OpenGridForum

OPEN FORUM | OPEN STANDARDS

Network Services Interface

Modify operation proposal

John MacAuley, SURFnet
11t April 2012

What is the problem??

NSI needs the ability to modify an existing connection reservation.

Three key features:
1. Modification of schedule endTime.
2. Modification of reservation bandwidth.
3. Hitless modification of provisioned service.

Notes:

— Modify request should succeed if the existing reservation path
can support the request, and fail it otherwise.

— If the existing path can be expanded to allow more bandwidth, or
the endTime can be modified without impacting any other
schedules, then we should allow it.

— NOT requesting rerouting, bridge and switch, or any other
advanced capabilities.

Use Case: Cloud Bypass

SARA has implemented an automatic cloud bypass solution used to reroute
huge data transfers between GRID sites

How it works
— Monitor uplink of a switch looking for certain traffic patterns

— When traffic match encountered setup a dynamic lightpath between source
and destination belonging to that specific traffic pattern

— Reroute matching traffic over the dynamic path

Why modification?
— Do not know how long the traffic will last, or if the traffic will increase or
decrease over time
— Do not want to make a reservation for a week at full capacity of the port

— Make a reservation for an hour and check the traffic pattern again 5 minutes
before end of reservation, changing capacity or duration if needed

Modify State Machine — Fire and Pray

(allocate f1)

<modify.fl >modify.rg
<modify.fl >modify.rg
(pooched) (allocate)

Operations
modify

Issues

Allocating

(allocate cf)

<modify.cf

<modify.cf

0 ed Reservation A’

In a tree model a child NSA may fail to perform the modify, however, all other
children NSA may have committed the change. We now have a reservation within
the network that is in an inconsistent state. Backing out the change would be
extremely complex, as the requesting NSA would need to remember the original
reservation parameters and re-issue them down the tree with another modify to try

and restore consistency.

How do we fix this consistency issue?

* In our distributed environment we will need to make modify a two-phase
commit operation

* In the first phase...

- A is issued down the tree to check the feasibility of the desired
reservation modification, and to reserve any additional network resources
associated with the request

— A message will be sent back to the requester if the requested
modification is possible, and as an acknowledgment to successfully securing
any additional network resources

— A message will be sent back to the requester if the requested
modification is not possible

— At successful completion of the first phase the original reservation is still
preserved, however, pre-allocation of any additional resources associated
with the modify has been completed for all participating NSA

— If the first phase ends in failure then the original reservation is preserved

Phase Two

* |n the second phase...

— A is issued down the tree to commit the
reservation modification
— A message will be sent back to the

requester if the requested modification commit is successful,
and the modified schedule is in effect

— A message will be sent back to the
requester if the modification commit is not possible (would not
be due to lack of resources)

— At successful completion of the second phase the original
reservation has been replaced with the modified version

— If the second phase ends in failure then a critical error has
occurred and the reservation is in an indeterminate state within
the network

Commit Timeout

* To avoid leakage of uncommitted modification
resources we will need to implement a commit
timeout

* |If a corresponding is not
received within 5 minutes of a

message then any pending resources against that
reservation should be released

* The original reservation is preserved

Modify State Machine — Two Phase**

Reservation A

\

(commit f1)

<modifyCommit.fl

<modifyCommit.fl

(pooched)
(commit timeout)

(allocate f1)
<modify.fl >modify. rq (deallocate)
<modify.fl, >modify.rqg
(deallocate) (allocate)

(allocate cf)

<modify.cf >modifyCommit.rqg

Allocating Allocated

<modify.ct >modifyCommit.rqg

(commit)

(commit cf)

<modifyCommit.cf

<modifyCommit.cf

Operations
modify
modifyCommit

** Use timeout to clean up after
failures

Reservation A’

Modify State Machine — Two Phase

>modify.rg

>modify.rqg

(allocate)

(deallocate cf)

<modifyCancel.cf
<modifyCancel.fl

Allocating

(commit timeout)

(deallocate)

(allocate cf)

<modify.cf

<modify.cf

. (allocate f1)

<modify.fl

<modify.fl,
>modifyCancel.rg

(deallocate)

Cleaning

Operations

modify

modifyCommit
modifyCancel

>modifyCommit.rqg

>modifyCommit.rqg

(commit)

(commit f1)

<modifyCommit.fl

<modifyCommit.fl,
>modifyCancel.rg

(pooched)

Do we really need the modifyCancel? Will this force all
NSA to restore the previous reservation values?

(commit cf)

<modifyCommit.cf

<modifyCommit.cf

Reservation A’

