OpenGridForum

OPEN FORUM | OPEN STANDARDS

OGF NSI CS State Machine
The Skype Sessions v4

July 10 - 20, 2012

Tomohiro Kudoh, Vocals
Chin Guok, Lead Guitar
John MacAuley, Cowbell

Lest we forget

* The primary goal of this activity was to:

1. Correct the behaviour of the Provision command where a long
period of time (based on startTime) could occur between the
Provision request and confirmation message.

2. Add a basic reservation modification capability.

 We needed to stick to our primary principles:

— As simple as possible - reduced complexity simplifies implementation
and error paths.

— Graceful handling of error and race conditions.
— Separation of responsibility.
— No loss of information and no hiding of information

* No outside context required - an independent external observer should be able to
view the current reservation information and understand the exact state.

The long and winding road

In Pre-1.0 we collapsed two state machines into one for simplicity.

We split them apart again in 2.0, removed a bunch of states for simplicity, and added the
Message Delivery Layer (MDL).

We added the states back in that we realized we needed.

We added a modify command.

We collapsed the two machines back together and removed some states.
We added in new failed states.

We created an activationState and removed activate messages from main state machine
giving us separate reservation and data plane state machines.

We added state change events, we argued about state change events versus notification
messages, and we ended up removing the state change events.

We added a unique identifier to Provision and Modify to correlate activation events.

John wanted to rip auto-provision out of the protocol and make it an uRA issue but was
beaten down.

Tomohiro slipped off his noodle due to lack of sleep and exploded the single state machine
into a separate reservation and provisioning state machines. Then there were three!

Key changes for Skype v4

There are now three separate state machines for NSI Connection Services:

— The Reservation State Machine models the lifecycle of a reservation, including
modifications to the reservation.

— The Provisioning State Machine models the provisioning state of the reservation’s
associated connection resources.

— The Activation State Machine models the activation state of the data plane resources
associated with the reservation.

Start time has been removed from the Reservation and Provisioning state
machines

— A uPA and NRM are now responsible for management of the “(provision)” and
“(activation)” behaviors locally.
I o"

— The uPA and NRM must activate data plane during reserved period, unti
“(clean_up)” is received.

(release)” or

— How to maintain timer is left to uPA and NRM implementation.
— In this document we model the “(provision)” and “(activation)” individually.

Key changes for Skype v4

Data plane activation is not reflected in the reservation’s connectionState.

Activation notification messages are handled separately and are modeled
using the reservation’s new activationState.

Partial failure states have been introduced

— “Provision Failed”, “Release Failed” and “Modify Failed” to help model the inconsistent
state of the connection within the control plane.

Key changes for Skype v4

Four final terminated states are model:

— TerminatedReserve — terminated state was reached as the result of a failed
reservation request.

— TerminatedEndTime — terminated state was reached as the result of
reservation end time being reached.

— TerminatedForced — terminated state was reached as the result of a
forced_end event.

— TerminatedRequest — terminated state was reached as the result of a
terminate request.

NSI Reservation State Machine (Skype v4)

>rsv.rq

>rsv.rq

(reservation)

(reservation ok)

<rsv.cf

<rsv.cf

>mdfychk.rg

>mdfychk.rg

(mdfychk)

(reservation ng)

<rsv.fl

<rsv.fl,

>term.rg

Terminate
/Reserve

Reserved

(modify ok)

(mdfycncl o0k)

<mdfycncl.cf

<mdfycncl.cf

Modify
Cancel
Failed

(mdfychk ng)

<mdfychk.fl

<mdfychk.fl,
>mdfycncl.rg

(mdfycncl

<mdfycncl.

<mdfycncl.

>mdfycncl.

>mdfycncl.

(mdfycncl)

(mcfychk ok)

<mdfychk.cf

<modify.cf

<modify.cf

(modify ng)
<modify.fl
<modify.fl

>modify.rg
>modify.rg
(modify)

>mdfycncl.rg

_

>mdfycncl.rg

>modify.rg

(mdfycncl)

>modify.rg

<mdfychk.cf

(modify)

O Base SM states

NB: Refers to states in the base state machines.

12-08-21

NSI Provisioning State Machine (Skype v4)

o (eovaelon o) prov.rq is used to
>prov.r Lo s
Eo <prov.ct initiate re-activation of
(provision) <prov.cf data-plane
>prov.rqg
>prov.rq 2PIOV.rJg POV o G
(provision) (provision ng) >prov.rq >pProv.rq
<prov.fl (provision) (provision)
<prov.fl
Reservation Schedule Provision Release Provisio
Created d Failed Failed ed
>rel.rq >rel.rq S (release ng)
<rel.cf <rel.fl >rel.rg
>rel.rqg >rel.rqg
<rel.fl >rel.rq
(release) (release) Trel)
release

(release ok)
<rel.cf
TErmriREE —— term.rg, fcd_end and
/Endtime (end time) : unexpected messages
(illegal sequence) are
. exceptions
(clean up) ‘ Initial State
erminate Sterm.rq O Transitional
orced >term.rg,<term.cf NB: Requests received in this state is

(clean up)

queued and processed only when it
transitions to a Stable State.

(fatal event)
oo () stable States
e i <fcd end, >term.rqg
) 0521 @ Final State .

Modify Notes

 The modify.rq is equivalent to a provision.rq in behaviors for
the newly modified reservation

— When the modify okis returned to the uPA by the local NRM, the
uPA must invoke the “uPA Activation Sequence” as described on slide
14 to active the newly modified reservation within the network.

* An NSA can choose to fail a request for modification
(mdfychk.rq) if it deems the local state machine is in a state
which my result in complications satisfying the request

— If mdfychk.rq is received in Provisiond state, and data plane is not yet
activated at that time, the data plane may be activated while in the
modification sequence due to the occurrence of start time. An NRM
which cannot support such modification should return mdfychk.fl.

activationState

activationState models the reservation’s overall activation state within the
network (i.e. data plane).

activationState = { Active, Inactive } with Inactive the default

activationState is controlled through notifications out side of normal state
machine interactions

activate_ok.nt is sent when an NSA has a connection that has transitioned to Active state (all child
NSA or NRM segments included).

activation_fl.nt is generated by a uPA when the activation operation fails on the local NRM. This
notification is propagated by NSA up the tree. There is no impact to the activationState since it
should already be in an “Inactive” state.

deactivate_ok.nt is sent when an NSA has one or more components of a connection transition to
Inactive state (a child NSA or NRM).

deactivate_fl.nt is generated by a uPA when the deactivate operation fails on the local NRM. This
notification is propagated by NSA up the tree.

uPA will generate “activate” or “deactivate” messages based on the reservation’s
connection activation state within the network.

An aggregator will only propagates “activate” or “deactivate” events when there is
a change in activationState on the connection.

activationState continued...

For the uPA, activationState will only transition to “Active” when:
— Current time is between start_time and end_time;
— connectionState is “Provisoned”;
— The local NRM has successfully activated the connection into the data plane;
— For all other it is “Inactive”.

For the uPA, activationState can be “Active” when:
— Current time is between start_time and end_time;
— connectionState is “Provisoned”;

For the uRA or Aggregator, activationState will only transition to “Active”
when:
— All children NSA have reported an activationState of “Active”.

— If any child connection segment becomes inactive, then the overall state transitions to
“Inactive”.

Reserved State

* Initial connection state within the network for a reservation:
* connectionState is “Reserved”;
» activationState is “Inactive”.

connectionState
activationState

= Reserved

Inactive

connectionState
activationState

A
—

= Reserved
= Inactive

Connection inactive
in network

12

UPA Provision Sequence

» Provision command issued down the request tree transitions connectionState
to “Provisioning”.

- > prov.rq (provision) > (provision)
1P A \ \/
Aggr

connectionState = Provisioning
activationState

connectionState = Provisioning

Inactive activationState

Connection inactive
in network

Inactive

* Provision confirms returned up the tree transitioning connectionState to
“Provisioned”, but activationState remains “Inactive” for now.

< prov.cft (provision ok) \ v
Aggr € (provision_ ok)

connectionState = Provisioned
activationState =

connectionState = Provisioned

Inactive activationState =

Connection inactive

Inactive in network

» Once the Provision operation is completed, if it is past reservation start_time

then the uPA will activate the connection within the NRM. See next slide for this
sequence.

13

uPA Activation Sequence

« If connectionState is “Provisioned”, and it is past reservation start_time but not
end_time, the uPA will activate the connection within the NRM.
* Once activated the uPA transitions activationState to “Active” and generates an

activate_ok.nt notification.

(current time > start time &&
current time < end time &&

activationState != active)
(activate) (activate)
< activate ok.nt (activate ok)
ggr € (activate_ ok)
connectionState = Provisioned connectionState = Provisioned Connection active 1in
activationState = Active activationState = Active network

14

uPA Activation Failed Sequence

« If connectionState is “Provisioned”, and it is past reservation start_time but not
end_time, the uPA will activate the connection within the NRM.

« If activation fails with the NRM there is no need to transition to “Inactive” since
the activationState is already “Inactive”.

« The NRM will generate an activation failure notification (activate_fl.nt) to inform

parent NSA of the condition.

(current time > start time &&
current time < end time &&
activationState != active)

(activate) > (activate)

(activate fl.nt) (activate ng)
€ B (activate ng)

Connection failed to
activate in network

connectionState = Provisioned connectionState = Provisioned

activationState = Inactive activationState = Inactive

15

uPA Release Sequence

* Release command issued down the request tree transitions connectionState to “Releasing”.

> rel.rq A (release) (release)
uPA

connectionState = Releasing connectionState = Releasing Connection active in
activationState = Active activationState = Active network

» Release confirms returned up the tree transition connectionState to “Reserved”, but
activationState remains “Active” for now.

< rel.cf (release ok)
(release ok)

connectionState = Reserved connectionState = Reserved Connection inactive
activationState = Active activationState = Active in network

+ The uPA immediately transitions activationState to “Inactive” and sends a deactivate_ok.nt
notification to the parent NSA.

< deactivate ok.nt uPA
F

connectionState = Reserved connectionState = Reserved Connection inactive
activationState = Inactive activationState = Inactive in network 16

UPA Terminate Sequence

+ Terminate command issued down the request tree transitions connectionState to

“Terminated”.
L > term.rq N (terminate) (terminate)
uRA
uPA
Aggr
connectionState = Terminated connectionState = Terminated Connection active 1in
activationState = Active activationState = Active network

« Terminate confirms returned up the tree does not transition state because we have already
forced the connectionState to Terminated.

N
< term.cf UPA (terminate ok)
€ (terminate_ ok)

connectionState = Terminated connectionState = Terminated Connection inactive
activationState = Active activationState = Active in network

+ The uPA immediately transitions activationState to “Inactive” and sends deactivate_ok.nt
notification to the parent NSA.

O
< deactivate ok.nt uPA
F

connectionState = Terminated connectionState = Terminated Connection inactive
activationState = Inactive activationState = Inactive in network 17

Activation Failure Recovery

There are two thoughts on this topic:

1. Push recovery as low in the tree as possible to localize messaging, and to
the place (UPA/NRM) that would best know how to recover the localized
failure.

2. Do nothing lower in the tree and let the uRA recover based on the
application’s needs.

#1 may eventually need to fail, and therefore, #2 will be the fall back

— How long would the local uPA/NRM retry before finally failing and generating
the activation_fl.nt?

#2 simplifies processing lower down in the tree but means more
messaging to recover from the failure

— The activation_fl.nt is immediately send up the tree by the uPA.

— The uPA/NRM localized to the failure does nothing to recover.

— The uRA can implement specific recovery strategies as needed. For example,
immediately issue a new provision request, or perhaps, initiate a call to
network operations for support on the failure.

uRA/Aggregator Activation Sequence

« If connectionState is “Provisioned”, and it is past reservation start_time but not
end_time, the uPA will activate the connection within the NRM, and generate an
activate ok.nt notification.

» The Aggregator NSA must receive an activate ok.nt notification from all children
before transitioning activationState to “Active” and generating an activate_ok.nt
notification to the parent NSA.

connectionState = Provisioned

< t1 t k.nt .]]
activate _ox.n activationState = Active

< activate ok.nt
< activate ok.nt

connectionState = Provisioned
activationState = Active

connectionState = Provisioned connectionState = Provisioned
activationState = Active activationState = Active
< activate ok.nt

connectionState = Provisioned
activationState = Active 19

uRA/Aggregator Failed Activation
Sequence

« If the Aggregator NSA receives an “Activation Failed” notification (activate fl.nt)
from a child NSA, then it leaves the activationState “Inactive” and propagates an

activate_fl.nt to the parent NSA.
» The Aggregator NSA takes no corrective action due to the failed activation.

) connectionState = Provisioned
< activate fl.nt , . .
- activationState = Inactive
< activate fl.nt
< activate ok.nt
connectionState = Provisioned connectionState = Provisioned connectionState = Provisioned
activationState = Inactive activationState = Inactive activationState = Active

< activate ok.nt

connectionState = Provisioned
activationState = Active

20

Overloading the Provision
command

We have removed activation from the primary state machine,
however, it is still used in combination with startTime to kick
start the activation sequence.

There are situations were activation of a reservation may fail,
whether during initial activation, or at a later time in the
schedule lifecycle.

To handle these situations we permit the Provision command
to be re-issued even when the state machine is already in the
Provisioned state.

This will allow a uRA to kick start a uPA to attempt another
activation on an already provisioned reservation that is
currently “Inactive”.

uRA Activation Failure Recovery Sequence

» To recover from a failed activation, the uRA can issue another Provision request (prov.rq) on the reservation.

» The Aggregator NSA need only propagate the Provision Request to all children NSA associated with the
reservation.

» The uPA s responsible for message handling to the local NRM. If the reservation is already provisioned on
the local NRM, then the uPA could skip provision and attempt to activate (next slide).

» Once the Aggregator NSA has received Provision confirmation (prov.cf) responses from all messaged
children NSA, it must send a prov.cf to the parent NSA of the request.

(provision)
(provision)
D N\ ..
(provision ok)
> prov.rqg . o o
connegtlopSijte :AF€?V151pned Connection inactive(prOVlSlon—Ok)
activationState = Inactive in network
< prov.cft
> prov.rq
> prov.rq
< prov.ct (no-op)
< prov.cft
connectionState = Provisioned connectionState = connectionState = Provisioned
activationState = Inactive activationState = Inac®i activationState = Active

(no-op)

connectionState = Provisioned
activationState = Active

22

uRA Activation Failure Recovery Sequence

» The previous Provision request kicks the local uPA to start the NRM activation phase.

* In a successful activation of the NRM, the uPA transitions activationState to “Active” and generates an
activate ok.nt notification to the parent NSA.

« uPA that were previously “Active” and received the prov.rq must determine if this request is for a new
reservation version and perform a activation, or a re-activation on an already active reservation an reply with
the activate_ok.nt notification to the parent NSA immediately.

« The Aggregator NSA receives the activate_ok.nt and, now that it has received “Active” notifications from all
children NSA, transitions activationState to “Active”, generating an activate_ok.nt notification to the parent

NSA.
(current time > start time &&
current time < end time && (activate)
activationState != active) (activate)
(activate ok)
connifﬁii?Sti;ftf Prifif;oned Connection active l(activate ok)
, activationState = Active :
< activate ok.nt in network
< activate_ok.nt < activate ok.nt
11PA
connectionState = Provisioned connectionState = Provisione connectionState = Provisioned
activationState = Active activationState = Active activationState = Active

< activate ok.nt

connectionState = Provisioned 23
activationState = Active

Reservation Version ldentifier

Performing a modification while simultaneously having a service activate
can lead to confusion correlating the activation events to a specific version
of the reservation.

Introducing a sequentially increasing version Id into the reservation, and
returning this Id in the activation notification, will allow proper processing
of the activation sequence.

If a provision activation event kicks off while a service modification is
occurring, then the version Id for the provision activation would have an
Id sequentially lower than the activation event resulting from the modify.
Querying a reservation will return:

— The reservation’s version and the reservationState;

— The provisioningState;

— The activationState and corresponding reservation version.

NSI message delivery layer (MDL)

NSI Protocol
Layer

- State Machine works here

NSI Message New layer which confirms delivery of

Df;ivsrry ' message to all immediate children
Vossage including uPA in the same NSA

Transport - Peer-to-peer message delivery
Layer

 MDL does
*Aggregation of replies from children
» all-ok/one-or-more-failed
*Timeout/Re-try (as hard as possible)
* If MDL returns “fail”’, NSA can retry by
sending a request again 25

State machines and MDL, NRM

7 TR
- URA |NSA
R E—
MDL
___ g J
4 |)
o INsA
|
MDL |
-)
4 A 4 R

Terminology - Messages

rq (request) The RA sends the request to the PA, for example reserveRequest.

cf (confirmed) A PA sends this positive operation response message (such as reserveConfirmed) to the
Requester NSA that issued the original request message (reserveRequest).

fl (failed) A Provider NSA sends this negative operation response message (such as
reserveFailed) to the Requester NSA that issued the original request message
(reserveRequest).

nt (notification) A Provider NSA can send an unsolicited messages to the RA (or notification) to

communicate to the RA a local event in the PA that resulted in an autonomous state
transition in the state machine. An example of this is the “activate_ok.nt” and
“activate_ng.nt” notify messages sent from the PA to the RA to indicate a success or
failure of the circuit setup in the PA.

27

Terminology — Reservation State

Machine Operations

rsv (reserve) The RA requests the PA to reserve network resources for a connection between two
STP’s constrained by certain service parameters.

term (terminate) The RA request for the PA to release the provisioned resources and terminate the
reservation.

mdfychk The modify check operation allows a connection reservation to be modified. If

(modify check) modification of current reservation is possible, the resources associated with the

modification are held. The original reservation is not changed by this operation.

modify The modify operation will change a reservation by the resources held by modify check
operation. If the original reservation has been activated (i.e. modification sequence
starts from “Activated” state), modification of activated resource must be done.

mdfycncl The modify cancel operation requests canceling of modification sequence. Held

(cancel modify) resources must be released. The original reservation must be preserved.

query Mechanism for either RA or PA to query the other NSA for a set of connection service
instances between the RA-PA pair. This operation can be used as a status polling
mechanism.

28

Terminology — NRM operations/events

for Reservation state machine

(reservation)
(reservation_ok)
(reservation_ng)

(mdfychk)

(mdfychk_ok)
(mdfychk_ng)

(modify)

(modify_ok)
(modify_ng)

(mdfycncl)
(mdfycncl_ok)

(mdfycncl_ng)

The local NRM must perform an internal reserve operation.
The result of the local NRM reserve operation was successful.
The result of the local NRM reserve operation was a failure.

The local NRM must check availability of resource requested, and if available hold them. The original
reservation is not changed by this operation.

The result of the local NRM mdfychk operation was successful.
The result of the local NRM mdfychk operation was a failure.

The local NRM must change its original reservation by the by the resources held by mdfychk operation. If the
original reservation has been activated (i.e. modification sequence starts from “Activated” state),
modification of activated resource must be done.

The modify operation was completed successfully by the NRM.
The modify operation sequence failed to complete.

The modification sequence was cancelled and the local NRM must clean up any associated resources.
The modification cancel sequence was successfully completed by the NRM.

The modification cancel sequence failed to complete.

29

Terminology — Provisioning State

Machine Operations

prov (provision) The RA requests the PA to provision a previously committed reservation.

rel (release) The RA request for the PA to de-provision resources without removing the reservation.

term (terminate) The RA request for the PA to release the provisioned resources and terminate the
reservation.

30

Terminology — NRM operations/events

(start_time) The internal NRM event associated with the start time of a connection reservation.

(end_time) The internal NRM event associated with the end time of a connection reservation.

(clean_up) The reservation was terminated and the local NRM must clean up any associated
resources.

(fatal_event) The event says it all.

31

Terminology - Notifications

fcd_end (forcedEnd) This notification is reported by the PA to the RA to notify that the PA has forced a
termination of the reservation.

activate_ok This notification is reported by the PA to the RA to notify that the PA has successfully
activated the network resources associated with a reservation.

activate_ng This notification is reported by the PA to the RA to notify that the PA has failed to
activate the network resources associated with a reservation.

32

