an aggregator is to initially subscribe to only new document events for its peers, expanding the filter by including individual documents, or documents from specific NSA in the filter as they are first discovered. Using this strategy, the subscribing NSA will only need to update a single subscription to start receiving document updates, instead of excluding from multiple peers as in the previous example.

The initial subscription filter subscribes forto only new (New) document events only (New) for all discovered documents:

<filter>
 <include>
 <event>New</event>
 </include>
</filter>

As new document events arrive, the first peer to report the event can be the one peer who is configured to deliver future events for that document to the subscriber. The edited filter would still subscribe for to all new document events (New), however, we add updates (Updated) document events for any documents provided by NSA “urn:ogf:network:example.com:2013:nsa:vixen”:

<filter>
 <include>
 <event>New</event>
 </include>
 <include>
 <event>Updated</event>
 <event>Expired</event>
 <or><nsa>urn:ogf:network:example.com:2013:nsa:vixen</nsa></or>
 </include>
</filter>

Filtering on document type is also supported. The following filter subscribes for all document events (All) for discovered documents of type “vnd.ogf.nsi.dds.v1”:

<filter>
 <include>
 <event>All</event>
 <or><type>vnd.ogf.nsi.dds.v1</type></or>
 </include>
</filter>
[bookmark: _Toc259951556][bookmark: _Toc299283663]Operations
The logical operations supported by the NSI Document Distribution Service are classified into requester and provider interfaces. A DDS provider “provides” access to documents within the GDS, and a DDS requester is “requesting” access to documents within the GDS. As described earlier, an NSA can participate in both the DDS requester and DDS provide roles of the protocol.

The provider interface for the NSI Document Distribution Service exposes the following logical operations:

getDocuments([nsa], [type], [id], [lastDiscoveredTime])
RETURNS status, a list of [0..n] document, and [lastDiscoveredTime]

This operation returns a list of documents and the time of the latest document change on the DDS provider NSA. If no filter parameters are supplied then all documents within the space will be returned. The following optional parameters can be supplied, and will be applied using logical AND:

nsa – The source NSA associated with the generation and management of the document within the GDS.

type - The unique string identifying the type of document to return.

id – The identifier of the document to return.

lastDiscoveredTime – Provides a time context to the DDS provider requesting all documents that have been created or updated since the time specified in this parameter. This allows for an effective polling mechanism by using the latest document change time returned in the previous operation as a filter parameter in the next to retrieve only those documents that have been discovered (new or updated) since the last invocation of the API.

getLocalDocuments([type], [id], [lastDiscoveredTime])
RETURNS status, a list of [0..n] document, and [lastDiscoveredTime]

This operation returns a list of documents associated with the queried DDS provider and the time of the latest document change on that provider. This operation can be considered equivalent to getDocuments() with the nsa parameter set to the target DDS provider’s identifier. NSA and the time of the latest document change on that provider NSA. If no filter parameters are supplied then all documents within the space will be returned. The following optional parameters can be supplied, and will be applied using logical AND:

type - The unique string identifying the type of document to return.

id – The identifier of the document to return.

lastDiscoveredTime – Provides a time context to the DDS provider requesting all documents that have been created or updated since the time specified in this parameter. This allows for an effective polling mechanism by using the latest document change time returned in the previous operation as a filter parameter in the next to retrieve only those documents that have been discovered (new or updated) since the last invocation of the API.

getDocument(nsa, type, id, [lastDiscoveredTime])
RETURNS status, [document], and [lastDiscoveredTime]

This operation returns the requested document and the time of the latest change on the document. The following parameters are used to identify the specific document instance and are mandatory:

nsa – The source NSA associated with the generation and management of the document within the GDS.

type - The unique string identifying the type of document to return.

id – The identifier of the document to return.

If the optional filter parameter lastDiscoveredTime is provided, then the target document will only be returned if it has been updated since the time specified.

addDocument(nsa, type, id, version, expires, [signature], contents)
		RETURNS status, [document], and [lastDiscoveredTime]

This operation adds a new document to the space associated with the DDS provider NSA. Once the document has been successfully created on the provider, a copy of the created document is returned, including the lastDiscoveredTime indicating the time the document was added. t The provider will immediately send ADD notifications to all subscriptions with filter criteria matching the document.

nsa – The source NSA associated with the generation and management of the document within the GDS.

type - The unique string identifying the type of this document.

id – The identifier of the document. This value must be unique in the context of the NSA and type values.

version - The version of the document, or more specifically, the date this version of the document was created.

expires - The date this version of the document expires and should be deleted from document space and any requesters caching the document.

signature - An OPTIONAL digital signature of the document contents.

contents - The contents of the document modeled by this document meta-data.

updateDocument(nsa, type, id, version, expires, [signature], contents)
RETURNS status, [document], and [lastDiscoveredTime]

This operation updates an existing document within the space associated with the provider DDS providerNSA. A document can only be updated within the DDS provider that is NSA acting as the source of the document. Any attempt to update a document from a provider other than the source of the document MUST be rejected. The operation returns a copy of the updated document, and the lastDiscoveredTime indicating the time of the document update..

This operation is also used to delete an existing document from the space associated with the provider NSA. For the delete of a document the requester issues a new document version with an expire time set to a reasonably short period in the future. This updated document propagates through the space to each NSA, updating the previous version to have the immediate expire time. All NSA receiving the document will then have an expired version.

nsa – The source NSA associated with the generation and management of the document within the GDS.

type - The unique string identifying the type of this document.

id – The identifier of the document. This value must be unique in the context of the NSA and type values.

version - The version of the document, or more specifically, the date this version of the document was created. Any updates to the document must be tagged with a new version.

expires - The date this version of the document expires and should be deleted from document space and any requesters caching the document.

signature - An OPTIONAL digital signature of the document contents.

contents - The contents of the document modeled by this document meta-data.

addSubscription(requesterId, callback, filter)
		RETURNS status, [subscription], and [lastModifiedTime]
This operation subscribes a requester for document event notifications based on the supplied filter. Notifications will be delivered to the requester’s protocol endpoint specified in the callback parameter. This operation returns the newly created subscription including the provider generated subscription id, and the lastModifiedTime indicating the time the subscription was created.

Once a subscription has been successfully created on the provider, the provider will immediately send notifications for all documents matching the filter criteria excluding the event filter (consider the event filter is set to All). This allows a DDS requester to initialize its local cache by getting a complete list of existing documents they are interested in monitoring. For example, if the event filter had been set to New for all documents, then this initialization behavior will send all matching documents as if they were just discovered.

requesterId - The identifier that the requesting client would like to use for unique identification. An NSA must use its unique NSA identifier for the requesterId.

callback – The DDS requester’s protocol endpoint that will receive the notifications delivered for this subscription.

filter - The filter criteria to apply to document events to determine if a notification should be sent to the client.

editSubscription(id, requesterId, callback, filter)
RETURNS status, [subscription], and [lastModifiedTime]

This operation allows a requester to edit an existing subscription. Once a subscription has been successfully edited on the provider, the provider will immediately send notifications for all documents matching the filter criteria excluding the event filter (consider the event filter is set to All). This operation returns the updated subscription and the lastModifiedTime indicating the time the subscription was updated.

id – The provider assigned subscription identifier returned by the addSubscription() operation.

requesterId - The identifier the DDS requesting client would like to use for unique identification. An NSA must use its unique NSA identifier for requesterId.

callback – The DDS requester’s protocol endpoint that will receive the notifications delivered for this subscription.

filter - The filter criteria to apply to document events to determine if a notification should be sent to the client.

deleteSubscription(id) RETURNS status, and [subscription]

This operation deletes the subscription associated with id from the provider NSA. The deleted subscription is returned.

id – The provider assigned subscription identifier returned by the addSubscription() operation.

getSubscriptions([requesterId], [lastDiscoveredTimelastModifiedTime])
		RETURNS status, list of [0..n] subscription, and [lastModifiedTime]

This operation returns a list of subscriptions and the time of the latest subscription change on the provider NSA. If no filter parameters are supplied then all subscriptions on the provider NSA will be returned. The following optional parameters can be supplied, and will be applied using logical AND:

requesterId – Return only subscriptions for this unique requester identifier.

lastDiscoveredTime – Provides a time context to the provider requesting all subscriptions that have been created or modified since the time specified in this parameter.

getSubscription(id, [lastDiscoveredTimelastModifiedTime])
		RETURNS status, [subscription], and [lastModifiedTime]

This operation returns a single subscription identified by the id parameter and the time this subscription was last modified.

id – The provider assigned subscription identifier returned by the addSubscription() operation.

lastDiscoveredTime – This OPTIONAL parameter provides a time context to the provider NSA requesting the subscription only be returned if it has been modified since the time specified in this parameter.

getAll([lastDiscoveredTime]) RETURNS status, list of [0..n] subscription, list of [0..n] document,
list of [0..n] local document, and [lastDiscoveredTime] {

This operation returns a single subscription identified by the id parametercollection of subscriptions, documents, and local documents discovered since lastDiscoveredTime (treating lastDiscoveredTime as lastModifiedTime in the case of subscriptions). The time of the last discovered/modified element is also returned.and the time this subscription was last modified.

id – The provider assigned subscription identifier returned by the addSubscription() operation.

lastDiscoveredTime – This OPTIONAL parameter provides a time context to the provider NSA requesting the subscriptions and documents only be returned if it has been modified since the time specified in this parameter.
[bookmark: _Toc259951557][bookmark: _Toc299283664]NSA Bootstrap Procedure
One of the important uses of the NSI Document Distribution Service is the simplification of NSA provisioning through dynamic retrieval of the NSA Description Document. Utilizing the meta-data contained in a peer NSA’s Description Document it is possible to programmatically configure most of the information required to bring up the NSI suite of protocols. This section describes a basic procedure that can be followed that is compliant with the NSI 2.0 protocol suite.

To bring up NSI communication between two peer NSAs, the NSA administrators must configure a local peering relationship:

1. Exchange TLS certificates and NSI Document Distribution Service endpoints with the peer administrator.
2. Provision a peer TLS certificate in NSA’s local trust store to enable transport communications.
3. Provision a peer certificate DN in NSA authorization module if additional application level validation is desired.
4. Provision the NSI Document Distribution Service URL in NSA for bootstrap procedure.

On NSA peering initialization:
1. The local NSA connects to Document Distribution Service on a peer NSA using the configured endpoint and TLS as a transport.
2. The local NSA performs a getLocalDocuments() operation to retrieve the peer NSA’s Description Document and any other documents associated with the peer NSA.
3. The NSA identifier of the peer NSA and all associated Networks are now known.
4. For each NSI service on local NSA, determine highest common interface version described in the peer NSA’s Description Document. Both NSAs should determine the same set of interface versions to use, however, the decision is made by the NSA behaving in the requester RA role.
5. Utilize interfaces and feature information as need.

For uRA (requester only NSA) this procedure is optional if the administrator would rather manually provision the required information.

[bookmark: _Toc259951558][bookmark: _Toc299283665]Peer flooding and version sequencing
Due to the selective connectivity between NSAs and the transfer latency between any pair, it is important that the NSI Document Distribution Service protocol facilitate convergence of information over all the NSAsDDS providers. Figure 8 shows an example of such a scenario.

[image:]
Figure 8 – Document flooding

1. At time=T0, NSA-A (a uPA) produces a document A0 (i.e. document “A”, version “0”) and pushes it to NSA-C (an AG)
2. At time=T0, NSA-B (a uPA) produces a document B0 and pushes it to NSA-C and NSA-D (an AG)
3. At time=T1, NSA-D sends a subscribe to NSA-C for all documents
4. At time=T2, NSA-A produces a document A2 and pushes it to NSA-C
5. At time=T2, NSA-C receives document B0 from NSA-B and sends a copy to NSA-D (base on the subscribe request time=T1)
6. At time=T2, NSA-D receives document B0 from NSA-B
7. At time=T4, NSA-A produces a document A4 and pushes it to NSA-C
8. At time=T4, NSA-C receives document A0 from NSA-A and sends a copy to NSA-D
9. At time=T4, NSA-D receives document B0 from NSA-C (base on the subscribe request at time=T1) but discards it because it already has a copy of document B0 (from NSA-B received at time=T2)
10. At time=T6, NSA-C receives document A2 (which deprecates A0) from NSA-A and sends a copy to NSA-D
11. At time=T6, NSA-D receives document A0 from NSA-C
12. At time=T7, NSA-E (a uPA) sends a request to NSA-D for all documents that it knows about
13. At time=T8, NSA-C receives document A4 (which deprecates A2) from NSA-A and sends a copy to NSA-D
14. At time=T8, NSA-D receives document A2 (which deprecates A0) from NSA-C
15. At time=T8, NSA-E receives document B0 and A0 from NSA-D
16. At time=T10, NSA-D receives document A4 (which deprecates A2) from NSA-C
17. At time=T11, NSA-E sends a request to NSA-D for all new documents that it (NSA-D) has learned about since time=T7
18. At time=T12, NSA-E receives document A4 (which deprecates A0) from NSA-D

[bookmark: _Toc259951559][bookmark: _Toc299283666]REST-based Protocol Profile
The NSI Document Distribution Service is implemented using a REST-based design pattern to create an HTTP based web service. This will allow forprovide a lighter weight design than the NSI CS SOAP based specification, and simplify the overall protocol stack for a discovery service that needs to be as simple as possible. This section provides a mapping from the abstract Document Distribution Service operations to concrete HTTP binding for the protocol. More information on the REST design pattern and best practices can be found in [FIELDING] and [RICH].

Table 4Table 1 describes the basic resources modeled in the Document Distribution Service REST API and the HTTP methods supported on the resources. As a standard design pattern, this protocol uses the HTTP GET method of retrieving and querying resources, the POST method for creating new instances of resources, the PUT method for updating a resource, and the DELETE method for deleting a resource.
	Resource
	Methods
	Description

	collection
	GET
	This root resource contains a collection of zero or more subscriptions and documents held within the NSA.

	subscriptions
	GET, POST
	This resource represents a group of zero or more subscription instances.

	subscription
	GET, PUT, DELETE
	This resource represents a single subscription instance.

	documents
	GET, POST
	This resource represents a group of zero or more document instances.

	document
	GET, PUT, DELETE
	This resource represents a single document instance.

	local
	GET
	This resource represents a group of zero or more document instances associated with the local NSA.

[bookmark: _Ref254513762]Table 4 – Resources.
Table 5Table 2 describes the URI template mappings for the resources previously described.
	Resource
	URI
	Description

	collection
	/
	Using root URI with a GET operation will return a collection of zero or more subscriptions and documents held within the NSA.

	subscriptions
	/subscriptions
	Using this URI with a GET operation will return a group of zero or more subscription instances.

Using this URI with a POST operation will create a new subscription with the supplied criteria.

	subscription
	/subscriptions/{subscriptionId}
	Use this URI template to access a single subscription instance based on subscription identifier.

Using a GET operation will get the subscription identified by {subscriptionId}.

Using a PUT operation will update the subscription identified by {subscriptionId} with the values supplied in the PUT body (subscriptionRequest element).

Using a DELETE operation will remove the subscription identified by {subscriptionId}.

	documents
	/documents
	Using this URI with a GET operation will return a group of zero or more document instances.

Using this URI with a POST operation will create a new document with the supplied values (document element).

	documents
	/documents/{nsaId}
	Use this URI template to access a list of document instances associated with an NSA identifier.

Using this URI with a GET operation will return a group of zero or more document instances associated with the NSA identified by {nsaId}.

	documents
	/documents/{nsaId}/{type}
	Use this URI template to access a list of document instances associated with an NSA identifier and specific document type.

Using this URI with a GET operation will return a group of zero or more document instances of the document type {type} associated with the NSA identified by {nsaId}.

	document
	/documents/{nsaId}/{type}/{id}
	Use this URI template to access a single document instance associated with an NSA identifier, document type, and document identifier.

Using this URI with a GET operation will return a single document instance (document element) associated with the document identifier {id}, the type {type}, and the NSA identified by {nsaId}.

Using a PUT operation will update the document identified by {id} with the values supplied in the PUT body (document element). This can only be done by an authorized entity.

Using a DELETE operation will remove the document identified by {Id}. This can only be done by an authorized entity.

	local
	/local
	Using this URI with a GET operation will return a group of zero or more document instances associated with the local NSA.

[bookmark: _Ref254515330]Table 5 – URIs.
[bookmark: _Toc259951560][bookmark: _Toc299283667]Content Encodings
The NSI Document Distribution Service Protocol mappings utilize custom MIME types carried in the Content-Type and Accept HTTP header parameters to identify the version of the resources carried in the HTTP body. Resources are intentionally defined to be generic enough that they should not need to be up-versioned. In the case that the protocol needs to identify a change in format of the resource, a new MIME type can be created.

On the HTTP POST and PUT request the Content-Type parameter identifies the version of resource carried in the body of the operation, and the Accept parameter identifies the version of resource acceptable on output. The HTTP response contains a Content-Type parameter identifying the version of resource contained in the response.

 The following string uniquely identifies this version of the document distribution protocol:

“vnd.ogf.nsi.dds.v1”

The following MIME type is defined to identify the XML content encoding for this specific version of the protocol:

“application/vnd.ogf.nsi.dds.v1+xml”

The default content encoding for XML MUST also be supported for the newest version of the protocol:

“application/xml”

Further content encodings, including JSON, MAY be specified as needed.
[bookmark: _Toc259951561][bookmark: _Toc299283668]Operations
This section describes the mappings of the abstract Document Distribution Service API operations to the physical REST-based protocol.
[bookmark: _Toc259951562][bookmark: _Toc299283669]getDocuments
Method: GET /documents
This operation returns all document instances discovered within the document space, or a subset of documents based on supplied query parameters. Zero or more document instances are returned in the documents element. Any results returned are based on the permissions of the requester.

The URI template “/documents/{nsa}/{type}” can be used as an alternative to, or in conjunction with, the use of query parameters. Performing a GET on “/documents/{nsa}/” returns all documents associated with the specified NSA. Performing a GET on “/documents/{nsa}/{type}” returns all documents of {type} from the specified NSA.
Header Parameters
The following header parameters are supported for the documents resource.

	Parameter
	Value
	Description

	Accept
	String
	Identifies the content type encoding requested for the returned results. Must be a content type supported by the protocol.

	If-Modified-Since
	RFC1123 date string
	Constrains the GET request to return only those documents that have been created or updated since the time specified in this parameter.

If the query on the documents resource would have returned results, but applying these criteria results in an empty set of documents, a 304 (not modified) response will be returned without any message-body.

Query Parameters
The following query parameters are supported for the subscriptions resource. Query parameters are applied with a logical AND when there is more than one.

	Parameter
	Value
	Description

	id
	String
	Return all document resources containing the specified Id.

	nsa
	String
	Returns all document resources containing the specified nsa identifier. Cannot be used if the {nsa} URI component is provided.

	type
	String
	Returns all document resources containing the specified type. Cannot be used if the {type} URI component is provided.

	summary
	N/A
	Returns summary results of any documents matching the query criteria. Summary results includes all document meta-data but not the signature or document contents.

Returns
The following information can be returned in response to the query.

	Status Code
	Element
	Description

	200
	documents
	Returns the documents element containing all document resources matching the query. If no documents match the query, then an empty documents element is returned.

	304
	N/A
	Successful operation where there were no changes to any document resource given the If-Modified-Since criteria. Returns no message body.

	400
	error
	Returned if a client specifies an invalid request. An error element will be included populated with appropriate error information.

	500
	error
	Returned if an internal server error occurred during the processing of this request. An error element will be included populated with appropriate error information.

Example
The following example shows a valid GET request on the “/documents” resource with a type query parameter. The result is a list of document resources matching the query parameter after any access control was applied:

GET /discovery/documents?type=vnd.ogf.nsi.topology.v2+xml HTTP/1.1
Accept: application/vnd.ogf.nsi.dds.v1+xml

HTTP/1.1 200 OK
Date: Mon, 10 Feb 2014 22:12:59 GMT
Content-Length: 648
Last-Modified: Mon, 10 Feb 2014 22:12:05 GMT
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
<?xml version="1.0" encoding="UTF-8"?>
<tns:documents xmlns:tns="http://schemas.ogf.org/nsi/2013/04/discovery/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <tns:document id="urn:ogf:network:example.com:2013:network:candycaneforest"
 version="2014-02-10T22:20:58Z" expires="2014-02-11T22:20:58Z">
 <nsa>urn:ogf:network:example.com:2013:nsa:vixen</nsa>
 <type>vnd.ogf.nsi.topology.v2+xml</type>
 <signature>...</signature>
 <content>...</content>
 </tns:document>
 <tns:document id="urn:ogf:network:example.com:2013:network:lincolntunnel"
 version="2014-02-10T22:15:10Z" expires="2014-02-11T22:15:10Z">
 <nsa>urn:ogf:network:example.com:2013:nsa:prancer</nsa>
 <type>vnd.ogf.nsi.topology.v2+xml</type>
 <signature> ... </signature>
 <contents> ... </contents>
 </tns:document>
</tns:documents>
[bookmark: _Toc259951563][bookmark: _Toc299283670]getLocalDocuments
Method: GET /local
A client can perform a GET operation on the special “/local” URI when the client would like to discover all documents associated with the local NSA. The local NSA returns a documents element containing a list of zero or more document instances associated with the local NSA. This operation is equivalent to performing a GET operation on the URI “/documents/{nsa}”, however, for “/local” the client is not required to have previous knowledge of the local NSA identifier.

The URI template “/local/{type}” can be used as an alternative to, or in conjunction with, the use of query parameters. Performing a GET on “/local/{type}/” will return all documents of {type} associated with the local NSA.
Header Parameters
The following header parameters are supported for the documents resource.

	Parameter
	Value
	Description

	Accept
	String
	Identifies the content type encoding requested for the returned results. Must be a content type supported by the protocol.

	If-Modified-Since
	RFC1123 date string
	Constrains the GET request to return only those documents that have been created or updated since the time specified in this parameter.

If the query on the documents resource would have returned results, but applying these criteria results in an empty set of documents, a 304 (not modified) response will be returned without any message-body.

Query Parameters
The following query parameters are supported for the subscriptions resource. Query parameters are applied with a logical AND when there is more than one.

	Parameter
	Value
	Description

	id
	String
	Returns all document resources containing the specified Id.

	type
	String
	Returns all document resources containing the specified type.

	summary
	N/A
	Returns summary results of any documents matching the query criteria. Summary results includes all document meta-data but not the signature or document contents.

Returns
The following information can be returned in response to the query.

	Status Code
	Element
	Description

	200
	local
	Returns the documents element containing all document resources matching the query. If no documents match the query, then an empty documents element is returned.

	304
	NA
	Successful operation where there were no changes to any document resource given the If-Modified-Since criteria. Returns no message body.

	400
	error
	Returned if a client specifies an invalid request. An error element will be included populated with appropriate error information.

	500
	error
	Returned if an internal server error occurred during the processing of this request. An error element will be included populated with appropriate error information.

Example
The following example shows a valid GET request on the “/local” resource with a type query parameter. The result is a list of document resources matching the query parameter after any access control was applied:

GET /discovery/local?type=vnd.ogf.nsi.topology.v2+xml HTTP/1.1
Accept: application/vnd.ogf.nsi.dds.v1+xml

HTTP/1.1 200 OK
Date: Mon, 10 Feb 2014 22:12:59 GMT
Content-Length: 648
Last-Modified: Mon, 10 Feb 2014 22:12:05 GMT
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
<?xml version="1.0" encoding="UTF-8"?>
<tns:local xmlns:tns="http://schemas.ogf.org/nsi/2013/04/discovery/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <tns:document id="urn:ogf:network:example.com:2013:network:candycaneforest"
 version="2014-02-10T22:20:58Z" expires="2014-02-11T22:20:58Z">
 <nsa>urn:ogf:network:example.com:2013:nsa:vixen</nsa>
 <type>vnd.ogf.nsi.topology.v2+xml</type>
 <signature>...</signature>
 <content>...</content>
 </tns:document>
 <tns:document id="urn:ogf:network:example.com:2013:network:lincolntunnel"
 version="2014-02-10T22:15:10Z" expires="2014-02-11T22:15:10Z">
 <nsa>urn:ogf:network:example.com:2013:nsa:prancer</nsa>
 <type>vnd.ogf.nsi.topology.v2+xml</type>
 <signature> ... </signature>
 <contents> ... </contents>
 </tns:document>
</tns:local>
[bookmark: _Toc259951564][bookmark: _Toc299283671]addDocument
Method: POST /documents
The POST operation on the “/documents” resource will create a new document using the information supplied in the document element contained in the POST body. A successful operation will return the new document resource. This operation has restricted access for clients and is made available by the provider based on access control permissions.

Once a document has been successfully created on the provider, the provider will immediately send notifications to all subscriptions with filter criteria matching the document.
Header Parameters
The following header parameters are supported for the request for a new document resource.

	Parameter
	Value
	Description

	Content-Type
	String
	Identifies the content type encoding of the POST body contents. Must be a content type supported by the protocol.

	Accept
	String
	Identifies the content type encoding requested for the returned results. Must be a content type supported by the protocol.

Body Parameters
The POST request must contain the document element containing the parameters of the document resource to be created.

	Parameter
	Value
	Description

	id
	xsd:string
	The identifier of the document. This value must be unique in the context of the nsa and type values.

	version
	xsd:dateTime
	The version of the document. Typically the date this version of the document was created. Any updates to the document must be tagged with a new version.

	expires
	xsd:dateTime
	The date this version of the document expires and should be deleted from the NSA (document serverlocal DS instance) and any clients caching the document.

	nsa
	xsd:anyURI
	The source NSA associated with the generation and management of the document.

	type
	xsd:string
	The unique string identifying the type of this document.

	signature
	HolderType
	The OPTIONAL digital signature of the document contents.

	contents
	HolderType
	The contents of the document modeled by this document resource.

Returns
The following information can be returned in response to the POST.

	Status Code
	Element
	Description

	201
	document
	Returns a copy of the new document resource created as the result of a successful operation.

The HTTP Location header field will contain the direct URI reference of the new document resource. It will be structured using the URI template $root/documents/{nsa}/{type}/{id}.

	400
	error
	Returned if a client specifies an invalid request. An error element will be included populated with appropriate error information.

	403
	error
	The server understood the request, but is refusing to fulfill it. Authorization will not help and the request SHOULD NOT be repeated. An error element will be included populated with appropriate error information.

	409
	error
	A document already exists with the same name (nsa/type/id). An update of an existing document should use the PUT operation.

	500
	error
	Returned if an internal server error occurred during the processing of this request. An error element will be included populated with appropriate error information.

Example
The following example shows a valid POST request on the “/documents” resource:

POST /discovery/documents HTTP/1.1
Accept: application/vnd.ogf.nsi.dds.v1+xml
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
<?xml version="1.0" encoding="UTF-8"?>
<tns:document xmlns:tns="http://schemas.ogf.org/nsi/2013/04/discovery/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 	 id="urn:ogf:network:example.com:2013:network:candycaneforest"
 	version="2014-02-10T22:20:58Z" expires="2014-02-11T22:20:58Z">
 <nsa>urn:ogf:network:example.com:2013:nsa:vixen</nsa>
 <type>vnd.ogf.nsi.topology.v2+xml</type>
 <signature>...</signature>
 <content>...</content>
</tns:document>

HTTP/1.1 201 Created
Date: Mon, 10 Feb 2014 22:21:59 GMT
Content-Length: 563
Last-Modified: Mon, 10 Feb 2014 22:21:58 GMT
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
Location: /discovery/documents/urn:ogf:network:example.com:2013:nsa:vixen/vnd.ogf.nsi.topology.v2+xml/urn:ogf:network:example.com:2013:network:candycaneforest
<?xml version="1.0" encoding="UTF-8"?>
<tns:document xmlns:tns="http://schemas.ogf.org/nsi/2013/04/discovery/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 	id="urn:ogf:network:example.com:2013:network:candycaneforest"
 	version="2014-02-10T22:20:58Z" expires="2014-02-11T22:20:58Z">
 <nsa>urn:ogf:network:example.com:2013:nsa:vixen</nsa>
 <type>vnd.ogf.nsi.topology.v2+xml</type>
 <signature>...</signature>
 <content>...</content>
</tns:document>
[bookmark: _Toc259951565][bookmark: _Toc299283672]getDocument
Method: GET /documents/{nsa}/{type}/{id}
This operation will return a specific document instance discovered within the document space based on the URI template “/documents/{nsa}/{type}/{id}”, where {nsa} is the NSA sourcing the document, {type} is the type of document, and {id} is the identifier of the specific document. The matching document is returned in a single document element.
Header Parameters
The following header parameters are supported for the subscriptions resource.

	Parameter
	Value
	Description

	Accept
	String
	Identifies the content type encoding requested for the returned results. Must be a content type supported by the protocol.

	If-Modified-Since
	RFC1123 date string
	Constrains the GET request to return the matching document only if it has been updated since the time specified in this parameter.

If the subscription resource does not meet these criteria, a 304 (not modified) response will be returned without any message-body.

Query Parameters
None.
Returns
The following information can be returned in response to the GET of a subscription.

	Status Code
	Element
	Description

	200
	document
	Successful operation returns the document identified by {nsa}/{type}/{id} in a document element.

The Last-Modified header parameter will contain the time this document resource was last discovered.

	304
	NA
	Successful operation where there were no changes to the document resource given the If-Modified-Since criteria. Returns no message body.

	400
	error
	Returned if a client specifies an invalid request. An error element will be included populated with appropriate error information.

	404
	error
	Returned if the requested document was not found. An error element will be included populated with appropriate error information.

	500
	error
	Returned if an internal server error occurred during the processing of this request. An error element will be included populated with appropriate error information.

Example
The following example shows a valid GET request on the document resource identified by the URI “/documents/urn:ogf:network:example.com:2013:nsa:vixen/vnd.ogf.nsi.topology.v2+xml/urn:ogf:network:example.com:2013:network:candycaneforest”. The result is a single document resource:

GET /discovery/documents/urn:ogf:network:example.com:2013:nsa:vixen/vnd.ogf.nsi.topology.v2+xml/urn:ogf:network:example.com:2013:network:candycaneforest HTTP/1.1
Accept: application/vnd.ogf.nsi.dds.v1+xml

HTTP/1.1 200 OK
Date: Mon, 10 Feb 2014 22:21:59 GMT
Content-Length: 563
Last-Modified: Mon, 10 Feb 2014 22:21:58 GMT
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
<?xml version="1.0" encoding="UTF-8"?>
<tns:document xmlns:tns="http://schemas.ogf.org/nsi/2013/04/discovery/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 	id="urn:ogf:network:example.com:2013:network:candycaneforest"
 	version="2014-02-10T22:20:58Z" expires="2014-02-11T22:20:58Z">
 <nsa>urn:ogf:network:example.com:2013:nsa:vixen</nsa>
 <type>vnd.ogf.nsi.topology.v2+xml</type>
 <signature>...</signature>
 <content>...</content>
</tns:document>

[bookmark: _Toc259951566][bookmark: _Toc299283673]updateDocument
Method: PUT /documents/{nsa}/{type}/{id}
The PUT operation on the “/documents/{nsa}/{type}/{id}” resource will allow a client to edit the document corresponding to the identifier {id}, using the information supplied in the document element contained in the PUT body. A successful operation will return the modified document and trigger any associated notifications within the NSA.

A document is deleted from the document space by updating it’s expire date to a reasonably short period in the future. This updated document will get propagated throughout the document space and then expire, removing it from the space.
Header Parameters
The following header parameters are supported for the request edit a document resource.

	Parameter
	Value
	Description

	Content-Type
	String
	Identifies the content type encoding of the PUT body contents. Must be a content type supported by the protocol.

	Accept
	String
	Identifies the content type encoding requested for the returned results. Must be a content type supported by the protocol.

Body Parameters
The PUT request must contain the document element containing the existing parameters of the document resource if they were not modified, as well as any new/edited values.

	Parameter
	Value
	Description

	id
	xsd:string
	The identifier of the document. This value must be unique in the context of the nsa and type values.

	version
	xsd:dateTime
	The version of the document. Typically the date this version of the document was created. Any updates to the document must be tagged with a new version.

	expires
	xsd:dateTime
	The date this version of the document expires and should be deleted from the NSA (document server) and any clients caching the document.

	nsa
	xsd:anyURI
	The source NSA associated with the generation and management of the document.

	type
	xsd:string
	The unique string identifying the type of this document.

	signature
	HolderType
	The OPTIONAL digital signature of the document contents.

	content
	HolderType
	The contents of the document modeled by this document resource.

Returns
The following information can be returned in response to the PUT.

	Status Code
	Element
	Description

	200
	document
	Returns a copy of the modified document resource as the result of a successful operation.

	400
	error
	Returned if a client specifies an invalid request. An error element will be included populated with appropriate error information.

	403
	error
	The server understood the request, but is refusing to fulfill it. Authorization will not help and the request SHOULD NOT be repeated. An error element will be included populated with appropriate error information.

	404
	error
	Returned if the requested document was not found. An error element will be included populated with appropriate error information.

	500
	error
	Returned if an internal server error occurred during the processing of this request. An error element will be included populated with appropriate error information.

Example
The following example shows a valid PUT request on the document “/documents/urn:ogf:network:example.com:2013:nsa:vixen/vnd.ogf.nsi.topology.v2+xml/urn:ogf:network:example.com:2013:network:candycaneforest” with updated version and expire attributes.

PUT /discovery/documents/urn:ogf:network:example.com:2013:nsa:vixen/vnd.ogf.nsi.topology.v2+xml/urn:ogf:network:example.com:2013:network:candycaneforest HTTP/1.1
Accept: application/vnd.ogf.nsi.dds.v1+xml
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
<?xml version="1.0" encoding="UTF-8"?>
<tns:document xmlns:tns="http://schemas.ogf.org/nsi/2013/04/discovery/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 	id="urn:ogf:network:example.com:2013:network:candycaneforest"
 	version="2014-02-12T22:20:58Z" expires="2014-02-13T22:20:58Z">
 <nsa>urn:ogf:network:example.com:2013:nsa:vixen</nsa>
 <type>vnd.ogf.nsi.topology.v2+xml</type>
 <signature>...</signature>
 <content>...</content>
</tns:document>

HTTP/1.1 200 OK
Date: Mon, 12 Feb 2014 22:20:59 GMT
Content-Length: 563
Last-Modified: Mon, 12 Feb 2014 22:20:58 GMT
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
Location: /discovery/documents/urn:ogf:network:example.com:2013:nsa:vixen/vnd.ogf.nsi.topology.v2+xml/urn:ogf:network:example.com:2013:network:candycaneforest
<?xml version="1.0" encoding="UTF-8"?>
<tns:document xmlns:tns="http://schemas.ogf.org/nsi/2013/04/discovery/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 	id="urn:ogf:network:example.com:2013:network:candycaneforest"
 	version="2014-02-12T22:20:58Z" expires="2014-02-13T22:20:58Z">
 <nsa>urn:ogf:network:example.com:2013:nsa:vixen</nsa>
 <type>vnd.ogf.nsi.topology.v2+xml</type>
 <signature>...</signature>
 <content>...</content>
</tns:document>
[bookmark: _Toc259951567][bookmark: _Toc299283674]getSubscriptions
Method: GET /subscriptions
Return a subscriptions element containing a list of zero or more subscription instances based on supplied parameters and permissions of the requester.
Header Parameters
The following header parameters are supported for the subscriptions resource.

	Parameter
	Value
	Description

	Accept
	String
	Identifies the content type encoding requested for the returned results. Must be a content type supported by the protocol.

	If-Modified-Since
	RFC1123 date string
	Constrains the GET request to return only those subscriptions that have been created or updated since the time specified in this parameter.

If the query on the subscriptions resource would have returned results, but applying these criteria results in an empty set of documents, a 304 (not modified) response will be returned without any message-body.

Query Parameters
The following query parameters are supported for the subscriptions resource.

	Parameter
	Value
	Description

	requesterId
	String
	Returns all subscription resources containing the specified requesterId.

Returns
The following information can be returned in response to the query.

	Status Code
	Element
	Description

	200
	subscriptions
	Returns all subscription resources matching the query in a subscriptions element. If no subscriptions match the query, then an empty subscriptions element is returned.

	304
	NA
	Successful operation where there were no changes to any subscription resources matching the query filter given the If-Modified-Since criteria. Returns no message body.

	400
	error
	Returned if a client specifies an invalid request. An error element will be included populated with appropriate error information.

	500
	error
	Returned if an internal server error occurred during the processing of this request. An error element will be included populated with appropriate error information.

Example
The following example shows a valid GET request on the “/subscriptions” resource with a requesterId query parameter. The result is a list of subscription resources matching the query parameter after any access control is applied:

GET /discovery/subscriptions?requesterId=urn:ogf:network:example.com:2013:nsa:dasher HTTP/1.1
Accept: application/vnd.ogf.nsi.dds.v1+xml

HTTP/1.1 200 OK
Date: Mon, 10 Feb 2014 22:12:59 GMT
Content-Length: 648
Last-Modified: Mon, 10 Feb 2014 22:12:05 GMT
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
<?xml version="1.0" encoding="UTF-8"?>
<tns:subscriptions xmlns:tns="http://schemas.ogf.org/nsi/2013/04/discovery/types"
 	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <tns:subscription
id="9e223d413578"
 href="/discovery/subscriptions/9e223d413578"
 version=”2014-02-10T22:12:05Z”>

 <requesterId>urn:ogf:network:example.com:2013:nsa:dasher</requesterId>
 <callback>http://dasher.example.com/discovery/callback</callback>
 <filter>
 <include>
 <event>All</event>
 </include>
 </filter>
 </tns:subscription>
</tns:subscriptions>
[bookmark: _Toc259951568][bookmark: _Toc299283675]addSubscription
Method: POST /subscriptions
The POST operation on the “/subscriptions” resource will create a new subscription using the information supplied in the subscriptionRequest element contained in the POST body. A successful operation will return the new subscription.

Once a subscription has been successfully created on the server, the server will immediately send notifications for all documents matching the filter criteria independent of the event filter.
Header Parameters
The following header parameters are supported for the request for a new subscription resource.

	Parameter
	Value
	Description

	Content-Type
	String
	Identifies the content type encoding of the POST body contents. Must be a content type supported by the protocol.

	Accept
	String
	Identifies the content type encoding requested for the returned results. Must be a content type supported by the protocol.

Body Parameters
The POST request must contain the subscriptionRequest element containing the initial parameters of the subscription resource to be created.

	Parameter
	Value
	Description

	requesterId
	xsd:string
	The identifier the requesting client would like to use for unique identification. An NSA must use its unique NSA identifier for requesterId.

	callback
	xsd:anyURI
	The HTTP endpoint on the client host that will receive the notifications delivered for this subscription.

	filter
	FilterType
	The filter criteria to apply to document events to determine if a notification should be sent to the client.

Returns
The following information can be returned in response to the POST.

	Status Code
	Element
	Description

	201
	subscription
	Returns a copy of the new subscription resource created as the result of a successful operation.

The HTTP Location header field will contain the URI of the new subscription resource.

	400
	error
	Returned if a client specifies an invalid request. An error element will be included populated with appropriate error information.

	403
	error
	The server understood the request, but is refusing to fulfill it. Authorization will not help and the request SHOULD NOT be repeated. An error element will be included populated with appropriate error information.

	500
	error
	Returned if an internal server error occurred during the processing of this request. An error element will be included populated with appropriate error information.

Example
The following example shows a valid POST request on the “/subscriptions” resource:

POST /discovery/subscriptions HTTP/1.1
Accept: application/vnd.ogf.nsi.dds.v1+xml
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
<?xml version="1.0" encoding="UTF-8"?>
<tns:subscriptionRequest
 	xmlns:tns="http://schemas.ogf.org/nsi/2013/04/discovery/types"
 	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <requesterId>urn:ogf:network:example.com:2013:nsa:dasher</requesterId>
 <callback>http://dasher.example.com/discovery/callback</callback>
 <filter>
 <include>
 <event>All</event>
 </include>
 </filter>
</tns:subscriptionRequest>

HTTP/1.1 201 Created
Date: Mon, 10 Feb 2014 22:12:59 GMT
Content-Length: 405
Last-Modified: Mon, 10 Feb 2014 22:12:05 GMT
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
Location: /discovery/subscriptions/9e223d413578
<?xml version="1.0" encoding="UTF-8"?>
<tns:subscription
 id="9e223d413578"
 href="/discovery/subscriptions/9e223d413578"
 version=”2014-02-10T22:12:05Z”>
 <requesterId>urn:ogf:network:example.com:2013:nsa:dasher</requesterId>
 <callback>http://dasher.example.com/discovery/callback</callback>
 <filter>
 <include>
 <event>All</event>
 </include>
 </filter>
</tns:subscription>
[bookmark: _Toc259951569][bookmark: _Toc299283676]getSubscription
Method: GET /subscriptions/{id}
Returns a subscription element containing the subscription instance identified by the {id} parameter of the subscription.
Header Parameters
The following header parameters are supported for the subscriptions resource.

	Parameter
	Value
	Description

	Accept
	String
	Identifies the content type encoding requested for the returned results. Must be a content type supported by the protocol.

	If-Modified-Since
	RFC1123 date string
	Constrains the GET request to return the matching subscription only if it has been updated since the time specified in this parameter.

If the subscription resource does not meet these criteria, a 304 (not modified) response will be returned without any message-body.

Query Parameters
None.
Returns
The following information can be returned in response to the GET of a subscription.

	Status Code
	Element
	Description

	200
	subscription
	Successful operation returns the subscription identified by id in a subscription element.

The Last-Modified header parameter will contain the time this subscription resource was last modified.

	304
	NA
	Successful operation where there were no changes to the subscription resource identified by id given the If-Modified-Since criteria. Returns no message body.

	400
	error
	Returned if a client specifies an invalid request. An error element will be included populated with appropriate error information.

	404
	error
	Returned if the requested subscription was not found. An error element will be included populated with appropriate error information.

	500
	error
	Returned if an internal server error occurred during the processing of this request. An error element will be included populated with appropriate error information.

Example
The following example shows a valid GET request on the resource identified by id=”9e223d413578”, and URI “/subscriptions/9e223d413578”. The result is a single subscription resource matching the specified id:

GET /discovery/subscriptions/9e223d413578 HTTP/1.1
Accept: application/vnd.ogf.nsi.dds.v1+xml

HTTP/1.1 200 OK
Date: Mon, 10 Feb 2014 22:12:59 GMT
Content-Length: 405
Last-Modified: Mon, 10 Feb 2014 22:12:05 GMT
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
<?xml version="1.0" encoding="UTF-8"?>
<tns:subscription
 id="9e223d413578"
 href="/discovery/subscriptions/9e223d413578"
 version=”2014-02-10T22:12:05Z”>
 <requesterId>urn:ogf:network:example.com:2013:nsa:dasher</requesterId>
 <callback>http://dasher.example.com/discovery/callback</callback>
 <filter>
 <include>
 <event>All</event>
 </include>
 </filter>
</tns:subscription>
[bookmark: _Toc259951570][bookmark: _Toc299283677]editSubscription
Method: PUT /subscriptions/{id}
The PUT operation on the “/subscriptions/{id}” resource will allow a client to edit the subscription corresponding to the identifier {id}, using the information supplied in the subscriptionRequest element contained in the PUT body. A successful operation will return the modified subscription.
Header Parameters
The following header parameters are supported for the update request for a subscription resource.

	Parameter
	Value
	Description

	Content-Type
	String
	Identifies the content type encoding of the PUT body contents. Must be a content type supported by the protocol.

	Accept
	String
	Identifies the content type encoding requested for the returned results. Must be a content type supported by the protocol.

Body Parameters
The PUT request must contain the subscriptionRequest element containing the existing parameters of the subscription resource if they were not modified, as well as any new/edited values. For example, if the filter parameter is being edited, then the requesterId and callback URI must be supplied with their existing values.

	Parameter
	Value
	Description

	requesterId
	xsd:string
	The identifier the requesting client would like to use for unique identification. An NSA must use its unique NSA identifier for requesterId.

	callback
	xsd:anyURI
	The HTTP endpoint on the client host that will receive the notifications delivered for this subscription.

	filter
	FilterType
	The filter criteria to apply to document events to determine if a notification should be sent to the client.

Returns
The following information can be returned in response to the PUT.

	Status Code
	Element
	Description

	200
	subscription
	Returns a copy of the modified subscription resource as the result of a successful operation.

	400
	error
	Returned if a client specifies an invalid request. An error element will be included populated with appropriate error information.

	403
	error
	The server understood the request, but is refusing to fulfill it. Authorization will not help and the request SHOULD NOT be repeated. An error element will be included populated with appropriate error information.

	404
	error
	Returned if the requested subscription was not found. An error element will be included populated with appropriate error information.

	500
	error
	Returned if an internal server error occurred during the processing of this request. An error element will be included populated with appropriate error information.

Example
The following example shows a valid PUT request on the “/subscription/9e223d413578” resource, editing the filter to include a new Updated event for the NSA “dasher”. Notice that only those parameters that can be edited are included. In addition, the updated subscription resource will have a new version number corresponding to this update.

PUT /discovery/subscriptions/9e223d413578 HTTP/1.1
Accept: application/vnd.ogf.nsi.dds.v1+xml
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
<?xml version="1.0" encoding="UTF-8"?>
<tns:subscriptionRequest
 	xmlns:tns="http://schemas.ogf.org/nsi/2013/04/discovery/types"
 	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <requesterId>urn:ogf:network:example.com:2013:nsa:dasher</requesterId>
 <callback>http://dasher.example.com/discovery/callback</callback>
 <filter>
 <include>
 <event>New</event>
 </include>
 <include>
 <event>Updated</event>
 <or><nsa>urn:ogf:network:example.com:2013:nsa:prancer</nsa></or>
 </include>
 </filter>
</tns:subscriptionRequest>

HTTP/1.1 200 OK
Date: Mon, 10 Feb 2014 22:20:59 GMT
Content-Length: 556
Last-Modified: Mon, 10 Feb 2014 22:20:58 GMT
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
<?xml version="1.0" encoding="UTF-8"?>
<tns:subscription
 id="9e223d413578"
 href="/discovery/subscriptions/9e223d413578"
 version=”2014-02-10T22:20:58Z”>
 <requesterId>urn:ogf:network:example.com:2013:nsa:dasher</requesterId>
 <callback>http://dasher.example.com/discovery/callback</callback>
 <filter>
 <include>
 <event>All</event>
 </include>
 <include>
 <event>Updated</event>
 <or><nsa>urn:ogf:network:example.com:2013:nsa:prancer</nsa></or>
 </include>
 </filter>
</tns:subscription>
[bookmark: _Toc259951571][bookmark: _Toc299283678]deleteSubscription
Method: DELETE /subscriptions/{id}
Deletes the subscription resource identified by the {id} URI parameter if access control permissions allow the client to perform the delete operation on the target resource.
Header Parameters
None.
Query Parameters
None.
Returns
The following information can be returned in response to the DELETE of a subscription.

	Status Code
	Element
	Description

	204
	NA
	Successful delete operation returns no content.

	400
	error
	Returned if a client specifies an invalid request. An error element will be included populated with appropriate error information.

	403
	error
	Returned if the requested subscription was found, but the requesting client did not have permissions to delete the resource.

	404
	error
	Returned if the requested subscription was not found. An error element will be included populated with appropriate error information.

	500
	error
	Returned if an internal server error occurred during the processing of this request. An error element will be included populated with appropriate error information.

Example
The following example shows a valid DELETE request on the resource identified by id=”9e223d413578”, and URI “/subscriptions/9e223d413578”. The result is a single subscription resource matching the specified id:

DELETE /discovery/subscriptions/9e223d413578 HTTP/1.1

HTTP/1.1 204 No Content
Date: Mon, 10 Feb 2014 22:12:59 GMT
[bookmark: _Toc259951572][bookmark: _Toc299283679]Notifications
When a document event occurs matching a registered subscription the server must issue a notification to the client endpoint identified in the subscription resource. Multiple events can be grouped and delivered together in a single notification if these events occur within a reasonable period of time of each other. Notification delivery should not be delayed.

Notifications are also sent when a subscription is first created and will include any documents matching the initial filter criteria.

A failure in notification delivery may be the result of a temporary condition; so retrying notification delivery should be attempted for a reasonable period of time before discarding any pending notifications to a client and deleting the subscription. Notifications should not be discarded without deleting the subscription.

By creating a subscription, the client has entered a contractual agreement to expose an HTTP endpoint capable of receiving a POST operation with a message body containing a notifications element using the content encoding of the original subscription.
Method: POST <client supplied endpoint>
The POST operation on the “<client supplied endpoint>” is a remote call from the discovery server holding the subscription to the client endpoint registered in the subscription. The client must return an HTTP 202 status code in response to the POST indicating it has successfully accepted the notification. Any other return code resuls in a deletion of the subscription.

A server may periodically issue a POST to the client endpoint with a notification element containing zero elements. This should not be considered an error and the client MUST return an HTTP 202 status code in response. The server to check the validity of a subscription can use this.
Header Parameters
The following header parameters are supported for the notification request to the client endpoint.

	Parameter
	Value
	Description

	Content-Type
	String
	Identifies the content type encoding of the POST body contents. Must be identical to the value as used by the client on subscription.

Body Parameters
The POST request must contain the notifications element, which will contain the list of zero or more notifications matching the subscription filter.

	Parameter
	Value
	Description

	providerId
	xsd:anyURI
	The identifier of the provider generating the notification. This is the provider on which the subscription was created.

	id
	xsd:string
	The identifier of the subscription that generated the notifications.

	href
	xsd:anyURI
	The URI reference for subscription that generated the notification. This can be used to directly access the subscription.

	discovered
	xsd:dateTime
	The most recent document discovery time for the server in the context of when the notification was generated.

	notification
	NotificationListType
	A list of zero or more notifications matching the subscription filter criteria.

Returns
The client receiving the notification must return an HTTP 202 status code in response to the POST. Any other status code will result in a deletion of the subscription.

	Status Code
	Element
	Description

	202
	NA
	Indicates the subscribed client has accepted the notification for processing.

Example
The following example shows a notification POST request on the “/clientEndpoint” resource:

POST /clientEndpoint HTTP/1.1
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
<?xml version="1.0" encoding="UTF-8"?>
<tns:notifications xmlns:tns="http://schemas.ogf.org/nsi/2013/04/discovery/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 	providerId="urn:ogf:network:example.com:2013:nsa:vixen"
 	id="9e223d413578"
 href="/discovery/subscriptions/9e223d413578">
 <discovered>2014-02-10T22:20:58Z</discovered>
 <tns:notification>
 <discovered>2014-02-10T22:20:58Z</discovered>
 <event>New</event>
 <document id="urn:ogf:network:example.com:2013:network:lincolntunnel"
 version="2014-02-10T22:15:10Z" expires="2014-02-11T22:15:10Z">
 <nsa>urn:ogf:network:example.com:2013:nsa:prancer</nsa>
 <type>application/vnd.ogf.nsi.topology.v2+xml</type>
 <signature> ... </signature>
 <contents> ... </contents>
 </document>
 </tns:notification>
</tns:notifications>

HTTP/1.1 202 Accepted
Date: Mon, 10 Feb 2014 22:12:59 GMT
Content-Length: 0
[bookmark: _Toc20156277][bookmark: _Toc259951573][bookmark: _Toc299283680]Security Considerations
Documents carried by the NSI Document Distribution Service Protocol must be verifiable by DDS requesters and DDS providers within the GDS (e.g. the requester agent must be able to determine that the contents of the document was not altered during delivery, and is in fact, the same document published by the source provider). The NSI Document Distribution Service Protocol includes an element in the document meta-data to allow for the association of a digital signature by the publishing NSA, which can then be used by reach requester within the GDS to validate the authenticity of the attached document. Specification of the type of digital signature and algorithms used is left for definition outside of this specification since it may be document specific.

It is also assumed that exchange of documents between requester and provider NSA roles is secured to the level of other protocols within the NSI protocol suite. This security must include authentication, authorization, and confidentiality. To this end, the following security text is incorporated from [OGF NSI-CS].

TLS is used to ensure secure communication between requester and provider NSAs. TLS also supports X.509 certificates for authentication. Trust between NSAs is pairwise and MUST be established out-of-band. It is possible to have unidirectional trust between NSAs, i.e. reservations can only be created in one direction, as this is simply a policy special case. Transitive trust between NSAs cannot be assumed, i.e., NSAs A & B trust each other, and B & C trust each other, but this does not imply trust between A & C. However a request from A may end up using resources from C if passed through B. In the current security framework, B (if its policies permit) can proxy A’s request to C. From C’s point of view, it receives the request from B, and authenticates and authorizes the request using B’s credentials. This document does not describe security policies, as these will always be site-specific. Note that due to the requirement for direct NSA-to-NSA communications (i.e. NSAs cannot forward communications via a third party NSA), message-level signing provides little value and is not used.

TLS provides message integrity, confidentiality and authentication via the X.509 certificates, and protects against replay attacks. Authorization is done at the NSAs application level. TLS version 1.0 MUST be supported. NSAs MAY use SSLv3 and TLS versions higher than 1.0 where possible.
[bookmark: _Toc259951574][bookmark: _Toc299283681]Glossary
	Aggregator NSA (AG)
	The Aggregator NSA is a Provider Agent that acts as both a requester and provider NSA. It can service requests from other NSA, perform path finding, and distribute segment requests to child NSA for processing.

	Connection Service (CS)
	The NSI Connection Service is a service that allows an RA to request and manage a Connection from a PA. See [OGF NSI-CS].

	Document Distribution Service (DDS)
	The NSI Document Distribution Service is a RESTful web service allows the exchange of documents between requester and provider agent participating in a Global Document Space.. The NSA Description Document is an example of information exchanged using this protocol.

	Global Document Space (GDS)
	A logical space that consists of all documents published by the set of interconnected DDS providers implementing the DDS protocol.

	Network Service Agent (NSA)
	The Network Service Agent is a concrete piece of software that sends and receives NSI Messages. The NSA includes a set of capabilities that allow Network Services to be delivered.

	Network Service Interface (NSI)
	The NSI is the interface between RAs and PAs. The NSI defines a set of interactions or transactions between these NSAs to realize a Network Service.

	Network Services Framework (NSF)
	The Network Services framework describes an NSI message-based platform capable of supporting a suite of Network Services such as the Connection Service and the Topology Service. See [OGF NSF].

	NSA Description document
	The NSA Description document encapsulates descriptive meta-data associated with an NSA such as all NSI services and associated protocol interfaces offered by the NSA.

	NSI Topology
	The NSI Topology defines a standard ontology and a schema to describe network resources that are managed to create the NSI service. The NSI Topology as used by the NSI CS (and in future other NSI services) is described in [OGF NSI-TOP].

	Requester/Provider Agent (RA/PA)
	An NSA acts in one of two possible roles relative to a particular instance of an NSI. When an NSA requests a service, it is called a Requester Agent (RA). When an NSA realizes a service, it is called a Provider Agent (PA). A particular NSA may act in different roles at different interfaces.

	NSI Service Definition
	A document describing the service offered by an NSA and it’s underlying Network. A Network can offer multiple services, and therefore, have multiple Service Definitions defined.

	Simple Object Access Protocol (SOAP)
	SOAP is a protocol specification for exchanging structured information in the implementation of Web Services in computer networks.

	Ultimate PA (uPA)
	The ultimate PA is a Provider Agent that has an associated NRM.

	Ultimate RA (uRA)
	The Ultimate RA is a Requester Agent is the originator of a service request.

	XML Schema Definition (XSD)
	XSD is a schema language for XML. See [W3C XSD]

	eXtensible Markup Language (XML)
	XML is a markup language that defines a set of rules for encoding documents in a format that is both human-readable and machine-readable.

[bookmark: _Toc259951575][bookmark: _Toc299283682]Contributors
John H. MacAuley, ESnet, macauley@es.net
[bookmark: _Toc526008660][bookmark: _Toc259951576][bookmark: _Toc299283683]Intellectual Property Statement
The OGF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights, which may cover technology that may be required to practice this recommendation. Please address the information to the OGF Executive Director.
[bookmark: _Toc259951577][bookmark: _Toc526008661][bookmark: _Toc299283684]Disclaimer
This document and the information contained herein is provided on an “As Is” basis and the OGF disclaims all warranties, express or implied, including but not limited to any warranty that the use of the information herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular purpose.
[bookmark: _Toc259951578][bookmark: _Toc299283685]Full Copyright Notice
Copyright (C) Open Grid Forum (2012-2014). Some Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included as references to the derived portions on all such copies and derivative works. The published OGF document from which such works are derived, however, may not be modified in any way, such as by removing the copyright notice or references to the OGF or other organizations, except as needed for the purpose of developing new or updated OGF documents in conformance with the procedures defined in the OGF Document Process, or as required to translate it into languages other than English. OGF, with the approval of its board, may remove this restriction for inclusion of OGF document content for the purpose of producing standards in cooperation with other international standards bodies.
The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors or assignees.
[bookmark: _Toc259951579][bookmark: _Toc299283686]References
[BRADNER] 	Scott Bradner. Key Words for Use in RFCs to Indicate Requirement Levels, RFC 2119. The Internet Society. March 1997. http://tools.ietf.org/html/rfc2026

[RFC 6350] 	Simon Perreault. vCard Format Specification RFC 6350 (Standards Track), August 2011. URL http://tools.ietf.org/html/rfc6350.

[RFC 6351] 	S. Perreault. xCard: vCard XML Representation RFC 6351 (Standards Track), August 2011. URL http://tools.ietf.org/html/rfc6351.
[bookmark: _Ref355181189]
[GFD.213]	Guy Roberts, et al. “OGF Network Service Framework v2.0”, Group Working Draft (GWD), candidate Recommendation Proposed (R-P), January 28, 2014.

[GFD.212]	Guy Roberts, et al. “OGF NSI Connection Service v2.0”, Group Working Draft (GWD), candidate Recommendation Proposed (R-P), January 12, 2014.
[bookmark: _Ref355354432]
[OGF NSI-ND]	John MacAuley, et al. “Network Service Interface NSA Description Document v1.0”, Group Working Draft (GWD), candidate Recommendation Proposed (R-P), June 3, 2015.
[bookmark: _Ref377026743]
[OGF NML] 	OGF GFD.206: Network Markup Language Base Schema version 1, http://www.gridforum.org/documents/GFD.206.pdf

[bookmark: _Ref312080896][W3C XSD] 	W3C XML “Schema Definition Language (XSD) 1.1 Part 2: Datatypes”, http://www.w3.org/TR/xmlschema11-2/#anyURI

[FIELDING]	R. T. Fielding. Architectural Styles and the Design of Network-based Software Architectures. UNIVERSITY OF CALIFORNIA, IRVINE, 2000, Chapter 5.

[RICH]	L. Richardson, et al. Restful Web Services. O'Reilly Media; First Edition, May 15, 2007.
[bookmark: _Toc259951580][bookmark: _Toc299283687]Appendix I – Aggregator DDS Pseudo Code
In a typical NSI deployment the NSI CS Aggregator NSA will deploy a full DDS server performing both requester and provider functions. The Aggregator NSA registers for document notification from all peer NSA, creating a GDS for the entire interconnected NSI deployment. In addition, the Aggregator published documents associated with its own NSA such as an NSA description document. An Aggregator would use the addDocument/updateDocument API or some locally defined mechanism to publish these documents into the local DDS server instance.

The following pseudo code is an example of this DDS server function.

PROGRAM DdsServer:

 // Global variables holding configuration, state, and discovered documents.
 DECLARE a list variable called Peers holding configuration information for all peers;
 DECLARE a map variable called GlobalDocumentSpace holding all known documents in the
GDS(indexed by unique document identifier);
 DECLARE a map variable called LastDiscovered holding discovered date/time values for
each document (indexed by unique document identifier);
 DECLARE a map variable called MySubscriptions holding local subscriptions on remote
DDS servers (indexed by peer containing subscription);
 DECLARE a map variable called PeerSubscriptions holding remote DDS server
subscriptions on local DDS server(indexed by peer owning subscription);
 DECLARE a string variable called MyNsaId holding the local NSA identifier;
 DECLARE a time variable called SubscriptionAuditInterval holding the time between
subscription audit intervals;
 DECLARE a time variable called ExpireAuditInterval holding the time between document
expiry audit intervals;

 // start() initializes the system and registers subscriptions with all remote DDS
 // server Peers.
 PROCEDURE start() {
 // Initialize the DDS system.
 READ Peers from list of peer NSA from configuration;
 READ SubscriptionAuditInterval from configuration;
 READ ExpireAuditInterval from configuration;
 READ MyNsaId from configuration;
 READ GlobalDocumentSpace from storage discarding any expired documents;

 SET MySubscriptions to an empty map<peer, subscription>;
 SET PeerSubscriptions to an empty map<peer, subscription>;

 // For simplification register for all document events on all Peers. Each peer
 // will send a full list of documents present in their document space.
 FOR each peer in Peers DO
 // First we need to delete any existing subscriptions we may have on this
 // peer.
 CALL peer.getSubscriptions(MyNsaId)
RETURNING status, subscriptions, and lastModifiedTime;
 IF status is success THEN
 FOR each subscription in subscriptions DO
 CALL peer.deleteSubscription(subscription.id);
 ENDFOR;
 ENDIF;

 // Add the new subscription and store it for later auditing.
 CALL peer.addSubscription(MyNsaId, notificationCallback,
 filter(include event All)) RETURNING status, subscription, and
 lastModifiedTime;
 IF status is success and subscription is present THEN
 STORE <peer, subscription> in MySubscriptions;
 ENDIF;
 ENDFOR;

 // Schedule maintenance tasks.
 SCHEDULE subscriptionAudit() at SubscriptionAuditInterval;
 SCHEDULE documentExpireAudit() at ExpireAuditInterval;
 }

 // subscriptionAudit() verifies there is an active subscription on all configured DDS
 // Peers. It will create a new subscription if one does not exist, and will delete any
 // subscriptions no longer in use.
 PROCEDURE subscriptionAudit() {
 // oldSubscriptions will hold the list of MySubscriptions we need to clean up when
 // audit is completed.
 DECLARE a map variable called oldSubscriptions to hold the list of MySubscriptions
 to clean up when audit is completed (indexed by peer containing the
 subscription);
 SET oldSubscriptions to copy of MySubscriptions;

 // Audit subscription for each of our configured Peers.
 FOR each peer in Peers DO
 SET subscription to MySubscriptions.get(peer);

 IF subscription is present THEN
 // Get subscription for this peer.
 CALL peer.getSubscription(subscription.id) RETURNING oldSubscription;

 // Remove this subscription from our cleanup list.
 REMOVE oldSubscription from oldSubscriptions;

 IF oldSubscription is present THEN
 // This subscription is still valid so proceed to next iteration.
 CONTINUE;
 ENDIF;

 // This subscription is no longer valid.
 REMOVE subscription from MySubscriptions;

 ENDIF;

 // We do not have a subscription for this peer so create one.
 CALL peer.addSubscription(MyNsaId, notificationCallback,
 filter(include event All)) RETURNING newSubscription;

 IF newSubscription is present THEN
 STORE <peer, newSubscription> in MySubscriptions;
 ENDIF;
 ENDFOR;

 // Now remove any MySubscriptions no longer needed.
 FOR each subscription in oldSubscriptions DO
 SET peer to subscription.peer;
 CALL peer.deleteSubscription(subscriptionId);
 ENDFOR;

 // Schedule our next audit run.
 SCHEDULE subscriptionAudit() at SubscriptionAuditInterval;
 }

 // documentExpireAudit() - removes any expired documents from the local document
 // space.
 PROCEDURE documentExpireAudit() {
 FOR each document in GlobalDocumentSpace DO
 IF document.expires is in past THEN
 REMOVE document from GlobalDocumentSpace;
 ENDIF;
 ENDFOR;

 // Schedule our next audit run.
 SCHEDULE documentExpireAudit() at ExpireAuditInterval;
 }

 // notificationCallback() is the notification callback endpoint for delivery of
 // subscription events from remote DDS Peers.
 API notificationCallback(notifications) RETURNS status {
 VALIDATE parameters notifications RETURNING failed if invalid;

 // Reject the notification of not from a valid peer.
 IF notifications.providerId not in list of Peers DO
 RETURN status of failed(invalid peer);
 ENDIF;

 // Process each notification, storing new/updated documents and propagating any
 // changes to peers.
 FOR each notification in notifications DO
 // Get document out of notification.
 SET document to notification.document;

 // Create a unique document identifier for indexing.
 CALL uid(document.nsa, document.type, document.id) RETURNING uid;

 // If an old version of the document is present make sure this is a newer
 // version before storing and propagating.
 SET oldDocument to GlobalDocumentSpace.get(uid);
 IF oldDocument is present THEN
 IF oldDocument.version is less than document.version THEN
 REPLACE oldDocument in GlobalDocumentSpace with document;
 STORE current date/time in LastDiscovered indexed by uid;
 CALL propagateDocument(providerId, UPDATE, document);
 ENDIF;
 ELSE
 STORE document in GlobalDocumentSpace indexed by uid;
 STORE current date/time in LastDiscovered for uid;
 CALL propdateDocument(providerId, NEW, document);
 ENDIF;
 ENDFOR;	
 }

 // propdateDocument() sends document notification events to all DDS peer subscribed
 // for the document event type.
 PROCEDURE propagateDocument(providerId, event, document) {
 // Inspect each subscription to see if it matches this document event.
 FOR each subscription in PeerSubscriptions DO
 // Do not send the document event back to the originating provider.
 IF subscription.requesterId equals providerId THEN
 CONTINUE;
 ENDIF;

 // If the subscription matches the document even propagate.
 IF subscription.filter matches event and document THEN
 SET callback to subscription.callback;
 SET notification to new notification(MyNsaId, event, document);
 CALL callback(notification) RETURNING status;

 // Subscription may no longer be valid. Delete and let peer
 // re-register their next audit.
 IF status is not success THEN
 DELETE subscription from PeerSubscriptions;
 ENDIF;
 ENDIF;
 ENDFOR;
 }

 // getDocuments() returns a list of documents and the time of the latest document
 // change on the DDS provider.
 API getDocuments([nsa], [type], [id], [lastDiscoveredTime])
 RETURNS status, a list of [0..n] document, and [lastDiscoveredTime] {
 VALIDATE parameters nsa, type, id, and lastDiscoveredTime
 RETURNING status of failed(invalid parameter) if invalid;

 DECLARE a list variable called results to hold documents matching the
 query filter;
 DECLARE a date/time variable called newLast to hold the time of the most recently
 discovered document;

 SET newLast to Date(0);

 IF lastDiscoveredTime is absent THEN
 SET lastDiscoveredTime to Date(0);
 ENDIF;

 // Inspect each document in the GDS for a match.
 FOR each document in GlobalDocumentSpace DO
 // Create a unique document identifier for indexing.
 CALL uid(document.nsa, document.type, document.id) RETURNING uid;

 // Determine if this document meets any lastDiscoveredTime criteria.
 DECLARE a date/time variable called currentLast to hold the current document’s
 last discovered time;
 SET currentLast to LastDiscovered.get(uid);
 IF currentLast is later than lastDiscoveredTime THEN
 // Now match on the other criteria.
 IF document matches filter(nsa, type, id) THEN
 STORE document in results;

 // Track the latest discovered time.
 IF currentLast is later than newLast THEN
 STORE currentLast in newLast;
 ENDIF;
 ENDIF;
 ENDIF;
 ENDFOR;

 RETURN status of success, results, and newLast;
 }

 // getLocalDocuments() returns a list of documents associated with the queried DDS
 // provider and the time of the latest document change on that provider.
 API getLocalDocuments([type], [id], [lastDiscoveredTime])
 RETURNS status, a list of [0..n] document, and [lastDiscoveredTime] {
 CALL getDocuments(MyNsaId, type, id, lastDiscoveredTime)
 RETURNS results and newLast;
 RETURN results and newLast;
 }

 // getDocument() returns the requested document and the time of the latest change
 // on the document.
 API getDocument(nsa, type, id, [lastDiscoveredTime])
 RETURNS status, [document], and [lastDiscoveredTime] {
 CALL getDocuments(nsa, type, id, lastDiscoveredTime) RETURNS results and newLast;
 RETURN results and newLast;
 }

 // addDocument() adds a new document to the space associated with the DDS provider.
 API addDocument(nsa, type, id, version, expires, [signature], contents)
 RETURNS status, [document], and [lastDiscoveredTime] {
 VALIDATE nsa, type, id, version, expires, signature, and contents
 RETURNING status of failed(invalid parameter) if invalid;

 // Build the unique document identifier and determine if document already exists.
 CALL uid(document.nsa, document.type, document.id) RETURNING uid;
 SET document to GlobalDocumentSpace.get(uid);

	// A document can only be added when one does not already exist.
 IF document is present THEN
 RETURN status of failed(document exists);
 ENDIF;

 // Add the new document.
 SET document to
 new document(nsa, type, id, version, expires, signature, contents);
 STORE document in GlobalDocumentSpace indexed by uid;

 // Update the lastDiscoveredTime.
 SET lastDiscoveredTime as current date/time;
 STORE lastDiscoveredTime in LastDiscovered indexed by uid;

 // Send the new document event to all peers.
 CALL propagateDocument(MyNsaId, NEW, document);

 RETURN status of success, document, and lastDiscoveredTime;
 }

 // updateDocument - updates an existing document within the space associated with the
 // DDS provider.
 API updateDocument(nsa, type, id, version, expires, [signature], contents)
 RETURNS status, [document], and [lastDiscoveredTime] {
 VALIDATE nsa, type, id, version, expires, signature, and contents
 RETURNING status of failed(invalid parameter) if invalid;

 // Build the unique document identifier and retrieve the document for update.
 CALL uid(document.nsa, document.type, document.id) RETURNING uid;
 SET document to GlobalDocumentSpace.get(uid);

 // A document must be present to update.
 IF document is not present THEN
 RETURN status of failed(document does not exists);
 ENDIF;

 // Update only if this is a new document.
 IF document.version is not less than version THEN
 RETURN status of failed(invalid version);
 ENDIF;

 // Replace existing document with the updated document.
 SET updatedDocument to
 new document(nsa, type, id, version, expires, signature, contents);
 REPLACE document in GlobalDocumentSpace with updatedDocument;

 // Update the lastDiscoveredTime.
 SET lastDiscoveredTime as current date/time;
 STORE lastDiscoveredTime in LastDiscovered indexed by uid;

 // Send document update event to all peers.
 CALL propagateDocument(MyNsaId, UPDATE, document);

 RETURN status of success, document, and lastDiscoveredTime;
 }

 // addSubscription() subscribes a requester for document event notifications based on
 // the supplied filter.
 API addSubscripton(requesterId, callback, filter)
 RETURNS status, [subscription], and [lastModifiedTime] {
 VALIDATE requesterId, callback, and filter
 RETURNING status of failed(invalid parameter) if invalid;

 // Create the new subscription with a new unique subscription identifier.
 SET subscription to new subscription(requesterId, callback, filter);
 STORE subscription in PeerSubscriptions indexed by subscription.id;

 // Save the of this subscription’s creation for lastModifiedTime queries.
 SET lastModifiedTime as current date/time;
 STORE lastModifiedTime in LastModified indexed by subscription.id;

 // Send a notification for all documents matching the new filter but with document
 // event All.
 FOR each document in GlobalDocumentSpace DO
 IF subscription.filter matches document THEN
 SET callback to subscription.callback;
 SET notification to new notification(MyNsaId, All, document);
 CALL callback(notification) RETURNING status;
 IF status is not success THEN
 DELETE subscription from PeerSubscriptions;
 RETURN status of failed(invalid endpoint);
 ENDIF;
 ENDIF;
 ENDFOR;

 RETURN status of success, subscription, and lastModifiedTime;
 }

 // editSubscription() allows an existing subscription to be edited.
 API editSubscription(id, requesterId, callback, filter)
 RETURNS status, [subscription], and [lastModifiedTime] {
 VALIDATE id, requesterId, callback, and filter
 RETURNING status of failed(invalid parameter) if invalid;

 // Get the current subscription.
 SET subscription to PeerSubscriptions.get(id);

 // A subscription must be present to update.
 IF subscription is not present THEN
 RETURN status of failed(subscription does not exists);
 ENDIF;

 // Update the subscription.
 SET newSubscription to new subscription(requesterId, callback, filter);
 REPLACE subscription in PeerSubscriptions with newSubscription;

 // Updated the last modified time.
 SET lastModifiedTime as current date/time;
 STORE lastModifiedTime in LastModified indexed by subscription.id;

 // Build a list of notifications based on documents matching the updated filter
 // criteria.
 DECLARE a list variable called notifications to hold a list of notification for
 each document matching filter criteria;
 FOR each document in GlobalDocumentSpace DO
 IF newSubscription.filter matches document THEN
 SET notification to new notification(MyNsaId, All, document);
 STORE notification in notifications;
 ENDIF;
 ENDFOR;

 // Send list of notifications to the subscriber.
 SET callback to newSubscription.callback;
 CALL callback(notifications) RETURNING status;
 IF status is not success THEN
 DELETE newSubscription from PeerSubscriptions;
 RETURN status of failed(invalid endpoint);
 ENDIF;

 RETURN status of success, newSubscription, and lastModifiedTime;
 }

 // deleteSubscription() deletes the subscription associated with id from the provider
 // NSA.
 API deleteSubscription(id) RETURNS status, and [subscription] {
 VALIDATE id RETURNING status of failed(invalid parameter) if invalid;

 // Get the subscription.
 SET subscription to PeerSubscriptions.get(id);

 // A subscription must be present to delete.
 IF subscription is not present THEN
 RETURN status of failed(subscription not found);
 ENDIF;

 DELETE subscription from PeerSubscriptions;

 RETURN status of success and subscription;
 }

 // getSubscriptions() returns a list of subscriptions and the time of the latest
 // subscription change on the provider NSA.
 API getSubscriptions([requesterId], [lastModifiedTime])
 RETURNS status, list of [0..n] subscription, and [lastModifiedTime] {
 VALIDATE requesterId and lastModifiedTime
 RETURNING status of failed(invalid parameter) if invalid;

 DECLARE a list variable called results to hold the matching list of subscriptions;
 DECLARE a date/time variable called newLast to hold the most recent
 lastModifiedTime;

 SET newLast to Date(0);

 // If a lastModifiedTime filter was not provided set to start of time so all
 // subscriptions are more recent.
 IF lastModifiedTime is absent THEN
 SET lastModifiedTime to Date(0);
 ENDIF;

	// Add subscriptions that match the requested filter.
	FOR each subscription in PeerSubscriptions DO
 DECLARE a date/time variable called currentLast to hold this subscription's
 lastModifiedTime;
 SET currentLast to LastModified.get(subscription.id);
 IF currentLast is later than lastModifiedTime THEN
 IF subscription matches filter(requesterId, lastModifiedTime) THEN
 STORE subscription in results;

 IF currentLast is later than newLast THEN
 STORE currentLast in newLast;
 ENDIF;
 ENDIF;
	 ENDIF;
 ENDFOR;

 RETURN status of success, results, and newLast;
 }

 // getSubscription() returns a single subscription identified by the id parameter and
 // the time this subscription was last modified.
 API getSubscription(id, [lastModifiedTime])
 RETURNS status, [subscription], and [lastModifiedTime] {
 VALIDATE id and lastModifiedTime
 RETURNING status of failed(invalid parameter) if invalid;

 // Get the subscription.
 SET subscription to PeerSubscriptions.get(id);

 // A subscription must be present for this to be successful.
 IF subscription is not present THEN
 RETURN status of failed(subscription not found);
 ENDIF;

 DECLARE a date/time variable called currentLast to hold this subscription's
 lastModifiedTime;
 SET currentLast to LastModified.get(subscription.id);

 // If a lastModifiedTime filter was not provided set to start of time so all
 // subscriptions are more recent.
 IF lastModifiedTime is absent THEN
 SET lastModifiedTime to Date(0);
 ENDIF;

 IF currentLast is later than lastModifiedTime THEN
 RETURN status of success and subscription;
 ELSE
 RETURN status of success(not modified);
 ENDIF;
 }

 // getAll() returns a collection of subscriptions, documents, and local documents
 // discovered since lastDiscoveredTime (treating lastDiscoveredTime as
 // lastModifiedTime in the case of subscriptions). The time of the last
 // discovered/modified element is also returned.
 API getAll([lastDiscoveredTime])
 RETURNS status, list of [0..n] subscription, list of [0..n] document,
 list of [0..n] local document, and [lastDiscoveredTime] {
 VALIDATE lastDiscoveredTime
 RETURNING status of failed(invalid parameter) if invalid;

 DECLARE a list variable called subscriptions to hold the matching list of
 subscriptions;
 DECLARE a list variable called documents to hold the matching list of documents;
 DECLARE a list variable called local to hold the matching list of local documents;
 DECLARE a variable called status to hold the return status of method calls;
 DECLARE a date/time variable called recentTime to hold the lastDiscoveredTime;
 DECLARE a date/time variable called currentLast to hold the individual call
 results;

 CALL getSubscriptions(NULL, lastModifiedTime)
 RETURNING status, subscriptions, and recentTime;
 IF status is failed THEN
 RETURN status;
 ENDIF;

 CALL getDocuments(NULL, NULL, NULL, lastDiscoveredTime)
 RETURNING status, documents, and currentLast;
 IF status is failed THEN
 RETURN status;
 ENDIF;

 IF currentLast is later than recentTime THEN
 SET recentTime to currentLast;
 ENDIF;

 CALL getLocalDocuments(NULL, NULL, lastDiscoveredTime)
 RETURNING status, local, and lastDiscoveredTime;
 IF status is failed THEN
 RETURN status;
 ENDIF;

 IF currentLast is later than recentTime THEN
 SET recentTime to currentLast;
 ENDIF;

	RETURN status of success, subscriptions, documents, local, and recentTime;
 }

END;
[bookmark: _Toc299283688]Appendix II – NSI Document Distribution Service Schema
<?xml version="1.0" encoding="UTF-8"?>
<!--
The OGF takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the implementation
or use of the technology described in this document or the extent to which any
license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Copies of
claims of rights made available for publication and any assurances of licenses
to be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by implementers or
users of this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights, which may cover
technology that may be required to practice this recommendation. Please
address the information to the OGF Executive Director.

This document and the information contained herein is provided on an "As Is"
basis and the OGF disclaims all warranties, express or implied, including but
not limited to any warranty that the use of the information herein will not
infringe any rights or any implied warranties of merchantability or fitness
for a particular purpose.

Copyright (C) Open Grid Forum (2009-2012). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole or
in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing
the copyright notice or references to the OGF or other organizations, except as
needed for the purpose of developing Grid Recommendations in which case the
procedures for copyrights defined in the OGF Document process must be followed,
or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by
the OGF or its successors or assignees.

Open Grid Forum NSI Document Distribution Service Protocol v1.0.

Description: This is the NSI Document Distribution Protocol types schema for
the reference web services implementation of the OGF NSI Document Distribution
Service v1.0. The Document Distribution Service provides the primary mechanism
for information discovery within the Network Service Framwork suite of protocols.
Comments and questions can be directed to the mailing list group
mailing list (nsi-wg@ogf.org).
-->
<xsd:schema targetNamespace="http://schemas.ogf.org/nsi/2014/02/discovery/types"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://schemas.ogf.org/nsi/2014/02/discovery/types"
 version="1.0">

 <xsd:annotation>
 <xsd:appinfo>ogf_nsi_discovery_protocol_v1_0.xsd 2014-02-20</xsd:appinfo>
 <xsd:documentation xml:lang="en">
 This is an XML schema document describing the OGF NSI Document
 Distribution Service Protocol v1.0.
 </xsd:documentation>
 </xsd:annotation>

 <!-- Collection for root resource definition. -->
 <xsd:element name="collection" type="tns:CollectionType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This root resource contains a collection of zero or more
 subscriptions and documents held within the NSA.

 HTTP operations: GET
 URI: /

 HTTP Parameters:
 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 If-Modified-Since - Return only entries discovered or
 modified since this time.

 Query Parameters: None

 Returns (code, element):
 200	collection
 Return collection element containing all subscription
 and document resources matching the query. If no
 subscriptions or documents match the query, then an empty
 documents collection is returned.

 304	None
 Successful operation where there were no changes to any
 subscription or document resource given the If-Modified-Since
 criteria. Returns no message body.

 400	error
 Returned if a client specifies an invalid request. An
 error element will be included populated with appropriate
 error information.

 500	error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be
 included populated with appropriate error information.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="CollectionType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type definition for a collection of discoverable resources.
 This type contains a list of subscriptions and docuemnts
 matching the query parameters. Extensibility is added to
 allow inclusion of resources from other namespaces as needed.

 Elements:

 subscriptions - A list of subscription resources within the
 system.

 documents - A list of document resources stored within the
 document space of this provider.

 local - A list of document resources published by the local
 provider.

 other - Provides a flexible mechanism allowing additional elements
 to be provided from other namespaces without needing to update
 this schema definition.

 Attributes:

 other - Provides a flexible mechanism allowing additional attributes
 to be provided from other namespaces without needing to update
 this schema definition.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element ref="tns:subscriptions" minOccurs="0" />
 <xsd:element ref="tns:documents" minOccurs="0" />
 <xsd:element ref="tns:local" minOccurs="0" />
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

 <!-- A list of subscriptions. -->
 <xsd:element name="subscriptions" type="tns:SubscriptionListType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The subscriptions resource contains a collection of zero or
 more subscriptions held within the provider NSA.

 HTTP operations: GET
 URI: /subscriptions

 HTTP Parameters:
 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 If-Modified-Since - Constrains the GET request to return only
 those subscriptions that have been created or updated since the
 time specified in this parameter.

 Query Parameters:
 requesterId - Return all subscription resources containing the
 specified requesterId.

 Returns (code, element):

 200	subscriptions
 Return all subscription resources matching the query in a
 subscriptions element. If no subscriptions match the query,
 then an empty subscriptions element is returned.

 304 None
 Successful operation where there were no changes to any
 subscription resources matching the query filter given the
 If-Modified-Since criteria. Returns no message body.

 400	error
 Returned if a client specifies an invalid request. An error
 element will be included populated with appropriate error
 information.

 500	error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be included
 populated with appropriate error information.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="SubscriptionListType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type definition for a list of subscription resources.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element ref="tns:subscription" minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

 <!-- A signle subscription resource definition. -->
 <xsd:element name="subscription" type="tns:SubscriptionType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The subscription resource contains a single subscription from
 the provider NSA.

 HTTP operations: GET
 URI: /subscriptions/{id}
 {id} is the unique subscription identifier.

 HTTP Parameters:
 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 If-Modified-Since - Constrains the GET request to return only
 the subscription if it has been updated since the time specified
 in this parameter.

 Query Parameters: None

 Returns (code, element):

 200	subscription
 Successful operation returns the subscription identified by
 id in a subscription element. The Last-Modified header
 parameter will contain the time this subscription resource
 was last modified.

 304 None
 Successful operation where there were no changes to the
 subscription resource identified by id given the
 If-Modified-Since criteria. Returns no message body.

 400	error
 Returned if a client specifies an invalid request. An error
 element will be included populated with appropriate error
 information.

 404 error
 Returned if the requested subscription was not found. An
 error element will be included populated with appropriate
 error information.

 500	error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be included
 populated with appropriate error information.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="SubscriptionType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type models the subscription resource.

 Elements:

 requesterId	- The identifier of the requester client that created
 the subscription. An NSA must use its unique NSA identifier for
 requesterId.

 callback - The HTTP endpoint on the client host that will receive
 the notifications delivered for this subscription.

 filter - The filter criteria to apply to document events to determine
 if a notification should be sent to the client.

 other - Provides a flexible mechanism allowing additional elements
 to be provided from other namespaces without needing to update
 this schema definition.

 Attributes:

 id - The provider assigned subscription identifier.

 href - The direct URI reference to the resource.

 version - The version of the subscription. Indicates the last
 time the subscription was modified.

 other - Provides a flexible mechanism allowing additional attributes
 to be provided from other namespaces without needing to update
 this schema definition.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="requesterId" type="xsd:string" />
 <xsd:element name="callback" type="xsd:anyURI" />
 <xsd:element name="filter" type="tns:FilterType" minOccurs="0" />
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" use="required" type="xsd:string" />
 <xsd:attribute name="href" use="required" type="xsd:anyURI" />
 <xsd:attribute name="version" use="required" type="xsd:dateTime" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

 <xsd:element name="subscriptionRequest" type="tns:SubscriptionRequestType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The subscriptionRequest is a collection of parameters from the
 subscription resource that is used to create a new subscription
 resource or update an existing subscription resource.

 Once a subscription has been successfully created or updated on
 the provider the server will immediately send notifications for
 all documents matching the filter criteria independent of the
 event filter.

 HTTP operations: POST (create), PUT (update)
 URI: /subscriptions

 HTTP Parameters:
 Content-Type - Identifies the content type encoding of the POST
 body contents. Must be a content type supported by the protocol.

 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 If-Modified-Since - Constrains the GET request to return only
 the subscription if it has been updated since the time specified
 in this parameter.

 Query Parameters: N/A

 Returns (code, element):

 201	subscription
 Returns a copy of the new subscription resource created as
 the result of a successful operation. The HTTP Location
 header field will contain the URI of the new subscription
 resource.

 400	error
 Returned if a client specifies an invalid request. An error
 element will be included populated with appropriate error
 information.

 403	error
 The server understood the request, but is refusing to fulfill
 it. Authorization will not help and the request SHOULD NOT be
 repeated. An error element will be included populated with
 appropriate error information.

 500	error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be included
 populated with appropriate error information.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="SubscriptionRequestType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type models a subset of parameters from the subscription
 resource used during creation and updates.

 Elements:

 requesterId	- The identifier the requesting client would like to
 use for unique identification. An NSA must use its unique NSA
 identifier for requesterId.

 callback - The HTTP endpoint on the client host that will receive
 the notifications delivered for this subscription.

 filter - The filter criteria to apply to document events to determine
 if a notification should be sent to the client.

 other - Provides a flexible mechanism allowing additional elements
 to be provided from other namespaces without needing to update
 this schema definition.

 Attributes:

 other - Provides a flexible mechanism allowing additional attributes
 to be provided from other namespaces without needing to update
 this schema definition.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="requesterId" type="xsd:string" />
 <xsd:element name="callback" type="xsd:anyURI" />
 <xsd:element name="filter" type="tns:FilterType" minOccurs="0" />
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

 <xsd:complexType name="FilterType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type is the base notification filter for subscriptions.
 The include element specifies the document event match criteria
 to include, while the exclude element specifies those to
 specifically exclude. The include will be evaluated first, then
 the exclude will be applied.

 Elements:

 include – Include notifications matching these criteria.

 exclude - Exclude the notifications matching these criteria.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="include" type="tns:FilterCriteriaType" minOccurs="0" maxOccurs="unbounded" />
 <xsd:element name="exclude" type="tns:FilterCriteriaType" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="FilterCriteriaType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type models the criteria that can be included in the
 notfication filter for subscriptions.

 Elements:

 event – The type of document event that will generate a
 notification. Currently only three events are supported (All,
 New, Updated). At least one of event criteria must be
 supplied. The default event criteria is All.

 or – Any document matching any of the supplied nsa, document
 type, or document id values.

 and - Any document matching all of the supplied nsa, document
 type, or document id values (logical AND).
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="event" type="tns:DocumentEventType" default="All" minOccurs="1" maxOccurs="3" />
 <xsd:element name="or" type="tns:FilterOrType" minOccurs="0" maxOccurs="unbounded" />
 <xsd:element name="and" type="tns:FilterAndType" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:simpleType name="DocumentEventType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This is a simple string type enumerating the types of document
 events that can be included in a filter.

 All - Matches all document events.

 New - Matches new documents that are discovered in the space.

 Updated - Matches existing documents in the space that are updated.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="All"/>
 <xsd:enumeration value="New"/>
 <xsd:enumeration value="Updated"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="FilterAndType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This filter criteria type lists elements that can be matched in a
 document as part of the decision to generate or not generate a
 notification. The supplied nsa, document type, and document id
 values are evaluted as a logical AND so that all included values
 must match.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="nsa" type="xsd:anyURI" minOccurs="0" />
 <xsd:element name="type" type="xsd:string" minOccurs="0" />
 <xsd:element name="id" type="xsd:string" minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="FilterOrType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This filter criteria type lists elements that can be matched in a
 document as part of the decision to generate or not generate a
 notification. The supplied nsa, document type, and document id
 values are evaluted as a logical OR so that any included values
 that match result in a criteria match.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="nsa" type="xsd:anyURI" />
 <xsd:element name="type" type="xsd:string" />
 <xsd:element name="id" type="xsd:string" />
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>

 <!-- A list of notifications. -->
 <xsd:element name="notifications" type="tns:NotificationListType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 When a document event occurs matching a registered subscription
 the provider must issue a notification to the requester endpoint
 identified in the subscription resource. This element is sent
 in the body of a POST request to the requester endpoint.

 Multiple events can be grouped and delivered together in a single
 notification if these events occur within a reasonable period of
 time of each other. Notification delivery should not be delayed.

 Notifications are also sent when a subscription is first created,
 and after a subscription is modified. This notification will
 include any documents matching the filter criteria.

 HTTP operations: POST
 URI: /client-supplied-endpoint

 HTTP Parameters:

 Content-Type - Identifies the content type encoding of the POST
 body contents. Must be identical to the value as used by the
 client on subscription.

 Query Parameters: N/A

 Returns (code, element):

 202	None
 Indicates the subscribed client has accepted the notification
 for processing. The client receiving the notification must
 return an HTTP 202 status code in response to the POST.
 Any other status code will result in a deletion of the
 subscription.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="NotificationListType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type definition for a list of notifications.

 Elements:

 notification - A list of zero or more notifications matching the
 subscription filter criteria.

 Attributes:

 providerId - The identifier of the provider generating the
 notification. This is the provider on which the subscription
 was created.

 id - The identifier of the subscription that generated the
 notifications.

 href - The URI reference for subscription that generated the
 notification. This can be used to directly access the
 subscription.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element ref="tns:notification" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:attribute name="providerId" use="required" type="xsd:anyURI" />
 <xsd:attribute name="id" use="required" type="xsd:string" />
 <xsd:attribute name="href" use="required" type="xsd:anyURI" />
 </xsd:complexType>

 <!-- A single notfication. -->
 <xsd:element name="notification" type="tns:NotificationType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This element models a single document notification and is
 included in the notifications element.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="NotificationType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type models a single document notification event.

 Elements:

 discovered - The time this document event was detected on the
 provider. It is not the time the notification was generated.
 It also should be noted that this time could be a considerable
 period in the past if the notification was sent as the result
 of a subscription creation or edit.

 event - The type of document event this notification represents.

 document - The document metadata entry associated with the
 notification.

 other - Provides a flexible mechanism allowing additional element
 to be provided from other namespaces without needing to update
 this schema definition.

 Attributes:

 other - Provides a flexible mechanism allowing additional attributes
 to be provided from other namespaces without needing to update
 this schema definition.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="discovered" type="xsd:dateTime" />
 <xsd:element name="event" type="tns:DocumentEventType" />
 <xsd:element name="document" type="tns:DocumentType" />
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

 <!-- A list of documents. -->
 <xsd:element name="documents" type="tns:DocumentListType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The documents element models a list of documents from the
 document space.

 HTTP operations: GET
 URI: /documents/{nsa}/{type}

 The documents element contains document resources discovered
 within the document space, or a subset of documents based on
 supplied query parameters. Zero or more document instances will
 be returned in a documents element.

 The URI template “/documents/{nsa}/{type}” can be used as an
 alternative to, or in conjunction with, the use of query
 parameters. Performing a GET on “/documents/{nsa}/” will
 return all documents associated with the specified NSA.
 Performing a GET on “/documents/{nsa}/{type}” will return
 all documents of {type} from the specified NSA.

 HTTP Parameters:

 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 If-Modified-Since - Constrains the GET request to return only
 those documents that have been created or updated since the
 time specified in this parameter.

 Query Parameters:

 id (string) - Return all document resources containing the specified Id.

 nsa (string) - Return all document resources containing the
 specified nsa identifier. Cannot be used if the {nsa} URI
 component is provided.

 type (string) - Return all document resources containing the
 specified type. Cannot be used if the {type} URI component is
 provided.

 summary	(none) - Will return summary results of any documents
 matching the query criteria. Summary results includes all
 document meta-data but not the signature or document contents.

 Returns (code, element):

 200	documents
 Return all document resources matching the query in a
 documents element. If no documents match the query,
 then an empty documents element is returned.

 304 None
 Successful operation where there were no changes to any
 subscription resources matching the query filter given the
 If-Modified-Since criteria. Returns no message body.

 400	error
 Returned if a client specifies an invalid request. An error
 element will be included populated with appropriate error
 information.

 500	error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be included
 populated with appropriate error information.

 HTTP operations: POST
 URI: /documents

 The POST operation on the “/documents” resource will create a
 new document using the information supplied in the document
 element contained in the POST body. A successful operation
 will return the new document resource. This operation has
 restricted access for clients and is made available by the
 server based on access control permissions.

 Once a document has been successfully created on the server,
 the server will immediately send notifications to all
 subscriptions with filter criteria matching the document.

 HTTP Parameters:

 Content-Type - Identifies the content type encoding of the POST
 body contents. Must be a content type supported by the protocol.

 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 If-Modified-Since - Constrains the GET request to return only
 those documents that have been created or updated since the
 time specified in this parameter.

 Body Parameters:

 document - The document to add to the document space of the
 local provider.

 Returns (code, element):

 201	document
 Returns a copy of the new document resource created as the
 result of a successful operation. The HTTP Location header
 field will contain the direct URI reference of the new
 document resource. It will be structured using the URI
 template $root/documents/{nsa}/{type}/{id}.

 400	error
 Returned if a client specifies an invalid request. An error
 element will be included populated with appropriate error
 information.

 403	error
 The server understood the request, but is refusing to fulfill
 it. Authorization will not help and the request SHOULD NOT
 be repeated. An error element will be included populated
 with appropriate error information.

 409	error
 A document already exists with the same name (nsa/type/id).
 An update of an existing document should use the PUT
 operation.

 500	error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be
 included populated with appropriate error information.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:element name="local" type="tns:DocumentListType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The local element models a list of documents from the document
 space published by the local provider NSA.

 HTTP operations: GET
 URI: /local/{type}

 The local element contains document resources published by the
 local provider, or a subset of documents based on supplied query
 parameters. Zero or more document instances will be returned in
 a local element.

 A client can perform a GET operation on the special “/local” URI
 when it would like to discover all documents associated with the
 local provider NSA. This operation is equivalent to performing a
 GET operation on the URI “/documents/{nsa}”, however, for “/local”
 the client is not required to have previous knowledge of the
 provider NSA identifier.

 The URI template “/local/{type}” can be used as an alternative to,
 or in conjunction with, the use of query parameters. Performing
 a GET on “/local/{type}/” will return all documents of {type}
 associated with the local NSA.

 HTTP Parameters:

 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 If-Modified-Since - Constrains the GET request to return only
 those documents that have been created or updated since the
 time specified in this parameter.

 Query Parameters:

 id (string) - Return all document resources containing the
 specified Id.

 type (string) - Return all document resources containing the
 specified type. Cannot be used if the {type} URI component is
 provided.

 summary	(none) - Will return summary results of any documents
 matching the query criteria. Summary results includes all
 document meta-data but not the signature or document contents.

 Returns (code, element):

 200	local
 Return all document resources matching the query in a
 documents element. If no documents match the query,
 then an empty documents element is returned.

 304 None
 Successful operation where there were no changes to any
 document resources matching the query filter given the
 If-Modified-Since criteria. Returns no message body.

 400	error
 Returned if a client specifies an invalid request. An error
 element will be included populated with appropriate error
 information.

 500	error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be included
 populated with appropriate error information.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="DocumentListType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type provides a list of zero or more documents.

 Elements:

 document - The document meta-data entry within the document space.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element ref="tns:document" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>

 <!-- A single document. -->
 <xsd:element name="document" type="tns:DocumentType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The document element models the metadata for a single document
 from the document space.

 HTTP operations: GET
 URI: /documents/{nsa}/{type}/{id}

 This operation will return a specific document instance
 discovered within the document space based on the URI template
 “/documents/{nsa}/{type}/{id}”, where {nsa} is the NSA sourcing
 the document, {type} is the type of document, and {id} is the
 identifier of the specific document. The matching document is
 returned in a single document element.

 HTTP Parameters:

 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 If-Modified-Since - Constrains the GET request to return only
 those documents that have been created or updated since the
 time specified in this parameter.

 Query Parameters: None.

 Returns (code, element):

 200	local
 Successful operation returns the document identified by
 {nsa}/{type}/{id} in a document element. The Last-Modified
 header parameter will contain the time this document resource
 was last discovered.

 304 None
 Successful operation returns the document identified by
 {nsa}/{type}/{id} in a document element. The Last-Modified
 header parameter will contain the time this document resource
 was last discovered.

 400	error
 Returned if a client specifies an invalid request. An error
 element will be included populated with appropriate error
 information.

 404	error
 Returned if the requested document was not found. An error
 element will be included populated with appropriate error
 information.

 500	error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be included
 populated with appropriate error information.

 HTTP operations: PUT
 URI: /documents/{nsa}/{type}/{id}

 The PUT operation on the “/documents/{nsa}/{type}/{id}” resource
 will allow a client to edit the document corresponding to the
 identifier {id}, using the information supplied in the document
 element contained in the PUT body. A successful operation will
 return the modified document and trigger any associated
 notifications within the NSA.

 A document is deleted from the document space by updating it’s
 expire date to a reasonably short period in the future. This
 updated document will get propagated throughout the document
 space and then expire, removing it from the space.

 HTTP Parameters:

 Content-Type - Identifies the content type encoding of the PUT
 body contents. Must be a content type supported by the
 protocol.

 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 Body Parameters:

 document - The document to update in the document space of the
 local provider. The PUT request must contain the document
 element containing the existing parameters of the document
 resource if they were not modified, as well as any new/edited
 values.

 Returns (code, element):

 200 document
 Returns a copy of the modified document resource as the
 result of a successful operation.

 400 error
 Returned if a client specifies an invalid request. An
 error element will be included populated with appropriate
 error information.

 403 error
 The server understood the request, but is refusing to fulfill
 it. Authorization will not help and the request SHOULD NOT be
 repeated. An error element will be included populated with
 appropriate error information.

 404 error
 Returned if the requested document was not found. An error
 element will be included populated with appropriate error
 information.

 500 error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be included
 populated with appropriate error information.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="DocumentType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The DocumentType type definition models a data relating to a
 single document exchanged within the network. Meta-data
 associated with the document, document signature, and the
 document itself is encapsulated in this type. The type
 itself is structured such that it does not need to be
 manipulated between receiving and propagating to a peer.

 A document is uniquely named within the network by the tuple
 of nsa, type, and id. The identifier element itself does not
 need to be unique within the network; it must just be unique
 within the context of the nsa and type elements. These rules
 allow the reuse of the same id value for a document of different
 types under the same source NSA. This is important for both
 searching, and for associating the same naming attribute to
 related documents.

 An NSA must not modify the contents of a DocumentType before
 propagating on to a peer unless that NSA is the owner of the
 document.

 Elements:

 nsa	- The source NSA associated with the generation and management
 of the document within the network. This is assumed to be the NSA
 to which the document relates, however, there may be situations
 such as proxy publishing where this assumption is not true.

 For example, if the document being generated is the NSA Description
 Document for NSA “urn:ogf:network:example.com:2013:nsa:vixen”, then
 the nsa element should contain is the NSA identifier
 “urn:ogf:network:example.com:2013:nsa:vixen”.

 type - The unique string identifying the type of this document.
 A document type is defined by the type and release of a data
 document. For example, NSI Topology version 1.0 and a NSI
 Topology version 2.0 would be considered two different document
 types:
 - vnd.ogf.nsi.topology.v1+xml
 - vnd.ogf.nsi.topology.v2+xml

 The NSA Description Document 1.0 is defined as the type:
 - vnd.ogf.nsi.nsa.v1+xml

 signature - The OPTIONAL digital signature of the document
 contents.

 content - The contents of the document modeled by this document
 resource.

 other - Provides a flexible mechanism allowing additional elements
 to be provided from other namespaces without needing to update
 this schema definition.

 Attributes:

 id - The identifier of the document. This value must be unique
 in the context of the nsa and type element values.

 version - The version of the document, or more specifically, the
 date this version of the document was created. Any updates to the
 document must be tagged with a new version.

 expires - The date this version of the document expires and
 should be deleted from the Global Document Space by an NSA and
 any clients caching the document.

 other - Provides a flexible mechanism allowing additional attributes
 to be provided from other namespaces without needing to update
 this schema definition.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="nsa" type="xsd:anyURI" />
 <xsd:element name="type" type="xsd:string" />
 <xsd:element name="signature" type="tns:AnyType" minOccurs="0" />
 <xsd:element name="content" type="tns:AnyType" minOccurs="0" />
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:attribute name="id" use="required" type="xsd:string" />
 <xsd:attribute name="href" use="optional" type="xsd:anyURI" />
 <xsd:attribute name="version" use="required" type="xsd:dateTime" />
 <xsd:attribute name="expires" use="required" type="xsd:dateTime" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

 <xsd:complexType name="AnyType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type is used to hold a document contents or digital
 signature within the document metadata. Basic types without
 a dedicated element definition can be referenced within this
 "##any" using the "value" element defined below.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:anyAttribute namespace="##any" processContents="lax" />
 </xsd:complexType>

 <xsd:element name="value" type="xsd:anyType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 A simple element allowing for the inclusion of values from the
 basic xml types (string, int, etc) within the signature and
 content elements without needing to define an external
 dedicated element type. Values with their own schema definitions
 should be included directly in the signature/content any
 definition and not within this value element.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:element name="error" type="tns:ErrorType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The error element is returned in an HTTP response when an error
 has occured servicing the request on the provider.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="ErrorType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type models errors returned from Document Distribution
 Service operations.

 Elements:

 code - The integer error code for the specific error.

 label - A character string label for the error.

 description - A detailed description of error.

 resource - The resource that caused the error.

 Attributes:

 id - The unique identifier of the error for correlation with logs.

 date - The date and time the error occured.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="code" type="xsd:int" />
 <xsd:element name="label" type="xsd:string" />
 <xsd:element name="description" type="xsd:string" />
 <xsd:element name="resource" type="xsd:anyURI" />
 </xsd:sequence>
 <xsd:attribute name="id" use="required" type="xsd:string" />
 <xsd:attribute name="date" use="required" type="xsd:dateTime" />
 </xsd:complexType>
</xsd:schema>
<?xml version="1.0" encoding="UTF-8"?>
<!--
The OGF takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the implementation
or use of the technology described in this document or the extent to which any
license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Copies of
claims of rights made available for publication and any assurances of licenses
to be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by implementers or
users of this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights, which may cover
technology that may be required to practice this recommendation. Please
address the information to the OGF Executive Director.

This document and the information contained herein is provided on an "As Is"
basis and the OGF disclaims all warranties, express or implied, including but
not limited to any warranty that the use of the information herein will not
infringe any rights or any implied warranties of merchantability or fitness
for a particular purpose.

Copyright (C) Open Grid Forum (2009-2012). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole or
in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing
the copyright notice or references to the OGF or other organizations, except as
needed for the purpose of developing Grid Recommendations in which case the
procedures for copyrights defined in the OGF Document process must be followed,
or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by
the OGF or its successors or assignees.

Open Grid Forum NSI Discovery Service Protocol v1.0.

Description: This is the NSI Discovery Service Protocol types schema for the
reference web services implementation of the OGF NSI Discovery Service v1.0.
Comments and questions can be directed to the mailing list group mailing list
(nsi-wg@ogf.org).

-->
<xsd:schema targetNamespace="http://schemas.ogf.org/nsi/2014/02/discovery/types"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://schemas.ogf.org/nsi/2014/02/discovery/types"
 xmlns:sig="http://www.w3.org/2000/09/xmldsig#"
 version="1.0">

 <xsd:annotation>
 <xsd:appinfo>ogf_nsi_discovery_protocol_v1_0.xsd 2014-02-20</xsd:appinfo>
 <xsd:documentation xml:lang="en">
 This is an XML schema document describing the OGF NSI Discovery
 Service Protocol v1.0.
 </xsd:documentation>
 </xsd:annotation>

 <!-- Import additional standard name spaces. -->
 <xsd:import namespace="http://www.w3.org/2000/09/xmldsig#" schemaLocation="xmldsig-core-schema.xsd"/>

 <!-- Collection for root resource definition. -->
 <xsd:element name="collection" type="tns:CollectionType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This root resource contains a collection of zero or more
 subscriptions and documents held within the NSA.

 HTTP operations: GET
 URI: /

 HTTP Parameters:
 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 If-Modified-Since - Return only entries discovered or
 modified since this time.

 Query Parameters: None

 Returns (code, element):
 200	collection
 Return collection element containing all subscription
 and document resources matching the query. If no
 subscriptions or documents match the query, then an empty
 documents collection is returned.

 304	None
 Successful operation where there were no changes to any
 subscription or document resource given the If-Modified-Since
 criteria. Returns no message body.

 400	error
 Returned if a client specifies an invalid request. An
 error element will be included populated with appropriate
 error information.

 500	error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be
 included populated with appropriate error information.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="CollectionType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type definition for a collection of discoverable resources.
 This type contains a list of subscriptions and docuemnts
 matching the query parameters. Extensibility is added to
 allow inclusion of resources from other namespaces as needed.

 Elements:

 subscriptions - A list of subscription resources within the
 system.

 documents - A list of document resources stored within the
 document space of this provider.

 local - A list of document resources published by the local
 provider.

 other - Provides a flexible mechanism allowing additional elements
 to be provided from other namespaces without needing to update
 this schema definition.

 Attributes:

 other - Provides a flexible mechanism allowing additional attributes
 to be provided from other namespaces without needing to update
 this schema definition.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element ref="tns:subscriptions" minOccurs="0" />
 <xsd:element ref="tns:documents" minOccurs="0" />
 <xsd:element ref="tns:local" minOccurs="0" />
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

 <!-- A list of subscriptions. -->
 <xsd:element name="subscriptions" type="tns:SubscriptionListType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The subscriptions resource contains a collection of zero or
 more subscriptions held within the provider NSA.

 HTTP operations: GET
 URI: /subscriptions

 HTTP Parameters:
 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 If-Modified-Since - Constrains the GET request to return only
 those subscriptions that have been created or updated since the
 time specified in this parameter.

 Query Parameters:
 requesterId - Return all subscription resources containing the
 specified requesterId.

 Returns (code, element):

 200	subscriptions
 Return all subscription resources matching the query in a
 subscriptions element. If no subscriptions match the query,
 then an empty subscriptions element is returned.

 304 None
 Successful operation where there were no changes to any
 subscription resources matching the query filter given the
 If-Modified-Since criteria. Returns no message body.

 400	error
 Returned if a client specifies an invalid request. An error
 element will be included populated with appropriate error
 information.

 500	error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be included
 populated with appropriate error information.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="SubscriptionListType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type definition for a list of subscription resources.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element ref="tns:subscription" minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

 <!-- A signle subscription resource definition. -->
 <xsd:element name="subscription" type="tns:SubscriptionType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The subscription resource contains a single subscription from
 the provider NSA.

 HTTP operations: GET
 URI: /subscriptions/{id}
 {id} is the unique subscription identifier.

 HTTP Parameters:
 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 If-Modified-Since - Constrains the GET request to return only
 the subscription if it has been updated since the time specified
 in this parameter.

 Query Parameters: None

 Returns (code, element):

 200	subscription
 Successful operation returns the subscription identified by
 id in a subscription element. The Last-Modified header
 parameter will contain the time this subscription resource
 was last modified.

 304 None
 Successful operation where there were no changes to the
 subscription resource identified by id given the
 If-Modified-Since criteria. Returns no message body.

 400	error
 Returned if a client specifies an invalid request. An error
 element will be included populated with appropriate error
 information.

 404 error
 Returned if the requested subscription was not found. An
 error element will be included populated with appropriate
 error information.

 500	error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be included
 populated with appropriate error information.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="SubscriptionType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type models the subscription resource.

 Elements:

 requesterId	- The identifier of the requester client that created
 the subscription. An NSA must use its unique NSA identifier for
 requesterId.

 callback - The HTTP endpoint on the client host that will receive
 the notifications delivered for this subscription.

 filter - The filter criteria to apply to document events to determine
 if a notification should be sent to the client.

 other - Provides a flexible mechanism allowing additional elements
 to be provided from other namespaces without needing to update
 this schema definition.

 Attributes:

 id - The provider assigned subscription identifier.

 href - The direct URI reference to the resource.

 version - The verison of the subscription. Indicates the last
 time the subscription was modified.

 other - Provides a flexible mechanism allowing additional attributes
 to be provided from other namespaces without needing to update
 this schema definition.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="requesterId" type="xsd:string" />
 <xsd:element name="callback" type="xsd:anyURI" />
 <xsd:element name="filter" type="tns:FilterType" minOccurs="0" />
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" use="required" type="xsd:string" />
 <xsd:attribute name="href" use="required" type="xsd:anyURI" />
 <xsd:attribute name="version" use="required" type="xsd:dateTime" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

 <xsd:element name="subscriptionRequest" type="tns:SubscriptionRequestType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The subscriptionRequest is a collection of parameters from the
 subscription resource that is used to create a new subscription
 resource or update an existing subscription resource.

 Once a subscription has been successfully created or updated on
 the provider the server will immediately send notifications for
 all documents matching the filter criteria independent of the
 event filter.

 HTTP operations: POST (create), PUT (update)
 URI: /subscriptions

 HTTP Parameters:
 Content-Type - Identifies the content type encoding of the POST
 body contents. Must be a content type supported by the protocol.

 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 If-Modified-Since - Constrains the GET request to return only
 the subscription if it has been updated since the time specified
 in this parameter.

 Query Parameters: N/A

 Returns (code, element):

 201	subscription
 Returns a copy of the new subscription resource created as
 the result of a successful operation. The HTTP Location
 header field will contain the URI of the new subscription
 resource.

 400	error
 Returned if a client specifies an invalid request. An error
 element will be included populated with appropriate error
 information.

 403	error
 The server understood the request, but is refusing to fulfill
 it. Authorization will not help and the request SHOULD NOT be
 repeated. An error element will be included populated with
 appropriate error information.

 500	error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be included
 populated with appropriate error information.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="SubscriptionRequestType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type models a subset of parameters from the subscription
 resource used during creation and updates.

 Elements:

 requesterId	- The identifier the requesting client would like to
 use for unique identification. An NSA must use its unique NSA
 identifier for requesterId.

 callback - The HTTP endpoint on the client host that will receive
 the notifications delivered for this subscription.

 filter - The filter criteria to apply to document events to determine
 if a notification should be sent to the client.

 other - Provides a flexible mechanism allowing additional elements
 to be provided from other namespaces without needing to update
 this schema definition.

 Attributes:

 other - Provides a flexible mechanism allowing additional attributes
 to be provided from other namespaces without needing to update
 this schema definition.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="requesterId" type="xsd:string" />
 <xsd:element name="callback" type="xsd:anyURI" />
 <xsd:element name="filter" type="tns:FilterType" minOccurs="0" />
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

 <xsd:complexType name="FilterType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type is the base notification filter for subscriptions.
 The include element specifies the document event match criteria
 to include, while the exclude element specifies those to
 specifically exclude. The include will be evaluated first, then
 the exclude will be applied.

 Elements:

 include – Include notifications matching these criteria.

 exclude - Exclude the notifications matching these criteria.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="include" type="tns:FilterCriteriaType" minOccurs="0" maxOccurs="unbounded" />
 <xsd:element name="exclude" type="tns:FilterCriteriaType" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="FilterCriteriaType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type models the criteria that can be included in the
 notfication filter for subscriptions.

 Elements:

 event – The type of document event that will generate a
 notification. Currently only three events are supported (All,
 New, Updated). At least one of event criteria must be
 supplied. The default event criteria is All.

 or – Any document matching any of the supplied nsa, document
 type, or document id values.

 and - Any document matching all of the supplied nsa, document
 type, or document id values (logical AND).
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="event" type="tns:DocumentEventType" default="All" minOccurs="1" maxOccurs="3" />
 <xsd:element name="or" type="tns:FilterOrType" minOccurs="0" maxOccurs="unbounded" />
 <xsd:element name="and" type="tns:FilterAndType" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:simpleType name="DocumentEventType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This is a simple string type enumerating the types of document
 events that can be included in a filter.

 All - Matches all document events.

 New - Matches new documents that are discovered in the space.

 Updated - Matches existing documents in the space that are updated.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="All"/>
 <xsd:enumeration value="New"/>
 <xsd:enumeration value="Updated"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="FilterAndType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This filter criteria type lists elements that can be matched in a
 document as part of the decision to generate or not generate a
 notification. The supplied nsa, document type, and document id
 values are evaluted as a logical AND so that all included values
 must match.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="nsa" type="xsd:anyURI" minOccurs="0" />
 <xsd:element name="type" type="xsd:string" minOccurs="0" />
 <xsd:element name="id" type="xsd:string" minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="FilterOrType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This filter criteria type lists elements that can be matched in a
 document as part of the decision to generate or not generate a
 notification. The supplied nsa, document type, and document id
 values are evaluted as a logical OR so that any included values
 that match result in a criteria match.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="nsa" type="xsd:anyURI" />
 <xsd:element name="type" type="xsd:string" />
 <xsd:element name="id" type="xsd:string" />
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>

 <!-- A list of notifications. -->
 <xsd:element name="notifications" type="tns:NotificationListType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 When a document event occurs matching a registered subscription
 the provider must issue a notification to the requester endpoint
 identified in the subscription resource. This element is sent
 in the body of a POST request to the requester endpoint.

 Multiple events can be grouped and delivered together in a single
 notification if these events occur within a reasonable period of
 time of each other. Notification delivery should not be delayed.

 Notifications are also sent when a subscription is first created,
 and after a subscription is modified. This notification will
 include any documents matching the filter criteria.

 HTTP operations: POST
 URI: /client-supplied-endpoint

 HTTP Parameters:

 Content-Type - Identifies the content type encoding of the POST
 body contents. Must be identical to the value as used by the
 client on subscription.

 Query Parameters: N/A

 Returns (code, element):

 202	None
 Indicates the subscribed client has accepted the notification
 for processing. The client receiving the notification must
 return an HTTP 202 status code in response to the POST.
 Any other status code will result in a deletion of the
 subscription.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="NotificationListType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type definition for a list of notifications.

 Elements:

 discovered - The most recent document discovery time for the
 provider in the context of when the notification was generated.

 notification - A list of zero or more notifications matching the
 subscription filter criteria.

 Attributes:

 providerId - The identifier of the provider generating the
 notification. This is the provider on which the subscription
 was created.

 id - The identifier of the subscription that generated the
 notifications.

 href - The URI reference for subscription that generated the
 notification. This can be used to directly access the
 subscription.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="discovered" type="xsd:dateTime" />
 <xsd:element ref="tns:notification" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:attribute name="providerId" use="required" type="xsd:anyURI" />
 <xsd:attribute name="id" use="required" type="xsd:string" />
 <xsd:attribute name="href" use="required" type="xsd:anyURI" />
 </xsd:complexType>

 <!-- A single notfication. -->
 <xsd:element name="notification" type="tns:NotificationType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This element models a single document notification and is
 included in the notifications element.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="NotificationType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type models a single document notification event.

 Elements:

 discovered - The time this document event was detected on the
 provider. It is not the time the notification was generated.
 It also should be noted that this time could be a considerable
 period in the past if the notification was sent as the result
 of a subscription creation or edit.

 event - The type of document event this notification represents.

 document - The document metadata entry associated with the
 notification.

 other - Provides a flexible mechanism allowing additional element
 to be provided from other namespaces without needing to update
 this schema definition.

 Attributes:

 other - Provides a flexible mechanism allowing additional attributes
 to be provided from other namespaces without needing to update
 this schema definition.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="discovered" type="xsd:dateTime" />
 <xsd:element name="event" type="tns:DocumentEventType" />
 <xsd:element name="document" type="tns:DocumentType" />
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

 <!-- A list of documents. -->
 <xsd:element name="documents" type="tns:DocumentListType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The documents element models a list of documents from the
 document space.

 HTTP operations: GET
 URI: /documents/{nsa}/{type}

 The documents element contains document resources discovered
 within the document space, or a subset of documents based on
 supplied query parameters. Zero or more document instances will
 be returned in a documents element.

 The URI template “/documents/{nsa}/{type}” can be used as an
 alternative to, or in conjunction with, the use of query
 parameters. Performing a GET on “/documents/{nsa}/” will
 return all documents associated with the specified NSA.
 Performing a GET on “/documents/{nsa}/{type}” will return
 all documents of {type} from the specified NSA.

 HTTP Parameters:

 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 If-Modified-Since - Constrains the GET request to return only
 those documents that have been created or updated since the
 time specified in this parameter.

 Query Parameters:

 id (string) - Return all document resources containing the specified Id.

 nsa (string) - Return all document resources containing the
 specified nsa identifier. Cannot be used if the {nsa} URI
 component is provided.

 type (string) - Return all document resources containing the
 specified type. Cannot be used if the {type} URI component is
 provided.

 summary	(none) - Will return summary results of any documents
 matching the query criteria. Summary results includes all
 document meta-data but not the signature or document contents.

 Returns (code, element):

 200	documents
 Return all document resources matching the query in a
 documents element. If no documents match the query,
 then an empty documents element is returned.

 304 None
 Successful operation where there were no changes to any
 subscription resources matching the query filter given the
 If-Modified-Since criteria. Returns no message body.

 400	error
 Returned if a client specifies an invalid request. An error
 element will be included populated with appropriate error
 information.

 500	error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be included
 populated with appropriate error information.

 HTTP operations: POST
 URI: /documents

 The POST operation on the “/documents” resource will create a
 new document using the information supplied in the document
 element contained in the POST body. A successful operation
 will return the new document resource. This operation has
 restricted access for clients and is made available by the
 server based on access control permissions.

 Once a document has been successfully created on the server,
 the server will immediately send notifications to all
 subscriptions with filter criteria matching the document.

 HTTP Parameters:

 Content-Type - Identifies the content type encoding of the POST
 body contents. Must be a content type supported by the protocol.

 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 If-Modified-Since - Constrains the GET request to return only
 those documents that have been created or updated since the
 time specified in this parameter.

 Body Parameters:

 document - The document to add to the document space of the
 local provider.

 Returns (code, element):

 201	document
 Returns a copy of the new document resource created as the
 result of a successful operation. The HTTP Location header
 field will contain the direct URI reference of the new
 document resource. It will be structured using the URI
 template $root/documents/{nsa}/{type}/{id}.

 400	error
 Returned if a client specifies an invalid request. An error
 element will be included populated with appropriate error
 information.

 403	error
 The server understood the request, but is refusing to fulfill
 it. Authorization will not help and the request SHOULD NOT
 be repeated. An error element will be included populated
 with appropriate error information.

 409	error
 A document already exists with the same name (nsa/type/id).
 An update of an existing document should use the PUT
 operation.

 500	error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be
 included populated with appropriate error information.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:element name="local" type="tns:DocumentListType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The local element models a list of documents from the document
 space published by the local provider NSA.

 HTTP operations: GET
 URI: /local/{type}

 The local element contains document resources published by the
 local provider, or a subset of documents based on supplied query
 parameters. Zero or more document instances will be returned in
 a local element.

 A client can perform a GET operation on the special “/local” URI
 when it would like to discover all documents associated with the
 local provider NSA. This operation is equivalent to performing a
 GET operation on the URI “/documents/{nsa}”, however, for “/local”
 the client is not required to have previous knowledge of the
 provider NSA identifier.

 The URI template “/local/{type}” can be used as an alternative to,
 or in conjunction with, the use of query parameters. Performing
 a GET on “/local/{type}/” will return all documents of {type}
 associated with the local NSA.

 HTTP Parameters:

 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 If-Modified-Since - Constrains the GET request to return only
 those documents that have been created or updated since the
 time specified in this parameter.

 Query Parameters:

 id (string) - Return all document resources containing the
 specified Id.

 type (string) - Return all document resources containing the
 specified type. Cannot be used if the {type} URI component is
 provided.

 summary	(none) - Will return summary results of any documents
 matching the query criteria. Summary results includes all
 document meta-data but not the signature or document contents.

 Returns (code, element):

 200	local
 Return all document resources matching the query in a
 documents element. If no documents match the query,
 then an empty documents element is returned.

 304 None
 Successful operation where there were no changes to any
 document resources matching the query filter given the
 If-Modified-Since criteria. Returns no message body.

 400	error
 Returned if a client specifies an invalid request. An error
 element will be included populated with appropriate error
 information.

 500	error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be included
 populated with appropriate error information.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="DocumentListType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type provides a list of zero or more documents.

 Elements:

 document - The document meta-data entry within the document space.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element ref="tns:document" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>

 <!-- A single document. -->
 <xsd:element name="document" type="tns:DocumentType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The document element models the metadata for a single document
 from the document space.

 HTTP operations: GET
 URI: /documents/{nsa}/{type}/{id}

 This operation will return a specific document instance
 discovered within the document space based on the URI template
 “/documents/{nsa}/{type}/{id}”, where {nsa} is the NSA sourcing
 the document, {type} is the type of document, and {id} is the
 identifier of the specific document. The matching document is
 returned in a single document element.

 HTTP Parameters:

 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 If-Modified-Since - Constrains the GET request to return only
 those documents that have been created or updated since the
 time specified in this parameter.

 Query Parameters: None.

 Returns (code, element):

 200	local
 Successful operation returns the document identified by
 {nsa}/{type}/{id} in a document element. The Last-Modified
 header parameter will contain the time this document resource
 was last discovered.

 304 None
 Successful operation returns the document identified by
 {nsa}/{type}/{id} in a document element. The Last-Modified
 header parameter will contain the time this document resource
 was last discovered.

 400	error
 Returned if a client specifies an invalid request. An error
 element will be included populated with appropriate error
 information.

 404	error
 Returned if the requested document was not found. An error
 element will be included populated with appropriate error
 information.

 500	error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be included
 populated with appropriate error information.

 HTTP operations: PUT
 URI: /documents/{nsa}/{type}/{id}

 The PUT operation on the “/documents/{nsa}/{type}/{id}” resource
 will allow a client to edit the document corresponding to the
 identifier {id}, using the information supplied in the document
 element contained in the PUT body. A successful operation will
 return the modified document and trigger any associated
 notifications within the NSA.

 A document is deleted from the document space by updating it’s
 expire date to a reasonably short period in the future. This
 updated document will get propagated throughout the document
 space and then expire, removing it from the space.

 HTTP Parameters:

 Content-Type - Identifies the content type encoding of the PUT
 body contents. Must be a content type supported by the
 protocol.

 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 Body Parameters:

 document - The document to update in the document space of the
 local provider. The PUT request must contain the document
 element containing the existing parameters of the document
 resource if they were not modified, as well as any new/edited
 values.

 Returns (code, element):

 200 document
 Returns a copy of the modified document resource as the
 result of a successful operation.

 400 error
 Returned if a client specifies an invalid request. An
 error element will be included populated with appropriate
 error information.

 403 error
 The server understood the request, but is refusing to fulfill
 it. Authorization will not help and the request SHOULD NOT be
 repeated. An error element will be included populated with
 appropriate error information.

 404 error
 Returned if the requested document was not found. An error
 element will be included populated with appropriate error
 information.

 500 error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be included
 populated with appropriate error information.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="DocumentType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The DocumentType type definition models a data relating to a
 single document exchanged within the network. Meta-data
 associated with the document, document signature, and the
 document itself is encapsulated in this type. The type
 itself is structured such that it does not need to be
 manipulated between receiving and propagating to a peer.

 A document is uniquely named within the network by the tuple
 of nsa, type, and id. The identifier element itself does not
 need to be unique within the network; it must just be unique
 within the context of the nsa and type elements. These rules
 allow the reuse of the same id value for a document of different
 types under the same source NSA. This is important for both
 searching, and for associating the same naming attribute to
 related documents.

 An NSA must not modify the contents of a DocumentType before
 propagating on to a peer unless that NSA is the owner of the
 document.

 Elements:

 nsa	- The source NSA associated with the generation and management
 of the document within the network.

 type - The unique string identifying the type of this document.

 signature - The OPTIONAL digital signature of the document
 contents.

 content - The contents of the document modeled by this document
 resource.

 other - Provides a flexible mechanism allowing additional elements
 to be provided from other namespaces without needing to update
 this schema definition.

 Attributes:

 id - The identifier of the document. This value must be unique
 in the context of the nsa and type values.

 version	- The version of the document. Typically the date this
 version of the document was created. Any updates to the document
 must be tagged with a new version.

 expires	- The date this version of the document expires and should
 be deleted from the NSA (document server) and any clients caching
 the document.

 other - Provides a flexible mechanism allowing additional attributes
 to be provided from other namespaces without needing to update
 this schema definition.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="nsa" type="xsd:anyURI" />
 <xsd:element name="type" type="xsd:string" />
 <xsd:element name="signature" type="tns:AnyType" minOccurs="0" />
 <xsd:element name="content" type="tns:AnyType" minOccurs="0" />
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:attribute name="id" use="required" type="xsd:string" />
 <xsd:attribute name="version" use="required" type="xsd:dateTime" />
 <xsd:attribute name="expires" use="required" type="xsd:dateTime" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

 <xsd:complexType name="AnyType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type is used to hold a document or signature within the
 document metadata.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

 <xsd:element name="error" type="tns:ErrorType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The error element is returned in an HTTP response when an error
 has occured servicing the request on the provider.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="ErrorType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type models errors returned from Discovery Service operations.

 Elements:

 code - The integer error code for the specific error.

 label - A character string label for the error.

 description - A detailed description of error.

 resource - The resource that caused the error.

 Attributes:

 id - The unique identifier of the error for correlation with logs.

 date - The date and time the error occured.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="code" type="xsd:int" />
 <xsd:element name="label" type="xsd:string" />
 <xsd:element name="description" type="xsd:string" />
 <xsd:element name="resource" type="xsd:anyURI" />
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:string" use="required" />
 <xsd:attribute name="date" type="xsd:dateTime" use="required" />
 </xsd:complexType>
</xsd:schema>

macauley@es.net		49
image1.png
getDocuments()

_— S .
Requester Provider
NSA € NIST2N

<documents />

Document space

image2.png
subscribe(filter)

—_—
Requester > Provider
NSA NSA
— Document space

<notifications />

image3.png
Requester

<notifications />
updateDocument(1.2)

<notifications />

<notifications />

<notifications />

<notifications />

image4.png
NSA

(ultimate)
Provider Agent

Coordinator

Message
Transport Layer

Aggregator
Agent

Coordinator

Message
Transport Layer

Coordinator

Message
Transport Layer

NSA

Aggregator
Agent

Coordinator

(ultimate)
Provider Agent

Coordinator

Message Message
Transport Layer Transport Layer
T
\
AY ork Reso
N, -
.

~.

~.
Sao
~~
~——

NSA

(ultimate)
Provider Agent

Coordinator

Message
Transport Layer

image5.png
Lean @) O] O X

Producer Ty T, T, Time

NSA-B
Document<
Producer

Time

NSA-C
— Document
Server

Time

addSubscription

NSA-D
Document <
Server

NSA-E
Document
Consumer

