GWD-R-P			Guy Roberts
NSI-WG		Tomohiro Kudoh
	Inder Monga
	Jerry Sobieski
John MacAuley
Chin Guok
GWD-R-P			
NSI-WG		May 1, 2013

NSI Connection Service v2.0

Status of This Document

Group Working Draft (GWD), candidate Recommendation Proposed (R-P).

Copyright Notice

Copyright © Open Grid Forum (2008-2013). Some Rights Reserved. Distribution is unlimited.

[bookmark: _Ref525097868][bookmark: _Toc5010625]Abstract
This document describes the Connection Service v2.0 which is one of a suite of services that make up the Network Service Interface.

The NSI is a web-service based API that operates between a requester software agent and a provider software agent. The full suite of NSI services allows an application or network provider to request and manage circuit service instances. Apart from the Connection Service these include the Topology Service and the Discovery Service. The complete set of NSI services is described in GFD.173 Network Services Framework.

This Connection Service document describes the protocol, state machine, architecture and associated processes and environment in which software agents interact to deliver a Connection. A Connection is a point-to-point network circuit that can transit multiple networks.

Contents
1.	Introduction	3
1.1	NSI CS and the Network Service Framework	3
1.1.1	NSI architecture	3
1.1.2	Topology schema	3
1.1.3	Topology Distribution Service	3
1.1.4	Discovery Service	3
1.2	Representing and Managing Network resources	3
1.2.1	Heterogeneous transport and Multi-Provider environments	3
1.2.2	Topology	4
1.2.3	Connections	4
1.2.4	Path	4
1.2.5	Inter-domain vs intra-domain path finding	5
2.	Connection Service architecture	5
3.	Connection Service State Machines and messages	6
3.1	NSI Messages and operations	6
3.2	NSI State Machines	9
4.	NSI message usage	12
4.1	Data Plane Activation	12
4.2	Activation Sequence	13
5.	Process Coordination and Message Transport	15
5.1	Message Transport	15
5.2	Message and Process Coordination	16
5.3	Communications	16
5.4	Per Request Information Elements	16
5.5	Timeouts	17
5.6	Failure Recovery	19
5.7	Coordinator Maintained Information	19
5.8	Per Reservation Information Elements	20
5.9	Reservation Versioning Information	21
5.10	Data Plane Status Information	21
6.	Security	22
6.1	Transport Layer Security	22
6.2	SAML Assertions	23
7.	Contributors	23
8.	Glossary	23
9.	Intellectual Property Statement	25
10.	Disclaimer	25
11.	Full Copyright Notice	25
12.	Appendix A: XML Schema Definitions	25
12.1	15.1 Use of SOAP	26
12.2	nsiHeader element	26
12.2.1	sessionSecurityAttr type	29
12.3	Common types	29
12.3.1	ServiceExceptionType	29
12.3.2	NsaIdType	30
12.3.3	VariablesType	30
12.3.4	TypeValuePairType	31
12.3.5	TypeValuePairListType	31
12.3.6	UuidType	32
12.3.7	DateTimeType	32
12.4	NSI-CS operation specific type definitions.	32
12.4.1	Reserve message elements	32
12.4.2	ReserveCommit message elements	36
12.4.3	reserveAbort message elements	39
12.4.4	release message elements	42
12.4.5	terminate message elements	44
12.4.6	querySummary message elements	45
12.4.7	queryRecursive message elements	48
12.4.8	querySummarySync message elements	48
12.5	NSI-CS specific types	48
12.5.1	Element Groups	49
12.5.2	Complex Types	49
12.5.3	Simple Types	67
13.	Appendix B: State Machine Transition Tables	69
14.	Appendix C: Formal statement of coordinator	71
14.1	Aggregator NSA	71
14.1.1	Processing of NSI Requests	71
14.1.2	Requests from State Machines	72
14.2	Ultimate Provider NSA	73
14.2.1	Processing of NSI Requests	73
14.2.2	Requests from State Machines	74
15.	Appendix D: Best Practices for NSA implementation	75
15.1	Message transport error handling	75
15.2	ACK handling	76
15.3	Guidelines on timeouts:	76
15.4	Parallel processing of messages:	76
15.5	NTP servers	76
15.6	Transport plane failures	77
16.	Appendix E: Tree and chain examples	77
16.1	Connection example managed by an NSA chain	78
16.2	Connection example managed by an NSA tree	78
17.	References	79

[bookmark: _Toc231629475]Introduction
This grid forum document defines the Connection Service (CS) protocol that enables the reservation, creation, management and removal of Connections. The Network Service Interface (NSI) is the set of protocols and parameters that are used between a software agent requesting a network service and the software agent providing that Network Service.

[bookmark: _Toc231629476]NSI CS and the Network Service Framework
Network resources and capabilities are presented to the consumer through a set of Network Services, the Network Service Framework (NSF) presents a unified model for interacting with these services. Network Services include the ability to create connections, to share topologies and to perform other services needed by a federation of software agents.

[bookmark: _Toc231629477]NSI architecture
The NSF describes a set of architectural elements that make up the NSI architecture [1]. Network Service Agents (NSAs) are the agents that manage service requests. An NSA can act either in the role of a requesting agent or a provider agent. NSI is an interface between these software agents and NSI Protocol messages are exchanged over the NSI interface.

The Network Service Plane is defined as a notional plane in which agents and NSI protocol reside. The NSI provides and environment within which network resources are treated as explicitly manageable objects. Within the Network Service Framework, these network resources can be selected, allocated, queried, and managed by software agents on behalf of requesting users.

[bookmark: _Toc231629478]Topology schema
[bookmark: h.p00kdmx2pk1a][bookmark: h.o4fslx67qll7]The NSI topology schema is used by the NSI CS but is not defined in this document. The NSI topology schema is described in the OGF recommendation: GWD-R-P Network Service Interface Topology Representation. The document describes a normative extension to the Network Markup Language (NML) base schema version 1 which allows the description of service plane objects required for the NSI CS.

[bookmark: h.u5nnu0kq9mn6][bookmark: _Toc231629479]Topology Distribution Service
The NSI topology distribution service is used by the NSI CS but is not defined in this document. NSI topology exchange is performed using the topology service defined in GWD-I ‘Network Service Interface, Topology Service Distribution Mechanisms’. The document describes a normative schema which allows the description of service plane objects required for the NSI CS. Additionally it describes a set of distribution mechanisms for the network topology descriptions.

[bookmark: _Toc231629480]Discovery Service
The discovery service is a web service that allows an NSI Requester Agent (RA) to discover information about the services available in a Provider Agent (PA) and the versions of these services. The NSI Discovery Service is not defined in this document.

[bookmark: _Toc231629481]Representing and Managing Network resources

[bookmark: _Toc231629482]Heterogeneous transport and Multi-Provider environments
NSI is designed to support the creation of circuits that transit several networks managed by different providers. This creates requirements for authentication and authorization which are addressed by the NSI. Traditional models of circuit services and control planes adopt a single very tightly defined data plane technology, and then hard code these service attributes into the control plane protocols. Multi-domain services need to employ multiple data plane technologies. In order to make this possible they need to recognize a wide array of service attributes. The NSI supports an abstracted notion of a Connection, and the NSI Reserve message includes a flexible schema for specifying service specific constraints. These service constraints will be evaluated against the technology available to local network service providers traversed by the service. It is up to the path finder of the NSI to create a path that meets these constraints. In this way the NSI allows a single Service Plane protocol suite to deliver Connections that traverse heterogeneous transport technologies.

[bookmark: _Toc231629483]Topology
In the NSI Topology, the data plane in modeled as interconnected Networks, where the Networks are groupings of STPs. As shown in Figure 1, NSI Networks interconnect at a shared point known as an SDP. An SDP is a grouping of two adjacent STPs belonging to different Networks. A complete Connection can be built up by concatenating individual Connections at SDPs.
An overview of the NSI topology concepts is provided in OGF GFD.173: Network Service Framework v1.0 [1]. The detailed NSI topology representation can be found in GWD-R-P: Network Service Interface Topology Representation [3].

[bookmark: _Toc231629484]Connections
The CS protocol supports the creation of Connections. In the Data Plane, an NSI Connection is a physical circuit through which data is delivered from an ingress point to an egress point. NSI CS v 2.0 only supports point-to-point connectivity; Connections can be unidirectional or bidirectional.

Connections can be constructed between pairs of STPs and transit Networks, see Figure 1. In NSI v2.0 it is assumed that any two STP within a particular Network are able tocan be connected. This implies that all Networks can support simultaneous connections between any pair of STPs (i.e.are non-blocking).	Comment by Guy: Needs more explanation

[image: figure2]
[bookmark: _Ref296360506]Figure 1: Inter-Network representation of a Connection

Connections within a Network are intra-domain functions, and the technology details of how two STPs are connected is up to the local NRM and not a concernare outside the scope of the NSI protocol.

[bookmark: _Toc231629485]Path
Inter-Network Connections extend across multiple networks; they are constructed by concatenating connections built across the individual networks. This is done by choosing appropriate STPs such that the egress STP of one connection corresponds directly with the ingress STP of the successive connection.	Comment by Chin Guok: I think we referred to this as connection segments in Sec 5.

A Connection request can optionally populate thespecify a Path attribute. A Path is an ordered list of STPs that describe the route that should be taken by the Connection. The STPs listed in a Path will be used as constraints by the Inter- Network path-finder. The Connection will include all of the STPs in the Path in the sequence that they are listed. However a Path is not ‘strict’ in the sense that Connection is allowed to transit intermediate STPs between the STPs listed in the Path.

[bookmark: _Toc231629486]Inter-domain vs intra-domain path finding
There are two levels of path finding related to the NSI architecture: the inter-domain path finding which is concerned with choosing a path across the global topology of Networks, and the intra-domain path finding concerned with the transport resources within the Network. NSI is concerned only with inter-Network path finding.	Comment by Chin Guok: Should we insert a simple diagram here to help clarify inter vs intra domain path finding

[bookmark: _Toc256089645]
[bookmark: _Toc231629487]Connection Service architecture
The Service plane is a notional plane that includes the Network Service Agents. Each Network in the Data Plane has an associated NSA in the Service Plane. This is described in more detail in GFD.173 Network Services Framework.

Within the Service Plane, all NSAs have one or more a peering relationships; a Requester Agent (RA) sends a service request to a Provider Agent (PA). The NSI protocol is made up of messages that are exchanged over this peering interface.

An NSA can take on a number of roles:
· uRA: The Ultimate Requester Agent is the originator of a service request.
· AG: The Aggregator has more than one child NSA, and has the responsibility of aggregating the responses from each child NSA.
· uPA: The Ultimate Provider Agent services requests by coordinating with the local Network Resource Manager (NRM) to manage network resources.

In addition the concept of a Network Resource Manager (NRM) is introduced. The role of the NRM is to manage the resources in the Data Plane. Typically this might be an equipment vendor’s network management system.

[image:]
Figure 2: Flexible hierarchical NSA relationship

Central to the NSI architecture is the decoupling of the Service Plane from the Data Plane. One of the differentiating features of NSI is that the Service Plane is not required to be congruent with the data plane. NSI messages do not need to transit the same NSA/Networks pairings in the same sequence that the Connection itself transits.

[bookmark: _Toc231629488]Connection Service State Machines and messages

[bookmark: _Toc355354824][bookmark: _Toc231629489]NSI Messages and operations

NSI messages are classified into two types, messages that are passed from an RA to a PA and messages that are passed from a PA to an RA, these messages are summarized in Table 1 and Table 2. Messages sent from an RA to a PA are request messages; the PA is expected to send a reply message to each RA request message. Messages sent from the PA to an RA are categorized as either a reply to a request, or a notification message that is sent due to an event occuring asynchronously.

Each Message invokes a corresponding operation in the recipient. The “Type” field in each message denotes the message type:
· If the message is of type RSM then the message is to be processed using the Reservation State Machine (RSM).
· If the message is of type PSM the message is to be processed using the Provision State Machine (PSM).
· If the message is of type LSM the message is to be processed using the Lifecycle State Machine (LSM).
· If the message is of type Query this designates a Query request and requires an associated reply message.s
· If the message is of type Notification this designates asynchronous notification messages sent by a PA to an RA.

Table 1 below summarizes all of the message primitives and lists the Message Type associated with the message.

** need to merge these tables	Comment by Henrik Thostrup Jensen: There seems be some repetition here. I would also find it “natural” to lis the RA -> PA message first.

	Elements
	Description

	messageDeliveryTimeout
	

	provision
	The NSI CS provision message allows a Requester NSA to transition a previously requested reservation into a provisioned state. A reservation in a provisioned state will activate associated data plane resources during the scheduled reservation time.

	provisionConfirmed
	This provisionConfirmed message is sent from a Provider NSA to Requester NSA as an indication of a successful provision request. This is in response to an original provision request from the associated Requester NSA.

	queryRecursive
	

	queryRecursiveConfirmed
	

	queryRecursiveFailed
	

	querySummary
	The querySummary message provides a mechanism for a Requester NSA to query the Provider NSA for a set of connection service reservation instances between the RA-PA pair. This message can also be used as a reservation status polling mechanism.

Elements compose a filter for specifying the reservations to return in response to the querySummary request. Querying of reservations can be performed based on connectionId or globalReservationId. Filter items specified are OR'ed to build the match criteria. If no criteria are specified then all reservations associated with the requesting NSA are returned.

	querySummaryConfirmed
	This querySummaryConfirmed message is sent from the Provider NSA to Requester NSA as an indication of a successful querySummary operation. This is in response to an original querySummary request from the associated Requester NSA

	querySummaryFailed
	This querySummaryFailed message is sent from the target NSA to requesting NSA as an indication of a querySummary operation failure. This is in response to an original querySummary request from the associated Requester NSA. It is important to note that a querySummary operation that results in no matching reservations does not result in a querySummaryFailed message, but instead a querySummaryConfirmed with an empty list of reservations.

	querySummarySync
	

	querySummarySyncConfirmed
	

	querySummarySyncFailed
	

	release
	The NSI CS release message allows a Requester NSA to transition a previously requested reservation into a released state. A reservation in a released state will deactivate associated data plane resources.

	releaseConfirmed
	This releaseConfirmed message is sent from a Provider NSA to Requester NSA as an indication of a successful release request. This is in response to an original release request from the associated Requester NSA

	reserve
	The NSI CS reserve message allows a Requester NSA to reserve network resources for a connection between two STP's within the network constrained by the provided service parameters. This reserve message allows a Requester NSA to check the feasibility of a connection reservation, or modification an existing connection reservation. Any resources associated with the reservation or modification operation will be allocated and held until a reserveCommit message is received for the reservation or timeout occurs (whichever arrives first).

	reserveAbort
	The NSI CS reserveAbort message allows a Requester NSA to abort a previously requested reservation or modification on a reservation.

	reserveAbortConfirmed
	This reserveAbortConfirmed message is sent from a Provider NSA to Requester NSA as an indication of a successful reserveAbort request. The reservation in question will have any pending modifications cancelled and returned to the reservation state existing before the modification.

	reserveCommit
	The NSI CS reserveCommit message allows a Requester NSA to commit a previously allocated reservation or modification on a reservation. The reserveCommit request must arrive at the Provider Agent before the reservation timeout occurs.

	reserveCommitConfirmed
	This reserveCommitConfirmed message is sent from a Provider NSA to Requester NSA as an indication of a successful reserveCommit request for a reservation previously in a Reserve Held state.

	reserveCommitFailed
	This reserveCommitFailed message is sent from a Provider NSA to Requester NSA as an indication of a reserve (or modify) commit failure. This is in response to an original reserveCommit request from the associated Requester NSA.

	reserveConfirmed
	A Provider NSA sends this positive reserveConfirmed response message to the Requester NSA that issued the original reserve request message. Receipt of this message is an indication that the requested reservation parameters were available and will be held until a reserveCommit message is received for the reservation or timeout occurs (whichever arrives first).

	reserveFailed
	A Provider NSA sends this negative reserveFailed response to the Requester NSA that issued the original reservation request message if the requested reservation criteria could not be met. This message is also sent in response to a reserve request for a modification to an existing schedule if the required modification is not possible.

	serviceException
	The service exception is raised when a fault is detected. The message includes attributes that describe an exception and include the identifier of the NSA generating the exception, the error identifier for each known fault type. The service exception supports a list of service exceptions capturing failures within the request tree.

	terminate
	The NSI CS terminate message allows a Requester NSA to transition a previously requested reservation into a terminated state. A reservation in a terminated state will release associated resources

	terminateConfirmed
	This terminateConfirmed message is sent from a Provider NSA to Requester NSA as an indication of a successful terminate request. This is in response to an original terminate request from the associated Requester NSA.

Table 1 – NSI CS message overview

	Message
(abbreviation)
	Type
	Description

	Reserve
(rsv.rq)
	RSM
	A Reserve request message is sent to reserve a new Connection or modify an existing Connection. To keep track of multiple modifications, a monotonically increasing version number attribute should be specified by the RA.
If connectionID attribute is not specified in the Reserve request, the RA requests the PA to Reserve network resources for a Connection between two STP’s constrained by certain service parameters. The PA should return a connectionID in the output of the operation. In this case, if version is not specified, the RA will set this by default to 0.
If a connection_ID is specified, this is considered to be a request to modify an existing reservation of a Connection. In CSv2.0, modification of startTime, endTime and bandwidth are supported. In this case, if version is not specified, it is considered an illegal operation.
In this operation, PA checks the availability of requested resources. If resources are available, they are held and reserveConfirmed is returned. If resources are not available, reserveFailed is returned. The reservation data base is not updated by this operation.

	reserveCommit
(rsvcommit.rq)
	RSM
	A message to request a commit action on the reservation made by an earlier Reserve request. The operation will fail when one or more children uPA have timeout.

	reserveAbort
(rsvabort.rq)
	RSM
	A message to request the abort and release of a held reservation made by the Reserve operation. This message also enables children at the ReserveFailed state to return to the Reserved state.

	provision
(prov.rq)
	PSM
	A message to request that the PA transit to the Provisioned state.

	release
(release.rq)
	PSM
	A message to request that the PA transit to the Released state.

	terminate
(term.rq)
	LSM
	A message to request the PA release the Provisioned resources, and allow the PA to clean up RSM, PSM and all related data structures.

	querySummary
()
	Query
	A message to request a summary query

	queryRecursive
()
	Query
	A message to request a recursive query

	querySummarySync
()
	Query
	A message to request a summary query using the synchronous mode.

Table 2 – RA to PA messages

	Message
(abbreviation)
	Related SM
	Description

	reserveConfirmed
(rsv.cf)
	RSM
	A message replying to a reserve request. This message confirms that the requested resources are available and the reservation is held.

	reserveFailed
(rsv.fl)
	RSM
	A message replying to a reserve request. This message notifies the RA that the requested resources are not available and the reservation request has been failed.

	reserveCommitConfirmed
(rsvcommit.cf)
	RSM
	A message replying to a commit request. This message notifies the RA that a held reservation has been successfully committed.

	reserveCommitFailed
(rsvcommit.fl)
	RSM
	A message replying to a commit request. This message notifies the RA that a held reservation has not been committed because a timeout happened at one or more children.

	reserveAbortConfirmed
(rsvabort.cf)
	PSM
	A message replying to an abort request. This message notifies the RA that a reserveAbort message has been delivered to all the children.

	provisionConfirmed
(prov.cf)
	PSM
	A message replying to a provision request. This message notifies the RA that a provision message has been delivered to all the children.

	releaseConfirmed
(release.cf)
	
	A message replying to a release request. This message notifies the RA that a release message has been delivered to all the children.

	terminateConfirmed
(term.cf)
	LSM
	A message replying to a terminate request. This message notifies the RA that a terminate message has been delivered to all the children.

	querySummaryConfirmed
()
	query
	A message replying to a query request. This message returns the results of the summary query.

	queryRecursiveConfirmed
()
	query
	A message replying to a query request. This message returns the results of the recursive query.

	querySummarySyncConfirmed
()
	query
	A message replying to a query request. This message confirms the receipt of a synchronous summary query.

	errorEvent
()
	notification
	A generic message that provides a notification of an error from PA to RA

	reserveTimeout
()
	notification
	A message to notify that a commit timeout has occurred at a PA.

	dataPlaneStatusChange
(dataPlaneStatusChange.nt)
	notification
	A notification message sent up from a PA when a data plane status has changed. Possible data plane status changes are: activation, deactivation and activation version change.

	messageDeliveryTimeout
()
	notification
	A notification message sent upstream when the delivery of a request message has timed out either because the Message Transport Layer (MTL) has timed out due to no ack being returned for a certain period of time (defined by the MTL), or no reply has been received by the Coordinator for a certain period of time (defined by the Coordinator).

Table 3 – PA to RA messages

[bookmark: _Toc355354825][bookmark: _Toc231629490]NSI State Machines

The behavior of the NSI CS protocol is modeled in two ways: with state machines and with behavioral description of the coordinator function. In total there are three state machines, the Reservation State Machine (RSM), the Provision State Machine (PSM) and the Lifecycle State Machine (LSM). The state machines explicitly regulate sequence by which messages are processed of each for each message type: RSM, PSM and LSM.

Figure 31 below shows the Reservation State Machine. This state machine defines the sequence of operations related to of messages of type RSM.

[image: \\CHFILE02\Folders\guy\Desktop\NSICSv2 0_fig_for_doc_v2.png]

Figure 3: Reservation State Machine

The NSI protocol supports advance-reservation of services. Each reservation has properties such as:
· A-point, Z-point (mandatory)
· Start-time, End-time (mandatory)
· Bandwidth, Labels (optional)

NSI Connections reservations are created using a two phasetwo-phase commit process. In the first phase (reserve) the availability of the requested resources is checked, if the resources are available, these are held. In the second phase (commit) the requester has the choice to either commit or abort the reservation that was held in the first phase.

When a reservation/modification is committed, the reservation database is updated. If a requester fails to commit a held reservation after a certain period of time, the provider has the option of timesing out the reservation and the resources are releasedsing the resources from the reservation database.

Modification of a reservation is now supported in NSI CS v2.0. The reserve request message is used for both the initial reservation and subsequent modifications. A version number is specified in the reservation request message. The number is an integer and should be monotonically increasing with each subsequent modification. The version number is updated after a commit results in a transition to the reserved state. A query will return the currently committed reservation version number.

Currently, modification of start _time, end _time and bandwidth are supported.

Modification of currently active data plane may be implemented in a hitless way by the provider, however support for such hitless operation is up to the policy of the provider and is not guaranteed by the NSI protocol per se.

Figure 42 below shows the Provision State Machine. This state machine defines the sequence of operations relating to messages of type PSM.

[image: \\CHFILE02\Folders\guy\Desktop\NSICSv2 0_fig_for_doc_v2b.png]
Figure 4: Provision State Machine

The Provision State Machine is a simple state machine which transits between the Provisioned and the Released state, with intermediate transition states. An instance of the PSM is created when an initial reservation is committed, and at that time it startsremains in the Released state. The PSM transits states independent of the state of the RSM. Note that staying at the Provisioned state is necessary but not sufficient to activate the data plane. The data plane is active if the PSM is in “Provisioned” state AND start tTime < current _time < end tTime.

The PSM is designed to allow a Connection to be repeatedly provisioned and released.

Figure 53 below shows the Lifecycle State Machine (LSM). This state machine defines the sequence of operation relating to messages of type LSM. The LSM allows terminate and terminateConfirm messages to be to send and received. When an errorEvent (fcd_end) is received/sent, the LSM transits to the Failed state.

[image: \\CHFILE02\Folders\guy\Desktop\NSICSv2 0_fig_for_doc_v2c.png]
Figure 5: Lifecycle State Machine

[bookmark: _Toc231629491]NSI message usage

[bookmark: _Toc231629492]Data Plane Activation

Figure 64 below shows the conditions necessary for data plane activation.	Comment by Henrik Thostrup Jensen: Figure used camelCase and with_underscore intermixed.

[image: \\CHFILE02\Folders\guy\Desktop\NSICSv2 0_fig_for_doc_v2d.png]
Figure 6: Data Plane activation condition

The Data Plane will become active at any of the following events (if necessary conditions are met). The activated connection will use the latest committed reservation.
· PSM transits to Provisioned state
· At the startTime is reached
· Reservation has been updated (by commit of a reservation/modify)
· Data plane is recovered from an error	Comment by Henrik Thostrup Jensen: How is this supported in the NSI protocol?

The activation/deactivation of the Data Plane should be notified using the DataPlaneStateChange.nt notification message. Errors should be notified using the generic errorEvent messages with the following events:as follows:

· activateFailed: Activation failed at the time when uPA attempted to activate its data plane
· deactivateFailed: Deactivation failed at the time when uPA attempted to deactivate its data plane
· dataplaneError: Data plane is deactivate unexpectedly. This error condition is recoverable.	Comment by Henrik Thostrup Jensen: Some details would be nice here. At least some place in the document.
· forcedEnd: Something unrecoverable has happened in the uPA/NRM

[bookmark: _Toc231629493]Activation Provision Sequence	Comment by Henrik Thostrup Jensen: I have renamed this from provision as I think the point of the section is that provision and activation are not the same.
Figures 75 and 86 below show two examples of how message primitives can be used to activate a Connection. As shown in Figure 75, two modes of Activationf Provisioning are possible: automatic and manual provisioning.
These activationprovisioning methods can be realized using the semantics described in Figure 64. In the automatic provisioning mode, the provision request message is sent from the RA to the PA before the start tTime, and the Data Plane is activated at the start tTime, and deactivated at the end tTime. If a provision request message is sent after the start tTime, the data plane is activated when the provision request is received by the uPA - this sequence is referred to as manual provisioning. If the uRA wishes to activate the data plane as soon as possible, the uRA should leave the start time blank, which indicates immediate start time, designate a startTime which is the same as or before the time a reservation is made, and then issue a provision request message immediately after the a reservation is committedmade. This behavior can be considered as an on-demand mode of provisioning.	Comment by Chin Guok: Should verify if start time is optional in messages

[image:]
Figure 7: Automatic Provisioning and Manual Provisioning

A connection can be repeatedly provisioned and released by provision request messages and release request messages, as shown in Figure 86.
.
[image:]
[bookmark: _GoBack]Figure 8: Release and Provisioning

[bookmark: _Toc231629494]Process Coordination and Message Transport
[bookmark: _Toc231629495]Message Transport
Inherent in NSI CS v2.0 is the flexibility to instantiate tree workflows of arbitrary complexity. This flexibility necessitates the formalization of the concept of a Message Transport Layer (MTL). The purpose of the MTL is to deliver an abstracted message delivery mechanism to the NSI CS layer. This logical separation of the message delivery from the message themselves, it aims to simplify the operation of NSI and allow migration to new transport layers.
The MTL is responsible for end-to-end communications between NSAs and has two primary requirements:
· Send and receive messages; The MTL is responsible for encapsulating the message with all the necessary information (e.g. source/destination, port, protocol, etc) for delivery, and removing transport information when a datagram is received prior to passing it to the Coordinator.
· Verify if a message was received by the intended destination NSA. To do this, the MTL utilizes message receipt acknowledgement and timeouts to determine if a packet was or was not successfully delivered.

It should be noted that there is no inherent requirement for the MTL to be reliable or ensure delivery order as these functions are accomplished by the higher level processes. For NSI CS v2.0, a SOAP protocol (ref ?) is used as the MTL.

[image:]
Figure 9: Coordinator and MTL in an NSA

[bookmark: _Toc231629496]Message and Process Coordination
As the MTL defines only basic message transport capabilities, the NSA requires more intelligent message and process coordination to function. These capabilities are defined in a logical entity called the coordinator. Even though both the MTL and Coordinator are part of the NSA, the Coordinator is integral to the NSI Stack, whereas the MTL is functionally distinct and can readily be substituted.

The Coordinator has several responsibilities:
· To coordinate, track, and aggregate (if necessary) message requests, replies, and notifications
· To process or forward notifications as necessary
· To service query requests

[bookmark: _Toc231629497]Communications
Reliable communications is essential to the reliable operation of the NSA. As the MTL provides only basic message transport capabilities, it is the responsibility of the Coordinator to keep track of message states and make decisions accordingly. To do this, the Coordinator maintains the following information on a per NSI request message basis:

· Which NSA the message was sent to
· Was the message received (i.e. ack’ed) or not (i.e. MTL timeout)
· Which NSA has sent back a reply (e.g. *.confirm, *.fail, *.not_applicable) for the initial NSI request (e.g. *.request)

[bookmark: _Toc231629498]Per Request Information Elements
For each NSI request/reply interaction, the Coordinator must maintain several pieces of information that are associated with those messages. This is particularly important for the Aggregator NSAs (AG) since it must keep track of the message status for each of its children in the request workflow. The information that must be retained includes:
· NSA IDs: A list of NSA that the messages were sent to.
· Connection ID: The name that uniquely identifies the connection request/reservation (see “ogf_nsi_connection_types_v2_0.xsd” for more detail).
· Correlation ID: The label that identifies messages associated to a unique NSI request/reply interaction. This is used to associate NSI replies to requests, and also to identify messages for re-delivery (i.e. message retries).	Comment by Henrik Thostrup Jensen: AFAIK Correlation ID is not required at the coordinator level, only at the MTL.
Chin: the function of requesting a resend is now part of the coordinator’s responsibility, so the correlation id is kept by the coordinator
· Message status: This provides the message state for each of the NSI requests sent to the various NSAs to reflect the current status, such as; MTL sent, MTL receipt acknowledged, MTL timeout, and Coordinator timeout.

In addition to the detailed information of the status for each child NSA NSI request (see “request_segment_list(Conn_ID, NSA)” in Figure 4.), the Coordinator must also maintain an aggregate message status indicating if the messages were delivered successfully to all the children (see “request_list(Conn_ID)” Figure 4.).

[bookmark: _Toc231629499]Timeouts
In order to identify communication failures, both the MTL and Coordinator have defined timeouts to detect breakdowns in certain aspects of the communication channel. The characteristics of these timeouts are outlined below:
· MTL Timeout	Comment by Henrik Thostrup Jensen: What is the purpose of this list? An NSA can only guess about it. In distributed systems theory, the peer is simply described as being unavailable.
Chin: Since we have logically separated the Coordinator and MTL, this list is primarily to annotate that we do have 2 distinct timeouts, the MTL timeout and Coordinator timeout. The resulting behavior maybe the same (e.g. no reply), by the fix may be very different
· Symptoms
· No acknowledgement of message receipt after a pre-determined time period after the message was sent.
· Causes
· Failure in end-to-end communication between NSAs.
· Coordinator Timeout
· Symptoms
· No NSI reply after a pre-determined time period after the NSI request was sent.
· Causes
· Failure in the MTL such that the NSI reply (from the PA) could not be delivered to the requesting NSA (the RA).
· The NSA processing the request (e.g. PA) was unable to reply due to incapacitation.
· The NSA processing the request (Aggr) was blocked waiting for NSI replies from downstream NSAs. (This scenario can be resolved by adjusting the Coordinator timeout value of the requester.)

As both the MTL and Coordinator timeouts are distinct and can be set exclusively, it is important to understand the interplay between the MTL and Coordinator timeouts in order to mitigate artificial “failures”.

NSA

Provider Agent
MH
MTL
MH

NSA

Requester Agent
MTL
MH

message
ack
request
return
return
reply
message
reply
ack
notification
message
ack
return
notification

Potential MH Timeout

Potential MTL Timeout
request

Figure 10: Potential MH/MTL timeout sequences

In the event of an MTL or Coordinator timeout, the Coordinator generates a message delivery failure notification and sends it up the workflow tree (towards the uRA).

[bookmark: _Toc231629500]Failure Recovery
In NSI CSv2.0, there is no inherent expectation that any (interim) NSAs except for the ultimate requester NSA (uRA) to make a decision and take action when it receives a message delivery failure notification. Any interim (aggregator) NSA that receives the delivery failure notification MUST forward it up the workflow tree if it does not want to or cannot resolve the issue. When an Aaggregator (AG) forwards a notification event up the tree, it SHOULD retain the information concerning the original failure, such as NSA identity, connection id, and error information. There may be cases where local policy prevents this, in which case the information can be removed or altered.

On receiving the message delivery failure notification, the uRA has two choices:
1. Terminate the reservation; this is done by sending down a terminate request (“term.rq”) through the workflow tree.
2. Request redelivery of the original message; this is done by resending down the original message through the workflow tree.

When the original message is resent down the workflow tree, it will contain the original Correlation ID. Aggregators (AGs) receiving the duplicate request SHOULD only attempt redelivery of the message to children that it did not receive an acknowledgement for (i.e. MTL timeout) or reply to (i.e. Coordinator timeout) the original message. If the message sent with the original Correlation ID does not match the original message (e.g. different message parameters/content), the message is rejected and an error returned. 	Comment by Henrik Thostrup Jensen: Keeping track of previous messages is a pretty big burden to put on NSAs.
Chin: In our discussion, it only has to keep track of any outstanding messages. This will probably be a handful per reservation, but you are right, it can potentially be a pretty large set depending on the fan-out of the tree, as well as number of reservations.

[bookmark: _Toc231629501]Coordinator Maintained Information 	Comment by Guy: Needs better title
While per request information (see “Per Request Information Elements”) will only persist for the duration of the NSI request/reply interaction, the Coordinator must also store information associated with the entire reservation.

 1Conn_ID, A-Z STPs, Parameters

1.1Corr_ID, Status
1.2Corr_ID, Status

1.1NSA, Conn_ID, A-Z STPs, Parameters, RSM, PSM, LSM, Data_Plane
1.2NSA, Conn_ID, A-Z STPs, Parameters, RSM, PSM, LSM, Data_Plane
1.nNSA, Conn_ID, A-Z STPs, Parameters, RSM, PSM, LSM, Data_Plane

1.1.1Corr_ID, Status
1.1.2Corr_ID, Status
1.1.nCorr_ID, Status

1.2.1Corr_ID, Status
1.2.2Corr_ID, Status
1.2.nCorr_ID, Status

List of Connection Reservations
connection_list(Conn_ID)
List of children NSAs associated with a Connection Reservation
connection_segment_list(Conn_ID, NSA)
A connection reservation may be broken down into several smaller segment requests to other (children) NSAs
Information generated per Reservation (Connection)
Information generated per NSI Request (Message)
List of (summary) NSI Requests associated with a Connection Request
request_list(Conn_ID, Corr_ID)
List of child NSA NSI Requests associated with a (summary) NSI Request
request_segment_list(Conn_ID, NSA, Corr_ID)
A connection reservation will consist of one or more NSI Requests
An NSI request may result in several distinct child NSA NSI Requests
Each NSA segment NSI Request is associated to the corresponding child NSA Connection Reservation

Figure 11: Information maintained by Coordinator for each Connection Reservation and NSI Request

[bookmark: _Toc231629502]Per Reservation Information Elements
To support the recursive query function in NSI CS v2.0, an AG Coordinator must track the current states (i.e. RSM, PSM, LSM) of all its children as well as the condition of the data plane status. This information is persistent but updated over the lifetime of the reservation (see “connection_segment_list(Conn_ID, NSA)” in Figure 4.).	Comment by Henrik Thostrup Jensen: For recursive query, the children are also queried, hence the argument does not make sense.
Chin: I think I typo’ed this, this is for the general query.
· NSA IDs: A list of NSA that are part of the connection request workflow tree.	Comment by Henrik Thostrup Jensen: These must be combined in order to make sense.
Chin: There must be a relationship between information elements. Hopefully Figure 11. makes this clear.
· Connection IDs: Connection IDs associated with each NSA in the workflow tree.
· Source and Destination STPs: The source and destination STP of each NSA segment composing the end-to-end circuit
· Reservation Parameters: A list of reservation parameters (e.g. start/end time, bandwidth, etc) associated with each NSA segment
· RSM States: State of children’s Reservation State Machine and current committed reservation version number	Comment by Henrik Thostrup Jensen: I am not entirely sure these are actually needed. LSM is arguably a good optimization, but I think the only thing required is latest committed revision.
Chin: I think this was added to support the basic query where states of children SMs are returned.
· PSM States: State of children’s Provision State Machine
· LSM States: State of Children’s Lifecycle State Machine
· Data plane states: The status of the children’s data plane (i.e. in-service /out-of-service), the version of the reservation instantiated in the data plane if it is in-service (see “Reservation Versioning Information” and “Data Plane Status Information” sections for more details), and if the version is consistent.	Comment by Chin Guok: I’m using in-service/out-of-service vs active/not active to be consistent with following sections. If we want to use active/not active, we need to go through the doc for consistency

[bookmark: _Toc231629503]Reservation Versioning Information
To support the modification of reservations, the notion of versioning has been introduced to identify the instance of a reservation over its lifetime. The properties and characteristics of the versioning is as follows:
· Version numbers are integer values ≥ 0 (zero)
· Version numbers are assigned by the RA when a reservation request (i.e. NSI_rsv.rq) is made to a PA
· An integer ≥ 0 (zero) can be assigned by the RA for the initial request, however subsequent modifications to the request MUST use monotonically increasing version numbers (although they need not be sequential)
· If a version number is not specified in an NSI_rsv.rq, it is assumed to be 0 (zero) regardless if it is the initial or subsequent requests
· An NSI_rsv.rq with a version number ≤ the (highest) current committed reservation version number will result in a failed request and an appropriate error
· A uPA must keep track of
· Version number of currently committed reservation
· Version number of pending modification request (if any)
· Version number of reservation instantiated in the data plane by the NRM
· An Aggregator must keep track of	Comment by Henrik Thostrup Jensen: I think this is covered in section 5.8
Chin: It was mentioned in passing in 5.8, but not detailed information. I’ve put it in this section for completeness of resv versioning.
· Version numbers of currently committed reservations in each child segment
· Version number of pending modification request (only one modify can be outstanding at any time)
· Version numbers of reservations instantiated in the data plane in each child segment (see “Data Plane Status Information”)
· Version numbers of failed (e.g. timed-out) or aborted modifications are not stored, and therefore can be reused. For example:
1. Successful initial NSI_req.rq(ver = 2) results in Reservation(v2)
2. Successful modify NSI_req.rq(ver = 5) results in Reservation(v5)
3. Failed modify NSI_req.rq(ver = 6) retains Reservation(v5)
4. Subsequent successful modify NSI_req.rq(ver = 6) results in Reservation(v6)

[bookmark: _Toc231629504]Data Plane Status Information
To reflect the state of the data plane, a Coordinator will maintain three flags:
· Active (boolean): To indicate whether the data plane is in-service or out-of-service
· uPA:
· True: Data plane is in-service
· False: Data plane is out-of-service
· AG:
· True: All children’s data planes are in-service
· False: One or more children’s data plane is out-of-service
· Version (int): The version of the committed reservation instantiated in the data plane. This field is only valid when ActivateFlag is true.
· uPA: Version number of the committed reservation
· AG: Largest version number of the committed reservation among the children
· VersionConsistent (boolean): Reflects if the “Version” numbers are consistent
· uPA: This is always True
· AG:
· True: All children’s “Version” numbers are the same
· False: All children’s “Version” numbers are not the same

When there is a change in the data plane status (i.e. uPA is notified by its NRM, or AG notified by one or more of its children), the Coordinator will send up the workflow tree a “DataPlaneStateChange.nt” notification with the updated Activate, Version, and VersionConsistent values.

For the AG, reporting the aggregate data plane state of its children requires some processing. The following pseudo-code describes this behavior:

if all of ChildrenDataPlaneStatus[1..n].Active are true then
{
 DataPlaneStatus.Active = true
}
else {
 DataPlaneStatus.Active = false
}
DataPlaneStatus.Version = maximum(ChildrenDataPlaneStatus[1..n].Version)
If all ChildrenDataPlaneStatus[1..n].Version are the same, and
 all of ChildrenDataPlaneStatus[1..n].VersionCosistent are true then
{
 DataPlaneStatus.VersionConsistent = true
}
else
{
 DataPlaneStatus.VersionConsistent = false
}

If the new state of an aggregated data plane is the same as the previous aggregated state, the aggregator does not need to send up an dataPlaneStatus notification message. In case the aggregated data plane status has changed, the aggregator MUST send up a notification.

[bookmark: h.bwvrmjj8t0gi][bookmark: h.n9u19ibjiefi][bookmark: h.1fqyv4oqlfzq][bookmark: h.bnh959jsz6q4]
[bookmark: _Toc231629505]Security

This section describes how NSI CS protocol achieves secure communication and provides authentication data across requests. The basic setup is to use TLS between NSAs and SAML attributes to convey information regarding request authentication.

[bookmark: _Toc231629506]Transport Layer Security

TLS is used to ensure secure communication between NSAs and X.509 certificates for authentication. Trust between NSAs is pairwise and must be established out-of-band. It is possible to have unidirectional trust between NSAs, i.e. reservations can only be created in one direction, as this is simply a policy special case. Transitive trust between NSAs cannot be assumed, i.e., NSAs A & B trust each other, and B & C trust each other, but this does not imply trust between A & C. However a request from A may end up using resources from C if passed through B. In the current security framework, B (if it’s policies permit) can proxy A’s request to C. From C’s point of view, it receives the request from B, and authenticates and authorizes the request using B’s credentials. This document does not describe security policies, as these will always be site specific. Note that due to the requirement for direct NSA-to-NSA communications (i.e. NSAs cannot forward communications via a third party NSA), message-level signing provides little value and is not used.

TLS provides message integrity, confidentiality, protects against replay attacks, and authenticates with the X.509 certificates. Authorization is done at the NSAs application level. TLS version 1.0 must be supported. NSAs are free to use SSLv3 and TLS version following 1.0 if possible.

[bookmark: _Toc231629507]SAML Assertions

As TLS by design only provides transport level security, an additional mechanism for conveying request authentication is required. For this, SAML assertions are used. NSAs can include SAML assertions in the CS message header, which providers can use to authorize the request. SAML attributes can describe information such as user, group, originating NSA, or even OAuth tokens. What and how to describe with SAML headers is outside the scope of this document, but will be described in a best current practices (BCP) document. The intent of such a document is to provide a baseline of what to support, but attributes can be created as needed and can be unique to NSA peerings.

[bookmark: _Toc5010630][bookmark: _Toc130006544][bookmark: _Toc231629508]Contributors
Chin Guok, ESnet
Jeroen van der Ham, University of Amsterdam
Radek Krzywania, PSNC
Tomohiro Kudoh, AIST
John MacAuley, SURFnet
Takahiro Miyamoto, KDDI R&D Laboratories
Inder Monga, ESnet
Guy Roberts, DANTE
Jerry Sobieski, NORDUnet
Henrik Thostrup Jensen, NORDUnet

[bookmark: _Toc5010631][bookmark: _Toc130006545][bookmark: _Toc231629509]Glossary

	Activate
	When provisioning of a Connection has been completed the Connection is considered to be Active. A notification is sent to the RA informing them that the Connection is Active.

	Aggregator (AG)
	The Aggregator is an NSA th has more than one child NSA, and has the responsibility of aggregating the responses from each child NSA.

	Connection
	A Connection is an NSI construct that identifies the physical instance of a circuit in the data plane. A Connection has a set of properties (for instance, Connection identifier, ingress and egress STPs, capacity, or start time). Connections can be either unidirectional or bidirectional.

	Connection Service
	A Connection Service is a service that allows a Requester NSA to request and manage a Connection from a Provider NSA

	Connection Service Protocol
	A Connection Service Protocol is the protocol that describes the messages and associated attributes that are exchanged between RA and PA

	Control and Management Planes
	The Control Plane and/or Management Plane are not defined in this document, but follow common usage

	Coordinator
	The Coordinator is a set of functions that XXX

	Data Plane
	The Data Plane refers to the infrastructure that carries the physical instance of the Connection, e.g. the Ethernet switches that deliver the circuit.

	Edge Point
	A network resource that resides at the boundary of an intra-network topology, this may include for example a connector on a distribution frame, a port on an Ethernet switch, or a connector at the end of a fibre.

	Inter-Network Topology
	This is a topological description of a set of Networks and their transfer functions, and the connectivity between Networks

	Lifecycle State Machine (LSM)
	The LSM allows messages relating to terminating a Connection to be to send and received.

	Message Transport Layer (MTL)
	The MTL delivers an abstracted message delivery mechanism to the NSI layer.

	Network
	A Network is an Inter-Network topology object that describes a set of STPs with a Transfer Function between STPs

	Network Resource Manager (NRM)
	The Network Resource Manager owns a set of transport resources and has ultimate responsibility for authorizing and managing the use of these resources. Each NRM is always associated with a single NSA

	Network Services
	Network Services are the full set of services offered by an NSA. Each NSA will support one or more Network Services

	Network Service Agent (NSA)
	The Network Service Agent is a concrete piece of software that sends and receives NSI Messages. The NSA includes a set of capabilities that allow Network Services to be delivered.

	Network Service Interface (NSI)
	The NSI is the interface between Requester NSAs and Provider NSAs. The NSI defines a set of interactions or transactions between these NSAs to realize a Network Service

	Network Services Framework (NSF)
	The Network Services framework describes a NSI message based platform capable of supporting a suite of Network Services such as the Connection Service and the Topology Service

	NSI Message
	A NSI Message is a structured unit of data sent between a Requester NSA and a Provider NSA.

	Path
	A Path is an ordered list of STPs that are used a constraint in Inter-Network path finding.

	Provision
	Provisioning is the process of requesting the creation of the physical instance of a Connection in the data plane

	Provision State Machine (PSM)
	The Provision State Machine is a simple state machine which transits between the Provisioned and the Released state

	Release
	Releasing is the process of de-provisioning resources on the data-plane. When a Connection is Released on the data-plane, the Reservation is retained.

	Requester/ Provider NSA (RA/PA)
	An NSA acts in one of two possible roles relative to a particular instance of an NSI. When an NSA requests a service, it is called a Requester Agent (RA). When an NSA realizes a service, it is called a Provider Agent (PA). A particular NSA may act in different roles at different interfaces

	Service Demarcation Point (SDP)
	Service Demarcation Points (SDPs) are an NSI topology objects that identify a grouping of two Edge Points at the boundary between two Networks.

	Service Termination Point (STP)
	Service Termination Points (STPs) are an NSI topology objects that identify the Edge Points of a Network in the intra-network topology.

	Service Plane

	The Service Plane is a plane in which services are requested and managed; these services include the Network Service. The Service Plane contains a set of Network Service Agents communicating using Network Service Interfaces

	Simple Object Access Protocol (SOAP)
	SOAP is a protocol specification for exchanging structured information in the implementation of Web Services in computer networks

	Reservation State Machine (RSM)
	The Reservation State Machine state machine defines the sequence of operation of messages for creating or modifying a reservation

	Reserve

	When a Provider Agent receives (and then confirms) a Connection Reservation request the Provider Agent then holds the resources needed by the Connection.

	Terminate
	Terminating is the process which will completely remove a Reservation and Release any associated Connections. This term has a formal definition in the CS state-machine

	Ultimate PA (uPA)
	The ultimate PA is a Provider Agent that has an associated NRM.

	Ultimate RA (uRA)
	The Ultimate RA is a Requester Agent is the originator of a service request

	XML Schema Definition (XSD)
	XSD is a schema language for XML

	eXtensible Markup Language (XML)
	XML is a markup language that defines a set of rules for encoding documents in a format that is both human-readable and machine-readable.

[bookmark: _Toc526008660][bookmark: _Toc5010632][bookmark: _Toc130006546][bookmark: _Toc231629510]Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this recommendation. Please address the information to the OGF Executive Director.

[bookmark: _Toc5010633][bookmark: _Toc130006547][bookmark: _Toc526008661][bookmark: _Toc231629511]Disclaimer
This document and the information contained herein is provided on an “As Is” basis and the OGF disclaims all warranties, express or implied, including but not limited to any warranty that the use of the information herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular purpose.

[bookmark: _Toc5010634][bookmark: _Toc130006548][bookmark: _Toc231629512]Full Copyright Notice

Copyright (C) Open Grid Forum (2008-2012). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the OGF or other organizations, except as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the OGF Document process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors or assignees.

[bookmark: _Toc231629513]Appendix A: XML Schema Definitions
The NSI-CS 2.0 protocol is defined using XML schema (XSD) to describe the common message header and individual connection services operation elements and types. Web Service Description Language (WSDL) is used to describe the interface or operation bindings, capturing the request, response, and error (fault) interactions. Finally, WSDL is used to provide a SOAP specific transport binding as a reference specification; however, the XML schema definitions can be utilized to encapsulate the NCI-CS protocol into other transport bindings. This appendix provides a detailed overview of these NSI-CS XML schema definitions.

The following individual namespaces are defined as part of the NSI-CS 2.0 protocol:

	Description
	Namespace URL

	Common types shared between NSI message header and CS operation definitions.
	http://schemas.ogf.org/nsi/2013/04/framework/types

	NSI message header definition.
	http://schemas.ogf.org/nsi/2013/04/framework/headers

	NSI CS operation specific type definitions.
	http://schemas.ogf.org/nsi/2013/04/connection/types

	NSI CS operation definitions
	http://schemas.ogf.org/nsi/2013/04/connection/interface

	Provider NSA interface SOAP binding
	http://schemas.ogf.org/nsi/2013/04/connection/provider

	Requester NSA interface SOAP binding
	http://schemas.ogf.org/nsi/2013/04/connection/requester

Table 4 – PA to RA messages

[bookmark: _Toc231629514]15.1	Use of SOAP

The NSI CS protocol is specified using WSDL 1.1 and utilizes the SOAP 1.1 message encoding as identified by the namespaces:

· soap - "http://schemas.xmlsoap.org/soap/envelope/"
· xsi - "http://www.w3.org/2001/XMLSchema-instance"
· xsd - "http://www.w3.org/2001/XMLSchema"
· soapenc - "http://schemas.xmlsoap.org/soap/encoding/"
· wsdl - "http://schemas.xmlsoap.org/wsdl/"
· soapbind - "http://schemas.xmlsoap.org/wsdl/soap/"

We identify the specific NSI CS operation being invoked using the “Soapaction:” element in the HTTP header as per section 6.1.1 of “Simple Object Access Protocol (SOAP) 1.1” found at http://www.w3.org/TR/SOAP. This was done to allow for better compatibility between SOAP implementations even though it is not explicitly required as per WS-I Basic Profile 1.1 http://www.ws-i.org/Profiles/BasicProfile-1.1-2006-04-10.html. The NSI header as defined with XML schema does not contain a specific “operation” element as this is included in the “Soapaction:” element and would be duplicate data.

[bookmark: _Toc231629515]nsiHeader element

Namespace definition: http://schemas.ogf.org/nsi/2013/04/framework/headers

The nsiHeader element contains attributes common to all NSI-CS operations, and therefore, is sent as part of every NSI-CS message exchange. Attributes included in the header provide protocol versioning, basic message routing for the protocol, and user security infrastructure. For the SOAP protocol binding, the nsiHeader element is encapsulated in the SOAP header, while the NSI specific operation is encapsulated in the SOAP body.

[image:]
Figure 12 – nsiHeader structure.
Parameters
The nsiHeader has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	protocolVersion
	M
	A string identifying the specific protocol version carried in this NSI message. The protocol version is modeled separately from the namespace of the WSDL and XML schema to capture behavioral changes that cannot be modeled in schema definition, and to avoid updating of the schema namespace.

	correlationId
	M
	An identifier provided by the requesting NSA used to correlate to an asynchronous response from the responder. It is recommended that a Universally Unique Identifier (UUID) URN as per IETF RFC 4122 be used as a globally unique value.

	requesterNSA
	M
	The NSA identifier for the NSA acting in the Requester Agent role for the specific NSI operation.

	providerNSA
	M
	The NSA identifier for the NSA acting in the Provider Agent role for the specific NSI operation.

	replyTo
	O
	The Requester NSA's SOAP endpoint address to which asynchronous messages associated with this operation request will be delivered. This is only populated for the original operation request (reserve, provision, release, terminate, and query), and not for any additional messaging associated with the operation. If no endpoint value is provided in an operation request, then it is assumed the requester is not interested in a response and will use alternative mechanism to determine the result (i.e. polling using query).

	sessionSecurityAttr
	O
	Security attributes associated with the end user's NSI session. This field can be used to perform authentication, authorization, and policy enforcement of end user requests. It is only provided in the operation request (reserve, provision, release, terminate, and query), and not for any additional messaging associated with the operation.

	any element and anyAttribute
	O
	Provides a flexible mechanism allowing additional elements in the protocol header for exchange between two-peered NSA. Use of this element field is beyond the current scope of this NSI specification, but may be used in the future to extend the existing protocol without requiring a schema change. Additionally, the field can be used between peered NSA to provide additional context not covered in the existing specification, however, this is left up to specific peering agreements.

Table 5 sessionSecurityAttr type.

The following table describes each message and it’s use of the individual header parameters. The “Soapaction” parameter identified in the last column of the table is carried in the HTTP request attributes and not the NSI specific header.

	
	
	
	Header parameters

	M = Mandatory
O = Optional
N/A = Not Applicable
	protocolVersion
	correlationId
	requesterNSA
	providerNSA
	replyTo
	sessionSecurityAttr
	other
	Soapaction

	
	reserve
	M
	M
	M
	M
	O
	M
	O
	M

	
	reserveResponse
	M
	M
	M
	M
	N/A
	N/A
	O
	N/A

	
	reserveConfirmed
	M
	M
	M
	M
	N/A
	N/A
	O
	M

	
	reserveConfirmedACK
	M
	M
	M
	M
	N/A
	N/A
	O
	N/A

	
	reserveFailed
	M
	M
	M
	M
	N/A
	N/A
	O
	M

	
	reserveFailedACK
	M
	M
	M
	M
	N/A
	N/A
	O
	N/A

	
	
	
	
	
	
	
	
	
	

	
	reserveCommit
	M
	M
	M
	M
	O
	M
	O
	M

	
	reserveCommitACK
	M
	M
	M
	M
	N/A
	N/A
	O
	N/A

	
	reserveCommitConfirmed
	M
	M
	M
	M
	N/A
	N/A
	O
	M

	
	reserveCommitConfirmedACK
	M
	M
	M
	M
	N/A
	N/A
	O
	N/A

	
	reserveCommitFailed
	M
	M
	M
	M
	N/A
	N/A
	O
	M

	
	reserveCommitFailedACK
	M
	M
	M
	M
	N/A
	N/A
	O
	N/A

	
	
	
	
	
	
	
	
	
	

	
	reserveAbort
	M
	M
	M
	M
	O
	M
	O
	M

	
	reserveAbortACK
	M
	M
	M
	M
	N/A
	N/A
	O
	N/A

	
	reserveAbortConfirmed
	M
	M
	M
	M
	N/A
	N/A
	O
	M

	
	reserveAbortConfirmedACK
	M
	M
	M
	M
	N/A
	N/A
	O
	N/A

	
	
	
	
	
	
	
	
	
	

	
	provision
	M
	M
	M
	M
	O
	M
	O
	M

	
	provisionACK
	M
	M
	M
	M
	N/A
	N/A
	O
	N/A

	
	provisionConfirmed
	M
	M
	M
	M
	N/A
	N/A
	O
	M

	
	provisionConfirmedACK
	M
	M
	M
	M
	N/A
	N/A
	O
	N/A

	Messaging
Primitives
	
	
	
	
	
	
	
	
	

	
	release
	M
	M
	M
	M
	O
	M
	O
	M

	
	releaseACK
	M
	M
	M
	M
	N/A
	N/A
	O
	N/A

	
	releaseConfirmed
	M
	M
	M
	M
	N/A
	N/A
	O
	M

	
	releaseConfirmedACK
	M
	M
	M
	M
	N/A
	N/A
	O
	N/A

	
	
	
	
	
	
	
	
	
	

	
	terminate
	M
	M
	M
	M
	O
	M
	O
	M

	
	terminateACK
	M
	M
	M
	M
	N/A
	N/A
	O
	N/A

	
	terminateConfirmed
	M
	M
	M
	M
	N/A
	N/A
	O
	M

	
	terminateConfirmedACK
	M
	M
	M
	M
	N/A
	N/A
	O
	N/A

	
	
	
	
	
	
	
	
	
	

	
	querySummary
	M
	M
	M
	M
	M
	M
	O
	M

	
	querySummaryACK
	M
	M
	M
	M
	N/A
	N/A
	O
	N/A

	
	querySummaryConfirmed
	M
	M
	M
	M
	N/A
	N/A
	O
	M

	
	querySummaryConfirmedACK
	M
	M
	M
	M
	N/A
	N/A
	O
	N/A

	
	querySummaryFailed
	M
	M
	M
	M
	N/A
	N/A
	O
	M

	
	querySummaryFailedACK
	M
	M
	M
	M
	N/A
	N/A
	O
	N/A

	
	
	
	
	
	
	
	
	
	

	
	queryRecursive
	M
	M
	M
	M
	M
	M
	O
	M

	
	queryRecursiveACK
	M
	M
	M
	M
	N/A
	N/A
	O
	N/A

	
	queryRecursiveConfirmed
	M
	M
	M
	M
	N/A
	N/A
	O
	M

	
	queryRecursiveConfirmedACK
	M
	M
	M
	M
	N/A
	N/A
	O
	N/A

	
	queryRecursiveFailed
	M
	M
	M
	M
	N/A
	N/A
	O
	M

	
	queryRecursiveFailedACK
	M
	M
	M
	M
	N/A
	N/A
	O
	N/A

	
	
	
	
	
	
	
	
	
	

	
	querySummarySync
	M
	M
	M
	M
	N/A
	M
	O
	M

	
	querySummarySyncConfirmed
	M
	M
	M
	M
	N/A
	N/A
	O
	M

	
	querySummarySyncFailed
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A

	
	
	
	
	
	
	
	
	
	

	
	errorEvent
	M
	M
	M
	M
	N/A
	N/A
	O
	M

	
	errorEventACK
	M
	M
	M
	M
	N/A
	N/A
	O
	N/A

	
	reserveTimeout
	M
	M
	M
	M
	N/A
	N/A
	O
	M

	
	reserveTimeoutACK
	M
	M
	M
	M
	N/A
	N/A
	O
	N/A

	
	dataPlaneStateChange
	M
	M
	M
	M
	N/A
	N/A
	O
	M

	
	dataPlaneStateChangeACK
	M
	M
	M
	M
	N/A
	N/A
	O
	N/A

	
	messageDeliveryTimeout
	M
	M
	M
	M
	N/A
	N/A
	O
	M

	
	messageDeliveryTimeoutACK
	M
	M
	M
	M
	N/A
	N/A
	O
	N/A

Table 6 – NSI CS message use of header fields

[bookmark: _Toc231629516]sessionSecurityAttr type
The sessionSecurityAttr element is defined using a standardized SAML AtttributeStatementType imported from the SAML namespace urn:oasis:names:tc:SAML:2.0:assertion.

[image:]
Figure 13 – sessionSecurityAttr type.

[bookmark: _Toc355354851][bookmark: _Toc231629517]Common types

Namespace definition: http://schemas.ogf.org/nsi/2013/04/framework/types

These are the common types shared between NSI message header and CS operation definitions.

[bookmark: _Toc355354852][bookmark: _Toc231629518]ServiceExceptionType

Common service exception used for SOAP faults and operation Failed messages.

[image:]
Figure 14 – ServiceExceptionType type.
Parameters
The ServiceExceptionType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	nsaId
	M
	NSA that generated the service exception.

	errorId
	M
	Error identifier uniquely identifying each known fault within the protocol.

	text
	M
	User-friendly message text describing the error.

	providerNSA
	M
	The NSA identifier for the NSA acting in the Provider Agent role for the specific NSI operation.

	variables
	O
	An optional collection of type/value pairs providing additional information relating to the error.

	childException
	O
	Hierarchical list of service exceptions capturing failures within the request tree.

Table 7 – ServcieExceptionType parameters

[bookmark: _Toc355354853][bookmark: _Toc231629519]NsaIdType

NsaIdType is a specific type for a Network Services Agent (NSA) identifier that is populated with a OGF URN (reference artifact 6478 "Procedure for Registration of Subnamespace Identifiers in the URN:OGF Hierarchy") to be used for compatibility with other external systems.

[image:]
Figure 15 – NsaIdType type.
[bookmark: _Toc355354854][bookmark: _Toc231629520]VariablesType

A type definition providing a set of zero or more type/value variables used for modeling generic attributes.
[image:]
Figure 16 – NsaIdType type.
Parameters
The VariablesType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	variable
	O
	The variable containing the type/values.

Table 8 – VariablesType parameters

[bookmark: _Toc355354855][bookmark: _Toc231629521]TypeValuePairType

TypeValuePairType is a simple type and multi-value tuple. Includes simple string type and value, as well as more advanced extensions if needed. A targetNamespace attribute is included to provide additional context where needed.
[image:]
Figure 17 – TypeValuePairType type.
Parameters
The TypeValuePairType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	type
	M
	A string representing the name of the type.

	targetNamespace
	O
	An optional URL to qualify the name space of the capability.

	anyAttribute
	
	Provides a flexible mechanism allowing additional attributes non-specified to be provided as needed for peer-to-peer NSA communications. Use of this attribute field is beyond the current scope of this NSI specification, but may be used in the future to extend the existing protocol without requiring a schema change.

	value
	O
	A string value corresponding to type.

	any
	O
	Provides a flexible mechanism allowing additional elements to be provided as an alternative, or in combination with value. Use of this element field is beyond the current scope of this NSI specification, but may be used in the future to extend the existing protocol without requiring a schema change.

Table 9 – TypeValuePairType parameters

[bookmark: _Toc355354856][bookmark: _Toc231629522]TypeValuePairListType

 A simple holder type providing a list definition for the attribute type/values structure.

[image:]
Figure 18 – TypeValuePairListType type.
Parameters
The TypeValuePairListType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	attribute
	O
	An instance of a type/value structure.

Table 10 – TypeValuePairListType parameters

[bookmark: _Toc355354857][bookmark: _Toc231629523]UuidType

Universally Unique Identifier (UUID) URN as per ITU-T Rec. X.667 | ISO/IEC 9834-8:2005 and IETF RFC 4122. Values must correspond to the following pattern “urn:uuid:[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}”.

[image:]
Figure 19 – TypeValuePairListType type.
[bookmark: _Toc355354858][bookmark: _Toc231629524]DateTimeType

The time zone support of W3C XML Schema is quite controversial and needs some additional constraints to avoid comparison problems. These patterns can be kept relatively simple since the syntax of the datetime is already checked by the schema validator and only simple additional checks need to be added. This type definition checks that the time part ends with a "Z" or contains a sign. Values must correspond to the following pattern ".+T.+(Z|[+-].+)"

[image:]
Figure 20 – TypeValuePairListType type.

[bookmark: _Toc355354859][bookmark: _Toc231629525]NSI-CS operation specific type definitions.

Namespace definition: http://schemas.ogf.org/nsi/2013/04/connection/types

[bookmark: _Toc355354860][bookmark: _Toc231629526]Reserve message elements

The reserve message is sent from a Requester NSA to a Provider NSA when a new reservation is being requested, or a modification to an existing reservation is required. The reserveResponse indicates that the Provider NSA has accepted the reservation request for processing and has assigned it the returned connectionId. A reserveConfirmed or reserveFailed message will be sent asynchronously to the Requester NSA when reserve operation has completed processing.

	Type
	Direction
	Input
	Output
	Fault

	Request
	RA to PA
	reserve
	reserveResponse
	serviceException

	Confirmed
	PA to RA
	reserveConfirmed
	reserveConfirmedACK
	serviceException

	Failed
	PA to RA
	reserveFailed
	reserveFailedACK
	serviceException

Table 11 Reserve message elements

Request: reserve

The NSI CS reserve message allows a Requester NSA to reserve network resources for a connection between two STP's within the network constrained by the provided service parameters. This reserve message allows a Requester NSA to check the feasibility of a connection reservation, or modification an existing connection reservation. Any resources associated with the reservation or modification operation will be allocated and held until a reserveCommit message is received for the reservation or timeout occurs (whichever arrives first).
[image:]
Figure 21 – reserve request message structure.
Parameters
The reserve message has the following parameters:

	Parameter
	Description

	globalReservationId
	An optional global reservation id that can be used to correlate individual related service reservations through the network. This must be populated with a Universally Unique Identifier (UUID) URN as per ITU-T Rec. X.667 |ISO/IEC 9834-8:2005 and IETF RFC 4122.

	description
	An optional description for the service reservation.

	connectionId
	The Provider NSA assigned connectionId for this reservation. This value will be unique within the context of the Provider NSA. Provided in reserve request only when an existing reservation is being modified.

	criteria
	Reservation request criteria including start and end time, service attributes, and requested path for the service.

Table 12 Reserve message parameters

Response
If the reserve operation is successful, a reserveResponse message is returned, otherwise a serviceException is returned. A Provider NSA sends this reserveResponse message immediately after receiving the reservation request to inform the Requester NSA of the connectionId allocated to their reservation request. This connectionId can then be used to query reservation progress.

[image:]
Figure 22 – reserveResponse message structure.
The reserveResponse message has the following parameters:

	Parameter
	Description

	connectionId
	The Provider NSA assigned connectionId for this reservation request. This value will be unique within the context of the Provider NSA.

Table 13 reserveResponse message parameters

Confirmation: reserveConfirmed

A Provider NSA sends this positive reserveConfirmed response message to the Requester NSA that issued the original reserve request message. Receipt of this message is an indication that the requested reservation parameters were available and will be held until a reserveCommit message is received for the reservation or timeout occurs (whichever arrives first).

[image:]
Figure 23 – reserveConfirmed message structure.
Parameters
The reserveConfirmed message has the following parameters:

	Parameter
	Description

	globalReservationId
	An optional global reservation id that can be used to correlate individual related service reservations through the network. This must be populated with a Universally Unique Identifier (UUID) URN as per ITU-T Rec. X.667 |ISO/IEC 9834-8:2005 and IETF RFC 4122.

	description
	An optional description for the service reservation.

	connectionId
	The Provider NSA assigned connectionId for this reservation. This value will be unique within the context of the Provider NSA. Provided in reserve request only when an existing reservation is being modified.

	criteria
	A set of versioned and confirmed reservation criteria information including start and end time, service attributes, and requested path for the service.

Table 14 reserveConfirmed message parameters

Response
If the reserveConfirmed operation is successful, a reserveConfirmedACK message is returned, otherwise a serviceException is returned. A Requester NSA sends this reserveConfirmedACK message immediately after receiving the reserveConfirmed request to acknowledge to the Provider NSA the reserveConfirmed request has been accepted for processing. The reserveConfirmedACK message is implemented using the generic acknowledgement message.

[image:]
Figure 24 – reserveConfirmedACK message structure.
The reserveConfirmedACK message has no parameters as all relevant information is carried in the NSI CS header structure.

Failed: reserveFailed

A Provider NSA sends this negative reserveFailed response to the Requester NSA that issued the original reservation request message if the requested reservation criteria could not be met. This message is also sent in response to a reserve request for a modification to an existing schedule if the required modification is not possible.

[image:]
Figure 25 – reserveFailed message structure.
Parameters
The reserveFailed message has the following parameters:

	Parameter
	Description

	globalReservationId
	An optional global reservation id that was originally provided in the reserve request.

	connectionId
	The Provider NSA assigned connectionId for this reservation. This value will be unique within the context of the Provider NSA.

	connectionStates
	Overall connection state for the reservation.

	serviceException
	Specific error condition indicating the reason for the failure.

Table 15 reserveFailed message parameters
Response
If the reserveFailed operation is successful, a reserveFailedACK message is returned, otherwise a serviceException is returned. A Requester NSA sends this reserveFailedACK message immediately after receiving the reserveFailed request to acknowledge to the Provider NSA the reserveFailed request has been accepted for processing. The reserveFailedACK message is implemented using the generic acknowledgement message.

[image:]
Figure 26 – reserveFailedACK message structure.
The reserveFailedACK message has no parameters as all relevant information is carried in the NSI CS header structure.

[bookmark: _Toc355354861][bookmark: _Toc231629527]ReserveCommit message elements

The reserveCommit message is sent from a Requester NSA to a Provider NSA when a reservation or modification to an existing reservation is being committed. This reservation must currently reside in the Reserve Held state for this operation to be accepted. The reserveCommitACK indicates that the Provider NSA has accepted the modify request for processing. A reserveCommitConfirmed or reserveCommitFailed message will be sent asynchronously to the Requester NSA when reserve or modify processing has completed.

	Type
	Direction
	Input
	Output
	Fault

	Request
	RA to PA
	reserveCommit
	reserveCommitACK
	serviceException

	Confirmed
	PA to RA
	reserveCommitConfirmed
	reserveCommitConfirmedACK
	serviceException

	Failed
	PA to RA
	reserveCommitFailed
	reserveCommitFailedACK
	serviceException

Table 16 ReserveCommit message elements

Request: reserveCommit

The NSI CS reserveCommit message allows a Requester NSA to commit a previously allocated reservation or modification on a reservation. The reserveCommit request must arrive at the Provider Agent before the reservation timeout occurs.

[image:]
Figure 27 – reserveCommit request message structure.
Parameters
The reserveCommit message has the following parameters:

	Parameter
	Description

	connectionId
	The Provider NSA assigned connectionId for the reservation that is to be committed.

Table 17 reserveCommit message parameters

Response
If the reserveCommit operation is successful, a reserveCommitACK message is returned, otherwise a serviceException is returned. A Provider NSA sends this reserveCommitACK message immediately after receiving the reserveCommit request to acknowledge to the Requester NSA the reserveCommit request has been accepted for processing. The reserveCommitACK message is implemented using the generic acknowledgement message.

[image:]
Figure 28 – reserveCommitACK message structure.
The reserveCommitACK message has no parameters as all relevant information is carried in the NSI CS header structure.

Confirmation: reserveCommitConfirmed

This reserveCommitConfirmed message is sent from a Provider NSA to Requester NSA as an indication of a successful reserveCommit request for a reservation previously in a Reserve Held state.
[image:]
Figure 29 – reserveCommitConfirmed message structure.
Parameters
The reserveCommitConfirmed message has the following parameters:

	Parameter
	Description

	connectionId
	The connection identifier for the reservation that was committed.

Table 18 reserveCommitConfirmed message parameters

Response
If the reserveCommitConfirmed operation is successful, a reserveCommitConfirmedACK message is returned, otherwise a serviceException is returned. A Requester NSA sends this reserveCommitConfirmedACK message immediately after receiving the reserveCommitConfirmed request to acknowledge to the Provider NSA the reserveCommitConfirmed request has been accepted for processing. The reserveCommitConfirmedACK message is implemented using the generic acknowledgement message.

[image:]
Figure 30 – reserveAbortConfirmedACK message structure.

The reserveCommitConfirmedACK message has no parameters as all relevant information is carried in the NSI CS header structure.

Failed: reserveCommitFailed

This reserveCommitFailed message is sent from a Provider NSA to Requester NSA as an indication of a reserve (or modify) commit failure. This is in response to an original reserveCommit request from the associated Requester NSA.

[image:]
Figure 31 – reserveCommitFailed message structure.
Parameters
The reserveCommitFailed message takes the following parameters:

	Parameter
	Description

	globalReservationId
	An optional global reservation id that was originally provided in the reserve request.

	connectionId
	The Provider NSA assigned connectionId for this reservation. This value will be unique within the context of the Provider NSA.

	connectionStates
	Overall connection state for the reservation.

	serviceException
	Specific error condition indicating the reason for the failure.

Table 19 reserveCommitFailed message parameters

Response
If the reserveCommitFailed operation is successful, a reserveCommitFailedACK message is returned, otherwise a serviceException is returned. A Requester NSA sends this reserveCommitFailedACK message immediately after receiving the reserveCommitFailed request to acknowledge to the Provider NSA the reserveCommitFailed request has been accepted for processing. The reserveCommitFailedACK message is implemented using the generic acknowledgement message.

[image:]
Figure 32 – reserveCommitFailedACK message structure.

The reserveCommitFailedACK message has no parameters as all relevant information is carried in the NSI CS header structure.

[bookmark: _Toc355354862][bookmark: _Toc231629528]reserveAbort message elements

The reserveAbort message is sent from a Requester NSA to a Provider NSA when an initial reservation request, or modification to an existing reservation is to be aborted, and the reservation state machine returned to the previous version of the reservation. The reserveAbortACK indicates that the Provider NSA has accepted the abort request for processing. A reserveAbortConfirmed message will be sent asynchronously to the Requester NSA when the abort processing has completed. There is no associated Failed message for this operation.

	Type
	Direction
	Input
	Output
	Fault

	Request
	RA to PA
	reserveAbort
	reserveAbortACK
	serviceException

	Confirmed
	PA to RA
	reserveAbortConfirmed
	reserveAbortConfirmedACK
	serviceException

	Failed
	N/A
	N/A
	N/A
	N/A

Table 20 reserveCommitFailed message elements

Request: reserveAbort

The NSI CS reserveAbort message allows a Requester NSA to abort a previously requested reservation or modification on a reservation.

[image:]
Figure 33 – reserveAbort request message structure.
Parameters
The reserveAbort message has the following parameters:

	Parameter
	Description

	connectionId
	The Provider NSA assigned connectionId for the reservation or modification that is to be aborted.

Table 21 reserveAbort message parameters

Response
If the reserveAbort operation is successful, a reserveAbortACK message is returned, otherwise a serviceException is returned. A Provider NSA sends this reserveAbortACK message immediately after receiving the reserveAbort request to acknowledge to the Requester NSA the reserveAbort request has been accepted for processing. The reserveAbortACK message is implemented using the generic acknowledgement message.

[image:]
Figure 34 – reserveAbortACK message structure.
The reserveAbortACK message has no parameters as all relevant information is carried in the NSI CS header structure.

Confirmation: reserveAbortConfirmed

This reserveAbortConfirmed message is sent from a Provider NSA to Requester NSA as an indication of a successful reserveAbort request. The reservation in question will have any pending modifications cancelled and returned to the reservation state existing before the modification.
[image:]
Figure 35 – reserveAbortConfirmed message structure.
Parameters
The reserveAbortConfirmed message has the following parameters:

	Parameter
	Description

	connectionId
	The connection identifier for the reservation that was aborted.

Table 22 reserveAbortConfirmed message parameters

Response
If the reserveAbortConfirmed operation is successful, a reserveAbortConfirmedACK message is returned, otherwise a serviceException is returned. A Requester NSA sends this reserveAbortConfirmedACK message immediately after receiving the reserveAbortConfirmed request to acknowledge to the Provider NSA the reserveAbortConfirmed request has been accepted for processing. The reserveAbortConfirmedACK message is implemented using the generic acknowledgement message.

[image:]
Figure 36 – reserveAbortConfirmedACK message structure.
The reserveAbortConfirmedACK message has no parameters as all relevant information is carried in the NSI CS header structure.

[bookmark: _Toc355354863]Provision message elements

The provision message is sent from a Requester NSA to a Provider NSA when an existing reservation is to be transitioned into a provisioned state. The provisionACK indicates that the Provider NSA has accepted the provision request for processing. A provisionConfirmed or message will be sent asynchronously to the Requester NSA when provision processing has completed. There is no associated Failed message for this operation.

	Type
	Direction
	Input
	Output
	Fault

	Request
	RA to PA
	provision
	provisionACK
	serviceException

	Confirmed
	PA to RA
	provisionConfirmed
	provisionConfirmedACK
	serviceException

	Failed
	N/A
	N/A
	N/A
	N/A

Table 23 Provision message elements

Request: provision

The NSI CS provision message allows a Requester NSA to transition a previously requested reservation into a provisioned state. A reservation in a provisioned state will activate associated data plane resources during the scheduled reservation time.

[image:]
Figure 37 – provision request message structure.
Parameters
The provision message has the following parameters:

	Parameter
	Description

	connectionId
	The Provider NSA assigned connectionId for the reservation to be provisioned.

Table 24 Provision message parameters

Response
If the provision operation is successful, a provisionACK message is returned, otherwise a serviceException is returned. A Provider NSA sends this provisionACK message immediately after receiving the provision request to acknowledge to the Requester NSA the provision request has been accepted for processing. The provisionACK message is implemented using the generic acknowledgement message.

[image:]
Figure 38 – provisionACK message structure.
The provisionACK message has no parameters as all relevant information is carried in the NSI CS header structure.

Confirmation: provisionConfirmed

This provisionConfirmed message is sent from a Provider NSA to Requester NSA as an indication of a successful provision request. This is in response to an original provision request from the associated Requester NSA.

[image:]
Figure 39 – provisionConfirmed message structure.
Parameters
The provisionConfirmed message has the following parameters:

	Parameter
	Description

	connectionId
	The connection identifier for the reservation that was provisioned.

Table 25 provisionConfirmed message parameters

Response
If the provisionConfirmed operation is successful, a provisionConfirmedACK message is returned, otherwise a serviceException is returned. A Requester NSA sends this provisionConfirmedACK message immediately after receiving the provisionConfirmed request to acknowledge to the Provider NSA the provisionConfirmed request has been accepted for processing. The provisionConfirmedACK message is implemented using the generic acknowledgement message.

[image:]
Figure 40 – provisionConfirmedACK message structure.
The provisionConfirmedACK message has no parameters as all relevant information is carried in the NSI CS header structure.

[bookmark: _Toc355354864][bookmark: _Toc231629529]release message elements

The release message is sent from a Requester NSA to a Provider NSA when an existing reservation is to be transitioned into a released state. The releaseACK indicates that the Provider NSA has accepted the release request for processing. A releaseConfirmed message will be sent asynchronously to the Requester NSA when release processing has completed. There is no associated Failed message for this operation.

	Type
	Direction
	Input
	Output
	Fault

	Request
	RA to PA
	release
	releaseACK
	serviceException

	Confirmed
	PA to RA
	releaseConfirmed
	releaseConfirmedACK
	serviceException

	Failed
	N/A
	N/A
	N/A
	N/A

Table 26 Release message elements

1.1.1.1 Request: release

The NSI CS release message allows a Requester NSA to transition a previously requested reservation into a released state. A reservation in a released state will deactivate associated data plane resources.

[image:]
Figure 41 – release request message structure.
Parameters
The release message has the following parameters:

	Parameter
	Description

	connectionId
	The Provider NSA assigned connectionId for the reservation to be released.

Table 27 Release message parameters

Response
If the release operation is successful, a releaseACK message is returned, otherwise a serviceException is returned. A Provider NSA sends this releaseACK message immediately after receiving the release request to acknowledge to the Requester NSA the release request has been accepted for processing. The releaseACK message is implemented using the generic acknowledgement message.

[image:]
Figure 42 – releaseACK message structure.
The releaseACK message has no parameters as all relevant information is carried in the NSI CS header structure.

Confirmation: releaseConfirmed

This releaseConfirmed message is sent from a Provider NSA to Requester NSA as an indication of a successful release request. This is in response to an original release request from the associated Requester NSA.

[image:]
Figure 43 – releaseConfirmed message structure.
Parameters
The releaseConfirmed message has the following parameters:

	Parameter
	Description

	connectionId
	The connection identifier for the reservation that was released.

Table 28 releaseConfirmed message parameters

Response
If the releaseConfirmed operation is successful, a releaseConfirmedACK message is returned, otherwise a serviceException is returned. A Requester NSA sends this releaseConfirmedACK message immediately after receiving the releaseConfirmed request to acknowledge to the Provider NSA the releaseConfirmed request has been accepted for processing. The releaseConfirmedACK message is implemented using the generic acknowledgement message.

[image:]
Figure 44 – releaseConfirmedACK message structure.
The releaseConfirmedACK message has no parameters as all relevant information is carried in the NSI CS header structure.

[bookmark: _Toc355354865][bookmark: _Toc231629530]terminate message elements

The terminate message is sent from a Requester NSA to a Provider NSA when an existing reservation is to be transitioned into a terminated state and all associated resources in the network are freed. The terminateACK indicates that the Provider NSA has accepted the terminate request for processing. A terminateConfirmed message will be sent asynchronously to the Requester NSA when terminate processing has completed. There is no associated Failed message for this operation.

	Type
	Direction
	Input
	Output
	Fault

	Request
	RA to PA
	terminate
	terminateACK
	serviceException

	Confirmed
	PA to RA
	terminateConfirmed
	terminateConfirmedACK
	serviceException

	Failed
	N/A
	N/A
	N/A
	N/A

Table 29 terminate message elements

Request: terminate

The NSI CS terminate message allows a Requester NSA to transition a previously requested reservation into a terminated state. A reservation in a terminated state will release associated resources.

[image:]
Figure 45 – terminate request message structure.
Parameters
The terminate message has the following parameters:

	Parameter
	Description

	connectionId
	The Provider NSA assigned connectionId for the reservation to be terminated.

Table 30 terminate message parameters

Response
If the terminate operation is successful, a terminateACK message is returned, otherwise a serviceException is returned. A Provider NSA sends this terminateACK message immediately after receiving the terminate request to acknowledge to the Requester NSA the terminate request has been accepted for processing. The terminateACK message is implemented using the generic acknowledgement message.

[image:]
Figure 46 – terminateACK message structure.
The terminateACK message has no parameters as all relevant information is carried in the NSI CS header structure.

1.1.1.2 Confirmation: terminateConfirmed

This terminateConfirmed message is sent from a Provider NSA to Requester NSA as an indication of a successful terminate request. This is in response to an original terminate request from the associated Requester NSA.

[image:]
Figure 47 – terminateConfirmed message structure.
Parameters
The terminateConfirmed message has the following parameters:

	Parameter
	Description

	connectionId
	The connection identifier for the reservation that was terminated.

Table 31 terminateConfirmed message parameters

Response
If the terminateConfirmed operation is successful, a terminateConfirmedACK message is returned, otherwise a serviceException is returned. A Requester NSA sends this terminateConfirmedACK message immediately after receiving the terminateConfirmed request to acknowledge to the Provider NSA the terminateConfirmed request has been accepted for processing. The terminateConfirmedACK message is implemented using the generic acknowledgement message.

[image:]
Figure 48 – terminateConfirmedACK message structure.
The terminateConfirmedACK message has no parameters as all relevant information is carried in the NSI CS header structure.

[bookmark: _Toc355354866][bookmark: _Toc231629531]querySummary message elements

The querySummary message is sent from a Requester NSA to a Provider NSA to determine the status of existing reservations. The querySummaryACK indicates that the target NSA has accepted the querySummary request for processing. A querySummaryConfirmed or querySummaryFailed message will be sent asynchronously to the requesting NSA when querySummary processing has completed.

	Type
	Direction
	Input
	Output
	Fault

	Request
	RA to PA
	querySummary
	querySummaryACK
	serviceException

	Confirmed
	PA to RA
	querySummaryConfirmed
	querySummaryConfirmedACK
	serviceException

	Failed
	PA to RA
	querySummaryFailed
	querySummaryFailedACK
	serviceException

Table 32 querySummary message elements

Request: querySummary

The querySummary message provides a mechanism for a Requester NSA to query the Provider NSA for a set of connection service reservation instances between the RA-PA pair. This message can also be used as a reservation status polling mechanism.

Elements compose a filter for specifying the reservations to return in response to the querySummary request. Querying of reservations can be performed based on connectionId or globalReservationId. Filter items specified are OR'ed to build the match criteria. If no criteria are specified then all reservations associated with the requesting NSA are returned.

[image:]
Figure 49 – querySummary request message structure.
Parameters
The querySummary message has the following parameters:

	Parameter
	Description

	connectionId
	The Provider NSA assigned connectionId for this reservation. Return reservations containing this connectionId.

	globalReservationId
	An optional global reservation id that can be used to correlate individual related service reservations through the network. Return reservations containing this globalReservationId.

Table 33 querySummary message parameters

Response
If the querySummary operation is successful, a querySummaryACK message is returned, otherwise a serviceException is returned. A Provider NSA sends this querySummaryACK message immediately after receiving the querySummary request to acknowledge to the Requester NSA the querySummary request has been accepted for processing. The querySummaryACK message is implemented using the generic acknowledgement message.

[image:]
Figure 50 – querySummaryACK message structure.
The querySummaryACK message has no parameters as all relevant information is carried in the NSI CS header structure.

1.1.1.3 Confirmation: querySummaryConfirmed

This querySummaryConfirmed message is sent from the Provider NSA to Requester NSA as an indication of a successful querySummary operation. This is in response to an original querySummary request from the associated Requester NSA.

[image:]
Figure 51 – querySummaryConfirmed message structure.
Parameters
The querySummaryConfirmed message has the following parameters:

	Parameter
	Description

	reservation
	A set of zero or more connection reservations matching the query criteria. If there were no matches to the query then no reservation elements will be present.

Table 34 querySummaryConfirmed message parameters

Response
If the querySummaryConfirmed operation is successful, a querySummaryConfirmedACK message is returned, otherwise a serviceException is returned. A Requester NSA sends this querySummaryConfirmedACK message immediately after receiving the querySummaryConfirmed request to acknowledge to the Provider NSA the querySummaryConfirmed request has been accepted for processing. The querySummaryConfirmedACK message is implemented using the generic acknowledgement message.

[image:]
Figure 52 – reserveConfirmedACK message structure.
The querySummaryConfirmedACK message has no parameters as all relevant information is carried in the NSI CS header structure.

Failed: querySummaryFailed

This querySummaryFailed message is sent from the target NSA to requesting NSA as an indication of a querySummary operation failure. This is in response to an original querySummary request from the associated Requester NSA. It is important to note that a querySummary operation that results in no matching reservations does not result in a querySummaryFailed message, but instead a querySummaryConfirmed with an empty list of reservations.

[image:]
Figure 53 – querySummaryFailed message structure.
Parameters
The querySummaryFailed message has the following parameters:

	Parameter
	Description

	serviceException
	Specific error condition indicating the reason for the failure.

Table 35 querySummaryFailed message parameters

Response
If the querySummaryFailed operation is successful, a querySummaryFailedACK message is returned, otherwise a serviceException is returned. A Requester NSA sends this querySummaryFailedACK message immediately after receiving the querySummaryFailed request to acknowledge to the Provider NSA the querySummaryFailed request has been accepted for processing. The querySummaryFailedACK message is implemented using the generic acknowledgement message.

[image:]
Figure 54 – querySummaryFailedACK message structure.
The querySummaryFailedACK message has no parameters as all relevant information is carried in the NSI CS header structure.

[bookmark: _Toc355354867][bookmark: _Toc231629532]queryRecursive message elements

[bookmark: _Toc355354868][bookmark: _Toc231629533]querySummarySync message elements

[bookmark: _Toc355354869][bookmark: _Toc231629534]NSI-CS specific types

Namespace definition: http://schemas.ogf.org/nsi/2013/04/connection/types

This section describes the connection services types used for the CS operation definitions.

[bookmark: _Toc231629535]Element Groups

Group elements provide a convenient way to reference a common grouping of elements in-line within a complex type definition without having to specify the individual elements.
ReservationInfoGroup
An element group containing the common reservation elements used for complex types referencing reservation information.

[image:]
Figure 55 – ReservationInfoGroup type.
Parameters
The ReservationInfoGroup type has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	connectionId
	M
	The Provider NSA assigned connectionId for this reservation. This value will be unique within the context of the Provider NSA.

	globalReservationId
	O
	An optional global reservation id that can be used to correlate individual related service reservations through the network. This must be populated with a Universally Unique Identifier (UUID) URN as per ITU-T Rec. X.667 | ISO/IEC 9834-8:2005 and IETF RFC 4122.

	description
	O
	An optional description for the service reservation.

	criteria
	O
	A set of versioned reservation criteria information.

Table 36 ReservationInfoGroup message parameters

[bookmark: _Toc231629536]Complex Types

These complex type definitions are utilized by the CS operations and are structures containing other elements and/or attributes. Types are listed in alphabetical order.
ChildRecursiveListType

A holder element providing an envelope that will contain the list of child NSA and associated detailed connection information. Utilized by the QueryRecursiveResultType to provide a nested list structure of detailed path information.
[image:]
Figure 56 – ChildRecursiveListType.
Parameters
The ChildRecursiveListType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	child
	O
	Detailed path information for a child NSA. Each child element is ordered and contains a connection segment in the overall path.

Table 37 ChildRecursiveListType message parameters

ChildSummaryListType

A holder element containing a list of children NSA and their associated connection information. Utilized by the QuerySummaryResultType to provide a nested list structure of summary path information.

[image:]
Figure 57 – ChildSummaryListType.
Parameters
The ChildSummaryListType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	child
	O
	Summary path information for a child NSA. Each child element is ordered and contains a connection segment in the overall path.

Table 38 ChildSummaryListType message parameters

ConnectionStatesType

A holder element containing the state machines associated with a connection reservation.

[image:]
Figure 58 – ConnectionStatesType.
Parameters
The ConnectionStatesType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	reservationState
	M
	Models the current connection reservation state.

	provisionState
	M
	Models the current connection provisioning state.

	lifecycleState
	M
	Models the current connection lifecycle state.

	dataPlaneStatus
	M
	Models the current connection data plane activation state.

Table 39 ConnectionStatesType message parameters

DataPlaneStateChangeRequestType

Type definition for the data plane state change notification message.

This notification message sent up from a PA when a data plane status has changed. Possible data plane status changes are: activation, deactivation and activation version change.

[image:]
Figure 59 – DataPlaneStateChangeRequestType.
Parameters
The DataPlaneStateChangeRequestType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	connectionId
	M
	The reservation experiencing the data plane state change.

	dataPlaneStatus
	M
	Current data plane activation state for the reservation identified by connectionId.

	timeStamp
	M
	Time the event was generated.

Table 40 DataPlaneStateChangeRequestType message parameters

DataPlaneStatusType

Models the current connection activation state within the data plane.

[image:]
Figure 60 – DataPlaneStatusType.
Parameters
The DataPlaneStatusType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	active
	M
	True if the dataplane is active. For an aggregator, this flag is true when data plane is activated in all participating children.

	version
	M
	Version of the connection reservation this entry is modeling.

	versionConsistent
	M
	Always true for uPA. For an aggregator, if version numbers of all children are the same. This flag is true. This field is valid when Active is true.

Table 41 DataPlaneStatusType message parameters
ErrorEventType

Type definition for an autonomous message issued from a Provider NSA to a Requester NSA when an existing reservation encounters an autonomous error condition such as being administratively terminated before the reservation's scheduled end-time.

[image:]
Figure 61 – ErrorEventType.
Parameters
The ErrorEventType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	connectionId
	M
	The Provider NSA assigned connectionId for this reservation. This value will be unique within the context of the Provider NSA.

	event
	M
	The type of event that generated this notification.

	connectionStates
	M
	Overall connection states for the reservation.

	timeStamp
	M
	Time the event was generated.

	additionalInfo
	O
	Type/value pairs that can provide additional error context as needed.

	serviceException
	O
	Specific error condition - the reason for the generation of the error event.

Table 42 ErrorEventType message parameters

GenericAcknowledgmentType

A common acknowledgment message type definition. The correlationId has been moved to the header in CS version 3 so this is now an empty response.

[image:]
Figure 62 – GenericAcknowledgmentType.

Notes on acknowledgment:
Depending on NSA implementation and thread timing an acknowledgment to a request operation may be returned after the confirm/fail for the request has been returned to the Requesting NSA. For protocol robustness, Requesting NSA should be able to accept confirm/fail before acknowledgment.

GenericConfirmedType

This is a generic type definition for a "Confirmed" messages in response to a successful processing of a previous "Request" message such as provision, release, and terminate.

[image:]
Figure 63 – GenericConfirmedType.
Parameters
The GenericConfirmedType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	connectionId
	M
	The Provider NSA assigned connectionId for this reservation request. This value will be unique within the context of the Provider NSA.

Table 43 GenericConfirmedType message parameters

GenericFailedType

A generic "Failed" message type sent as request in response to a failure to process a previous protocol "Request" message. This is used in response to all request types that can return an error.
[image:]
Figure 64 – GenericFailedType.
Parameters
The GenericFailedType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	connectionId
	M
	The Provider NSA assigned connectionId for this reservation request. This value will be unique within the context of the Provider NSA.

	connectionStates
	M
	Overall connection state for the reservation.

	serviceException
	M
	Specific error condition - the reason for the failure.

Table 44 GenericFailedType message parameters

GenericRequestType

This is a generic type definition for request messages such as provision, release, terminate, and forcedEnd that only need a connectionId as a request parameter.

[image:]
Figure 65 – GenericRequestType.
Parameters
The GenericRequestType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	connectionId
	M
	The Provider NSA assigned connectionId for this reservation request. This value will be unique within the context of the Provider NSA.

Table 45 GenericRequestType message parameters

MessageDeliveryTimeoutRequestType

A notification message type definition for the Message Transport Layer (MTL) delivery timeout of a request message. In the event of an MTL timed out or Coordinator timeout, the Coordinator will generate this message delivery failure notification and send it up the workflow tree (towards the uRA).

An MTL timeout can be generated as the result of a timeout on receiving an ACK message for a corresponding send request. A Coordinator timeout can occur when no confirm or fail reply has been received to a previous request issued by the Coordinator. In both cases the local timers for these timeout conditions are locally defined.

[image:]
Figure 66 – MessageDeliveryTimeoutRequestType.
Parameters
The MessageDeliveryTimeoutRequestType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	correlationId
	M
	This value indicates the correlationId of the original message that the transport layer failed to send.

	timeStamp
	M
	Time the event was generated.

Table 46 MessageDeliveryTimeoutRequestType message parameters

OrderedStpType

A Service Termination Point (STP) that can be ordered in a list for use in PathObject definition.

[image:]
Figure 67 – OrderedStpType.
Parameters
The OrderedStpType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	order
	M
	Order attribute is provided only when the STP is part of an orderedStpList.

	stp
	M
	The Service Termination Point (STP).

Table 47 OrderedStpType message parameters

PathType

Path of the service represented by a list of STP.

[image:]
Figure 68 – PathType.
Parameters
The PathType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	directionality
	M
	The (uni or bi) directionality of the service.

	symmetricPath
	O
	An indication that both directions of a bidirectional circuit must fallow the same path. Only applicable when directionality is "Bidirectional". If not specified then value is assumed to be false.

	sourceSTP
	M
	Source STP of the service.

	destSTP
	M
	Destination STP of the service.

	ero
	O
	Hop-by-hop ordered list of STP from sourceSTP to destSTP. List does not include sourceSTP and destSTP.

Table 48 PathType message parameters

QueryFailedType

A query "Failed" message type sent as request in response to a failure to process a queryRequest message. This is message is returned as a result of a processing error and not for the case where a query returns an empty result set.

[image:]
Figure 69 – QueryFailedType.
Parameters
The QueryFailedType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	ServiceException
	M
	Specific error condition - the reason for the failure.

Table 49 PathType message parameters

QueryRecursiveConfirmedType

This is the type definition for the queryRecursiveConfirmed message. An NSA sends this positive queryRecursiveRequest response to the NSA that issued the original request message. There can be zero or more results retuned in this confirmed message depending on the query parameters supplied in the request.

[image:]
Figure 70 – QueryRecursiveConfirmedType.
Parameters
The QueryRecursiveConfirmedType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	reservation
	O
	Resulting recursive set of connection reservations matching the query criteria. If there were no matches to the query then no reservation elements will be present.

Table 50 QueryRecursiveConfirmedType message parameters

QueryRecursiveResultType

This type contains the common reservation elements and detailed path data for "Recursive" query results.
[image:]
Figure 71 – QueryRecursiveResultType.
Parameters
The QueryRecursiveResultType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	connectionId
	M
	The Provider NSA assigned connectionId for this reservation. This value will be unique within the context of the Provider NSA.

	globalReservationId
	O
	An optional global reservation id that can be used to correlate individual related service reservations through the network. This must be populated with a Universally Unique Identifier (UUID) URN as per ITU-T Rec. X.667 | ISO/IEC 9834-8:2005 and IETF RFC 4122.

	description
	O
	An optional description for the service reservation.

	criteria
	O
	A set of versioned reservation criteria information.

	requesterNSA
	M
	The requester NSA associated with the reservation.

	connectionStates
	M
	The reservation's overall connection states.

	children
	O
	If this connection reservation is aggregating child connections then this element contains detailed information about the child connection segment. The level of detail include is left up to the individual NSA and their authorization policies.

Table 51 QueryRecursiveResultType message parameters

QuerySummaryConfirmedType

This is the type definition for the querySummaryConfirmed message (both synchronous and asynchronous versions). An NSA sends this positive querySummaryRequest response to the NSA that issued the original request message. There can be zero or more results retuned in this confirmed message depending on the number of matching reservation results.

[image:]
Figure 72 – QuerySummaryConfirmedType.
Parameters
The QuerySummaryConfirmedType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	reservation
	O
	Resulting recursive set of connection reservations matching the query criteria. If there were no matches to the query then no reservation elements will be present.

Table 52 QuerySummaryConfirmedType message parameters

QuerySummaryResultType

Type containing the set of reservation parameters associated with a "Summary" query result.

[image:]
Figure 73 – QuerySummaryResultType.
Parameters
The QuerySummaryResultType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	connectionId
	M
	The Provider NSA assigned connectionId for this reservation. This value will be unique within the context of the Provider NSA.

	globalReservationId
	O
	An optional global reservation id that can be used to correlate individual related service reservations through the network. This must be populated with a Universally Unique Identifier (UUID) URN as per ITU-T Rec. X.667 | ISO/IEC 9834-8:2005 and IETF RFC 4122.

	description
	O
	An optional description for the service reservation.

	criteria
	O
	A set of versioned reservation criteria information.

	requesterNSA
	M
	The requester NSA associated with the reservation.

	connectionStates
	M
	The reservation's overall connection states.

	children
	O
	If this connection reservation is aggregating child connections then this element contains detailed information about the child connection segment. The level of detail include is left up to the individual NSA and their authorization policies.

Table 53 QuerySummaryResultType message parameters

QueryType

Type definition for the querySummary message providing a mechanism for either Requester or Provider NSA to query the other NSA for a set of connection service reservation instances between the RA-PA pair. This message can also be used as a status polling mechanism.

Elements compose a filter for specifying the reservations to return in response to the queryRequest. Supports the querying of reservations based on connectionId or globalReservationId. Filter items specified are OR'ed to build the match criteria. If no criteria are specified then all reservations associated with the requesting NSA are returned.

[image:]
Figure 74 – QueryType.
Parameters
The QueryType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	connectionId
	O
	Return reservations containing this connectionId.

	globalReservationId
	O
	Return reservations containing this globalReservationId.

Table 54 QueryType message parameters

RecursivePathType

This type is used to model a connection reservation's detailed  path information. The structure is recursive so it is possible to model both an ordered list of connection segments, as well as the hierarchical connection segments created on children NSA in either a tree and chain configuration.

[image:]
Figure 75 – RecursivePathType.
Parameters
The RecursivePathType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	order
	M
	Specification of ordered path elements.

	connectionId
	M
	The connection identifier associated with the reservation and path segment.

	providerNSA
	M
	The provider NSA holding the connection information associated with this instance of data.

	connectionStates
	M
	This reservation's segments connection states.

	criteria
	M
	A set of versioned reservation criteria information.

	children
	O
	If provided this element will contain the list of connections in the context of all direct children NSA involved in the connection path.

Table 55 RecursivePathType message parameters

ReservationConfirmCriteriaType

A type definition for the reservation confirmation information used by PA to return reservation information to an RA. Includes the reservation version id to track version of the reservation criteria.

[image:]
Figure 76 – ReservationConfirmCriteriaType.
Parameters
The ReservationConfirmCriteriaType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	version
	M
	Version of the reservation instance.

	schedule
	M
	Time parameters specifying the life of the service.

	bandwidth
	M
	Bandwidth of the service in Mb/s.

	serviceAttributes
	M
	Technology specific attributes relating to the service.

	path
	M
	The source and destination end points of the service. Can optionally provide additional path segments to guide path computation.

Table 56 ReservationConfirmCriteriaType message parameters

ReservationRequestCriteriaType

Type definition for a reservation and modification request criteria. Only those values requiring change are specified in the modify request. The version value specified in a reservation or modify request must be a positive integer larger than the previous version number. A version value of zero is a special number indicating an allocated but not yet reserved reservation and cannot be specified by the RA.
[image:]
Figure 77 – ReservationRequestCriteriaType.
Parameters
The ReservationRequestCriteriaType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	version
	M
	The version number assigned by the RA to this reservation instance. If not specified in the initial reservation request, the new reservation will default to one for the first version; however, an initial request can specify any positive integer except zero. Each further reservation request on an existing reservation (a modify operation), will be assigned a linear increasing number, either specified by the RA, or assigned by the PA if not specified.

	schedule
	M
	Time parameters specifying the life of the service.

	bandwidth
	M
	Bandwidth of the service in Mb/s.

	serviceAttributes
	M
	Technology specific attributes relating to the service.

	path
	M
	The source and destination end points of the service. Can optionally provide additional path segments to guide path computation.

Table 57 ReservationRequestCriteriaType message parameters

ReserveConfirmedType

Type definition for the reserveConfirmed message. A Provider NSA sends this positive reserveRequest response to the Requester NSA that issued the original request message.
[image:]
Figure 78 – ReserveConfirmedType.
Parameters
The ReserveConfirmedType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	connectionId
	M
	The Provider NSA assigned connectionId for this reservation. This value will be unique within the context of the Provider NSA.

	globalReservationId
	O
	An optional global reservation id that can be used to correlate individual related service reservations through the network. This must be populated with a Universally Unique Identifier (UUID) URN as per ITU-T Rec. X.667 | ISO/IEC 9834-8:2005 and IETF RFC 4122.

	description
	O
	An optional description for the service reservation.

	criteria
	O
	A set of versioned reservation criteria information.

Table 58 ReserveConfirmedType message parameters

1.1.1.4 ReserveResponseType

Type definition for the reserveResponse message. A Provider NSA sends this reserveResponse message immediately after receiving the reservation request to inform the Requester NSA of the connectionId allocated to their reservation request. This connectionId can then be used to query reservation progress.

[image:]
Figure 79 – ReserveResponseType.
Parameters
The ReserveResponseType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	connectionId
	M
	The Provider NSA assigned connectionId for this reservation. This value will be unique within the context of the Provider NSA.

Table 59 ReserveResponseType message parameters

ReserveTimeoutRequestType

Type definition for the reserve timeout notification message. This is an autonomous message issued from a Provider NSA to a Requester NSA when a timeout on an existing reserve request occurs and uncommitted resources have been freed.

[image:]
Figure 80 – ReserveTimeoutRequestType.
Parameters
The ReserveTimeoutRequestType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	connectionId
	M
	The Provider NSA assigned connectionId for the reservation experiencing the timeout.

	connectionStates
	M
	Current connection state for the reservation after the timeout.

	timeoutValue
	M
	The timeout value in seconds that expired this reservation.

	timeStamp
	M
	Time the event was generated.

Table 60 ReserveTimeoutRequestType message parameters

ReserveType

A type definition modeling the reserve message that allows a Requester NSA to reserve network resources for a connection between two STP's constrained by a certain service parameters. This operation allows a Requester NSA to check the feasibility of connection reservation or a modification to an existing reservation. Any resources associated with the reservation or modification will be allocated and held until commit is received or timeout occurs.

[image:]
Figure 81 – ReserveType.
Parameters
The ReserveType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	connectionId
	O
	The Provider NSA assigned connectionId for this reservation. This value will be unique within the context of the Provider NSA. Provided in reserve request only when an existing reservation is being modified.

	globalReservationId
	O
	An optional global reservation id that can be used to correlate individual related service reservations through the network. This must be populated with a Universally Unique Identifier (UUID) URN as per ITU-T Rec. X.667 | ISO/IEC 9834-8:2005 and IETF RFC 4122.

	description
	O
	An optional description for the service reservation.

	criteria
	M
	Reservation request criteria including start and end time, service attributes, and requested path for the service.

Table 61 ReserveType message parameters

ScheduleType

A type definition modeling the reservation schedule start and end time parameters.

[image:]
Figure 82 – ScheduleType.
Parameters
The ScheduleType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	startTime
	O
	Reservation start time. If not specified then immediate reservation.

	endTime
	O
	Reservation end time. If endTime is not specified then the schedule end is indefinite.

Table 62 ScheduleType message parameters

StpListType

A simple ordered list type of Service Termination Point (STP). List order is determined by the integer order attribute in the orderedSTP element.

[image:]
Figure 83 – StpListType.
Parameters
The StpListType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	orderedSTP
	O
	A list of STP ordered 0..n by their integer order attribute.

Table 63 StpListType message parameters

StpType

The Service Termination Point (STP) type used for path selection.

[image:]
Figure 84 – StpType.
Parameters
The StpType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	networkId
	M
	A globally unique identifier (URN) that identifies the Network. Rather than forcing parsing of an STP to determine the Network, a separate Network object is defined to allow an intermediate NSA to forward the message to the target Network without needing to know about the STPs within that domain.

	localId
	M
	A locally unique identifier for the STP within the associated network.

	labels
	O
	Technology specific attributes associated with the Service Termination Point.

Table 64 StpType message parameters

SummaryPathType

This type is used to model a connection reservation's summary path information. The structure provides the next level of connection information but not state.

[image:]
Figure 85 – SummaryPathType.
Parameters
The SummaryPathType has the following parameters (M = Mandatory, O = Optional):

	Parameter
	M/O
	Description

	order
	M
	Specification of ordered path elements.

	connectionId
	M
	The connection identifier associated with the reservation and path segment.

	providerNSA
	M
	The provider NSA holding the connection information associated with this instance of data.

	path
	O
	The summary path information associated with the connection reservation.

Table 65 SummaryPathType message parameters

[bookmark: _Toc231629537]Simple Types

These simple type definitions are utilized by the CS complex type definitions. Types are listed in alphabetical order.

ConnectionIdType

A connectionId is a simple string value that uniquely identifies a reservation segment within the context of a Provider NSA. This value is not globally unique.

[image:]
Figure 86 – ConnectionIdType.

DirectionalityType

Directionality of the requested data service. Possible values are “Bidirectional” for a bidirectional data service, and “Unidirectional” for a unidirectional data service.

[image:]
Figure 87 – DirectionalityType.

EventEnumType

Notification event message types. Possible values are:
· activateFailed – Indicates that the data plane activation related to a reservation has failed, and therefore, there is no data plane connectivity for the reporting uPA.
· deactivateFailed – Indicates that deactivation of the data plane has failed, and as a result, data plane connectivity may still be in place.
· dataplaneError – Indicates that an error has occurred in the data plane and a loss of connectivity may be the result.
· forcedEnd – Indicates that the reservation was administratively terminated by a provider NSA within the network.

[image:]
Figure 88 – EventEnumType.

GlobalReservationIdType

A globalReservationId is a type representing a globally unique identifier for a reservation. This will be populated with a OGF URN (reference artifact 6478 "Procedure for Registration of Subnamespace Identifiers in the URN:OGF Hierarchy") to be used for compatibility with other external systems.

[image:]
Figure 89 – GlobalReservationIdType.

LifecycleStateEnumType

Connection lifecycle state values for the reservation lifecycle state machine. The lifecycle state machine is instantiated when a reservation is committed. Possible state values are:
· Created – A steady state for the lifecycle state machine and the initial state after a reservation has been committed.
· Failed – A steady state for the lifecycle state machine that is reached if a forcedEnd error is received from a uPA.
· Terminating - A transient state modeling the act of terminating the reservation.
· Terminated - A steady state for the lifecycle state machine that is reached when the reservation is terminated by the uRA.

[image:]
Figure 90 – LifecycleStateEnumType.

ProvisionStateEnumType

Connection provisioning state values for modeling the connection services provision state machine.

The Provision State Machine (PSM) is a simple state machine that transits between the Provisioned and the Released state. An instance of the PSM is created when an initial reservation is committed, and at that time it remains in the Released state. The PSM transits states independent of the state of the Reservation State Machine. Note that staying at the Provisioned state is necessary but not sufficient to activate the data plane. The data plane is active if the PSM is in “Provisioned” state AND current_time is between startTime and endTime.

Possible state values are:
· Released – A steady state for the provision state machine in which data plane resources for this reservation are in a released state, resulting in an inactive data plane.
· Provisioning - A transient state modeling the act of provisioning the reservation’s associated data plane resources.
· Provisioned - A steady state for the provision state machine in which data plane resources for this reservation are in a provisioned state. This state does not imply that data plane resources are active, but it does indicate that a uPA can active the data plane resources if current_time is between startTime and endTime.
· Releasing - A transient state modeling the act of releasing the reservation’s associated data plane resources.

[image:]
Figure 91 – ProvisionStateEnumType.

ReservationStateEnumType

Connection reservation state values for the connection services reservation state machine. Possible state values are:
· ReserveStart – A steady state for the reservation state machine in which a reservation is created and committed. In the case of the first reservation request this state represents the initial reservation shell has been committed to database.
· ReserveChecking – A transient state modeling the act of checking the feasibility of a new reservation request, or a request to modify an existing reservation.
· ReserveFailed – A steady state for the reservation state machine in which the initial reservation or a subsequent modification request has failed.
· ReserveAborting - A transient state modeling the act of aborting a pending reservation modify request.
· ReserveHeld - A steady state for the reservation state machine in which the initial reservation or a subsequent modification request has successfully had the request resources reserved, but has not yet been committed.
· ReserveCommitting - A transient state modeling the act of committing a held set of reservation resources.
· ReserveTimeout - A steady state for the reservation state machine in which the held resources have been locally timed out on a uPA, resulting in a transition from the ReserveHeld to ReserveTimeout state.

[image:]
Figure 92 – ReservationStateEnumType.

[bookmark: _Toc231629538]Appendix B: State Machine Transition Tables

[image:]
Table 3. RSM transition table

[image:]
Table 4. PSM transition table

[image:]
Table 5. LSM transition table

[bookmark: _Ref312159053][bookmark: _Toc231629539]Appendix C: Formal statement of coordinator

The following is an attempt to describe the behavior of the Coordinator in relation to the processing of requests and interactions with the various state machines in the NSA. Due to the slight difference in behavior between an AG and uPA, they are describe separately

[bookmark: _Toc231629540]Aggregator NSA
[bookmark: _Toc231629541]Processing of NSI Requests

NSI_rsv.rq(Conn_ID, Corr_ID, Ver) /* from parent NSA */
 if (new Conn_ID) then
 {
 create state machines RSM(Conn_ID) /* initial state = Create Reservation */
 create state machine, PSM(Conn_ID), LSM(Conn_ID) /* initial state = Created */
 do path finding -> create entry for all children in
 connection_segment_list(Conn_ID, Child_NSA)
 }
 send res.rq(Corr_ID, Ver) to RSM(Conn_ID)

NSI_rsvcommit.rq(Conn_ID, Corr_ID, ver) /* from parent NSA */
 Create state machine PSM(Conn_ID) /* initial state = Released */
 send rsvcommit.rq(Corr_ID, Ver) to RSM(Conn_ID)

NSI_rsvabort.rq(Conn_ID, Corr_ID, ver) /* from parent NSA */
 send rsvabort.rq(Corr_ID, Ver) to RSM(Conn_ID)

NSI_prov.rq(Conn_ID, Corr_ID) /* from parent NSA */
 send prov.rq(Corr_ID) to PSM(Conn_ID)

NSI_rel.rq(Conn_ID, Corr_ID) /* from parent NSA */
 send rel.rq(Corr_ID) to PSM(Conn_ID)
	
NSI_term.rq /* from parent NSA */
 send term.rq(Corr_ID) to LSM(Conn_ID)
 send term.rq to RSM(Conn_ID), PSM(Conn_ID) /* if RSM and PSM exist */

NSI_rsv.cf(Conn_ID, Corr_ID) /* from child NSA */
 set request_segment_list(Conn_ID, Child_NSA, Corr_ID).Status = replied
 if all children in request_segment_list(Conn_ID, Child_NSA,
 Corr_ID).Status == replied then
 {
 send res.cf(Corr_ID, Ver) to RSM(Conn_ID)
 }

NSI_rsv.fl(Conn_ID, Corr_ID) /* from child NSA */
 if request_list(Conn_ID, Corr_ID).Status != fail then
 {
 set request_list(Conn_ID, Corr_ID).Status = fail
 send res.fl(Corr_ID, Ver) to RSM(Conn_ID)
 }

NSI_rsvcommit.cf(Conn_ID, Corr_ID, Ver) /* from child NSA */
 set request_segment_list(Conn_ID, Child_NSA, Corr_ID).Status = replied
 if all children in request_segment_list(Conn_ID, Child_NSA,
 Corr_ID).Status == replied then
 {
 send rsvcommit.cf(Corr_ID, Ver) to RSM(Conn_ID)
 }

NSI_rsvcommit.fl(Conn_ID, Corr_ID, Ver) /* from child NSA */
 set request_segment_list(Conn_ID, Child_NSA, Corr_ID).Status = replied
 if all children in request_segment_list(Conn_ID, Child_NSA,
 Corr_ID).Status == replied then
 {
 send rsvcommit.fl(Corr_ID, Ver) to RSM(Conn_ID)
 }

NSI_rsvabort.cf(Conn_ID, Corr_ID, Ver) /* from child NSA */
 set request_segment_list(Conn_ID, Child_NSA, Corr_ID).Status = replied
 if all children in request_segment_list(Conn_ID, Child_NSA,
 Corr_ID).Status == replied then
 {
 send rsvabort.cf(Corr_ID, Ver) to RSM(Conn_ID)
 }

NSI_prov.cf(Conn_ID, Corr_ID) /* from child NSA */
 set request_segment_list(Conn_ID, Child_NSA, Corr_ID).Status = replied
 if all children in request_segment_list(Conn_ID, Child_NSA,
 Corr_ID).Status == replied then
 {
 send prov.cf(Corr_ID) to PSM(Conn_ID)
 }

NSI_rel.cf(Conn_ID, Corr_ID) /* from child NSA */
 set request_segment_list(Conn_ID, Child_NSA, Corr_ID).Status = replied
 if all children in request_segment_list(Conn_ID, Child_NSA,
 Corr_ID).Status == replied then
 {
		send rel.cf(Corr_ID) to PSM(Conn_ID)
 }

NSI_term.cf(Conn_ID, Corr_ID) /* from child NSA */
 set request_segment_list(Conn_ID, Child_NSA, Corr_ID).Status = replied
 if all children in request_segment_list(Conn_ID, Child_NSA,
 Corr_ID).Status == replied then
 {
 send term.cf(Corr_ID) to LSM(Conn_ID)
 }

[bookmark: _Toc231629542]Requests from State Machines
rsv.rq(Corr_ID, Ver) /* from RSM(Conn_ID) */
 create entry for all children in request_segment_list(Conn_ID,
 Child_NSA, Corr_ID)
 send NSI_rsv.rq(Conn_ID, Corr_ID, Ver) to children in
 connection_segment_list(Conn_ID, Child_NSA)

rsvcommit.rq(Corr_ID, Ver) /* from RSM(Conn_ID) */
 create entry for all children in request_segment_list(Conn_ID,
 Child_NSA, Corr_ID)
 send NSI_rsvcommit.rq(Conn_ID, Corr_ID, Ver) to children in
 connection_segment_list(Conn_ID, Child_NSA)

rsvabort.rq(Corr_ID, Ver) /* from RSM(Conn_ID) */
 create entry for all children in request_segment_list(Conn_ID,
 Child_NSA, Corr_ID)
 send NSI_rsvabort.rq(Conn_ID, Corr_ID, Ver) to children in
 connection_segment_list(Conn_ID, Child_NSA)

rsv.cf(Corr_ID) /* from RSM(Conn_ID) */
 send NSI_rsv.cf(Conn_ID, Corr_ID, Ver) to the parent

rsv.fl(Corr_ID) /* from RSM(Conn_ID) */
 send NSI_rsv.fl(Conn_ID, Corr_ID, Ver) to the parent

rsvcommit.cf(Corr_ID, Ver) /* from RSM(Conn_ID) */
 send NSI_rsvcommit.cf(Conn_ID, Corr_ID, Ver) to the parent

rsvcommit.fl(Corr_ID, Ver) /* from RSM(Conn_ID) */
 send NSI_rsvcommit.fl(Conn_ID, Corr_ID, Ver) to the parent

rsvabort.cf(Corr_ID, Ver) /* from RSM(Conn_ID) */
 send NSI_rsvabort.cf(Conn_ID, Corr_ID, Ver) to the parent

prov.rq(Corr_ID) /* from PSM(Conn_ID) */
 create entry for all children in request_segment_list(Conn_ID,
 Child_NSA, Corr_ID)
 send NSI_prov.rq(Conn_ID, Corr_ID) to children in
 connection_segment_list(Conn_ID, Child_NSA)

rel.rq(Corr_ID) /* from PSM(Conn_ID) */
 create entry for all children in request_segment_list(Conn_ID,
 Child_NSA, Corr_ID)
 send NSI_prov.rq(Conn_ID, Corr_ID) to children in
 connection_segment_list(Conn_ID, Child_NSA)

prov.cf(Corr_ID) /* from PSM(Conn_ID) */
 send NSI_prov.cf(Conn_ID, Corr_ID) to the parent

rel.cf(Corr_ID) /* from PSM(Conn_ID) */
 send NSI_rel.cf(Conn_ID, Corr_ID) to the parent

term.rq(Corr_ID) /* from LSM(Conn_ID) */
 create entry for all children in request_segment_list(Conn_ID,
 Child_NSA, Corr_ID)
 send NSI_term.rq(Conn_ID, Corr_ID) to children in
 connection_segment_list(Conn_ID, Child_NSA)

term.cf(Corr_ID) /* from LSM(Conn_ID) */
 clean up everything related to Conn_ID
 send NSI_term.cf(Conn_ID, Corr_ID) to the parent

[bookmark: _Toc231629543]Ultimate Provider NSA
[bookmark: _Toc231629544]Processing of NSI Requests

NSI_rsv.rq(Conn_ID, Corr_ID) /* from parent NSA */
 if (new Conn_ID) then
 {
 create state machines RSM(Conn_ID), PSM(Conn_ID), LSM(Conn_ID)
 }
 send res.rq(Corr_ID, Ver) to RSM(Conn_ID)
 if reservation is made by checking the Reservation DB then
 {
 send res.cf(Corr_ID, Ver) to RSM(Conn_ID)
 }
 else
 {
 send res.fl(Corr_ID, Ver) to RSM(Conn_ID)
 }

NSI_rsvcommit.rq(Conn_ID, Corr_ID, Ver) /* from parent NSA */
 send rsvcommit.rq(Corr_ID, Ver) to RSM(Conn_ID)

NSI_rsvabort.rq(Conn_ID, Corr_ID, Ver) /* from parent NSA */
 send rsvabort.rq(Corr_ID, Ver) to RSM(Conn_ID)

NSI_prov.rq(Conn_ID, Corr_ID) /* from parent NSA */
 send prov.rq(Corr_ID) to PSM(Conn_ID)

NSI_rel.rq(Conn_ID, Corr_ID) /* from parent NSA */
 send rel.rq(Corr_ID) to PSM(Conn_ID)
	
NSI_term.rq(Conn_ID, Corr_ID) /* from parent NSA */
 send term.rq(Corr_ID) to LSM(Conn_ID)
 send term.rq to RSM(Conn_ID), PSM(Conn_ID), ASM(Conn_ID)
 /* if RSM, PSM and ASM exist */

[bookmark: _Toc231629545]Requests from State Machines

rsv.rq(Corr_ID, Ver) /* from RSM(Conn_ID) */
 ignore

rsvcommit.rq(Corr_ID, Ver) /* from RSM(Conn_ID) */
 ignore

rsvabort.rq(Corr_ID, Ver) /* from RSM(Conn_ID) */
 ignore

rsv.cf(Corr_ID) /* from RSM(Conn_ID) */
 set REPLIED(Corr_ID)
 send NSI_rsv.cf(Conn_ID, Corr_ID, Ver) to the parent

rsv.fl(Corr_ID) /* from RSM(Conn_ID) */
 set REPLIED(Corr_ID)
 send NSI_rsv.fl(Conn_ID, Corr_ID) to the parent

rsvcommit.cf(Corr_ID, Ver) /* from RSM(Conn_ID) */
 commit the reservation(Conn_ID, Ver)
 set REPLIED(Corr_ID)
 send NSI_rsvcommit.cf(Conn_ID, Corr_ID, Ver) to the parent

rsvcommit.fl(Corr_ID, Ver) /* from RSM(Conn_ID) */
 commit the reservation(Conn_ID, Ver)
 set REPLIED(Corr_ID)
 send NSI_rsvcommit.fl(Conn_ID, Corr_ID, Ver) to the parent

rsvabort.cf(Corr_ID, Ver) /* from RSM(Conn_ID) */
 abort the reservation(Conn_ID, Ver)
 set REPLIED(Corr_ID)
 send NSI_rsvabort.cf(Conn_ID, Corr_ID, Ver) to the parent

prov.rq(Corr_ID) /* from PSM(Conn_ID) */
 set prov_flag(Conn_ID)
 if in_period_flag is set then
 {
 activate data plane according to the latest reservation
 send prov.cf(Corr_ID) to PSM(Conn_ID)
 }

rel.rq(Corr_ID) /* from PSM(Conn_ID) */
 reset prov_flag(Conn_ID)
 deactivate data plane
 send rel.cf(Corr_ID) to PSM(Conn_ID)

prov.cf(Corr_ID) /* from PSM(Conn_ID) */
 send NSI_prov.cf(Conn_ID, Corr_ID) to the parent

rel.cf(Corr_ID) /* from PSM(Conn_ID) */
 send NSI_rel.cf(Conn_ID, Corr_ID) to the parent

term.rq(Corr_ID) /* from LSM(Conn_ID) */
 ignore

term.cf(Corr_ID) /* from LSM(Conn_ID) */
 clean up everything related to Conn_ID
 send NSI_term.cf(Conn_ID, Corr_ID) to the parent

[bookmark: _Toc231629546]Appendix D: Best Practices for NSA implementation
This appendix lists a set of best practices to ensure interoperability between NSA implementations.

[bookmark: _Toc231629547]Message transport error handling
Additional error condition handling: The following set of checks is required to pass for messages to be considered vaild, otherwise a message transport layer fault will be returned:
· HTTP authentication – if the message does not have valid credentials it will be rejected with an HTTP 40x message.
· correlationId - needed for any acknowledgment, confirmation, or failed message. Must be unique within the context of the providerNSA otherwise the request cannot be accepted.
· replyTo - we will send the confirmation, or failed message back to this location. We do not validate the contents of the endpoint, just that it exists.
· Reservation – if the reservation parameters are not present then we reject.
· requesterNSA and providerNSA – must be present and resolve to an NSnetwork in topology. Also, the providerNSA must be the NSnetwork that the NSA is managing or the message will be rejected.
· connectionId – this is used as the primary reference attribute for Reservation state machines and must be present.
· If any of these fields are missing or invalid the NSA will return a message transport fault containing the NSIServiceException set to an appropriate error message. Typically this will be MISSING_PARAMETER - "SVC0001", "Invalid or missing parameter" for this generic case and specify attributes identifying the parameter in question.

The following list of parameters should be validated when receiving a reservation message:

	errorId
	errorDescription
	text
	variables

	100
	PAYLOAD_ERROR
	
	

	101
	MISSING_PARAMETER
	Invalid or missing parameter
	Include the parameter name that is missing.

	102
	UNSUPPORTED_PARAMETER
	Parameter provided contains an unsupported value which MUST be processed.
	Include the parameter name that is unsupported.

	103
	NOT_IMPLEMENTED
	
	Include the capability that is not implemented.

	104
	VERSION_NOT_SUPPORTED
	The service version requested in NSI header is not supported.
	Return type protocolVersion and value the version requested.

	200
	CONNECTION_ERROR
	
	

	201
	INVALID_TRANSITION
	Connection state machine is in invalid state for received message.
	Include the current state of the state machine.

	202
	CONNECTION_EXISTS
	Schedule already exists for connectionId
	

	203
	CONNECTION_NONEXISTENT
	Schedule does not exists for connectionId.
	

	204
	CONNECTION_GONE
	
	

	205
	CONNECTION_CREATE_ERROR
	Failed to create connection (payload was ok, something went wrong)
	

	300
	SECURITY_ERROR
	
	

	301
	AUTHENTICATION_FAILURE
	
	

	302
	UNAUTHORIZED
	
	

	400
	TOPOLOGY_ERROR
	
	

	401
	UNKNOWN_STP
	Could not find STP in topology database.
	Include the unknown STP.

	402
	STP_RESOLUTION_ERROR
	Could not resolve STP to a managing NSA.
	Include the STP that could not be resolved.

	403
	NO_PATH_FOUND
	Path computation failed to resolve route for reservation.
	

	404
	VLANID_INTERCANGE_NOT_SUPPORTED
	VlanId interchange not supported for requested path.
	

	500
	INTERNAL_ERROR
	An internal error has caused a message processing failure.
	

	501
	INTERNAL_NRM_ERROR
	An internal NRM error has caused a message processing failure.
	Include information describing the specific NRM error.

	600
	RESOURCE_UNAVAILABLE
	
	

	601
	STP_UNAVALABLE
	Specified STP already in use.
	

	602
	BANDWIDTH_UNAVAILABLE
	Insufficient bandwidth available for reservation.
	

Table 63: error messages

***We will also need to agree on the format of the message/errorId.

[bookmark: _Toc231629548]ACK handling
Delays on the transport layer can result in ACK arriving after the confirm/fail message. The following guidelines are recommended for handling web-service ACKs:

1. For protocol robustness, the NSA should accept any confirm/fail messages even if these are received out-of-order w.r.t. the ACK, i.e. before the associate ACK has been received.
2. The receipt of a confirm/fail message cancels out the need to receive an ACK. So the NSA should not only continue to process the confirm/fail message, but not gate on or wait for the ACK, i.e consequent-messages may be sent without waiting on the receipt of the ACK. 	Comment by Chin Guok: I’m not sure if we still plan to keep this. This is not addressed in the coordinator.
3. The NSA should send the ACK before sending the associated confirm/fail message.
4. The message transport layer takes care of ACK retransmission in case of a packet loss.
5. If the message transport layer is broken, the ACKs will eventually timeout and generate a message transport error that the NSA will need to handle.

[bookmark: _Toc231629549]Guidelines on timeouts:
1. Timeouts should be configurable on a per operation basis and set to 2 minutes as a default.
2. Requester side timeouts: It is up to the individual provider to choose appropriate NSA timeouts for their network. As a guide the timeout should be set to 1 minute for reservations to a provider only NSA, and longer for hierarchical requests to aggregator NSAs depending on the number of levels of recursion. Provisioning requests are likely to take longer than Reservation requests. The timeout will need to be tailored to meet the response times of the participating networks.
3. The requester NSA may choose to send queries to check the status of a request rather than terminating at timeout.

[bookmark: _Toc231629550]Parallel processing of messages:
The provider NSA should respond to queries even if still working on a response to a request.

[bookmark: _Toc231629551]NTP servers
The server running the NSA should use NTP version 4 [8]. This will reduce the risk of clock skew between the NSAs.

[bookmark: _Toc231629552]Transport plane failures
Failures in the transport plane can occur at any time, however within the framework of the NSI architecture, there are two time windows in which a transport plane failure is significant:
1. The time between the service Reservation completed and Provisioning start
2. The time between the service Provisioning completed and teardown started

The errors only need to be handled by the NSA if the Data Plane errors affect the user service.

 Figure 93: Local/Remote FailuresTransport Plane Failure Sensitive Sections

Resources Free

Provision

Reservation
T0
TReservationStart
TReservationCompleted
TProvsionStart
TProvisionCompleted
TTeardownCompleted
TTeardownStart
TReleaseCompleted
TReleaseStart

Provisioning

Teardown

Release
Resources Free

Resources Committed
Resources In-Use
Time

Resources Committed

Transport failure during the service Reservation and Provisioning: An element in the Data Plane becomes unavailable due to a soft or hard failure causing a Provisioning failure of a confirmed Reservation; the NRM can handle this by either reserving an alternate path as long as it meets the requested service characteristics or applying a forcedEnd to the Reservation. The local policy of a Network provider and availability of resources will determine what recovery action is taken.

Transport failure during Provisioning phase and teardown phase: In case a failure in the Data Plane affects an active Connection, the first recovery mechanisms will be triggered by the protection mechanisms Provisioned with the service. If the Connection Service is unprotected, then the failure notification will be sent to the Domain’s NSA. At that point, NSA will take appropriate action based on service and user policies by either re-routing the Connection within the Network or tearing down the service.

[bookmark: _Toc231629553]Appendix E: Tree and chain examples
The CS does not require that NSI messages are forwarded through the same sequence of NSAs/Networks that the Connection transits. As a consequence both tree and chain type architectures are supported, an example of each type is shown in this appendix.

[bookmark: _Toc231629554]Connection example managed by an NSA chain
An example of a Connection managed by a NSA chain is shown in the following diagram.
[image: path_chain]
Figure 94: Example of Connection managed by a NSA chain

This example shows a Topology consisting of 3 Networks, one per NSA. Each Network is described as a set of edge points (STPs). This topology would look like this:

Network X: X:a X:b
Network Y: Y:c, Y:d, Y:e
Network Z: Z:f, Z:g

Here the NSAs are connected as a chain:
NSA-X(Requester) to NSA-Y(Provider), NSA-Y(Requester), to NSA-Z(Provider)

Assuming a Request comes from the Application-NSA to NSA-X to reserve a connection X:a to Z:g, then NSA-X will look in the topology and determine that to make this Connection, NSA-X will reserve a local connection from X:a to Xb, and then NSA-X must forward a request for the remainder of the connection to NSA-Y: Y:C to Z:g

NSA-Y gets this request and reserves a connection between Y:c and Y:e and requests a Reservation from NSA-Z for a connection Z:f to Z:g.

[bookmark: _Toc231629555]Connection example managed by an NSA tree
An example of a Connection managed by a NSA tree is shown in the following diagram.

[image: path_tree]
Figure 95: Example of a Connection managed by a NSA tree

The topology remains the same as for the previous example:

Network X: X:a X:b
Network Y: Y:c, Y:d, Y:e
Network Z: Z:f, Z:g

In this example, the NSAs are connected as a tree:
NSA-X(Requester) to NSA-Y(Provider) and
NSA-X(Requester) to NSA-Z(Provider)

Assuming a request comes from the Application-NSA to NSA-X to reserve a connection X:a to Z:g, then NSA-X will look in the topology and determine that to make this connection, a connection request is required locally between X:a and X:b. Next NSA-X must forward two requests:
1. To NSA-Y: Y:c to Y:e
2. To NSA-Z: Z:f to Z:g

[bookmark: _Toc5010635][bookmark: _Toc130006549][bookmark: _Toc231629556]References
1. [bookmark: _Ref355181189]OGF GFD.173: “Network Service Framework v1.0”, http://www.gridforum.org/documents/GFD.173.pdf
2. OGF GWD-I Network Service Interface Topology Service Distribution Mechanisms
https://redmine.ogf.org/dmsf_files/12980?download=
3. [bookmark: _Ref355354432]GWD-R-P Network Service Interface Topology Representation https://redmine.ogf.org/dmsf_files/12981?download=
4. IETF RFC 5905, Network Time Protocol Version 4: Protocol and Algorithms Specification
5. [bookmark: _Ref311816555]IETF RFC 4122, A Universally Unique IDdentifier (UUID) URN Namespace
6. [bookmark: _Ref311816558]ITU-T Rec. X.667 Information technology - Open Systems Interconnection - Procedures for the operation of OSI Registration Authorities: Generation and registration of Universally Unique Identifiers (UUIDs) and their use as ASN.1 Object Identifier components
7. [bookmark: _Ref311816560]ISO/IEC 9834-8:2005 Information technology -- Open Systems Interconnection -- Procedures for the operation of OSI Registration Authorities: Generation and registration of Universally Unique Identifiers (UUIDs) and their use as ASN.1 Object Identifier components
8. IETF RFC 4655, "A Path Computation Element (PCE)-Based Architecture", http://www.rfc-editor.org/rfc/rfc4655.txt
9. [bookmark: _Ref298164422]ISO 8601:2000 “Data elements and interchange formats — Information interchange — Representation of dates and times” or xsd dateTime
10. [bookmark: _Ref311473831]IETF RFC 5905, “Network Time Protocol Version 4: Protocol and Algorithms Specification”, http://tools.ietf.org/html/rfc5905
11. [bookmark: _Ref312079946]IETF RFC 6453, “A URN Namespace for the Open Grid Forum (OGF)”, http://tools.ietf.org/html/rfc6453
12. [bookmark: _Ref312080516]OGF GFD-CP.191 "Procedure for Registration of Subnamespace Identifiers in the URN:OGF Hierarchy”, http://www.ogf.org/gf/docs/
13. [bookmark: _Ref312080896]W3C XML “Schema Definition Language (XSD) 1.1 Part 2: Datatypes”, http://www.w3.org/TR/xmlschema11-2/#anyURI
		22
image1.emf
STP - Service Termination Point

SDP - Service Demarcation Point

Dynamic Connection

STP a

Network A

Ingress

Point

Egress

Point

Transport section

Access section

Access section

Egress Framing

Transport framing

Ingress Framing

Physical instance

Inter-Network representation

STP d

SDP

STP b/STP c

Network B

image2.emf

16$

(ultimate)

Provider Agent

Message

Transport Layer

1HWZRUN�5HVRXUFH�

0DQDJHU

Coordinato

r

16$�

(ultimate)

Requester Agent

Message

Transport Layer

Coordinato

r

16$

(ultimate)

Provider Agent

Message

Transport Layer

Aggregator

Agent

Message

Transport Layer

1HWZRUN�5HVRXUFH�

0DQDJHU

Coordinato

r

Coordinato

r

16$

Aggregator

Agent

Message

Transport Layer

Coordinato

r

16$

(ultimate)

Provider Agent

Message

Transport Layer

1HWZRUN�5HVRXUFH�

0DQDJHU

Coordinato

r

image3.png
RSM: Reservation State Machine
reservation success case

e o

rsvaore or

1
| I

Timeout

image4.png
PSM : Provision State Machine

o e =
== Emv e
T <emovor

e
et
e
e
@ nitial State

@ Tiansitional States

@ Stable States

image5.png
LSM : Lifecycle State Machine

B Seomes
B Seermtq

Seere g =
@ itial State

@ Tiansitional States

© Stable States

@ Final State

image6.png
AIST

Reservation, Provisioning and Activation

2=e
=9,
4 update
§/5 |p:> Committed
- Reservation
Reservation State Machine l

startTime < current_time < endTime |:>

@ timer
=0 =

", transition
(] (] I:> Provisioned

= o = /Released

Provision State Machine

dataPlaneStatusChange.nt

=

wrcor ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST) 3

image7.emf
Start time

provision.rq

ProvisionConfirm

terminate

terminateConfirm

RA PA

In service

Reserved

Start time

provision

provisionConfirm

RA PA

In service Reserved

Manual Provisioning Automatic Provisioning

End time

End time

image8.emf
Start time

provision

provisionConfirm

release

releaseConfirm

provision

provisionConfirm

RA PA

In service

In service

Reserved

Automatic Provisioning

End time

Start time

provision

provisionConfirm

release

releaseConfirm

provision

provisionConfirm

terminate

terminateConfirm

RA PA

In service

In service

Reserved

Manual Provisioning

End time

image9.png
NSA

NSI Stack

State Machines

Coordinator

oM

Message
Transport Layer

image10.png
© [tns:CommonHeaderType
© atributes

[##other)

protocolVersion
Type _xsdstring

rmHudev correlationid
Type_tns (ummunHuduTypa Type_fypes:UuidType

requesterNsA
©
Type_fypes:NsaldType

providerNsA
©
Type_fypes:NsaldType

repyTo
Type xsdanyURI |@©
Min Occurs 0

sessionSecurityAttr
Type samlAttributeStatementType |©
Min Occurs 0

- ()

image11.png
© [samlAttributestatementType

[samiStatementabstractType (extension base)

.
e B

sessionsecurityAttr
Type samlAttributeStatementType

samlAttribute

!

samlEncryptedAttribute

I

image12.png
[ServiceExceptionType

nsald

errorid

et

variables

Type
Min Occurs

Type_tnsNsaldType

Type xsdstring

Type xsdstring

tns:VariablesType (@
o

childException

0.0 Type
Min Occurs
Max Occurs

tns ServiceExceptionType
o
unbounded

(c]

image13.png
[7 NsaldType JO——([7_xsdanyURI

image14.png
[VariablesType

0.0

variable
Type

Min Occurs
Max Occurs

tns:TypeValuePairType
0
unbounded

(c]

image15.png
© @ attributes

Type

e

xsdstring

—
e s °

- ##other

[TypeValuePairType

@o

value
Type

Min Occurs
Max Occurs
Nillable

)

xsdstring
o
unbounded
true

image16.png
[Typevaluerariistiype

o

0.0

attribute
Type

Min Occurs
Max Occurs

s TypevaluePairType
o
unbounded

(c]

image17.png
[7 LuidType JO——([~ xsd:anyURI

image18.png
[/ DateTimeType J@——([/ xsd:dateTime

image19.png
Type

tns ReserveType

© [wmsReserveType

—@

o

globalReservationid
Type tns:GlobalReservationidType |®
Min Occurs 0

description
Type xsdstring (@
Min Occurs 0

connectionid
Type tsConnectionidType |©
Min Occurs 0

criteria

Type_tns ReservationRequestCriteriaType

image20.png
© [tsReserveResponseType

TeserveRespanse @[
Type _tns:ReserveResponseType © © Type _tns:ConnectionldType ©

image21.png
© [tnsReserveConfirmedType

o

tns:ReservationinfoGroup.

globalReservationld
Type tns:GlobalReservationidType (@
Min Occurs 0

description
Type xsdstring (@

o)@@

connectionid
Type_tns:ConnectionldType

criteria

L | Type tns ReservationConfirmCriteriaType
Min Occurs 1

Max Occurs _unbounded

image22.png
© [tnsGenericAcknowledgmentType

g
o—@)

image23.png
© [tsGenericFailedType

globalReservationid
Type tns:GlobalReservationidType |®
Min Occurs 0

connectionid

reserveFailed o @ Type _tns:ConnectionldType ©
o sty)T @)

connectionstates
Type_tns:ConnectionstatesType

serviceException
Type_frypes ServiceExceptionType

image24.png
© [tnsGenericRequestType

e S

image25.png
© [tsGenericConfirmedType

image26.png
© [tsGenericFailedType

globalReservationid
Type tns:GlobalReservationidType |®
Min Occurs 0

connectionid

©
reserveCommitralled o @ Type_tns:ConnectionldType
Type_tnsGenericFailedType .

connectionstates
Type_tns:ConnectionstatesType

serviceException
Type_frypes ServiceExceptionType

image27.png
© [tnsGenericRequestType

v S

image28.png
© [tsGenericConfirmedType

image29.png
© [tnsGenericRequestType

o—@e
Type tns:GenericRequestType Type tns:ConnectionldType ©

image30.png
© [tsGenericConfirmedType

image31.png
© [tnsGenericRequestType

o—@e
Type tns:GenericRequestType Type tns:ConnectionldType ©

image32.png
© [tsGenericConfirmedType

image33.png
© [tnsGenericRequestType

e S

image34.png
© [tsGenericConfirmedType

image35.png
© [tsQueryType

connectionid
0.0 Type tns:ConnectionidType

Min Occurs 0 ©
R (bt
o——@o—B)o
globalReservationid
0. |Type tnsGlobalReservationldType

Min Occurs 0 ©

Max Occurs _unbounded

image36.png
© [tns:QuerySummaryConfirmedType

reservation
QuerySummaryConfirmed 0.0 Type tns:QuerySummaryResultType
o o vp vs ResulType | o)
Type_tns:QuerysummaryConfirmedType Min Occurs 0
Max Occurs _unbounded

image37.png
© [tnsQueryFailedType

o @I e

QuerySummaryFailed
Type_tns:QueryFailedType

image38.png
connectionid
Type

tns:ConnectionidType

globalReservationid

Type tns:GlobalReservationidType |®
Min Occurs 0

o

Type xsdstring (@
Min Occurs 0

criteria
0.0 Type tns ReservationConfirmCriteriaType
Min Occurs 0
Max Occurs _unbounded

(c]

image39.png
[]_ChidRecursivelistType

o

o

child
0.0 Type
Min Occurs
Max Occurs

tns:RecursivePathType
o
unbounded

(c]

image40.png
[_ChidsummaryListType

o

o

child
0.0 Type
Min Occurs
Max Occurs

tns:SummaryPathType
o
unbounded

(c]

image41.png
[ConnectionstatesType

reservationState

Type

tns ReservationStateEnumType

provisionstate

Type

tns:ProvisionStateEnumType

Iifecyclestate

Type

s LifecyclestateEnumType

dataPlanestatus

Type

tns DataPlaneStatusType

image42.png
[DataPlanestateChangeRequestType

o

connectionid

Type

tns:ConnectionidType

dataPlanestatus

Type

tns DataPlaneStatusType

imeStamp

Type

fiypes DateTimeType

image43.png
[DataPlanestatwsType

active
Type

xsd-boolean

Type

xsdint

VersionCansistent

Type

xsd:boolean

image44.png
connectionid
Type_tns:ConnectionldType

event
Type_ins:EventEnumType

connectionstates
Type_tns:ConnectionstatesType

[_Errarbventtype

imeStamp

Type_fiypes:DateTimeType

addiionalinfo
Type fypesTypevaluerartiseType (@
Min Occurs 0

servicebxception
Type fiypessenvicepxceptionType |©
Min Occurs 0

image45.png
[GenericAcknowledgmentType

image46.png
[GenericConfirmedType

ee

connectionid

Type

tns:ConnectionidType

image47.png
[GenericFailedType

o

connectionid

Type

tns:ConnectionidType

connectionstates

Type

tns:ConnectionStatesType.

serviceException

Type

fiypes ServiceExceptionType

image48.png
[GenericRequestType

ee

connectionid

Type

tns:ConnectionidType

image49.png
[MessageDelveryTimeoutRequestType

o

carrelationid

Type

fiypes UuidType

imeStamp

Type

fiypes DateTimeType

image50.png
[OrderedstpType

o

© @ attributes

Type

@o

 order

xsdint

st
Type

s StpType

image51.png
directionality
~—{Type ws:DirectionalityType |®
Default_Bidirectional

symmetric
Type xsdtboolean |®
Min Occurs 0

[PathType | sourcesTP,

Type_ins:StpType

destsTP.
Type_ins:StpType

Type s StplistType (@
Min Occurs 0

image52.png
[QueryrailedType

ee

serviceException

Type

fiypes ServiceExceptionType

image53.png
[QueryRecursiveConfirmedType

ee—.e

reservation
0.0 Type
Min Occurs
Max Occurs

tns:QueryRecursiveResultType
o
unbounded

(c]

image54.png
© Z. tnsReservationinfoGroup

connectionid
Type

tns:ConnectionidType

globalReservationld

Type tns:GlobalReservationidType (@
Min Occurs 0

description

Type xsdstring (@
Min Occurs 0

criteria

0.0 Type tns ReservationConfirmCriteriaType
Min Occurs 0

(c}

Max Occurs _unbounded
[QuenyRecursiveResultType |O-

requesterNsA
©
Type_fypes:NsaldType

connectionstates

Type_tns:ConnectionstatesType

children

Type tns:ChildRecursivelistType |@
Min Occurs 0

image55.png
[_QuerysummaryConfirmedType

o

o

reservation
0.0 Type
Min Occurs
Max Occurs

tns:QuerySummaryResultType
o
unbounded

(c]

image56.png
tns ReservationinfoGroup

connectionid

Type_tns:ConnectionldType

globalReservationld

Type tns:GlobalReservationidType (@
Min Occurs 0
description
Type xsdstring (@
Min Occurs 0
criteria
0.0 Type tns ReservationConfirmCriteriaType

Min Occurs 0 ©

Max Occurs _unbounded
[_QuerySummaryResultType |-

requesterNsA
©
Type_fypes:NsaldType

connectionstates

Type_tns:ConnectionstatesType

children

Type tns:ChildsummaryListType |@
Min Occurs 0

image57.png
connectionid
0.0 Type tns:ConnectionidType

Min Occurs 0 ©

e o—@o—@)o Max Occurs _unbounded

globalReservationld

0.0 Type tns:GlobalReservationidType
Min Occurs 0
Max Occurs _unbounded

(c]

image58.png
© @ attributes

 order
Type xsdint

connectionid
©
Type_ins:CannectionldType

[RecursvepathType |

providerNsA
©
Type_fypes:NsaldType

connectionstates
@ Type_ins:ConnectionStatesType

criteria

L | Type tns ReservationConfirmCriteriaType
Min Occurs 1

Max Occurs _unbounded

children
Type tns:ChildRecursivelistType |@
Min Occurs 0

image59.png
© @ attributes

 version
Type xsdint

schedule

[]_ReservationConfirmCrieriaType |

Type_tns:ScheduleType

bandwidth
Type xsdint

@

serviceAtributes
Type_fiypes:TypeValuePairListType

path
Type_tnsPathType

image60.png
[ReservationRequestCriteriaType

© @ attributes

@ version
Type xsdint ©

schedule

Type
Min Occurs

tns:ScheduleType |@
o

bandwidth

Type
Min Occurs

xsdint |©
o

serviceAttributes
fiypes TypevaluepairListType @
o

Type
Min Occurs

path
Type
Min Occurs

tnsPathType (@
o

image61.png
© Z. tnsReservationinfoGroup

connectionid
Type_tns:ConnectionldType

globalReservationld

Type tns:GlobalReservationldType |®
Min Occurs 0
] ReserveConfirmedType ee—‘ T
Type xsdistring |©
Min Occurs 0
crieria
0.5 Type tns ReservationConfirmCriteriaType

Min Occurs 0
Max Occurs _unbounded

image62.png
[ReserveResponseType

ee

connectionid

Type

tns:ConnectionidType

image63.png
connectionid
Type_tns:ConnectionldType

connectionstates

Type_tns:ConnectionstatesType

[ReserveTimeoutRequestType |

imeoutvalue
Type xsdint

imeStamp
Type_ftypes:DateTimeType

image64.png
[ReserveType

o

connectionld
Type tsConnectionidType |©
Min Occurs 0

globalReservationid
Type tns:GlobalReservationidType |®
Min Occurs 0

description
Type xsdstring (@
Min Occurs 0

criteria

Type_tns ReservationRequestCriteriaType

image65.png
[scheduleType

startTime
Type
Min Occurs

endTime
Type
Min Occurs

fiypes DateTimeType |®
o

fiypes DateTimeType |®
o

image66.png
[stplistType

o

orderedSTP.
0.0 Type
Min Occurs
Max Occurs

tns:OrderedStpType
o
unbounded

(c]

image67.png
networkid
Type xsdstring

Tocalld

BT

Type xsdstring

labels

Type fypesTypevaluerartiseType (@
Min Occurs 0

image68.png
© @ attributes

 order
Type xsdint
[summaryPathType |O: connectionid
Type_ins:CannectionldType
providerNsA
©
Type_fypes:NsaldType
path
Type tns:PathType (@

Min Occurs 0

image69.png
[/ ConnectionidTyp 7
e JO—([7_xsdistring)
xsd:
sd:strin
9

image70.png
([Z_pirectionalityType JO——(|~ xsd:string)

image71.png

image72.png
([7_GlobalReservationldType JO——(|7 xsd:anyURi)

image73.png
[LifecycleState

image74.png
(7 ProvisionstateEnumType)©- [7 xsdsstring)

image75.png
([7_ReservationstateEnumType)©- [7 xsdsstring)

image76.emf
>rsv.rq >rsvabort.rq >rsvcommit.rq<rsv.cf <rsv.fl <rsvabort.cf <rsvcommit.cf <rsvcommit.fl (ReserveTimeout)

Reserve

Checking

Reserve

Start

Reserve

Start

Reserve

Start

Reserve

Start

Reserve

Start

Reserve

Start

Reserve

Start

Reserve

Start

>rsv.rq <rsvabort.na <rsvcommit.na

Reserve

Checking

Reserve

Checking

Reserve

Checking

Reserve

Held

Reserve

Failed

Reserve

Checking

Reserve

Checking

Reserve

Checking

Reserve

Checking

<rsv.na <rsvabort.na <rsvcommit.na<rsv.cf <rsv.fl

Reserve

Held

Reserve

Aborting

Reserve

Commiting

Reserve

Held

Reserve

Held

Reserve

Held

Reserve

Held

Reserve

Held

Reserve

Timeout

<rsv.na >rsvabort.rq >rsvcommit.rq <rsvtimeout.nt

Reserve

Committing

Reserve

Committing

Reserve

Committing

Reserve

Committing

Reserve

Committing

Reserve

Committing

Reserve

Start

Reserve

Start

Reserve

Committing

<rsv.na <rsvabort.na <rsvcommit.na <rsvcommit.cf <rsvcommit.fl

Reserve

Failed

Reserve

Aborting

Reserve

Failed

Reserve

Failed

Reserve

Failed

Reserve

Failed

Reserve

Failed

Reserve

Failed

Reserve

Failed

<rsv.na >rsvabort.rq <rsvcommit.na

Reserve

Aborting

Reserve

Aborting

Reserve

Aborting

Reserve

Aborting

Reserve

Aborting

Reserve

Start

Reserve

Aborting

Reserve

Aborting

Reserve

Aborting

<rsv.na <rsvabort.na <rsvcommit.na <rsvabort.cf

Reserve

Timeout

Reserve

Aborting

Reserve

Start

Reserve

Timeout

Reserve

Timeout

Reserve

Timeout

Reserve

Timeout

Reserve

Timeout

Reserve

Timeout

<rsv.na >rsvabort.rq <rsvcommit.fl

Illeagal request. Reply with "not applicable".

Non expected input. Should be an error

Reserve

Start

Reserve

Committing

Output message

Next State

Input message/Event

Reserve

Timeout

Reserve

Checking

Reserve

Held

Reserve

Failed

Reserve

Aborting

Current

State

image77.emf
>prov.rq >rel.rq <prov.cf <rel.cf

Provisioning Released Released Released

>prov.rq <rel.na

Provisioning Provisioning Provisioned Provisioning

<prov.na <rel.na <prov.cf

Provisioned Releasing Provisioned Provisioned

<rsv.na >rel.rq

Releasing Releasing Releasing Released

<prov.na <rel.na <rel.cf

Illeagal request. Reply with "not applicable".

Non expected input. Should be an error

Input message

Current

State

Next State

Output message

Released

Provisioning

Provisioned

Releasing

image78.emf
>term.rq <term.cf <forcedEnd

Terminating Created Failed

>term.rq <forcedEnd

Failed Terminated Failed

<term.na <term.cf <forcedEnd

Terminating Terminated Terminating

<term.na <term.cf <forcedEnd

Terminated Terminated Terminated

<term.na <forcedEnd

Illeagal request. Reply with "not applicable".

Non expected input. Should be an error

Created

Terminating

Terminated

Input message

Current

State

Next State

Output message

Failed

image79.emf
STP - Service Termination Point

SDP - Service Demarcation Point

STP d

Network

X

Network

Y

STP b/STP c

Connection

STP e/STP f

Network W

Network Z

STP g

SDP

SDP

NSA - X NSA - Y NSA - Z

NSI interface

Application

NSA

STP a

image80.emf
NSA - X

NSA - Y

NSA - Z

Application

NSA

STP - Service Termination Point

SDP - Service Demarcation Point

STP d

Network

X

Network

Y

STP b/STP c

Connection

STP e/STP f

Network W

Network Z

STP g

SDP

SDP

NSI interface

STP a

