Service Modeling Language
Draft Specification
Version 0.65, 7 November 2006

Authors

 Jordan Boucher, Sun

Pratul Dublish, Microsoft

Zulah Eckert, BEA
Dave Ehnebuske, IBM

Steve Jerman, Cisco

Heather Kreger, IBM

Vincent Kowalski, BMC
Milan Milenkovic, Intel
Bryan Murray, HP

Phil Prasek, HP

Drue Reeves, Dell
Junaid Saiyed, EMC

Harm Sluiman, IBM

Bassam Tabbara, Microsoft

Vijay Tewari, Intel
William Vambenepe, HP

Marv Waschke, CA

Andrea Westerinen, Microsoft

Permission to copy and display the Service Modeling Language Specification, in any medium without fee or royalty is hereby granted, provided that you include the following on ALL copies of the Service Modeling Language Specification, or portions thereof, that you make:

1. A link or URL to the Service Modeling Language Specification at this location:
http://www.serviceml.org/SML200611.pdf
2. The copyright notice as shown in the Service Modeling Language Specification.

BEA, BMC, Cisco, Dell, EMC, HP, IBM, Intel, Microsoft, and Sun (collectively, the “Authors”) each agree to grant you a royalty-free license, under reasonable, non-discriminatory terms and conditions to their respective patents that they deem necessary to implement the Service Modeling Language Specification.
THE SERVICE MODELING LANGUAGE SPECIFICATION IS PROVIDED "AS IS," AND THE AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE SERVICE MODELING LANGUAGE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF THE SERVICE MODELING LANGUAGE SPECIFICATION.
The name and trademarks of the Authors may NOT be used in any manner, including advertising or publicity pertaining to the Service Modeling Language Specification or its contents without specific, written prior permission. Title to copyright in the Service Modeling Language Specification will at all times remain with the Authors.
No other rights are granted by implication, estoppel or otherwise.

Abstract

This specification defines the Service Modeling Language (SML) used to model complex IT services and systems, including their structure, constraints, policies, and best practices. SML is based on a profile on XML Schema and Schematron.
Status

This specification is the first draft of a work in progress. It is being published to solicit feedback. A feedback agreement is required before the working group can accept feedback. Please contact sml-feedback@external.cisco.com for details.
At some future date, the contents may be published under another name or under several new specifications, as shall be agreed by the authors and their respective corporations at that time.
Table of Contents

1Service Modeling Language

1Draft Specification

3Abstract

3Status

4Table of Contents

61. Introduction

72. Terminology and Notation

72.1 Terminology

72.2 XML Namespaces

83. Schemas

83.1 XML Schema Profile

83.1.1 <xs:redefine>

93.1.2 Unqualified Local Elements

93.1.3 targetNamespace on <xs:schema>

93.2 References

133.2.1 Reference Semantics

143.3 Reference Schemes

143.3.1 URI Scheme

163.3.2 EPR Scheme

173.4 Constraints on References

183.4.1 sml:acyclic

183.4.2 sml:targetElement

193.4.3 sml:targetRequired

193.4.4 sml:targetType

203.5 Identity Constraints

203.5.1 University Example

223.5.2 sml:key and sml:unique

233.5.3 sml:keyref

234. Rules

274.1 Schematron Profile

274.1.1 Limited Support

275. Structured XML output from Schematron Rules

275.1 smlerr:output

285.1.1 smlerr:attributeNode

285.1.2 smlerr:errorData

285.1.3 Semantics

295.1.4 Examples

316. Model Validation

316.1 Schematron Phase

317. SML Extension Reference

317.1 Types

317.1.1 sml:refType

317.2 Attributes

317.2.1 sml:acyclic

327.2.2 sml:ref

327.2.3 sml:targetElement

327.2.4 sml:targetRequired

337.2.5 sml:targetType

337.3 Elements

337.3.1 sml:key

337.3.2 sml:keyref

347.3.3 sml:unique

347.3.4 sml:uri

347.4 XPath functions

347.4.1 smlfn:deref

348. Open Issues

349. Acknowledgements

3510. References

36Appendix I – Sample Model

40Appendix II – Complexity of Supporting targetElement and targetType on Local Element Declarations

1. Introduction

The Service Modeling Language (SML) provides a rich set of constructs for creating models of complex IT services and systems. These models typically include information about configuration, deployment, monitoring, policy, health, capacity planning, target operating range, service level agreements, and so on. Models provide value in several important ways.

1. Models focus on capturing all invariant aspects of a service/system that must be maintained for the service/system to be functional.

2. Models are units of communication and collaboration between designers, implementers, operators, and users; and can easily be shared, tracked, and revision controlled. This is important because complex services are often built and maintained by a variety of people playing different roles.

3. Models drive modularity, re-use, and standardization. Most real-world complex services and systems are composed of sufficiently complex parts. Re-use and standardization of services/systems and their parts is a key factor in reducing overall production and operation cost and in increasing reliability.

4. Models represent a powerful mechanism for validating changes before applying the changes to a service/system. Also, when changes happen in a running service/system, they can be validated against the intended state described in the model. The actual service/system and its model together enable a self-healing service/system – the ultimate objective. Models of a service/system must necessarily stay decoupled from the live service/system to create the control loop
5. Models enable increased automation of management tasks. Automation facilities exposed by the majority of IT services/systems today could be driven by software – not people – for reliable initial realization of a service/system as well as for ongoing lifecycle management.
A model in SML is realized as a set of interrelated XML documents. The XML documents contain information about the parts of an IT service, as well as the constraints that each part must satisfy for the IT service to function properly. Constraints are captured in two ways:

1. Schemas – these are constraints on the structure and content of the documents in a model. SML uses a profile of XML Schema 1.0 [2,3] as the schema language. SML also defines a set of extensions to XML Schema to support inter-document references.

2. Rules – are Boolean expressions that constrain the structure and content of documents in a model. SML uses a profile of Schematron [4,5,6] and XPath 1.0 [9] for rules.
Once a model is defined, one of the important operations on the model is to establish its validity. This involves checking whether all data in a model satisfies the schemas and rules declared.
This specification focuses primarily on defining the profile of XML Schema and Schematron used by SML, as well as the process of model validation. It is assumed that the reader is familiar with XML Schema and Schematron.
2. Terminology and Notation

2.1 Terminology
Document

A well-formed XML 1.0 document (see [12] for a detailed definition)
Model
A set of inter-related documents that describe an IT service or system. Each model consists of two disjoint subsets of documents – genic documents and phenic documents.
Rule
A Boolean expression that constrains the structure and content of a set of documents in a model.
Genic Documents

The subset of documents in a model that describes the schemas and rules that govern the structure and content of the model’s documents. This specification defines two kinds of genic documents - XML Schema documents that conform to SML’s profile of XML Schema and rule documents that conform to SML’s profile of Schematron.

Phenic Documents

The subset of documents in a model that describe the structure and content of the modeled entities.
Model Validation

The process of verifying that all documents in a model are valid with respect to the model’s genic documents.

Model Validator

An embodiment capable of performing model validation
2.2 XML Namespaces

The XML Namespace URI that must be used in the schema documents of SML models is:

http://schemas.serviceml.org/sml/2006/10
Table 1 lists XML namespaces that are used in this specification. The choice of any namespace prefix is arbitrary and not semantically significant.

Table 1: XML Namespaces used in this specification.
	Prefix
	XML Namespace
	Specification(s)

	sml
	http://schemas.serviceml.org/sml/2006/10
	This specification

	smlerr
	http://schemas.serviceml.org/smlerr/2006/10
	This specification

	smlfn
	http://schemas.serviceml.org/sml/function/2006/07
	This specification

	wsa
	http://www.w3.org/2005/08/addressing
	[WS Addressing Core]

	xs
	http://www.w3.org/2001/XMLSchema
	[XML Schema]

	sch
	http://purl.oclc.org/dsdl/schematron
	[Schematron]

	xsi
	http://www.w3.org/2001/XMLSchema-instance
	[Xml Schema Instance]

3. Schemas

SML uses a profile of W3C XML Schema 1.0 to define constraints on the structure of data in a model.
SML scenarios require several features that either do not exist or are not fully supported in XML Schema. These features can be classified as follows:

· References – XML Schema does not have any support for inter-document references, although it does support intra-document references through xs:ID, xs:IDREF, xs:key and xs:keyref. Inter-document references are fundamental to SML since a document is a unit of versioning. SML extends XML Schema to support inter-document references and a set of constraints on inter-document references.

· Rules – XML Schema does not support a language for defining arbitrary rules on the structure and content of XML documents. SML uses Schematron to express assertions on the structure and content of XML documents.
XML Schema supports two forms of extension: “attributes in different namespace” and “application information elements”; both forms are used by SML extensions.
3.1 XML Schema Profile

SML supports a strict subset of XML Schema 1.0. This section describes the XML Schema features that are not supported or have limited support in SML. A justification is provided for each feature. An XML Schema with any of these features will be rejected by model validators.
3.1.1 <xs:redefine>

xs:redefine is not supported in SML.

xs:redefine is a feature for schema evolution and versioning in XML Schema. This feature enables schema authors to define a new version of a schema component, and completely replace the original schema component with the new version. XML Schema does not guarantee that the new version of the component is compatible with the original component. Thus, it is possible to break existing schema components that depend on the original component.
3.1.2 Unqualified Local Elements

Unqualified local elements are not supported in SML.
Local element declarations must describe elements with qualified names. This can be done by specifying elementFormDefault=”qualified” on <xs:schema> or specifying form=”qualified” on local <xs:element>.

This is to avoid element name collisions, and maintain a consistent naming approach especially when dealing with different schemas.
3.1.3 targetNamespace on <xs:schema>

targetNamespace on xs:schema is not optional and must always be specified.

XML schemas without target namespaces are not supported. They do not work well with XPath expressions used in constraints within the schema.
3.2 References

XML documents introduce boundaries across content that needs to be treated as a unit. XML Schema does not have any support for inter-document references. SML extends XML Schema to support inter-document references and a set of constraints on inter-document references.
Support for inter-document references includes:

· A new data type that represents references to elements in other documents.

· Multiple addressing schemes for representing references.
· Constraints on the type of a referenced element.
· The ability to define key, unique, and key reference constraints across inter-document references.
An SML reference is a link from one element to another. It can be represented by using a variety of schemes, such as Uniform Resource Identifiers (URIs) [7] and Endpoint References (EPRs) [8]. SML does not mandate the use of any specific scheme for representing references; implementations are free to choose suitable schemes for representing references.
Normatively, references are identified by sml:ref=”true” where sml:ref is a global attribute whose definition is as follows:

 <xs:attribute name="ref" type="xs:boolean"/>

An element that has sml:ref=”true” is treated as a reference element, i.e., its content can contain a reference represented in one or more schemes. This mechanism enables schema-less identification of reference elements, i.e., reference elements can be identified without relying on PSVI.
The following example illustrates the use of sml:ref. Consider the following schema fragment:

 <xs:element name="EnrolledCourse">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Name" type="xs:string"/>

 <xs:element name="Grade" type="xs:string"/>

 <xs:any namespace="##any" minOccurs="0"

 maxOccurs="unbounded" processContents="lax"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##any" processContents="lax"/>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="StudentType">

 <xs:sequence>

 <xs:element name="ID" type="xs:string"/>

 <xs:element name="Name" type="xs:string"/>

 <xs:element name="EnrolledCourses" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="tns:EnrolledCourse"

 maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

The schema definition in the above example is SML agnostic and does not make use of any SML attributes, elements, or types. The EnrolledCourse element, however, has an open content model and this can be used to mark instances of EnrolledCourse as reference elements as shown below:
<Student xmlns="urn:university"

 xmlns:sml="http://schemas.serviceml.org/sml/2006/10"

 xmlns:wsa="http://www.w3.org/2005/08/addressing">

 <ID>1000</ID>

 <Name>John Doe</Name>

 <EnrolledCourses>

 <EnrolledCourse sml:ref="true">
 <Name>PHY101</Name>

 <Grade>A</Grade>

 <sml:uri>
 /Universities/MIT/Courses.xml#xmlns(u=urn:university)

 xpointer(/u:Courses/u:Course[u:Name=’PHY101’])

 </sml:uri>

 <wsa:EndpointReference>
 <wsa:Address>http://www.university.example</wsa:Address>

 <wsa:ReferenceParameters>

 <University>

 <Name>MIT</Name>

 </University>

 <Course>

 <Name>PHY101</Name>

 </Course>

 </wsa:ReferenceParameters>

 </wsa:EndpointReference>

 </EnrolledCourse>

 <EnrolledCourse sml:ref="false">
 <Name>MAT100</Name>

 <Grade>B</Grade>

 <sml:uri>

 /Universities/MIT/Courses.xml#xmlns(u=urn:university)

 xpointer(/u:Courses/u:Course[u:Name=’MAT100’])

 </sml:uri>

 </EnrolledCourse>

 <EnrolledCourse>

 <Name>SocialSkills</Name>

 <Grade>F</Grade>

 </EnrolledCourse>

 </EnrolledCourses>

</Student>

The first EnrolledCourse element in the above example is a reference element since it specifies sml:ref=”true”. Assuming that references are represented in URI and EPR schemes, it has two representations of the reference to the element for course PHY101. The second and third EnrolledCourse elements are not reference elements; the second element specifies sml:ref=”false” and the third element does not specify the sml:ref attribute. Note that the second element has a child element that contains a reference to course MAT100, but this reference will be ignored since sml:ref=”false” for the second element.
It is legal for a reference element to be empty or have a null value provided that this is allowed by the element’s schema. For example, consider the folloing variation of the EnrolledCourse element definition:
 <xs:element name="EnrolledCourse" nillable="true">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Name" type="xs:string"/>

 <xs:element name="Grade" type="xs:string"/>

 <xs:any namespace="##any" minOccurs="0"

 maxOccurs="unbounded" processContents="lax"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##any" processContents="lax"/>

 </xs:complexType>

 </xs:element>
The above definition allows null values for instances of EnrolledCourse. Thus, an EnrolledCourse reference element can have null value as shown in the following example (the first EnrolledCourse element has null value):
<Student xmlns="urn:university"

 xmlns:sml="http://schemas.serviceml.org/sml/2006/10"

 xmlns:wsa="http://www.w3.org/2005/08/addressing">

 <ID>1000</ID>

 <Name>John Doe</Name>

 <EnrolledCourses>

 <EnrolledCourse sml:ref="true" xsi:nil="true"/>
 <EnrolledCourse sml:ref="false">

 <Name>MAT100</Name>

 <Grade>B</Grade>

 <sml:uri>

 /Universities/MIT/Courses.xml#xmlns(u=urn:university)

 xpointer(/u:Courses/u:Course[u:Name=’MAT100’])

 </sml:uri>

 </EnrolledCourse>

 <EnrolledCourse>

 <Name>SocialSkills</Name>

 <Grade>F</Grade>

 </EnrolledCourse>

 </EnrolledCourses>

</Student>

SML also supports several schema-based constraints on references. The sml:refType type has been defined to allow model authors to make use of these schema-based constraints in their model’s schema. The definition of sml:refType fixes the value of sml:ref to true, and hence all elements of type sml:refType are reference elements. The sml:refType is defined as follows:
 <xs:complexType name="refType" sml:acyclic="false">

 <xs:sequence>

 <xs:any namespace="##any" minOccurs="0"

 maxOccurs="unbounded"

 processContents="lax"/>

 </xs:sequence>

 <xs:attribute ref="sml:ref" use="required"

 fixed="true" />

 <xs:anyAttribute namespace="##any"

 processContents="lax"/>

 </xs:complexType>
Note that the above definition allows elements and attributes from any namespace to occur in an element whose type is sml:refType. Thus, a scheme for references can be implemented by defining an XML namespace for the scheme, and references can be represented in this scheme by nesting element and attribute instances from this namespace as attributes and children of sml:refType elements.
The following example illustrates the use of sml:refType :
 <xs:element name="EnrolledCourse" type="sml:refType"

 sml:targetType="tns:CourseType"/>
 <xs:complexType name="StudentType">

 <xs:sequence>

 <xs:element name="ID" type="xs:string"/>

 <xs:element name="Name" type="xs:string"/>

 <xs:element name="EnrolledCourses" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="tns:EnrolledCourse"

 maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>
The EnrolledCourse element declaration is of type sml:refType which marks it as a document reference, and this element declaration is used in StudentType to reference the elements corresponding to the courses in which a student is enrolled.

Examples of the use of sml:refType for EnrolledCourse are found in the section, Reference Schemes. This section demonstrates the use of the URI and EPR schemes to define the reference.
3.2.1 Reference Semantics

3.2.1.1 At Most One Target
Every reference must target (or resolve to) at most one element in a model. Dangling references are allowed in SML; therefore it is possible that the target of a reference may not exist in a model. It is an error if a reference targets more than one element in a model.
3.2.1.2 Multiple References
An element in a document can be targeted by multiple different references. These references may use different schemes and/or be expressed in different ways.
3.2.1.3 Empty or Null References

A reference element, i.e., an element with sml:ref=”true”, can have xsi:nil=”true” or no content, provided that this is allowed by the element’s schema definition. A model validator is required to treat such an element as if the reference were not present.

3.2.1.4 deref() XPath Extension Function
Each model validator must provide an implementation of the deref() XPath extension function that is capable of resolving references expressed in the model validator’s chosen scheme(s). This function takes a node-set of elements and returns a node-set consisting of element nodes corresponding to the elements referenced by the input node set. In particular, for each node R in the input node set the output node set contains at most one element node.

· The output node set contains one element node for R provided that all of the following conditions are true

· sml:ref=”true” for R
· R contains at least one reference scheme that is understood by the implementation

· The reference targets a single element in some document in the model

· The output node set contains no element node corresponding to R if any of the following conditions is true

· the target of R is not in the model

· R is an empty or null reference

· R does not contain any reference scheme that is understood by the implementation

· sml:ref is not specified for R
· sml:ref =”false” is specified for R
3.3 Reference Schemes

A reference can be represented by using a variety of schemes, and SML does not mandate the use of any specific schemes. Uniform Resource Identifiers (URIs) [7] and endpoint references (EPRs) [8] are two common schemes for referencing resources. Although SML does not require the use either scheme, it does define how a reference must be represented using the URI scheme and the EPR scheme.

3.3.1 URI Scheme

References that are represented using the URI scheme must be implemented by using the sml:uri global element as a child of reference elements, i.e., elements for which sml:ref=”true”. More precisely, if a model validator chooses to represent references using the URI scheme,

· It must represent the references using an instance of the sml:uri global element declaration as a child of reference elements.
· It must treat each instance the sml:uri global element declaration whose parent element is a reference element as a reference represented in URI scheme, and must be able to resolve such references

For example, if the reference in EnrolledCourse element is represented using the URI scheme, an instance of EnrolledCourse will appear as follows:

<EnrolledCourse xmlns="urn:university" sml:ref="true">

 <sml:uri>SomeValidUri</sml:uri>

</EnrolledCourse>where SomeValidUri is a valid URI as defined in [7].
Suppose that a model has the following documents, and each document has an associated URI:

	Document
	URI

	Course PHY101
	/Universities/MIT/Courses/PHY101.xml

	Course MAT200
	/Universities/MIT/Courses/MAT200.xml

	Student 1000
	/Universities/MIT/Students/1000.xml

	Student 1001
	/Universities/MIT/Students/1001.xml

The following is a sample instance document for Student 1000 where the references are represented in the URI scheme:

<Student xmlns="urn:university">

 <ID>1000</ID>

 <Name>John Doe</Name>

 <EnrolledCourses>

 <EnrolledCourse sml:ref="true">

 <sml:uri>/Universities/MIT/Courses/PHY101.xml</sml:uri>

 </EnrolledCourse>

 <EnrolledCourse sml:ref="true">

 <sml:uri>/Universities/MIT/Courses/MAT200.xml</sml:uri>

 </EnrolledCourse>
 </EnrolledCourses>

</Student>
3.3.1.1 Fragment Identifier

SML requires the use of the following XPointer [10] profile for representing fragment identifiers.

· Only two schemes – xmlns() and xpointer() – are supported.
· The expression specified for the xpointer scheme must be a restricted XPath1.0 [9] expression that must resolve to at most one element node. In particular, this expression must not contain

· the union (“|”) operator defined for XPath 1.0

· point() and range() node tests defined for xpointer() scheme

· This expression can only use the functions defined in the XPath 1.0 core function library (see [9] for details). It can not use the smlfn:deref function and/or the following functions defined for xpointer() scheme (see [11] for details):

· range-to

· string-range

· range

· range-inside

· start-point

· end-point

· here

· origin
The following example illustrates the use of xpointer fragments. Consider the case where all courses offered by MIT are stored in a single XML document – Courses.xml – whose URI is /Universities/MIT/Courses.xml. In this case, the element inside Courses.xml that corresponds to the course PHY101 can be referenced as follows (assuming that Courses is the root element in Courses.xml)

<Student xmlns="urn:university">

 <ID>1000</ID>

 <Name>John Doe</Name>

 <EnrolledCourses>

 <EnrolledCourse sml:ref="true">

 <sml:uri>

 /Universities/MIT/Courses.xml#xmlns(u=urn:university)

 xpointer(/u:Courses/u:Course[u:Name=’PHY101’])

 </sml:uri>
 </EnrolledCourse>

 </EnrolledCourses>

</Student>
A reference element can also be used to reference an element in its own document. To see this consider the following instance document
<University xmlns="urn:university">

 <Name>MIT</Name>

 <Courses>

 <Course>

 <Name>PHY101</Name>

 </Course>

 <Course>

 <Name>MAT200</Name>

 </Course>

 </Courses>

 <Students>

 <Student>

 <ID>123</ID>

 <Name>Jane Doe</Name>

 <EnrolledCourses>

 <EnrolledCourse sml:ref="true">

 <sml:uri>

 #xmlns(u=urn:university)

 xpointer(/u:University/u:Courses/u:Course[u:Name=’MAT200’]

 </sml:uri>
 </EnrolledCourse>

 </EnrolledCourses>

 </Student>

 </Students>

</University>
Here, the EnrolledCourse element for the student Jane Doe references the Course element for MAT200 in the same document.
3.3.2 EPR Scheme

References that are represented using the EPR scheme must be implemented by using instances of wsa:EndpointReference global element declaration [8] as child elements of reference elements. The following example illustrates how the EnrolledCourse reference that references course PHY101 in MIT university can be represented using the EPR scheme:
<EnrolledCourse xmlns="urn:university" sml:ref="true">

 <wsa:EndpointReference

 xmlns:u="http://www.university.example/schema">

 <wsa:Address>http://www.university.example</wsa:Address>

 <wsa: ReferenceParameters>

 <u:University>

 <u:Name>MIT</u:Name>

 </u:University>

 <u:Course>

 <u:Name>PHY101</u:Name>

 </u:Course>

 </wsa:ReferenceParameters>

 </wsa:EndpointReference>

</EnrolledCourse>

3.4 Constraints on References

SML supports several attributes for expressing constraints on references. All of these attributes (with the sole exception of sml:acyclic) can only be specified for element declarations of type sml:refType or a derived type of sml:refType. The sml:acyclic attribute can only be specified on derived types of sml:refType. The following table lists the various attributes and elements for constraining references:
Attributes

	Name
	Description

	sml:acyclic
	Supported on sml:refType and its derived types. Specifies that instances of the type can not result in cycles in a model. If this attribute is set to true for a derived type D of sml:refType, then instances of D (including any derived types of D) can not create any cycles in a model. More precisely, the directed graph whose nodes are documents that contain the source or target elements for instances of D, and whose edges are instances of D (an edge is directed from the document containing the source element to the document containing the target element), must be acyclic

	sml:targetElement
	Used to constrain the name of the reference’s target element. This constraint is violated if the target element is not an instance of the named global element declaration or an element declaration in the substitution group hierarchy whose head is the named global element declaration.

	sml:targetRequired
	Used to specify that a reference’s target element is required to be present in the model. This constraint is violated if a reference is empty, null, or dangling.

	sml:targetType
	Used to constrain the type of the reference’s target element. This constraint is violated if the type of the target element is not the same as (or a derived type of) the type whose name is specified as the value of this attribute.

3.4.1 sml:acyclic
The sml:acyclic attribute is only supported on derived types of sml:refType. This is a boolean attribute and its value can be either true or false. Let R be a derived type of sml:refType. If sml:acyclic=”true” is specified for R, then R is an acyclic reference type, i.e., instances of R can not create cycles in any model. If sml:acyclic=”false” is specified for R, then R is a cyclic reference type, and its instances may create cycles in models. Note that sml:refType is a cyclic reference type since sml:acyclic=”false” is specified for sml:refType.
A cyclic reference type can be used to derive cyclic or acyclic reference types, but all derived types of an acylic reference type are acyclic. In particular,
· If CR is a cyclic reference type and DCR is a derived type of CR, then DCR is an acyclic reference if sml:acyclic=”true” is specified for DCR. Otherwise, DCR is a cyclic reference

· If AR is an acyclic reference type and DAR is a derived type of AR, then sml:acyclic=”true” holds for DAR even if the sml:acyclic attribute is not explicitly specified for DAR. It is an error for DAR to specify sml:acyclic=”false”
3.4.2 sml:targetElement

The sml:targetElement attribute is supported on element declarations whose type is sml:refType or a derived type of sml:refType. The value of this attribute must be the qualified name of some global element declaration. Let sml:targetElement=”ns:GTE” for some element declaration E. Then each element instance of E must reference an element that is an instance of ns:GTE or an instance of some global element declaration in the substitution group hierarchy whose head is ns:GTE.

If a target element constraint is specified for a global element declaration G then it continues to apply to all global element declarations in the substitution group hierarchy whose head is G. However, a global element declaration in G’s substitution group can specify a target element constraint that refines the constraint defined for G. In particular, if sml:targetElement=”ns:GTE” is specified for G, and SG is a global element declaration that specifies G as the value of its xs:substitutionGroup attribute, then the value of the sml:targetElement for SG must be ns:GTE or the name of a global element declaration in the substitution group whose head is ns:GTE. If sml:targetElement is not specified for SG, then sml:targetElement=”ns:GTE” holds for SG.
If the target element constraint is specified for a local element declaration L in some type B, then it continues to apply to each element declaration LR that is a valid restrictions of L where LR is defined in some restricted derived type of B (see [2] http://www.w3.org/TR/xmlschema-1/#cos-particle-restrict for XML Schema’s definition of valid restrictions). However, LR can specify a target element constraint that refines the constraint defined for L. In particular, if sml:targetElement=”ns:GTE” is specified for L, then the value of the sml:targetElement for LR must be ns:GTE or the name of a global element declaration in the substitution group hierarchy whose head is ns:GTE. If sml:targetElement is not specified for LR, then sml:targetElement=”ns:GTE” holds for LR.

3.4.3 sml:targetRequired

The sml:targetRequired attribute is supported on element declarations whose type is sml:refType or a derived type of sml:refType. If sml:targetRequired =”true” for an element declaration E, then each element instance of E must target some element in the model, i.e., no instance of E can be null, empty, or contain a dangling reference. Otherwise, instances of E can be empty, null, or contain dangling references. If this attribute is not specified, then its value is assumed to be “false”.
If sml:targetRequired=”true” is specified for a global element declaration G then it continues to apply to all global element declarations in the substitution group hierarchy whose head is G. If sml:targetRequired=”false” for G then a global element declaration in G’s substitution group can specify sml:targetRequired=”true”. Otherwise, sml:targetRequired=”false” continues to hold for global element declarations in G’s substitution group.
If sml:targetRequired=”true” is specified for a local element declaration L in some type B, then it continues to apply to each element declaration LR that is a valid restrictions of L where LR is defined in some restricted derived type of B (see [2] http://www.w3.org/TR/xmlschema-1/#cos-particle-restrict for XML Schema’s definition of valid restrictions). If sml:targetRequired=”false” for L then LR can specify sml:targetRequired=”true”. Otherwise, sml:targetRequired=”false” continues to hold for LR.
3.4.4 sml:targetType
The sml:targetType attribute is supported on element declarations whose type is sml:refType or a derived type of sml:refType. The value of this attribute must be the qualified name of some type declaration. Let sml:targetType=”ns:T” for some element declaration E. Then each element instance of E must reference an element whose type is ns:T or a derived type of ns:T.
If a target type constraint is specified for a global element declaration G then it continues to apply to all global element declarations in the substitution group hierarchy whose head is G. However, a global element declaration in G’s substitution group can specify a target type constraint that refines the constraint defined for G. In particular, if sml:targetType=”ns:T” is specified for G, and SG is a global element declaration that specifies G as the value of its xs:substitutionGroup attribute, then the value of the sml:targetType for SG must either be ns:T or the name of some derived type of ns:T. If sml:targetType is not specified for SG, then sml:targetType=”ns:T” holds for SG.

If the target type constraint is specified for a local element declaration L in some type B, then it continues to apply to each element declaration LR that is a valid restriction of L where LR is defined in some restricted derived type of B. However, LR can specify a target type constraint that refines the constraint defined for L. In particular, if sml:targetType=”ns:T” is specified for L, then the value of the sml:targetType for LR must be ns:T or the name of some derived type of ns:T. If sml:targetType is not specified for LR, then sml:targetType=”ns:T” holds for LR.

3.5 Identity Constraints

XML schema supports the definition of key, unique, and key reference constraints through xs:key, xs:unique, and xs:keyref elements. However, the scope of these constraints is restricted to a single document. SML extends the scope of these constraints to multiple documents by allowing these constraints to traverse inter-document references.
SML supports the following elements for defining identity constraints across references:
	Name
	Description

	sml:key
	Similar to xs:key except that the selector and field XPath expression can use smlfn:deref function

	sml:unique
	Similar to xs:unique except that the selector and field XPath expression can use smlfn:deref function

	sml:keyref
	Similar to xs:keyref except that the selector and field XPath expression can use smlfn:deref function

The syntax and semantics of the above elements are the same as that for the corresponding elements in XML schema, except for the following:

· These three elements are only supported in the xs:annotation/xs:appinfo element for element declarations (both global and local). They can not be a child of an xs:element element

· The value of the xpath attribute of the sml:selector and sml:field elements (which are child elements of these three elements) can contain the smlfn:deref extension function
· The selector XPath expression must conform to the following extended BNF

Selector ::= Path (‘|’ Path)*

Path ::= (‘.//’)? Step (‘/’ Step)* | DerefExpr

DerefExpr ::= ‘deref(‘ Step (/Step)* ‘)’ (‘/’Step)* |

 ‘deref(‘ DerefExpr ‘)’ (/Step)*

Step::= ‘.’ | NameTest

NameTest ::= QName |’*’ | NCName ‘:’ ‘*’

· The field XPath expression must conform to the BNF given above for the selector XPath expression with the following modification
Selector ::= Path
Path::= (‘.//’)? (Step ‘/’)* (Step | @NameTest) |

 DerefExpr (‘/’ @NameTest)?
An identity constraint expressed using sml:key, sml:unique, or sml:keyref is applicable to all element instances of its ancestor element declaration, i.e., the element that is the parent of the xs:annotation/xs:appinfo element which holds the sml:key, sml:unique, or sml:keyref element.
3.5.1 University Example
The following example will be used to illustrate the sml:key, sml:unique, and sml:keyref constraints across references.
 <xs:element name="Student"
 type="sml:refType"

 sml:targetType="tns:StudentType"/>
 <xs:element name="Course"
 type="sml:refType"
 sml:targetType="tns:CourseType"/>
<xs:complexType name="UniversityType">

 <xs:sequence>

 <xs:element name="Name" type="xs:string"/>

 <xs:element name="Students" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="tns:Student" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:complexType>

 </xs:element>
 <xs:element name="Courses" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="tns:Course" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>
 <xs:element name="EnrolledStudent"
 type="sml:refType"
 sml:targetType="tns:StudentType"/>
 <xs:element name="EnrolledCourse"
 type="sml:refType"
 sml:targetType="tns:CourseType"/>
 <xs:complexType name="StudentType">

 <xs:sequence>

 <xs:element name="ID" type="xs:string"/>
 <xs:element name="SSN" type="xs:string" minOccurs="0"/>

 <xs:element name="Name" type="xs:string"/>

 <xs:element name="EnrolledCourses" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="tns:EnrolledCourse"

 maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType> <xs:complexType name="CourseType">

 <xs:sequence>

 <xs:element name="Name" type="xs:string"/>

 <xs:element name="EnrolledStudents" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="tns:EnrolledStudent"

 maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>
3.5.2 sml:key and sml:unique
XML schema supports key and uniqueness constraints through xs:key and xs:unique, but these constraints can only be specified within a single XML document. The sml:key and sml:unique elements support the specification of key and uniqueness constraints across documents. We’ll use the UniversityType definition to illustrate this concept. It is reasonable to expect that each student in a university must have a unique identity, and this identity must be specified. This can be expressed as follows:

 <xs:element name="University" type="tns:UniversityType">

 <xs:annotation>

 <xs:appinfo>

 <sml:key name="StudentIDisKey">
 <sml:selector xpath=”smlfn:deref(tns:Students/tns:Student)/tns:ID”/>
 <sml:field xpath=”.”/>

 </sml:key>
 </xs:appinfo>

 </xs:annotation>

 </xs:element>
The sml:key and sml:unique constraints are similar but not the same. sml:key requires that the specified fields must be present in instance documents and have unique values, whereas sml:unique simply requires the specified fields to have unique values but does not require them to be present in instance documents. Thus keys imply uniqueness, but uniqueness does not imply keys. For example, students in a university must have a unique social security numbers, but the university may have foreign students who do not possess this number. This constraint can be specified as follows:

 <xs:element name="University" type="tns:UniversityType">

 <xs:annotation>

 <xs:appinfo>

 <sml:unique name="StudentSSNisUnique">
 <sml:selector xpath=”smlfn:deref(tns:Students/tns:Student)”/>
 <sml:field xpath=”tns:SSN”/>

 </sml:unique>
 </xs:appinfo>

 </xs:annotation>

 </xs:element>
The sml:key and sml:unique constraint are always specified in the context of a scoping element. In the above example, the University element is the context for the key and unique constraints.

3.5.3 sml:keyref
XML schema supports key references through xs:keyref to ensure that one set of values is a subset of another set of values within an XML document. Such constraints are similar to foreign keys in relational databases. Key references in XML schema are only supported within a single XML document. The sml:keyref element allows key references to be specified across XML documents, and can be used to scope references to point to elements within a valid range. The following example uses sml:keyref to capture the requirement that courses in a university can only enroll students from the same university:

 <xs:element name="University" type="tns:UniversityType">

 <xs:annotation>

 <xs:appinfo>

 <sml:key name="StudentIDisKey">
 <sml:selector xpath=”smlfn:deref(tns:Students/tns:Student)”/>
 <sml:field xpath=”tns:ID”/>

 </sml:key>

 <sml:keyref name="CourseStudents" refer="StudentIDisKey">

 <sml:selector xpath="smlfn:deref(
 smlfn:deref(tns:Courses/tns:Course)/

 tns:EnrolledStudents/tns:EnrolledStudent)"/>

 <sml:field xpath="tns:ID"/>

 </sml:keyref>
 </xs:appinfo>

 </xs:annotation>

 </xs:element>
The above constraint specifies that for a university, the set of IDs of students enrolled in courses is a subset of the set of IDs of students in a university. In particular, the selector and field elements in StudentIDisKey key constraint identify the set of IDs of students in a university, and the selector and field elements in CourseStudents key reference constraint identify the set of IDs of students enrolled in courses.

4. Rules
XML Schema supports a number of built-in grammar-based constraints but it does not support a language for defining arbitrary rules for constraining the structure and content of documents. Schematron [4] is an ISO standard for defining assertions concerning a set of XML documents. SML uses a profile of the Schematron schema to add support for user-defined constraints. SML uses XPath1.0, augmented with SML-specific XPath extension functions, as its constraint language. This section assumes that the reader is familiar with Schematron concepts; the Schematron standard is documented in [4] and [5,6] are good tutorials on an older version of Schematron.
User-defined constraints can be specified using the sch:assert and sch:report elements from Schematron. The following example uses sch:assert elements to specify two constraints:
· An IPv4 address must have four bytes

· An IPv6 address must have sixteen bytes

 <xs:simpleType name="IPAddressVersionType">

 <xs:restriction base="xs:string" >

 <xs:enumeration value="V4" />

 <xs:enumeration value="V6" />

 </xs:restriction>

 </xs:simpleType>
 <xs:complexType name="IPAddress">

 <xs:annotation>

 <xs:appinfo>

<sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron">
<sch:ns prefix="tns" uri="urn:IPAddress" />
 <sch:pattern id="Length">

 <sch:rule context=".">

 <sch:assert test="tns:version != ‘V4’ or count(tns:address) = 4">

 A v4 IP address must have 4 bytes.

 </sch:assert>

 <sch:assert test="tns:version != ‘V6’ or count(tns:address) = 16">

 A v6 IP address must have 16 bytes.

 </sch:assert>

 </sch:rule>

 </sch:pattern>

</sch:schema>
 </xs:appinfo>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="version" type="tns:IPAddressVersionType" />

 <xs:element name="address" type="xs:byte" minOccurs="4" maxOccurs="16" />

 </xs:sequence>

 </xs:complexType>
A Schematron pattern embedded in the xs:annotation/xs:appinfo element for a complex type definition or an element declaration is applicable to all instances of the complex type or element. In the above example, the pattern Length is applicable for all elements whose type is IPAddress or a derived type of IPAddress. A pattern can have one or more rules, and each rule specifies a context expression using the context attribute. The value of the context attribute is an XPath expression that is evaluated in the context of each applicable element, and results in an element node set for which the assert and report test expressions defined in the rule are evaluated. In the above example context=”.”, therefore the two assert expressions are evaluated in the context of each applicable element, i.e., each element of type IPAddress. The test expression for an assert is a boolean expression, and the assert is violated (or fires) if its test expression evaluates to false. For example, the following XML document violates the assert that requires an IPv6 address to have sixteen address bytes
<myIPAddress xmlns="urn:IPAddress">

 <version>v6</version>

 <address>100</address>

 <address>200</address>

 <address>10</address>

 <address>1</address>

 <address>10</address>

 <address>1</address>

</myIPAddress>

In general, a rule element can include multiple assert and report elements. A report also specifies a test expression, just like an assert. However, a report is violated (or fires) if its test expression evaluates to true. Thus, an assert can be converted to a report by simply negating its test expression. The following example uses report elements to represent the IP address constraints of the previous example:
 <xs:simpleType name="IPAddressVersionType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="V4"/>

 <xs:enumeration value="V6"/>

 </xs:restriction>

 </xs:simpleType>
 <xs:complexType name="IPAddress">

 <xs:annotation>

 <xs:appinfo>

<sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron">
<sch:ns prefix="tns" uri="urn:IPAddress" />
 <sch:pattern id="Length">

 <sch:rule context=".">

 <sch:report test="tns:version = ‘V4’ and count(tns:address)!= 4"
 >

 A v4 IP address must have 4 bytes.

 </sch:report>

 <sch:report test="tns:version = ‘V6’ and count(tns:address) != 16"
 >

 A v6 IP address must have 16 bytes.

 </sch:report>

 </sch:rule>

 </sch:pattern>

</sch:schema>

 </xs:appinfo>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="version" type="tns:IPAddressVersionType" />

 <xs:element name="address" type="xs:byte" minOccurs="4" maxOccurs="16" />

 </xs:sequence>

 </xs:complexType>
If an assert or report is violated, then the violation must be reported during model validation together with the specified message. Model validation must evaluate each Schematron pattern for all of its applicable elements contained in the model.
The message can include substitution strings based on XPath expressions. These can be specified using the sch:value-of element. The following example uses sch:value-of to include the number of specified address bytes in the message:
 <sch:assert test="tns:version != 'v4' or count(tns:address) = 4">

 A v4 IP address must have 4 bytes instead of the specified

 <sch:value-of select="string(count(tns:address))"/> bytes.

 </sch:assert>
In addition to being embedded in complex type definitions, constraints can also be embedded in global-element declarations. Such constraints are evaluated for each instance element corresponding to the global-element definition. Consider the following example:
<xs:element name="StrictUniversity" type="tns:UniversityType">

 <xs:annotation>

 <xs:appinfo>

 <sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron">
 <sch:ns prefix="u" uri="urn:university" />
 <sch:ns prefix="smlfn"

 uri=" http://schemas.serviceml.org/smlfn/query/2006/07"/>
 <sch:pattern id="StudentPattern">

 <sch:rule context="smlfn:deref(u:Students/u:Student)">

 <sch:assert test="starts-with(u:ID,'99')">

 The specified ID <sch:value-of select="string(u:ID)"/>
 does not begin with 99

 </sch:assert>

 <sch:assert test="count(u:Courses/u:Course)>0">

 The student <sch:value-of select="string(u:ID)"/> must be enrolled

 in at least one course

 </sch:assert>

 </sch:rule>

 </sch:pattern>

 </sch:schema>
 </xs:appinfo>

 </xs:annotation>

</xs:element>
The constraints defined in StudentPattern are applicable to all element instances of the StrictUniversity global element definition. For each StrictUniversity element, the XPath expression specified as the value of the context attribute is evaluated to return a node set, and the test expressions for the two asserts are evaluated for each node in this node set. The context expression for the rule returns a node set consisting of all Student elements referenced by an instance of StrictUniversity, and the test expressions for the two asserts are evaluated for each element node in this node set. Thus, these two asserts verify the following conditions for each instance of StrictUniversity
· The ID of each student must begin with ‘99’

· Each student must be enrolled in at least one course
An SML validator is free to provide implementation-specific mechanisms to support the targeting of constraints that are authored in a separate document, i.e., not embedded in schema definitions, to a set of instance documents. The following example shows the constraints for StrictUniversity expressed in a separate document:

 <?xml version="1.0" encoding="utf-8" ?>

 <sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron">
 <sch:ns prefix="u" uri="urn:university" />

 <sch:ns prefix="smlfn" uri="http://schemas.serviceml.org/smlfn/query/2006/07"

 />

 <sch:pattern id="StudentPattern">

 <sch:rule context="smlfn:deref(u:Students/u:Student)">

 <sch:assert test="starts-with(u:ID,'99')">

 The specified ID <sch:value-of select="string(u:ID)"/>

 does not begin with 99

 </sch:assert>

 <sch:assert test="count(u:Course/u:Courses)>0">

 The student <sch:value-of select="string(u:ID)"/> must be enrolled

 in at least one course

 </sch:assert>

 </sch:rule>

 </sch:pattern>

 </sch:schema>
The binding of the StudentPattern pattern to instances of StrictUniversity element is implementation dependent and hence outside the scope of this specification.
4.1 Schematron Profile

SML supports a conforming profile of Schematron. All elements and attributes are supported.
4.1.1 Limited Support

If the queryBinding attribute is specified, then its value must be set to “xpath1.0”
5. Structured XML output from Schematron Rules
Schematron has rich support for natural-language error and diagnostic messages that provide details about failed assertions. As per the Schematron specification the content of the sch:assert, sch:report, and the optional sch:diagnostic elements should be natural language assertions or messages. To facalitate machine processable output from the evaluation of Schemtron rules, this specification extends Schematron by adding support for structured XML output that provides details about failed assertions. This structured XML data can be consumed by an application to perform some application-specific tasks required to handle a failed assertion.

5.1 smlerr:output

This element is used to specify the structured XML output for one/more failed assertions. It is supported as a child of sch:rule element. An sch:rule can have multiple smlerr:output elements. The schema definition for smlerr:output is as follows:

 <xs:element name="output" type="sml:outputType"/>
 <xs:complexType name="outputType">

 <xs:attribute name="generatedBy" type="xs:IDREFS" use="required"/>

 <xs:attribute name="applicationUri" type="xs:anyURI"
 use="optional"/>

 <xs:attribute name="expression" type="xs:string" use="required"/>

 </xs:complexType>

generatedBy = list of the IDs of the asserts and reports whose firing generates the specified output. The ID of an assert/report can be listed in the generatedBy attribute of multiple smlerr:output elements. Note that the id attribute must be specified for an assert/report in order to associate an smlerr:output element with the assert/report.
applicationUri = an optional attribute that specifies the identity of the application for which the output is generated

expression= an XPath 1.0 expression that evaluates to a node set containing element and attribute nodes only. If the node set contains namespace, processing instructions, comments, or text nodes, then no output is generated. The expression is evaluated in the context of the node selected by the context attribute in the parent sch:rule element. This XPath expression can use the deref() extension function.
The smlerr:output element is optional and an SML validator is not required to support it. However, an SML validator that does not support smlerr:output element must ignore all smlerr:output elements in a model; it must not treat the model as invalid just because it contains smlerr:output elements.

5.1.1 smlerr:attributeNode

This element is used for serialization of attribute nodes in the node set resulting from the evaluation of the expression in an smlerr:output element.

 <xs:element name="attributeNode" type="sml:attributeNodeType"/>

 <xs:complexType name="attributeNodeType">

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="name" type="xs:QName"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

name: The value of this attribute is the qualified name of the attribute whose value is being serialized.

5.1.2 smlerr:errorData

This element is used for enclosing the structured XML generated by an smlerr:output element.
 <xs:element name="errorData" type="smlerr:errorDataType"/>
 <xs:complexType name="errorDataType">

 <xs:sequence>

 <xs:any namespace="##other" processContents="skip"/>

 </xs:sequence>

 </xs:complexTyp
5.1.3 Semantics

When a report/assert fires, then all smlerr:output elements that list the ID of this report/assert are evaluated. For each such smlerr:output, the expression specified in its expression attribute is evaluated, and the resulting node set serialized into XML by concatenating each node and enclosing the serialized XML fragment in the smlerr:errorData element to create a well-formed XML document. The resulting document is returned to the application that initiated the model validation. The serialization is only performed if the node set contains attribute and/or element nodes. Otherwise, no structured XML is serialized and an empty smlerr:errorData element is returned.
The nodes in the node set may be serialized in any order. Element nodes are serialized directly into their XML representation, and attribute nodes are serialized by using the smlerr:attributeNode element.

All namespace bindings defined (through the sch:ns element) for the parent sch:rule, sch:pattern, or sch:schema elements remain valid and can be used in the expression specified in the expression attribute.
5.1.4 Examples

The following example illustrates the use of sml:output

 <xs:simpleType name="IPAddressVersionType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="V4"/>

 <xs:enumeration value="V6"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="IPAddressType">

 <xs:annotation>

 <xs:appinfo>

 <sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron">

 <sch:ns prefix="tns" uri="urn:IPAddress" />

 <sch:pattern id="Length">

 <sch:rule context=".">

 <sch:report id="v4" test="tns:version = ‘V4’

 and count(tns:address)!= 4">

 A v4 IP address must have 4 bytes.

 </sch:report>

 <sch:report id="v6" test="tns:version = ‘V6’

 and count(tns:address) != 16">

 A v6 IP address must have 16 bytes.

 </sch:report>

 <sml:output applicationUri="someApplicationUri"

 generatedBy="v4 v6"

 expression=".">
 </sml:output>

 </sch:rule>

 </sch:pattern>

 </sch:schema>

 </xs:appinfo>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="version"

 type="tns:IPAddressVersionType" />

 <xs:element name="address" type="xs:byte"

 minOccurs="4" maxOccurs="16" />

 </xs:sequence>

 </xs:complexType>
If the report with id=”v4” fires for an element ipaddress of type IPAddressType, then the output may look like

<smlerr:errorData

 xmlns:sml="http://schemas.serviceml.org/smlerr/2006/10">

 <ipaddress xmlns="urn:IPAddress">

 <version>v4</version>

 <address>10</address>

 <address>10</address>

 <address>0</address>

 </ipaddress>

</smlerr:errorData>

The following example illustrates an smlerr:output element whose expression results in attribute nodes

 <xs:complexType name="universityType">

 <xs:annotation>

 <xs:appinfo>

 <sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron">

 <sch:ns prefix="u" uri="urn:university" />

 <sch:pattern id="Count">

 <sch:rule context=".">

 <sch:assert id="StudentCount"
 test="count(u:student)>20">

 A university must have more than 20 students

 </sch:report>

 <sml:output generatedBy="StudentCount"

 expression="@name|@isPublic">
 </sml:output>

 </sch:rule>

 </sch:pattern>

 </sch:schema>

 </xs:appinfo>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="student" type="sml:refType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string"/>

 <xs:attribute name="isPublic" type="xs:boolean"/>

 </xs:complexType>

If the assert fires for an element of type universityType then the output may look like

<smlerr:errorData

 xmlns:sml="http://schemas.serviceml.org/smlerr/2006/10">

 <smlerr:attributeNode xmlns:u="urn:university"

 name="u:name">MIT</smlerr:attributeNode>

 <smlerr:attributeNode xmlns:u="urn:university"

 name="u:isPublic">false</smlerr:attributeNode>

</smlerr:errorData>
6. Model Validation

Model validation is the process of examining each document in a model and verifying that this document is valid with respect to the model’s genic documents, i.e., each document satisfies the schemas and rules defined in the model’s genic documents. Validation is required to report all schema and rule violations in a model.
6.1 Schematron Phase

A phase in schematron can be used to define a collection of patterns. A schematron processor can optionally evaluate only rules within a specific phase. For model validation, rule evaluation happens on the #ALL phase, implying that every rule in every pattern is evaluated.
7. SML Extension Reference

This section is a reference of the SML extensions to XML Schema and XPath 1.0.
7.1 Types

7.1.1 sml:refType
A complex type representing a reference to an element.
 <xs:complexType name="refType" sml:acyclic="false">

 <xs:sequence>

 <xs:any namespace="##any" minOccurs="0"

 maxOccurs="unbounded"

 processContents="lax"/>

 </xs:sequence>

 <xs:attribute ref="sml:ref" use="required"

 fixed="true" />

 <xs:anyAttribute namespace="##any"

 processContents="lax"/>

 </xs:complexType>
No specific scheme is mandated for representing references, and a model validator is free to choose any suitable scheme. However, each reference value must resolve to a single element. sml:refType can only be used with element declarations; it is not supported on attribute declarations.

7.2 Attributes

7.2.1 sml:acyclic
Used to specify that a derived type of sml:refType is acyclic, i.e., its instances do not create any cycles in a model.
<xs:attribute name="acyclic" type="xs:boolean"/>
If this attribute is set to true for a derived type D of sml:refType, then instances of D (including any derived types of D) can not create any cycles in a model. More precisely, the directed graph whose nodes are documents that contain the source or target elements for instances of D, and whose edges are instances of D (an edge is directed from the document containing the source element to the document containing the target element), must be acyclic. A model is invalid if its documents result in a cyclic graph using instances of D. In the following example, Hostref is a restricted derived type of sml:refType and its instances can not create any cycles:
 <xs:complexType name="Hostref" sml:acyclic="true">

 <xs:complexContent>

 <xs:restriction base="sml:refType"/>

 </xs:complexContent>

 </xs:complexType>
If the sml:acyclic attribute is not specified or set to false for a derived type of sml:refType, then instances of this reference type may create cycles in a model. Note that sml:acyclic is specified as “false” for sml:refType; hence its instances are allowed to create cycles in a model.
7.2.2 sml:ref

This global attribute is used to identify reference elements.

 <xs:attribute name="ref" type="xs:boolean"/>

 Any element that has sml:ref=”true” will be treated as a reference element. Note that sml:ref=”true” for all elements whose type is sml:refType or a derived type sml:refType.
7.2.3 sml:targetElement

A QName representing the name of a referenced element

 <xs:attribute name="targetElement" type="xs:QName"/>
sml:targetElement is supported as an attribute for element declarations whose type is sml:refType or a type derived by restriction from sml:refType. The value of this attribute must be the name of some global element declaration. Let sml:targetElement=”ns:GTE” for some element declaration E. Then each element instance of E must target an element that is an instance of ns:GTE or an instance of some global element declaration in the substitution group hierarchy whose head is ns:GTE.

In the following example, the element referenced by instances of HostOS must be instances of win:Windows
 <xs:element name="HostOS" type="sml:refType"

 sml:targetElement="win:Windows"

 minOccurs="0"/>
A model is invalid if its documents violate one/more sml:targetElement constraints.
7.2.4 sml:targetRequired
Used to specify that instances of a reference element must target elements in the model, i.e., an instance of the reference element can not be empty or null, or contain a dangling reference which does not target any element in the model.

<xs:attribute name="targetRequired" type="xs:boolean"/>
In the following example, the targetRequired attribute is used to specify that application instances must have a host operating system.
 <xs:complexType name="ApplicationType">

 <xs:sequence>

 <xs:element name="Name" type="xs:string"/>

 <xs:element name="Vendor" type="xs:string"/>

 <xs:element name="Version" type="xs:string"/>

 <xs:element name="HostOSRef" type="sml:refType"

 sml:targetRequired="true"/>
 </xs:sequence>

 </xs:complexType>
A model is invalid if its documents violate one/more sml:targetRequired constraints.
7.2.5 sml:targetType

A QName representing the type of a referenced element

 <xs:attribute name="targetType" type="xs:QName">
sml:targetType is supported as an attribute for element declarations whose type is sml:refType or a type derived by restriction from sml:refType. If the value of this attribute is specified as T, then the type of the referenced element must either be T or a derived type of T. In the following example, the type of the element referenced by the OperatingSystem element must be “ibm:LinuxType” or its derived type
 <xs:element name="OperatingSystem" type="sml:refType"

 sml:targetType="ibm:LinuxType"

 minOccurs="0"/>
A model is invalid if its documents violate one/more sml:targetType constraints.
7.3 Elements

7.3.1 sml:key

This element is used to specify a key constraint in some scope. The semantics are essentially the same as that for xs:key but sml:key can also be used to specify key constraints on other documents, i.e., the sml:selector child element of sml:key can contain deref functions to resolve elements in another document.
<xs:element name="key" type="sml:keybase"/>

sml:key is supported in the appinfo of an xs:element.
7.3.2 sml:keyref
Applies a constraint in the context of the containing xs:element that scopes the range of a nested document reference.

 <xs:element name="keyref">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="sml:keybase">

 <xs:attribute name="refer" type="xs:QName" use="required"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>>
sml:keyref is supported in the appinfo of an xs:element.
7.3.3 sml:unique

This element is used to specify a uniqueness constraint in some scope. The semantics are essentially the same as that for xs:unique but sml:unique can also be used to specify uniqueness constraints on other documents, i.e., the sml:selector child element of sml:unique can contain deref functions to resolve elements in another document.
<xs:element name="unique" type="sml:keybase"/>
sml:unique is supported in the appinfo of an xs:element.
7.3.4 sml:uri

Specifies a reference in URI scheme.

<xs:element name="uri" type="xs:anyURI"/>
This element must be used to specify references that use the URI scheme.
7.4 XPath functions
7.4.1 smlfn:deref

node-set deref(node-set)

This function takes a node-set of elements and attempts to resolve the references contained in the elements that have sml:ref=”true”. The resulting node-set is the set of elements that are obtained by successfully resolving (or de-referencing) the reference contained in each element in the input node-set for which sml:ref=”true”. For example,

deref(/u:Universities/u:Students/u:Student)
will resolve the reference in element Student. The target of the reference must always be an element.

8. Open Issues

Do we need to support an sml:phase attribute (similar to the phase attribute in Schematron) that can be used for selective validation of SML constraints? Should this be extended to apply to XML Schema constraints?
9. Acknowledgements

Thanks to the following individuals for providing valuable feedback on this specification:
Don Box, Ray McCollum, Ted Miller and Jeff Parham (Microsoft)
John Arwe, Chris Ferris, and Sandy Gao (IBM)

Matt Newman and Virginia Smith (HP)

Johan Van De Groenendaal (Intel)
Gene Golovinsky (formerly at BMC)

John Tollefsrud (Sun)
10. References

[1] XML Schema Part 0: Primer (http://www.w3.org/TR/xmlschema-0)
[2] XML Schema Part 1: Structures Second Edition
(http://www.w3.org/TR/xmlschema-1)

[3] XML Schema Part 2: Datatypes Second Edition (http://www.w3.org/TR/xmlschema-2)

[4] Document Schema Definition Language (DSDL) – Part 3: Rule-based validation – Schematron (http://standards.iso.org/ittf/PubliclyAvailableStandards/c040833_ISO_IEC_19757-3_2006(E).zip)

[5] An Introduction to Schematron
(http://www.xml.com/pub/a/2003/11/12/schematron.html)

[6] Improving XML Document Validation with Schematron

(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxml/html/schematron.asp)

 [7] Uniform Resource Identifiers (http://www.ietf.org/rfc/rfc2396.txt)
[8] Web Services Addressing (http://www.w3.org/TR/ws-addr-core)
[9] XML Path Language (XPath) Version 1.0 (http://www.w3.org/TR/xpath)
[10] XPointer (http://www.w3.org/TR/xptr/)
[11] XPointer xpointer() Scheme (http://www.w3.org/TR/xptr-xpointer/)
[12] Extensible Markup Language (XML) 1.0 (http://www.w3.org/TR/REC-xml/)
Appendix I – Sample Model

This sample model illustrates the use of the following SML extensions:
· Inter-document references

· key and keyref constraints
· User-defined constraints

<?xml version="1.0" encoding="utf-8" ?>

<xs:schema targetNamespace="SampleModel"

 elementFormDefault="qualified"

 xmlns:tns="SampleModel"

 xmlns:sml="http://schemas.serviceml.org/sml/2006/10"

 xmlns:sch="http://purl.oclc.org/dsdl/schematron"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:import namespace="http://schemas.serviceml.org/sml/2006/10"/>

 <xs:simpleType name="SecurityLevel">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Low"/>

 <xs:enumeration value="Medium"/>

 <xs:enumeration value="High"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="Hostref" sml:acyclic="true">

 <xs:complexContent>

 <xs:restriction base="sml:refType"/>

 </xs:complexContent>

 </xs:complexType>

 <!-- This element represents the host operating system for

 an application. Note that the type of the referenced

 element must be OperatingSystemType or a derived type

 of OperatingSystemType -->

 <xs:element name="HostOSRef" type="tns:Hostref"

 sml:targetType="tns:OperatingSystemType"/>

 <xs:complexType name="ApplicationType">

 <xs:sequence>

 <xs:element name="Name" type="xs:string"/>

 <xs:element name="Vendor" type="xs:string"/>

 <xs:element name="Version" type="xs:string"/>

 <xs:element ref="tns:HostOSRef" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="ProtocolType">

 <xs:list>

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="TCP"/>

 <xs:enumeration value="UDP"/>

 <xs:enumeration value="SMTP"/>

 <xs:enumeration value="SNMP"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:list>

 </xs:simpleType>

 <xs:element name="GuestAppRef" type="sml:refType"

 sml:targetType="tns:ApplicationType"/>

 <xs:complexType name="OperatingSystemType">

 <xs:sequence>

 <xs:element name="Name" type="xs:string"/>

 <xs:element name="FirewallEnabled" type="xs:boolean"/>

 <xs:element name="Protocol" type="tns:ProtocolType"/>

 <!-- The following element represents the applications hosted by

 operating system -->

 <xs:element name="Applications" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="tns:GuestAppRef" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="OSRef" type="sml:refType"

 sml:targetType="tns:OperatingSystemType"/>

 <xs:complexType name="WorkstationType">

 <xs:sequence>

 <xs:element name="Name" type="xs:string"/>

 <xs:element ref="tns:OSRef"/>

 <xs:element name="Applications" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="tns:GuestAppRef" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="Workstation" type="tns:WorkstationType">

 <xs:annotation>

 <xs:appinfo>

 <sch:schema>

 <sch:ns prefix="sm" uri="SampleModel"/>

 <sch:ns prefix="smlfn"
 uri="http://schemas.serviceml.org/sml/function/2006/07"/>

 <sch:pattern id="OneHostOS">

 <!-- The constraints in the following rule are evaluated

 For all instances of the Workstation global element-->
 <sch:rule context=".">

 <!-- define a named variable - MyApplications -

 for use in test expression-->

 <sch:let name="MyApplications"

 value="smlfn:deref(sm:Applications/sm:GuestAppRef)"/>

 <sch:assert test=

 "count($MyApplications)=

 count($MyApplications/sm:HostOSRef)">

 Each application in workstation

 <sch:value-of select="string(sm:Name)"/>

 must be hosted on an operating system

 </sch:assert>

 </sch:rule>

 </sch:pattern>

 </sch:schema>

 <!-- In a workstation, (Vendor,Name,Version) is the key for

 guest applications -->
 <sml:key name="GuestApplicationKey">

 <sml:selector

 xpath="smlfn:deref(tns:Applications/tns:GuestAppRef)"/>

 <sml:field xpath="tns:Vendor"/>

 <sml:field xpath="tns:Name"/>

 <sml:field xpath="tns:Version"/>

 </sml:key>

 <!-- In a workstation, Name is the key for operating system -->

 <sml:key name="OSKey">

 <sml:selector xpath="smlfn:deref(tns:OSRef)"/>

 <sml:field xpath="tns:Name"/>

 </sml:key>

 <!-- In a workstation, the applications hosted by the

 referenced operatinsystem must be a subset of the

 applications in the workstation -->
 <sml:keyref name="OSGuestApplication"

 refer="GuestApplicationKey">

 <sml:selector xpath=

 "smlfn:deref(tns:OSRef)/tns:Applications/tns:GuestAppRef"

 />

 <sml:field xpath="tns:Vendor"/>

 <sml:field xpath="tns:Name"/>

 <sml:field xpath="tns:Version"/>

 </sml:keyref>

 <!-- In a workstation, the host operating system of guest

 applications must be a subset of the operating system in

 the workstation -->

 <sml:keyref name="ApplicationHostOS" refer="OSKey">

 <sml:selector xpath=

 "smlfn:deref(tns:Applications/tns:GuestAppRef)/tns:HostOSRef"

 />

 <sml:field xpath="tns:Name"/>

 </sml:keyref>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="SecureWorkstation" type="tns:WorkstationType">

 <xs:annotation>

 <xs:appinfo>

 <sch:schema>

 <sch:ns prefix="sm" uri="SampleModel" />

 <sch:ns prefix="smlfn"

 uri="http://schemas.serviceml.org/sml/function/2006/07"

 />

 <sch:pattern id="SecureApplication">

 <sch:rule

 context="smlfn:deref(sm:Applications/sm:Application)">

 <sch:report test="sm:SecurityLevel!='High'">

 Application <sch:value-of select="string(sm:Name)"/>

 from <sch:value-of select="string(sm:Vendor)"/>

 does not have high security level

 </sch:report>

 <sch:assert test="sm:Vendor='TrustedVendor'">
 A secure workstation can only contain

 applications from TrustedVendor
 </sch:assert>

 </sch:rule>

 </sch:pattern>

 </sch:schema>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

</xs:schema>
Appendix II – Complexity of Supporting targetElement and targetType on Local Element Declarations
This appendix describes the complexity of supporting sml:targetElement and sml:targetType on local elements. The complexity occurs due to derivation by restriction, and the necessity to completely (re-)specify the elements in the derived type. In order to propagate an sml:targetElement or sml:targetType constraint, it is necessary to connect the elements in the derived type with those from the restricted (super-) type. However, this level of support is not provided by most XML Schema frameworks. If an XML Schema framework does not provide this support, then an SML validator that uses this framework can still support these constraints on local elements by duplicating large parts of XML Schema’s compilation logic. This may substantially increase the effort required to implement an SML validator. An SML validator may prefer to support these, constraints on global elements only (which requires a simpler analysis across substitution groups) until its underlying XML Schema framework provides the support needed to analyze local elements across derivation-by-restriction type hierarchies.

© Copyright 2006 by BEA, BMC, CA, Cisco, Dell, EMC, HP, IBM, Intel, Microsoft, and Sun. All rights reserved.
 Page 1 of 40

