Proposals for JSDL
By Igor.Sedukhin@ca.com 

Goals
1. Provide a document-oriented schema (similar to WSDL)
2. Declare qualified names (QNames) for various JSDL constructs such as job descriptions so that
a. References using these qualified names are possible (e.g. from other documents).

b. WS-MetadataExchange mechanism could be used to retrieve documents describing JSDL constructs (mex:Dialect = JSDL namespace, mex:Identifier = JSDL document target namespace).

3. Provide referenceable containers for job descriptions, resources, applications, etc. Every container can be used to group a set of extensible information defined elsewhere (e.g. CIM XML Schema).

4. Preserve current JSDL “terms” defined in the specification, but arrange them differently in XML. In other words, changes to the existing specification are not semantically “violent”.

JSDL Core Language

An XML pseudoschema (a-la other XML specs) is presented here (shortened for brevity). 
<jsdl:JobDefinitions targetNamespace=”xs:anyURI” ...> ...
<jsdl:import namespace=”xs:anyURI” location=”xs:anyURI”?/> * 
...
<jsdl:Resource name=”xs:NCName” ...> ... </jsdl:Resource> * 
...
<jsdl:Application name=”xs:NCName” ...> ... </jsdl:Application> *
...
<jsdl:User name=”xs:NCName” ...> ... </jsdl:User> * 
...

<jsdl:DataStaging name=”xs:NCName” ...> ... </jsdl:DataStaging> *
...

<jsdl:Profile name=”xs:NCName” ...> ... </jsdl:Profile> * ...

<jsdl:JobDescription name=”xs:NCName” ...>


<jsdl:JobIdentification ...>...</jsdl:JobIdentification>


<jsdl:User ref=”xs:QName”?>...</jsdl:User> ?


<jsdl:Resource ref=”xs:QName”?>...</jsdl:Resource>


<jsdl:Application ref=”xs:QName”>...</jsdl:Application>

<jsdl:DataStaging ref=xs:QName”/>...</jsdl:DataStaging> ?


...

</jsdl:JobDescription> * 
...
</jsdl:JobDefinitions>

jsdl:JobDefinitions is the JSDL document root. This element contains multiple components as follows.
jsdl:JobDefinitions/@targetNamespace is a URI which job definitions are declared in.

jsdl:JobDefinitions/jsdl:import is a mechanism to declare which other JSDL definitions to import and hint their document locations. This is similar to wsdl:import.

jsdl:JobDefinitions/jsdl:Resource, jsdl:Application, jsdl:User, jsdl:DataStaging is a group of XML elements describing a resource, such as a computer with 1Gb RAM, 2 processors and 100Gb free disk space, an application, such as a call to a web service, command-line invocation with parameters, etc., a user, and a data staging sequence.
jsdl:JobDefinitions/jsdl:Resource, jsdl:Application, jsdl:User, jsdl:DataStaging /@name is a non-qualified name which paired with target namespace of the document declares a QName of this particular component.

jsdl:JobDefinitions/jsdl:Profile is ...

jsdl:JobDefinitions/jsdl:JobDescription is a group of XML elements describing a Job which is an association of an application and a resource on which to run the application.

jsdl:JobDefinitions/jsdl:JobDescription/@name is a non-qualified name which paired with target namespace of the document declares a QName of this particular component.

jsdl:JobDefinitions/jsdl:JobDescription/jsdl:Resource is a reference to or attributes of a resource being associated with an application.

jsdl:JobDefinitions/jsdl:JobDescription/jsdl:Resource/@ref is a QName of the resource being referred to.
jsdl:JobDefinitions/jsdl:JobDescription/jsdl:Application is a reference to or attributes of an application being associated with a resource.

jsdl:JobDefinitions/jsdl:JobDescription/jsdl:Application/@ref is a QName of the application being referred to. 

jsdl:JobDefinitions/jsdl:JobDescription/jsdl:User, jsdl:DataStaging is a reference to or attributes of a user or a data staging sequence.

jsdl:JobDefinitions/jsdl:JobDescription/jsdl:User, jsdl:DataStaging /@ref is a QName of the user or a data staging sequence being referred to.
The following XML document is an example of a JSDL document.
<jsdl:JobDefinitions 
targetNamespace=”http://myorg/jobs”




xmlns:tns=”http://myorg/jobs”




xmlms:jsdl=”... JSDL ...”>
<jsdl:Resource name=”AnySuitableComputer”>

...

</jsdl:Resource>

<jsdl:Application name=”MonteCarloWebService”>

...

</jsdl:Application>

<jsdl:JobDescription name=”MonteCarloOnAnySuitableComputer”>


<jsdl:JobIdentifiction> ... </jsdl:JobIdentification>


<jsdl:Resource ref=”tns:AnySuitableComputer”/>


<jsdl:Application ref=”tns:MonteCarloWebService”/>


...

</jsdl:JobDescription>

</jsdl:JobDefinitions>

The document above declares the following QNames
· A resource {http://myorg/jobs, AnySuitableComputer}
· An application {http://myorg/jobs, MonteCarloWebService}
· A Job description {http://myorg/jobs, MonteCarloOnAnySuitableComputer}
The declared QNames can be used in other documents to refer to appropriate JSDL constructs. The definitions for the referred constructs, i.e. the JSDL document itself can, for example, be retrieved using the WS-MetadataExchange GetMetadata(Dialect = JSDL namespace, Identifier = “http://myorg/jobs”) operation (just like WSDL, XML Schema or WS-Policy documents).

JSDL Extensions
Following the WSDL approach of defining bindings (http://www.w3.org/TR/2004/WD-wsdl20-bindings-20040803/#soap-syntax), one can define extensions to JSDL core language in order to make more specific statements regarding resources, applications, hosting environments, etc. Certain set of default extensions may be normatively defined by the JSDL specification.
Here is an example of an application type extension for command-line execution.

<jsdl:Application ...

xmlns:jsdl-cl=”http://ggf.org/jsdl/apps/command-line”>

<jsdl-cl:Executable>...</jsdl-cl:Executable>

<jsdl-cl:Argument>...</jsdl-cl:Argument> *
...

</jsdl:Application>

And here is an example of an application type extension for Web service execution.

<jsdl:ApplicationType ...


xmlns:jsdl-ws=”http://ggf.org/jsdl/apps/web-service”>

<jsdl-ws:Message>...SOAP message goes here...</jsdl-cl:Message>

...

</jsdl:Application>

This way other necessary extensions can be defined and new extensions can be easily introduced (e.g. those that may follow from proper CIM->XML mapping in the future). The XML/Web services community, platform and tools vendors, architects and developers have learnt how to deal with information represented in this manner and it shall not be an invention of JSDL.
Note, more details and examples for this section will be provided later.

Conclusion

Apart from normatively defining a set of XML elements which contain various Job submission/description -related information, JSDL needs to define the reusable document structure and rules by which jobs are described. Even if a number of other sources can be used for resource-specific information and possibly application-specific information, there is no other source today, except JSDL, to provide a document structure and rules for the Job definition documents. Architecting extensibility and providing for proper document processing and reuse is very critical for the JSDL Working Group.
