[image: image3.jpg]GEANT

Glossary

1.1 Use of Protocol Standards OGF NM-WG and OGF NMC-WG versus NETCONF

While perfSONAR provides a good infrastructure for network performance monitoring, its current implementations and protocols have some problems. In this section some of these problems are identified and discussed, and a possible solution based on the IETF protocol NETCONF is proposed.

1.1.1 Problems with Current Implementations and the NM-WG protocol

Most of the problems with the current perfSONAR are related to the NM-WG protocol. There are three main problems that should be addressed:

· Lack of proper separation between information model and communication model.

· Lack of generic information model for MA and MP.

· Lack of proper validation mechanisms.

1.1.1.1 Separate Information and Communication Model

Separating what to transfer (i.e. the information model) from how it is transferred (i.e. the communication model) is a common technique used in many popular network management protocols. As part of the specification of the OSI protocol CMIP, OSI defined what is referred to as the OSI Network Management Model [OSI]. This model divides the specification of network monitoring architectures into several high level models:

· Organisation – defines components and relationships.

· Information – the syntax and semantics of the information shared between components.

· Communication – transfer syntax for sharing the information between components.

· Functional – defines application functions like configuration monitoring, performance measurements etc.

The Simple Network Management Protocol (SNMP), the most commonly used protocol for network management, never explicitly defined the management architecture like OSI, but uses the same structure implicitly [RFC1157] [RFC341x]. The SNMP standard describes the components and relationships between them, and strictly distinguishes between the information and communication model.

The information model in SNMP uses Structure of Managed Information (SMI) [RFC2578] to specify Management Information Bases (MIBs), which can then be transmitted between the manager and agent using the SNMP protocol.

There are many other protocols that also follow the OSI Network Management Model. Some examples are NETCONF, WS-management [DTMF] and WSDM [WSDM]. Many protocols follow this model since there are several advantages of designing a protocol like this, especially when it comes to the separating the information and communication model.

Separating these two models allows both of them to evolve and change relatively independently of each other. One example of this is the SNMP protocol which has two different versions of the information modelling language SMI and three different versions of the protocol.

Another advantage of using a protocol that separates the information and communication models, is that this separation is usually also adopted by applications using the protocol. Again SNMP can be used as an example. Most network management applications that use SNMP only focus on which information they want to retrieve from an agent and do not care how the information is retrieved. The actual encoding and decoding of messages is done by a SNMP library. One popular SNMP tool is Net-SNMP [SNMP]. This tool contains several simple command line utilities that can be used for querying SNMP agents. So, for example, to retrieve the system uptime from an agent the following command can be used:

$ snmpget -c public -v 1 device1 sysUpTime.0

SNMPv2-MIB::sysUpTime.0 = Timeticks: (14096763) 1 day, 15:09:27.63

In this example the user does not need to know anything about the details of how the SNMP protocol works. All they need to know is the unique ID of the information they want to retrieve. Simple utilities like this allow network operators to create small scripts for managing their network with relatively little effort. Developing small scripts like this is a very common practice among network operators [NM] [SNM] [FNM].

The OGF NM-WG protocol used by perfSONAR does not follow the OSI Management Model and does not properly separate the information and communication model. For the MAs and MPs no proper information model exists. NM-WG defines a base XML schema that can be used for transferring data and meta data between the different services in perfSONAR. For each service like RRD MA, HADES MA, SNMP MP etc. new XML schemas are defined that extends the base schema. This means that in NM-WG the specification of what to transfer is mixed with how it is transferred. This makes the protocol inflexible and current applications are closely coupled with the protocol.

An example of this is the mechanism perfSONAR uses to retrieve a list of interfaces from an RRD MA. There are no formal definitions in the NM-WG schemas that specify how to retrieve a list of interfaces, but a de facto method has been defined by the implementations. The method is to query the MA for a specific metric but instead of specifying which interface data is wanted for, the interface tag is left empty:

<nmwg:message id="1250065054" type="MetadataKeyRequest" xmlns:netutil="http://ggf.org/ns/nmwg/characteristic/utilization/2.0/" xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/" xmlns:select="http://ggf.org/ns/nmwg/ops/select/2.0/">

 <nmwg:metadata id="meta1">

 <netutil:subject id="iusub1">

 <nmwgt:interface/>

 </netutil:subject>

 <nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>

 </nmwg:metadata>

 <nmwg:data id="data_1" metadataIdRef="meta1"/>

</nmwg:message>

In this message utilisation metrics are requested. The response is quite long returning both information about the available interfaces and utilisation data for each interface. A small subset of the reply is shown below:

<nmwg:message id="1250065054_resp" messageIdRef="1250065054"

 type="MetadataKeyResponse" xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/">

 <nmwg:metadata id="meta0">

 <netutil:subject id="subj0" xmlns:netutil="http://ggf.org/ns/nmwg/characteristic/utilization/2.0/">

 <nmwgt:interface xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/">

 <nmwgt:hostName>rt1.ams.nl.geant2.net</nmwgt:hostName>

 <nmwgt:ifAddress type="ipv4"/>

 <nmwgt:ifName>e3-0/0/2</nmwgt:ifName>

 <nmwgt:ifDescription/>

 <nmwgt:ifIndex>25</nmwgt:ifIndex>

 <nmwgt:direction>in</nmwgt:direction>

 <nmwgt:capacity>9953000000</nmwgt:capacity>

 </nmwgt:interface>

 </netutil:subject>

 <nmwg:eventType>http://ggf.org/ns/nmwg/characteristic/utilization/2.0</nmwg:eventType>

 <nmwg:parameters>

 <nmwg:parameter name="keyword">project:MDM</nmwg:parameter>

 </nmwg:parameters>

 </nmwg:metadata>

The response shows that all information about the interface is returned. As NM-WG only specifies more or less fixed messages and does not define an information model, it is impossible to request a subset of the information. It is, for example, not possible to request a simple list of names for the available interfaces.

The lack of separation between information and communication model is also evident in current perfSONAR implementations. The perfSONAR applications require all the details about how data is transferred between the services and it takes a lot of effort and code to create and decode all the messages. This makes it very difficult to create simple utilities like snmpget, and it makes it harder for network operators to create their own small scripts.

1.1.1.2 Generic Information Model

Separating the information model from the communication model is not enough. perfSONAR should also define a completely generic information model for MA and MP that contains a self-documenting template system which allows user interfaces to display all types of metrics without any code changes. When querying an MA or MP, the template system should specify if the metrics retrieved are bytes, bits per second, IP address, etc. This would allow the user interface to know how to display the metrics appropriately.

In the current perfSONAR different types of MA and MP (like RRD MA, SQL MA, SNMP MP, SSH MP) have different XML schemas. Clients using the services must implement support for each MA and MP that they support. This imposes a lot of restrictions on how the perfSONAR infrastructure can be used.

An example of an application that could benefit from a generic information model for MA and MP is the Advanced Traceroute application (see Advanced Traceroute Functionality in the perfSONAR System on page 47). This application does a traceroute to an IP address and checks with an LS for each hop to see if an SNMP MP exists that can provide some performance metrics for the link. Since there is no generic information model for MPs and MAs, the application can only use the SNMP MP, and only a hard coded set of SNMP objects can be retrieved. If another type of MP is available (like a passive monitoring probe) more detailed information about the link can be provided. However, the Advanced Traceroute application is not able to take advantage of this without code being manually added. If a generic self-documenting information model for MPs and MAs existed, the application would be able to display all available statistics for a given link, regardless of the source.

1.1.1.3 Protocol Inconsistency

Another problem is protocol inconsistency in the perfSONAR implementations. For example, perfSONAR defines an Echo message that can be used to check if a perfSONAR service (for example, an MA) is operational. If this message is sent to different perfSONAR services, different reply messages are returned. One Echo reply message can be seen below:

<nmwg:message id="message1249292880" type="EchoResponse"

 xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" xmlns:nmwgr="http://ggf.org/ns/nmwg/result/2.0/">

 <nmwg:metadata id="meta">

 <nmwg:eventType>

http://schemas.perfsonar.net/tools/admin/echo/2.0

 </nmwg:eventType>

 </nmwg:metadata>

 <nmwg:data id="data" metadataIdRef="meta"/>

 <nmwg:metadata id="return_meta">

 <nmwg:eventType>success.echo</nmwg:eventType>

 </nmwg:metadata>

 <nmwg:data id="data_return_meta" metadataIdRef="return_meta">

 <nmwgr:datum>I'm still alive and happy to talk to you!</nmwgr:datum>

 </nmwg:data>

</nmwg:message>

Another reply received by a service used only a single event type, success.echo. The event type http://schemas.perfsonar.net/tools/admin/echo/2.0 was not included. A third variation included both event types, but did not include the empty data tag referencing the echo event type. This inconsistency can also be seen in other messages, and can be a serious threat to proper interoperability between different implementations.

One factor that causes this inconsistency is that in current perfSONAR implementations all messages are created and parsed manually without any formal XML validation. OMG NM-WG is specified using only Relax NG as the formal specification language. If the Relax NG schemas had been used by all applications for formal message validation, some of the inconsistency would have been avoided. Relax NG does, however, not have the necessary formalism to define all aspects of a proper information model [MLAng] [YANG]. It is therefore not possible to properly validate the XML messages in perfSONAR which can lead to inconsistencies between different implementations.

1.1.2 Possible Solutions

In looking for possible solutions to the problems with current perfSONAR implementations, a step back was taken to look at what perfSONAR is. perfSONAR is an implementation for handling distributed management. Distributed management is something that researchers and standardisation bodies have worked on for many years and many standardised protocols (like WS-Management, WSDM and NETCONF) are available. Instead of trying to fix OGF NM-WG and compete with existing standardised protocols, NETCONF was used as a protocol for transferring data between perfSONAR services. To create an MA information model, the draft specification of the YANG modelling language [YANG1] was used.

To simplify the implementation the Stager [Stager] application was used as a base for the prototype. Stager is a web-based application for presenting and aggregating most types of network statistics. It has a built-in template system that allows the web front-end to display most types of metrics by writing an XML-based template that describes the data.

1.1.2.1 NETCONF and Yang

The NETCONF protocol was originally designed for configuring network equipment but it is also well suited for retrieving and storing data in an MA in the perfSONAR framework. NETCONF has several predefined protocol operations but also allows applications to define new operations. Therefore, it is possible for an MA to define new protocol operations for retrieving information about available observation points, time periods etc.

However, this is not the best choice, since it means that both the MA and the client retrieving information from the MA need to support these new operations.

In the prototype implementation only standardised features of the NETCONF protocol are used, so that any off-the-shelf NETCONF tool can be used to retrieve information from the MA. The Get protocol operation is used to retrieve information, and the optional XPath support in NETCONF is used to specify which nodes should be retrieved.

A client needs to know how the information in an MA is organised. This is specified using the YANG modelling language currently under standardisation in the IETF. With YANG, a proper information model for an MA was defined that included a generic report template that can be used by clients to retrieve information about the measurement data in the MA. This means that a user interface can display all kinds of reports without any code modifications. When retrieving data from the MA, the template system specifies if the data retrieved is a counter for octets, represents a temperature, IP address etc. and the user interface can format the data accordingly.

For a detailed description of the MA information model, see MA Information Model on page 74.

1.1.2.2 Querying the Measurement Archive

The idea behind using NETCONF and a standardised information model defined in YANG is that all queries to the MA can be done using simple XPath expressions. For example, to retrieve a list of all available data sources in an MA, all that is needed is the following XPath query:

/measurementArchive/datasources/source/name

This returns a list of names:

<name>qstream</name>

<name>wdm</name>

<name>mping</name>

<name>ssmping</name>

<name>qflow</name>

<name>appmon</name>

<name>NetFlow</name>

<name>ssmping (Netconf)</name>

<name>RRD (Netconf)</name>

<name>NetFlow Raw</name>

When retrieving data for an actual report, an MA should never return any data for a query that wants to download the entire report subtree. It is important to realise that the XML document described by the YANG model is not a real XML document but a virtual document existing in the MA, which can be very large.

Instead explicit XPath expressions that limit the returned data should be used. A typical XPath query for retrieving data for a report can be:

/measurementArchive/datasources/source[name="ssmping"]/timeperiods/

timeperiod[starttime="20090901 12:00" and duration="1 hour"]/

reports/report[id="asmping4' and obspoint='1' and

 transformation='table' and view='Standard'

 and sort=1 and limit=20]/data

In this query data from the source "ssmping" is collected for the period that starts at 12:00 on 1st of September 2009 (20090901) and lasts for one hour. The query also states that the report for which data is retrieved is called "asmping4", the observation point is 1, transformation is "table", the view is "Standard", sorting is done by column 1 and the maximum number of rows to retrieve is 20.

The query returns a list of data rows and the user interface presents it using the report template, which it can retrieve through another query.

For a more detailed description of the prototype implementation and additional examples on how to query the MA, see Implementation on page 78.

1.1.3 Conclusions

Several weaknesses in the current perfSONAR implementations and the OGF NM-WG protocol have been identified. Fixing these weaknesses will help with the deployment of perfSONAR among network operators.

While it is possible to fix the OGF NM-WG protocol, already standardised protocols are available and the prototype implementation of an MA shows that the NETCONF protocol with the YANG information modelling language is well suited for use in perfSONAR.

NETCONF fixes all the addressed weaknesses. It has a strict separation of the information and communication model. The YANG modelling language is well suited to create a generic information model for an MA and as part of the work of standardising YANG, an Internet draft is available that specifies how to validate all NETCONF messages.

The next step in this work is to create proper information models for each perfSONAR service. For MAs and MPs, the Stager template system is a good starting point but should be simplified. A lot of work has gone into NM-WG and NMC-WG and the experiences gained from this work could go into creating formal YANG information models for the various services.

Appendix A Implementation Details
A.1 MA Information Model

This section provides a detailed description of the information model for the MA. The general outline is shown in Figure A.1.1. Some attributes have been left out to simplify the description.

[image: image1.png]measurementArchive
I-sysinfo
(R
| I-administrator
I-datasources
|-name
I-type
I-selftest
| 1-name
| I-description
| I-status
| |-details
I-obspoints
| I-obspoint
I-groups
| I-group
I-template
|-t imeperiodinto
|-t imeperiods
I-timeperiod
I-1d
|-starttine
I-duration
I-reports
I-report
1-1d
I-obspoint
|-transformation
I-view
I-sort
I-Limit
I-data

Figure A.11.1: General outline of the MA information model.
The following attributes are defined:

· sysinfo - General information about the MA and its operational status.

· name – The name of the MA.

· administrator – The name, email address etc. of the MA’s administrator.

· datasources - A single MA can have multiple data sources (for example, NetFlow data, SNMP, Multicast statistics etc.). This is a list of the data sources that are available

· source - Information about a single data source.

· name – The name of the data source.

· type - The data source type (for example, postgressql, RRD, etc.).

· selftest – A list of self tests that report the MA’s operational status.

· name – The name of the test.

· description – A detailed description of the test.

· status – The status of the test (passed or failed).

· details - Additional test details. If the test failed, this includes an error description.

· obspoints – A list of available observation points.

· groups – A list of available groups of observation points.

· template – The report template describing the available reports (for more details, see Report Template on page 76).

· timeperiodinfo - General information about available time intervals like name, number of seconds, how to navigate to lower/hight interval etc.

· timeperiods – A list of available time periods that contains actual data.

· timeperiod - Information about a single time period.

· id – A unique id of the time period.

· starttime – The start time of the time period.

· duration – The duration of time period in seconds.

· reports – A list of reports with available data for this time period.

· report - A single report with data for this time period.

· id – The ID of the report.

· obspoint – The observation point that this report contains data for.

· transformation – The transformation of the report (for more details, see Report Template on page 76)

· view – The view of the report (for more details see Report Template on page 76).

· sort - The column by which the report data is sorted.

· limit – The maximum number of data rows.

· data – The data for this report.

The text below shows a small part of the YANG MA model:

container selftests {

 list test {

 key "name";

 leaf name {

 mandatory "true";

 type string;

 description "Name of test";

 }

 leaf description {

 mandatory "true";

 type string;

 description "Description of test";

 }

 leaf status {

 mandatory "true";

 type enumeration {

 enum "passed";

 enum "failed";

 }

 description "Status of test. Can be passed or failed";

 }

 leaf details {

 mandatory "false";

 type string;

 description "Human readable details about the test. If a test fails, the reason should be described here";

 }

 }

This YANG text defines the self test capability of the MA. It specifies a YANG container that contains a list of tests. Each test has a name, a description, a status and an optional detailed description. The name of the test is defined as the key of the list, which means that the name has to be unique. The name, description and optional details are all text while the status can only have the value passed or failed.

This short text that is relatively easy to read and understand is all that is needed by a network operator to properly query a MA to retrieve the list of self tests.

A.1.1 Report Template

The report template in the MA information model is currently taken directly from the Stager application without any modifications. The Stager template model is a good starting point, but it contains many advanced features that are application-specific and not necessarily needed in a template system for an MA or MP.

In Stager a report can have different transformations and views. A transformation specifies how data should be presented (for example, if a source/destination report should be presented as a table with one column for source and one for destination, or as a matrix with source in the first row and destination in the first column). A view specifies which data elements should be shown in the transformation, and each transformation can have multiple views (for example, for a Src/Dst IP Netflow report, a matrix report can have different views: one for octets, one for packets and one for flows).

Many reports often share the same data types, for example most Netflow reports displays information about octets, packets and flows and many reports display IP addresses. The template system therefore specifies all awailable data types in one place and then each report references this definition. This makes it easy to make changes on how a specific data type is displayed by the user frontend.

The general outline of a report template is shown in Figure A.1.2.

[image: image2.png]reports
I-dataType
| I-name
I I-type
|-headerDet
| 1-1d
I-topHeader
|-name
|-subHeader
|-name
I-data
transformationdet
I-1d
I-type
I-view
|-name
|-headerRet
report
1-1d
|-name
I-descr
I-transformationfef

Figure A.1.2: General outline of the report template.
The following attributes are shown:

· dataType - A list of data types that are used in the various reports.

· name – The name of the data type.

· type – The type of data (for example, octets, temperature, percentage).

· headerDef - Reports often have a common set of data types and the same headers. headerDef makes it possible to define common header groups that can be reused in multiple reports.

· id – The ID of the header definition.

· topHeader - Stager only supports two layers of headers and this specifies the top header.

· name – The name of the top header.

· subHeader - One or more sub headers belonging to the top header.

· name – The name of the sub header.

· data – References the data type specified by the dataType tag and specifies what data should be displayed under this header.

· transformationDef - Some reports have entire transformations in common. These are specified here.

· id – The ID of the transformation definition.

· type – The type of transformation (table, matrix, overview or global).

· view - A view for this transformation. Can be multiple instances.

· name – The name of the view.

· headerRef - References a headerDef. It is also possible to specify headers directly.

· report - A report.

· id – The unique ID of the report.

· name – The name of the report.

· descr – A description of the report.

· transformationRef - References a transformationDef. Can also specify transformations directly.

A.2 Implementation

Since the prototype uses the Stager template system directly without any modifications, it was relatively easy to turn Stager into both a Measurement Archive and a front-end for a Measurement Archive. The Stager architecture is modular, so the main change was to create a new class that could retrieve information using NETCONF instead of SQL calls. And instead of displaying reports in a web page, the data is converted into NETCONF XML messages. Less than 1000 new lines of code were needed to implement the prototype.

In the prototype all request messages are formally validated using the standardised NETCONF WSDL file, but so far replies are sent back without any validation. Recommendations on how to validate NETCONF reply messages are being worked on by IETF [YANG].

The implementation is done in PHP and the code needed to do a query is relatively short. An example of a query that retrieves the list of self tests is shown below:

$msg=array("message-id"=>1,

 "getconfig"=>array('source'=>array('running',""),

 'filter'=>array('type'=>'xpath',

'select'=>"/measurementArchive/datasources/source[name='ssmping']/selftests/test")));

$return = (array)$client->rpc($msg);

In this example, an array is defined that contains the message-id and a getconfig tag specifying that information should be retrieved. The getconfig tag contains another array that specifies that information should be retrieved from the running source and an XPath filter is used to specify that all self tests for the data source ssmping should be retrieved. This array is almost identical for all queries to the MA. The only difference is the message ID and the actual XPath expression that specifies the information to be retrieved.

The second line uses the rpc command defined by the NETCONF WSDL file [RFC4743] to retrieve the requested information. The code does not care about the actual XML message and can easily be converted into a function or stand-alone utility that can be used by network operators to create simple scripts, similar to getsnmp as described earlier.

The actual XML message sent over the network for the above example would be:

<ns1:rpc message-id="1">

 <ns1:getconfig>

 <ns1:source>

 <ns1:running/>

 </ns1:source>

 <ns1:filter type="xpath" select= "/measurementArchive/datasources/source[name='ssmping']/selftests/test"/>

 </ns1:getconfig>

</ns1:rpc>

The result sent back from the MA is a simple list of all tests:

<ns1:rpc-reply message-id="1">

 <ns1:data>

 <measurementArchive xmlns="http://stager.uninett.no/stagerMA">

 <test>

 <name>dbConnect</name>

 <description>

 Test database connection

 </description>

 <status>passed</status>

 <details/>

 </test>

 <test>

 <name>timeperiod</name>

 <description>

 Test to see if any time periods exists in the database

 </description>

 <status>failed</status>

 <details>

 No timeperiods exists in the database

 </details>

 </test>

 </measurementArchive>

 </ns1:data>

 </ns1:rpc-reply>

This response can be processed as XML by the client or, as in the example above, it can be automatically converted into an associative array. In the latter case all XML processing is handled by the SOAP library. To find out the structure of the associative array, a developer only has to read the YANG information model for the MA. This provides a lot of flexibility and if someone is just interested in the names of available self tests they could use the following query:

/measurementArchive/datasources/source[name='ssmping']/selftests/test/name

Another example is to only retrieve self tests that failed:

/measurementArchive/datasources/source[name='ssmping']/selftests/test[status='failed']

To show that the information model for the MA could easily be implemented by other applications than Stager, a simple implementation of an MA based on RRD files was carried out. The implementation consisted of just a few hundred lines of code and, while primitive, it provided the basic functionality of providing a list of available observation points, and retrieving statistics for a single observation point and time period. Since this implementation uses exactly the same information model as the Stager MA, the Stager user interface can also display the data from the RRD MA without any code modifications.

References

[ABW]
Ubik S, Oslebo A., Antoniades D., ABW - Short-timescale passive bandwidth monitoring, CESNET Technical Report 3/2007

http://www.cesnet.cz/doc/techzpravy/2007/abw/abw.pdf

[ACRUW06]
D. L. Alderson, H. Chang, M. Roughan, S. Uhlig, and W. Willinger. The many facets of Internet topology and traffic. Networks and Heterogeneous Media, 1(4):569-600, December 2006.

http://www.net.t-labs.tu-berlin.de/~steve/papers/nhm-paper.pdf

[AlsHeyDiff]
Alshammari R., Zincir-Heywood A. N., "Investigating Two Different Approaches for Encrypted Traffic Classification," Privacy, Security and Trust, Annual Conference on, pp. 156-166, 2008 Sixth Annual Conference on Privacy, Security and Trust, 2008.

[AlsHeyTwo]
Alshammari R., Zincir-Heywood A. N., "A Preliminary Performance Comparison of Two Feature Sets for Encrypted Traffic Classification", IEEE Computational Intelligence in Security for Information Systems CISIS 2008, October 2008.

[AngHey]
Angevine D., Zincir-Heywood A. N., "A Preliminary Investigation of Skype Traffic Classification Using a Minimalist Feature Set," Availability, Reliability and Security, International Conference on, pp. 1075-1079, 2008 Third International Conference on Availability, Reliability and Security, 2008.

[AutoBAHNE2Emon]
http://wiki.geant2.net/bin/view/JRA3/JRA3MonitoringDocumentation

[Blinc]
T. Karagiannis, K. Papagiannaki, and M. Faloutsos. Blinc: Multilevel traffic classification in the dark. In ACM SIGCOMM, August 2005.

http://conferences.sigcomm.org/sigcomm/2005/paper-KarPap.pdf

[C4.5]
Kohavi R. and Quinlan J. R., Data mining tasks and methods: Classification: decision-tree discovery, pp. 267-276, 2002.

http://portal.acm.org/citation.cfm?id=778254

[CDWY00]
J. Cao, D. Davis, S. V. Wiel, and B. Yu. Time-varying network tomography. Journal of the American Statistical Association, 95(452):1063-1075, 2000.

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=866369

[CESNET]
http://www.ces.net/

[CircMon]
http://code.google.com/p/perfsonar-ps/wiki/CircuitMonitoringMoreDetails

[CM06]
R. R. Coifman and M. Maggioni. Diffusion Wavelets. Applied and Computational Harmonic Analysis, 21(1):53-94, July 2006.

[Combo6]
Combo6 Monitoring Card

http://www.liberouter.org/card_combo6.php

[CREDENTIALS]
http://wiki.geant2.net/bin/view/JRA1/Jra1WorkingArea

[DAG]
DAG Network Monitoring Cards

http://www.endace.com/dag-network-monitoring-cards.html

[DICE]
http://www.geant2.net/server/show/conWebDoc.1308

[DiMAPI]
Trimintzios P., Polychronakis M., Papadogiannakis A., Foukarakis M., Markatos E. P. & Oslebo A. (2006), DiMAPI: An Application Programming Interface for Distributed Network Monitoring., in Joseph L. Hellerstein & Burkhard Stiller, ed., 'NOMS' , IEEE, , pp. 382-393

http://www.ics.forth.gr/dcs/Activities/papers/dimapi.noms06.pdf

[Don06]
D. Donoho. Compressed Sensing. IEEE Transactions on Information Theory, vol 52, issue 4, pp 1289-1306, 2006.

http://www.stanford.edu/~mlustig/CSMRI.pdf

[DTMF]
WS-management standard, DTMF

http://www.dmtf.org/standards/wsman/

[DYN]
H. Dreger, A. Feldmann, M. Mai, V. Paxson, and R. R. Sommer. Dynamic application-layer protocol analysis for network intrusion detection. In USENIX Security Symposium, July 2006.

http://www.icir.org/robin/papers/usenix06.pdf

[E2EMON]
https://wiki.man.poznan.pl/perfsonar-mdm/index.php/PerfSONAR_support_for_E2E_Link_Monitoring

[EMS]
Network Management System: Best Practices White Paper (Document ID: 15114)

http://www.cisco.com/en/US/tech/tk869/tk769/technologies_white_paper09186a00800aea9c.shtml

[FNM]
Managing IP Networks with Free Software, Joe Abley and Stephen Stuart, NANOG 26

[FRATATM]
Kundan Misra - OSS for telecom networks: an introduction to network management

[GIdP]
http://gidp.geant2.net/

[gLS]
Hierarchically Federated Registration and Lookup within the perfSONAR Framework Zurawski, J. Boote, J. Boyd, E. Glowiak, M. Hanemann, A. Swany, M. Trocha, S.

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4258584

http://anonsvn.internet2.edu/svn/nmwg/trunk/nmwg/doc/dLS/dLS_spec_1.html

[Hai]
HaiTao He, XiaoNan Luo, FeiTeng Ma, ChunHui Che1 and JianMin Wang, Network traffic classification based on ensemble learning and co-training, Science in China Series F: Information Sciences Springer Verlag, 2009.

[HPNNMAE]
HP Network Node Manager Advanced Edition 7.53 software Data sheet – PDF version

https://h10078.www1.hp.com/cda/hpdc/display/main/download_pdf_unprotected.jsp?zn=bto&cp=54_4000_100

[i2]
https://dc211.internet2.edu/cgi-bin/perfAdmin/tree.cgi

[IBMTiv]
http://www-01.ibm.com/software/tivoli/products/netcool-omnibus/index.html

[JINI]
http://www.jini.org
[Jtraceroute]
http://perfmon.cesnet.cz/jtraceroute

[Mal99]
S. Mallat. A Wavelet Tour of Signal Processing, Academic Press, 1999

[ML]
http://monalisa.caltech.edu/

[MLAng]
Why we need a NETCONF-Specific Modeling Language, B. Lengyel, Internet Draft

[MLarch]
http://monalisa.caltech.edu/monalisa__System_Design.htm

[MLComInfra]
http://monalisa.caltech.edu/monalisa__System_Design__communication_infrastructure.html

[MTPP10]
Halak, J. and Ubik, S. 2009. MTPP - Modular Traffic Processing Platform. In Proceedings of the 2009 12th international Symposium on Design and Diagnostics of Electronic Circuits&Systems - Volume 00 (April 15 - 17, 2009). DDECS. IEEE Computer Society, Washington, DC, 170-173.

http://dx.doi.org/10.1109/DDECS.2009.5012121

[NetMate]
NetMate - Network Measurement and Accounting System

http://www.ip-measurement.org/

[NetOM]
Consolidated fault monitoring for real-time service management - Netcool/OMNIbus Data sheet – PDF version

http://www.orb-data.com/orbcms/files/downloads/omnibus/Netcool%20Omnibus%20Data%20Sheet.pdf

[NetRep]
http://www-01.ibm.com/software/tivoli/products/netcool-reporter/index.html

[NetWeb]
http://www-01.ibm.com/software/tivoli/products/netcool-webtop/index.html

[NguGrenArm07]
T. T. T. Nguyen and G. Armitage. A survey of techniques for internet traffic classification using machine learning. Communications Surveys & Tutorials, IEEE, 10(4):56–76, 2008.

[NM]
Network management requirements/recommendations, Vidar Faltinsen, Network monitoring workshop for GN3/NA3/T4

[OASIS]
http://www.oasis-open.org

[OpenMP]
http://www.openmp.org/

[ORTC]
Jeffrey Erman, Anirban Mahanti, Martin Arlitt, Ira Cohen, Carey Williamson , Offline/Realtime Traffic Classification Using Semi-Supervised Learning , HP Laboratories Palo Alto , July 13, 2007.

http://www.cse.iitd.ac.in/~mahanti/papers/sigmetrics07.pdf

[OSI]
Network And Distributed Systems Management, Morris Sloman, 1994

[Ple06]
Pleva L. Advanced Traceroute, BS Thesis, Czech Technical University, 2006.

http://www.cesnet.cz/doc/techzpravy/2007/advanced-traceroute/

[PostgreSQL]
http://www.postgresql.org/

[REGISTER]
http://perfmon.cesnet.cz/jtraceroute/request

[RFC1157]
A Simple Network Management Protocol, IETF

http://www.ietf.org/rfc/rfc1157.txt

[RFC2578]
Structure of Management Information Version 2 (SMIv2), IETF

http://www.rfc-editor.org/rfc/rfc2578.txt

[RFC2679]
A One-way Delay Metric for IPPM, IETF

http://www.ietf.org/rfc/rfc2679.txt

[RFC2680]
A One-way Packet Loss Metric for IPPM, IETF

http://www.ietf.org/rfc/rfc2680.txt

[RFC3393]
IP Packet Delay Variation Metric for IP Performance Metrics (IPPM), IETF

http://www.ietf.org/rfc/rfc3393.txt

[RFC341x]
RFC3410-RFC3418 SNMPv3 RFCs, IETF

http://www.rfc-editor.org/rfc/rfc3410.txt

http://www.ietf.org/rfc/rfc3411.txt

http://www.rfc-editor.org/rfc/rfc3412.txt

http://www.rfc-editor.org/rfc/rfc3413.txt

http://www.rfc-editor.org/rfc/rfc3414.txt

http://tools.ietf.org/html/rfc3415

http://www.rfc-editor.org/rfc/rfc3416.txt

http://www.rfc-editor.org/rfc/rfc3417.txt

http://www.rfc-editor.org/rfc/rfc3418.txt
[RFC4741]
NETCONF Configuration Protocol, IETF

http://www.rfc-editor.org/rfc/rfc4741.txt

[RFC4743]
Using NETCONF over the Simple Object Access Protocol (SOAP), IETF

http://www.ietf.org/rfc/rfc4743.txt

[RFC5388]
Information Model and XML Data Model for Traceroute Measurements. RFC5388, IETF

http://www.ietf.org/rfc/rfc5388.txt

[RRW08]
D. Rincón, M. Roughan, and W. Willinger. Towards a menaingful MRA of traffic matrices. Internet Measurement Conference 2008, pp 331-336, 2008.

http://delivery.acm.org/10.1145/1460000/1452559/p331-rincon.pdf?key1=1452559&key2=6771257521&coll=GUIDE&dl=GUIDE&CFID=60240960&CFTOKEN=85875635

[SIMPLETEST]
http://perfsonar.acad.bg/psui_beta/perfsonar.jnlp

[SMAPL]
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-15-119^1155_4000_100__
[SNM]
Scaling network management tools, Olav Kvittem, NANOG 29

[SNMP]
Net-SNMP software

http://www.net-snmp.net/

[SNORT]
http://www.snort.org

[SSNTC]
Jeffrey Erman, Martin Arlitt, Martin Arlitt, Semi-supervised network traffic classification, Proceedings of the 2007 ACM SIGMETRICS international conference on Measurement and modeling of computer systems ,2007.

[Stager]
http://software.uninett.no/stager/

[Surv]
Thuy T.T. Nguyen, Grenville Armitage , A Survey of Techniques for Internet Traffic Classification using Machine Learning, IEEE Communicatiibs Surveys and Tutorials, 2008

http://caia.swin.edu.au/cv/garmitage/things/Nguyen_Armitage_SurveysAndTutorials2008.pdf

[TMF]
http://www.tmforum.org/browse.aspx

[TNM]
http://www-01.ibm.com/software/tivoli/products/network-mgrproductline/

[UQLB06]
S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon. Providing public intradomain traffic matrices to the research community. SIGCOMM Computer Communication Review, 36(1):83-86, 2006.

http://alumni.info.ucl.ac.be/suh//papers/traffic-matrices.pdf

[Var96]
Network tomography: estimating source-destination traffic intensities from link data. J. of the Am. Statistical Association, 91:365-377, 1996.

[WangZheng09]
WANG Y., YU S.. Supervised Learning Real-time Traffic Classifiers. Journal of Networks, North America, 4, sep. 2009.

http://www.academypublisher.com/ojs/index.php/jnw/article/view/0407622629

[Weka]
Weka - Data Mining Software in Java

http://www.cs.waikato.ac.nz/ml/weka/

[WilZanArm06]
Williams N., Zander S., Armitage G.. Evaluating machine learning algorithms for automated network application identification. Swinburne University of Technology; 2006

http://caia.swin.edu.au/reports/060410B/CAIA-TR-060410B.pdf

[WSDM]
Web Services Distributed Management: Management Using Web Services, OASIS, wsdm-muws1-1.1-spec-os-01

[WSLA]
http://www.research.ibm.com/wsla/

[YANG]
Mapping YANG to Document Schema Definition Languages and Validating, L. Lhotka, R. Mahy and S. Chisholm, Internet Draft

[YANG1]
YANG - A data modeling language for NETCONF, M. Bjorklund, draft-ietf-netmod-yang-08

[ZRDG03]
Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg. Fast accurate computation of large-scale IP traffic matrices from link loads. In ACM SIGMETRICS, pages 206-217, San Diego, California, June 2003.

http://www.cs.utexas.edu/~yzhang/papers/tomogravity-sigm03.pdf

[ZRWQ09]
Y. Zhang, M. Roughan, W. Willinger, L. Qiu. Spatio-temporal compressive sensing and internet traffic matrices. SIGCOMM Computer Communication Review, 39(4):267-268, 2009.

http://www.cs.utexas.edu/~yzhang/papers/sensing-sigc09.pdf
Glossary

AA
Authentication and Authorisation

AAA
Authentication, Authorisation and Accounting

AAI
Authentication and Authorisation Infrastructure

ABW
Available Bandwidth

AC
Automated Client

ACL
Access Control List

API
Application Programming Interface

AS
Authentication and Authorisation Service

Bayes Net
Bayesian Networks

BWCTL
Bandwidth Controller

CA
Certificate Authority

CIM
Common Information Model

cNIS
common Network Information Service

CPU
Central Processing Unit

DAMe
Deploying Authorization Mechanisms for Federated Services in the eduroam architecture

DBSCAN
Density-Based Spatial Clustering of Applications with Noise

DM
Domain Manager

DN
Distinguished Name

DNS
Domain Name System

DPI
Dots Per inch

DRAM
Dynamic Random Access Memory

DW
Diffusion Wavelets

FBA
Flow Based Approach

FR
Flow Records

FTP
File Transfer Protocol

GB
Gigabyte

GHz
Gigahertz

GIdP
GÉANT Identity Provider

gLS
global Lookup Service

GPU
Graphics Processing Unit

GSI
Globus Security Infrastructure

GSS
Generic Security Services

GUI
Graphical User Interface

hLS
home Lookup Service

HTTP
Hypertext Transfer Protocol

HTTPS
Hypertext Transfer Protocol Secure

ICT
Information, Communications and Technology

IDC
Interdomain Controller

IdP
Identity Provider

IETF
Internet Engineering Task Force

IP
Internet Protocol

IPFIX
IP Flow Information Export

JDBC
Java Database Connectivity

JRA
Joint Research Activity

JVM
Java Virtual Machine

KNN
K-Nearest Neighbor

LS
Lookup Service

LUS
Lookup Discovery Service

MDM
Multi-Domain Monitoring

MA
Measurement Archive

MIB
Management Information Base

MOM
Manager of Managers

MP
Measurement Point

MPLS
Multiprotocol Label Switching

MRA
Multi-Resolution Analysis

NB Tree
Naive Bayes Tree

NBD
Naive Bayes with Discretisation

NDL
Network Description Language

NMC-WG
Network Measurement and Control Working Group

NML
Network Markup Language

NM-WG
Network Measurements Working Group

NOC
Network Operations Center

NREN
National Research and Education Network

OD
Origin-Destination

OGF
Open Grid Forum

OS
Operating System

OSI
Open Systems Interconnection

OV-NNM
Open View – Network Node Manager

P2P
Peer-to-Peer

PABA
Payload Based Approach

PC
Personal Computer

perfSONAR
Performance Service-Oriented Network Monitoring Architecture

PHP
PHP: Hypertext Preprocessor

PKI
Public Key Infrastructure

POBA
Port Based Approach

PoP
Point of Presence

POSIX
Portable Operating System Interface

QoS
Quality of Service

RAM
Random-Access Memory

R-BE
Remote Bridging Element

RFC
Request for Comments

ROC
Receiver Operating Characteristic

RPC
Remote Procedure Calls

RRD
Round Robin Database

RTT
Round Trip Time

SA
Service Activity

SAML
Security Assertion Markup Language

SASL
Simple Authentication and Security Layer

SDK
Software Development Kit

SLA
Service Level Agreement

SLO
Service Level Objective

SLS
Service Level Specification

SMI
Structure of Managed Information

SMTP
Simple Mail Transfer Protocol

SNMP
Simple Network Management Protocol

SOAP
Simple Object Access Protocol

SQL
Structured Query Language

SRAM
Static Random Access Memory

SSL
Secure Sockets Layer

T
Task

TCP
Transmission Control Protocol

Telnet
Teletype Network

TLS
Transport Layer Security

TM
Traffic Matrix

TrS
Transformation Service

UbC
User behind a Client

UNIS
Unified Network Information Service

URL
Uniform Resource Locator

VoIP
Voice over IP

WAN
Wide Area Network

WE
Client in a Web container

WSDL
Web Services Description Language

WS-SEC
Web Services Security

XML
Extensible Markup Language
