

NSI Service Table A Sortof-Topology Suggestion

Henrik Thostrup Jensen <u>htj@nordu.net</u> NSI Phone Call Presentation 25th February 2015

- NSI = Network Service Interface
 - Service...
 - NSI support multiple service types
 - We have spend a lot of time modeling technology
 - Not so much on services
 - We actually haven't modeled topology either...
- This suggestion is about modeling services
 - And only a little bit on topology

- EVTS = ethernet#vlan in NML?
- How to tell burst policies from an NML port?
 - And how to map this?
- The idea that path finders must map between services, topology and technology capabilities makes them very complicated
- Security and Policies left as an exercise...

- Inspiration from BGP
 - BGP is the result of a lot of real-world experience and routing research
 - Remember: IP is a service
 - Policy is expressed with reachability and exit discriminators
 - Connectivity with AS paths
 - BGP lesson: Try not to do clever things
- It is not really a topology
 - We have painted ourselves into a corner
 - We have to describe the topology; how else could it work...

- Deliberate choices
 - Only describe demarcation / links
 - Model transit and network roles in path finding
- Tradeoffs
 - List capabilities, not fabric
 - Let the NSI Agent do the service -> technology mapping
 - We already do this in the reserve request, but not in the pathfinding

Service Table

Example

```
Network, id="urn:ogf:network:aruba", version="123"
```

Name: Aruba

Link id="urn:ogf:network:aruba:topology:link_a", demarcation=...

Name: LinkA

```
Service type=EVTS
```

ReachableNetwork id="urn:ogf:network:bonaire:topology", distance=1

Link id="urn:ogf:network:aruba:topology:link_b", demarcation=...

```
ServiceTransit type=EVTS
```

Service type=...

- Links & Services
 - What services can be provided and where to
 - This is only relevant if the link connects to you
 - Otherwise polices can be applied
 - Reachability has to be engineered to match policies
 - Technology of the link does NOT matter
 - Service mapping must be agreed between networks
 - Like IP
 - This encapsulates adaptation
 - Like IP

- ServiceTransit
 - Similar to BGP default route
 - Meaning all traffic can be send via that link
 - Allows simple configuration for network with a single transit provider
 - Many networks only have a single transit provider
 - Still possible to combine with peerings / PNIs

- 1. Fetch service table from peers
- 2. Apply policies / rules and build table Typically:

Announce customers to customers + peers

Announce peers to customers

- 3. Publish service table
- 4. Repeat at some interval

- Chain
 - But why!
- In most cases the networks to traverse to setup a circuit is trivial
 - Most cases look like this:

University – National NREN – Transit NREN – Transit NREN – National NREN – University

- Notice the business relationships
 - No one wants to be your transit provider unless you give them money
- The difficult part is to select the right link

- Why chain
 - Most networks connect over multiple links

- A & B know the reservations for A-B links
- Having C choose which link to use between A-B is suboptimal
- A/B can decide this the best

Path Finding

- Two scenarios for transit providers
 - 1. Request from customer

Allows transit provider to connect to the destination in the best way

2. Request from peer/transit

Allow the transit provider to <u>verify</u> that the customer agrees to the circuit. Avoids the situation where a peer sets up a circuit and the transit provider doesn't know if the customer has agreed to the link.

The infrastructure of a transit provider is paid by the customers. Having outside parties reserve a circuit in the infrastructure without customer verification (as tree does) is highly problematic.

Path Finding

- Chain is still compatible with EROs
 - Makes it possible to
 - Checking EROs with policy is easy

- Resolving circuit allocation failure
- Service table lists links and their connectivity
 - Possible to build network model
 - Can do re-routing in case of failures
 - Mostly relevant for transit networks
 - Similar to AS paths in BGP can help with rerouting in case of failures
- End networks typically have low connectivity
 - Transit networks have high connectivity
 - In most cases, it makes sense to have transit provider try to re-route

- Encode LCHONE VRF as a separate network urn:ogf:network:example.org:topology urn:ogf:network:example.org:lhcone
- Reachability can be defined on common or separate links
 - Some network run the VRF on separate infrastructure, some do along their general infrastructure
- This idea isn't fully baked
 - (but neither are the requirements AFAIK)
 - One problem is that ports cannot be in both

Exchanges

- The NSI model assumes that networks demarcates on links
- On exchanges it demarcates in the switch fabric, as the networks owns/rents a port in the exchange
- A single reserve allocates resources across two networks
- Exchanges often don't care about policies, etc
 - Have to be applied by networks

Exchanges

- Problems that disappear
 - Topology distribution
 - Complex path finding
 - Proxy requests makes revocation easy
- Solves
 - Transit policies & link AUPs
 - Adding new services is (more) straightforward
 - Exchanges are crossed in a way where other networks equipment are respected

