1 Message Header

1.1 Request Fields

1.1.1 Request ID [messTransID]

This allows the requestor to identify the response to this message. Details tbd

1.1.2 NSI protocol version

This identifies the version so that changes can be made over time

1.1.3 Requestor NSA

This is the identifier of the id sending this request. It also includes security parameters needed to verify the the sender’s identifier

1.1.4 Provider NSA

This is the identifier of the provider to whom this message is being sent. Security parameters are not needed in message from requestor.

1.1.5 Service Type

This defines the service from which the message comes on the requestor and to which it goes on the provider NSAs.

1.2 Reply Fields

1.2.1 Request ID [messTransID]

The provider uses this field to to match response to the request that caused it to be sent

1.2.2 NSI protocol version

This identifies the version so that changes can be made over time

1.2.3 Requestor NSA

This is the identifier of the NSA which sent the original request. It does not need security parameters

1.2.4 Provider NSA

This is the identifier of the provider sending this message. This includes security parameters needed to verify the identity of the provider/sender.

1.2.5 Service Type

This defines the service from which the message comes on the requestor and to which it goes on the provider NSAs.

2 Connection Service Header

2.1 Request CS Header Fields

2.1.1 ServiceVersion

Allows modification of service over time

2.1.2 CID – Connection ID

Identifies the connection in this request

2.1.3 Service primitive

 identifies the primitive to be executed by the service

Connection Service Primitives

ReservConn

ProvConn

CancelConn

ModifyConn

StateConn

Other?

2.1.4 servTransID

This marks the message by requestor to allow the provider to respond to this message. Details tbd

2.2 Reply CS Header Fields
2.2.1 ServiceVersion

Allows modification of service over time

2.2.2 CID – Connection ID

Identifies the connection in this request

2.2.3 Service primitive

 identifies the primitive to be executed by the service

2.2.4 servTransID

This marks the message to allow the requestor match this reply to the original message. Details tbd

3 ReservConn

These describe aspects of the connection service that is required by the requestor and the actual characteristics of connection reserved by the provider.

The reply to a ReserConn is either Reserved or Failed. If the reply is Failed, the reply MAY contain information about one or more aspect of the requested connection that was unable to be satisfied.
3.1 ReservConn Request Fields

These define required characteristics the connection service instance being requested
3.1.1 Time

This defines allowable times. This might include start and end time, duration, or other characteristics.

3.1.2 ServiceInstanceAttr

This assumes a set of attributes for a Service. Specific values or a range of acceptable values of each attributes can be listed. Defaults for unlisted attributes are assigned by the provider.
3.1.3 PathObj

A path is a topological sequence of network objects that are included in a connection. A request must include STPs or EdgePoints which can multiplex STPs at the endpoints of the connection. It may include additional network objects that can be either hints or requirements in the topological path of the requested connection.

3.2 ReservConn Reply Fields

3.2.1 Status

This is Reserved or Failed

3.2.2 Time

Reserved - This defines start and end time of reserved connection

Failed – This defines which requested time fields failed.

3.2.3 ServiceInstanceAttr

Reserved – this returns all service attributes of the reserved connection.

Failed – this defines which requested attribute values were unable to be satisfied.
3.2.4 PathObj

This still need a lot of discussion – at least in my view. My take on it is –

Reserved – this is a sequence of network objects in the reserved path. This must include the edge STPs and MAY include additional actual network objects. In my view the additional objects MUST be connection objects provided by child NSAs. This I am sure is controversial, so needs to be discussed.

Failed – this describes any required path objects that were unable to be satisfied.

�Is this required?As there is already a RequestID, I think this field has no use. Any domain which received a Request, knows the Reqestor NSA and Provider NSA as specified. IMHO there is no need to replicate it in reply

�I don’t understand this field. Since connection service is defined, it’s there. Even if we modify it at definition level, I don’t think we need to mark it in messages.

�How is this related to RequestID? Maybe it will be useful to use just one unique ID for identifying a thread of processing (whatever service it depends on)?

�Nice to have, but it’s problematic. I would avoid discussion on this in v1.0. There are multiple parameters you can change, each message is different, processing of request depends on service state (scheduled, or already provisioned), some changes can’t be done while service is operating, etc. Use cases needed.

�I am not clear with that.

�Same comments as before

�We need to be more specific here. I propose to use Start time and duration. This will guarantee that the service is delivered for specific, requested period of time.

�I suggest duration

�I would rather define separate field like failure code, with some additional objects helping to avoid the failure for the next request

