
Service Termination Points (STPs) in NSI
Scope
This document summarises the usage of STPs in NSI. Only the usage of STPs in the Connection
Service is considered here, usage of STPs in the Topology Service and in the Monitoring Service is out
of scope. The details of how STPs map to NML objects is described in the NSI Topology Service.

Agreed decisions relating to STPs

NSI framework
• The following set of services are supported:

o Topology Service (TS)
o Connection Service (CS)
o Monitoring Service (MS)
o Discovery Service (DS)

• The TS, CS and MS each have their own state-machine/s each of which is associated with an

NSA. This is shown diagrammatically here:

Definitions, usage and description of STPs
• The NSI Topology is referenced in several places:

o STP concepts are to be introduced in the NSI Framework
o Use of STP for CS described are to be described in the CS protocol document
o The Topology Service will describe how STPs map to NML and will define how to exchange

topology

This document considers only the usage of STPS in the Connection Service

Definition of a Network

 A Network is a group of STPs that belong to a common topology description.

NSI Framework

Conn.
Service

Topology

Service

Discovery

Service

Monitoring

Service

NSA

NSA

NRM

CS
State
Mach. TSD

B

TS
State
Mach.

MS
State
Mach.

 A 1:1 relation exists between an NSA instance and an associated Network.

Definition of an STP

 A Network has a set of STPs which are announced using the topology service.

 STPs (Service Termination Points) are identifiers and are globally unique and persistent

 STPs point to an NML port described using the NML port syntax

 STPs are used in Connection requests to identify the endpoints of a Connection, and optionally
as intermediate points on the path of the Connection to be used as path finding constraints.

 A confirmation of a connection request will return the two STPs that form the service end-points

Note: these concepts around STPs and Networks remain as currently described in the NS
Framework.

Definition of an SDP

 An SDP (Service Demarcation Point) is defined as a grouping of two peering STPs on the edge of
different Networks.

Connection Requests in NSI v2.0
In v2.0 a connection request includes a <path> object. The ‘Path’ describes the endpoints and
routing constraints of a requested connection.

Paths

 A path has a directionality attribute which indicates if the path is of type uni or bi directional.

 A path contains sourceSTP which is the STP of the beginning of the path

 A path contains destSTP which is the STP of the end of the path

 A path contains an ordered list of ERO’s each of which is an STPs which is to be used as a routing
constraints. These constraints must be used in the route of the path in the sequence provided
in the ERO list. The path computation may return a path with additional STPs beyond those in
the ERO list.

STPs

 An STP is constituted of networkId, localId and Label

StpType

ErolistType

order int

stp StpType

PathType

ero [0..1] EroType

 sourceSTP StpType

destSTP StpType

localId [0..1]

networkId

label labelType [0..1]

LabelType

type VLAN

value list/range of integers [1..4094]

directionality DirectionalityType

NetworkId

 The networkId is a globally unique identifier that identifies the Network. Rather than forcing
parsing of an STP to determine the Network, a separate Network object is defined to allow an
intermediate NSA to forward the message to the target Network without needing to know
about the STPs within that domain.

 The syntax of <networkId> is urn:ogf:network:<DNSname>:<date>:nsi:net:<NSInetwork>,
where:
o urn:ogf:network:<DNSname>:<date> conforms to GFD.191 and ensures that the STP is

globally unique.
o <DNSname> is a registered domain name.
o <date> is a year in case the domain name is reused.
o <NSInetwork> is the name of the dynamic service network.

localId

 A <localId> is an opaque string which is unique to the NSI network. The string must conform to
URN characters.

Label

 A <Label> conforms to type LabelType

LabelType

 LabelType is a type-value pair describing an optional technology label.

 Type is a string which defines a technology specific attributes. Currently only ‘VLAN’ is
supported. In this case VLAN is defined in the Service Definition to conform to
http://schemas.ogf.org/nml/2013/10/ethernet/vlan. No other technology types are currently
defined. In future other technology specific attributes may be added.

 For type ‘VLAN’, the value can be a list or range of integer values of 1 through 4094.

Candidate/Instance

 Connection requests are made up of ‘candidate STPs’ where a candidate STP describes a list or
range of labels (VLANs). E.g 118-259 or 118, 342,4,259

 Connection confirmations will return an ‘STP instance’ i.e no label part.

Service Definitions and STPs

The Service Definition will state the framing of the service. For example if the service type is 802.1q,
then the sourceSTP and destSTP LocalId part of an STP instance must point to a VLAN. In the case
where a candidate STPs is requested, the Label must be of type VLAN and no other type will be
accepted.

Example of Network/port/label mapping

Requested STP candidate Returned STP instance
VLAN range 3000-3600
Ethernet port 2-3-4
Switch sw1.lon.uk
PoP London
NSA 62.40.112.34
NSI network BoDservice

 VLAN 3450
Ethernet port 2-3-4
Switch sw1.lon.uk
PoP London
NSA 62.40.112.34
NSI network BoDservice

http://schemas.ogf.org/nml/2013/10/ethernet/vlan

DNSname geant.net DNSname geant.net

STP type Syntax

Ethernet port instance <networkId> == urn:ogf:network:geant.net:2013:nsi:net:BoDservice
<localId> == sw1.lon.uk:2-3-4

VLAN instance <networkId> == urn:ogf:network:geant.net:2013:nsi:net:BoDservice
<port> == sw1.lon.uk:2-3-4:3450

Candidate VLAN range <networkId> == urn:ogf:network:geant.net:2013:nsi:net:BoDservice
<port> == sw1.lon.uk:2-3-4
<label type> == VLAN
<label value> == 3000-3600

Re-advertising STPs (network indirection)

It is legitimate for a Network to advertise a set of STPs some of which come from underlying
providers. Eg NorthernLightDS advertises an STP as being part its own network when it is in fact
originally assigned as SunetDS STP.

Option 1: the STP is advertised as a local STP and the SUnet local identifier is mapped to a new local
identifier. Syntax for this case:
original STP:

<networkId>==urn:ogf:network:su.net:2007:nsi:net:SUnetDS
<localId>==s01p03

Nordunet would advertise this:
<networkId>== urn:ogf:network:nordu.net:2007:nsi:net:NorthernLightDS
<localId>==NL_s01p03

So there is a new local port identifier generated which NorthernLightDS can easily locally map to a
SUnet port. (how mapping to new localId is done is not part of NSI protocol standard)

Option 2: If a NSA wishes to advertise that it can handle a 3rd party STP. In this case
NorthernLightDS will simply advertise STP:

<networkId>==urn:ogf:network:su.net:2007:nsi:net:SUnetDS
<localId>==s01p03

Path computation

 The NSI Connection Service supports only v2.0 flat pathfinding i.e layer adaptations are assumed
to not be present.

Appendix 1: Examples

Example v1.1 NSI Connection request

 <path>
 <directionality>Bidirectional</directionality>
 <sourceSTP>
 <stpId>urn:ogf:network:stp:czechlight.ets:ps-80</stpId>
 </sourceSTP>

 <destSTP>
 <stpId>urn:ogf:network:stp:czechlight.ets:ams-80</stpId>
 </destSTP>
 </path>

Example v2.0 NSI Connection request

<!-- Example 1: bidirectional path request, untagged port instances, no ERO -->
 <path>
 <!-- Two STPs - a bidirectional path -->
 <directionality>Bidirectional</directionality>
 <sourceSTP>
 <networkId>urn:ogf:network:cesnet.cz:2011:nsi:net:czechlight</networkId>
 <localId>intf3-2-1</localId>
 </sourceSTP>
 <destSTP>
 <networkId>urn:ogf:network:surfnet.nl:2001:nsi:net:netherlight</networkId>
 <localId>switchAport2-1</localId>
 </destSTP>
 </path>

<!-- Example 2: bidirectional path request, tagged port instances, no ERO -->

 <path>
 <!-- Two STPs - a bidirectional path -->
 <directionality>Bidirectional</directionality>
 <sourceSTP>
 <networkId>urn:ogf:network:nordu.net:2012:nsi:net:northernlight</networkId>
 <localId>intf3-2-1VLAN=2310</localId>
 </sourceSTP>
 <destSTP>
 <networkId>urn:ogf:network:sne.science.uva.nl:2012:net:science.uva.nl</networkId>
 <localId>switchAport2-1VLAN=2322</localId>
 </destSTP>
 </path>

<!-- Example 3: bidirectional path request, Port candidate - use a VLAN within label range, no ERO -->

 <path>
 <!-- Two STPs - a bidirectional path -->
 <directionality>Bidirectional</directionality>
 <sourceSTP>
 <networkId>urn:ogf:network:nordu.net:2012:nsi:net:northernlight</networkId>
 <localId>intf3-2-1</localId>
 <label>
 <type>VLAN</type>
 <value>1719-1834,2103-2106</value>
 </label>

 </sourceSTP>
 <destSTP>
 <networkId>urn:ogf:network:sne.science.uva.nl:2012:net:science.uva.nl</networkId>
 <localId>switchAport2-1</localId>
 <label>
 <type>VLAN</type>
 <value>451,341,486</value>
 </label>
 </destSTP>
 </path>

<!-- Example 4: bidirectional path, tagged port instances, with ERO -->

 <path>
 <!-- Two STPs - a bidirectional path -->
 <directionality>Bidirectional</directionality>
 <sourceSTP>
 <networkId>urn:ogf:network:nordu.net:2012:nsi:net:northernlight</networkId>
 <localId>intf3-2-1VLAN=2310</localId>
 <label>
 <type>VLAN</type>
 <value>1719-1834,2103-2106</value>
 </label>
 </sourceSTP>
 <destSTP>
 <networkId>urn:ogf:network:sne.science.uva.nl:2012:nsi:net:science.uva.nl</networkId>
 <localId>switchAport2-1VLAN=2322</localId>
 <label>
 <type>VLAN</type>
 <value>451,341,486</value>
 </label>
 </destSTP>
 <eroList>
 <!-- first STP in ERO list, order = 1. -->
 <order>1</order>
 <stp>
 <networkId>urn:ogf:network:nordu.net:2012:nsi:net:northernlight</networkId>
 <localId>intf7-2-1:VLAN=2310</localId>
 </stp>
 </eroList>
 <eroList>
 <!-- second STP in ERO list, order = 2. -->
 <order>2</order>
 <stp>
 <networkId>urn:ogf:network:sne.science.uva.nl:2012:nsi:net:science.uva.nl</networkId>
 <localId>switchZport3-1</localId>
 </stp>
 </eroList>
 </path>

Appendix 2: NSI v1.1

Connection Requests in NSI v1.1
In v1.1 a connection request includes a <path> object:

Connections but be identified as being either bidirectional or unidirectional.
Where <stpList> is optional ordered list of type <STP>.

The NSI v1.1 syntax for an STPId is: urn:ogf:network:stp:<networkId>:<localId>

Issues with this approach:

1. Not compliant with Freek’s new GFD URN naming.
2. Handling of unidirectional STPs is clumsy for proposes of monitoring.
3. The routing of a Connection could be ambiguous as end STPs do not have an inherent

direction. (ingress/egress interpretation problem)
4. The Network associated with an STP has to be found by parsing the URN.
5. Where an STP is re-advertised by a federating NSA, a new STP is created with the NetworkId

of the Federating Network, this could be resolved by assigning a separate <Network> object.
6. Candidate VLANs ranges are not supported in connection requests.

StpListType

stp [0..*]

ServiceTerminationPointType

stpId StpIdType

stpSpecAttr [0..1]

OrderedServiceTerminationPointType

order int

stpId StpIdType

PathType

stpList [0..1]

directionality DirectionalityType

sourceSTP

destSTP

TechnologySpecificAttributesType

guaranteed [0..1]

preferred [0..1]

