JSDL maps

draft v 0.3.2

by Claudio Cacciari'
UniGrids project - Uniform Interface to Grid Services

1 CINECA - High Performance Computing Department

1

Contents

I IS D1 AN O 25 o' -} o TP 3
1.1 INErOAUCEION. ... e e a e
(A IS B I o AN [@ 1 11 <) o PN
1.2.1 JobIdentification.........cooviniiinii e
1.2.2 APPLCALION. ... e
1.2.3 RESOUICES. ...uiiniiiiiii ittt e et e et e e e e e e e teaaanans
1.2.4 DataStaging.....ccuoiuiiieiiiiiiee e e e
1.3 JSDL @XAMPLE....ueniniiiiiii e
2. GlOSSATY .ttt ettt 11
3. REIETEINCES. . oniiiieie e 12

1. JSDL - AJO map

1.1 Introduction

One way to write a submission request for Unicore/GS 1.0 is through the JSDL
language.

It is developed by the GGF JSDL-WG and is a specification for an abstract standard
about job submission that is independent of language bindings.

A JSDL request is an XML document complying with a normative XML schema
corresponding to the JSDL specification.

However some Unicore components, in the Unicore/GS 1.0 architecture, need to
comply with AJOs. These ones are java objects, conform to an internal standard,
which describe all Unicore actions (execute tasks, file transfers, jobs dependencies
and so on).

In order to preserve the compatibility with these components we have developed tools
to convert JSDL documents into AJOs and viceversa.

In this paper are considered the JSDL specification version 1.0 and the AJO
specification version 4.6 .

The next schema shows a possible mapping between the two specifications.

1.2 JSDL to AJO mapping

JSDL AJO
JobDefinition
JobDescription -> AbstractAction.ActionGroup.Abstract]ob
JoblIdentification{0,1}
JobName{0,1} -> AbstractAction.ActionGroup.Abstractjob.name
Description{0,1}
JobAnnotation{0,n} -> AbstractAction.notes
JobProject{0,n} -> Utility. UserAttributesConverter.project

Application{0,1}
ApplicationName{0,1} -> Resource.CapabilityResource.SoftwareResource.Application.name
| AbstractAction.ActionGroup.Abstractjob.JSDLImpl
application.name
ApplicationVersion{0,1} -> Resource.CapabilityResource.SoftwareResource.Application.version
| AbstractAction.ActionGroup.Abstractjob.JSDLImpl
application.version
AbstractAction.ActionGroup.AbstractJob.JSDLImpl
Description{0,1} -> application.description
| userApplication.description
POSIXApplication{0,1}

Executable{0,1} -> userApplication.executable
Argument{0,n} -> application.arguments

| userApplication.arguments
Input{0,1} -> application.stdin

| userApplication.stdin
Output{0,1} -> application.stdout

| userApplication.stdout
Error{0,1} > application.stderr

| userApplication.stderr
WorkingDirectory{0,1}
AbstractAction.ActionGroup.AbstractJob.JSDLImpl
Environment{0,n} -> environmentVariable
Resource.CapabilityResource.Limit

3

WallTimeLimit{0,1}

FileSizeLimit{0,1}
CoreDumpLimit{0,1}
DataSegmentLimit{0,1}
LockedMemoryLimit{0,1}
MemoryLimit{0,1}
OpenDescriptorsLimit{0,1}
PipeSizeLimit{0,1}
StackSizeLimit{0,1}
CPUTimeLimit{0,1}

ProcessCountLimit{0,1}
VirtualMemoryLimit{0,1}

ThreadCountLimit{0,1}
UserName{0,1}
GroupName{0,1}

Resources{0,1}
CandidateHosts{0,1}
HostName<{1,n}
FileSystem{O,n}

Description{0,1}
MountPoint{0,1}
MountSource{0,1}
DiskSpace{0,1}
FileSystemType{0,1}
ExclusiveExecution{0,1}
OperatingSystem{0,1}
OperatingSystemType{0,1}

-> limit & type.Wall time
| AbstractAction.ActionGroup.Abstractjob.JSDLImpl
resources.wall time limit
Resource.CapabilityResource.Limit

-> limit & type.File size

-> limit & type.Core _dump

-> limit & type.Data segment

-> limit & type.Locked memory
-> limit & type.Memory rss

-> limit & type.Open descriptors
-> limit & type.Pipe size

-> limit & type.Stack size

-> limit & type.CPU time

| AbstractAction.ActionGroup.AbstractJob.JSDLImpl
resources.cpu_time limit
-> limit & type.Process count
-> limit & type.Virtual memory
| AbstractAction.ActionGroup.AbstractJob.JSDLImpl
resources.virtual memory limit
-> limit & type.Thread count
-> Utility.UserAttributesConverter.xlogin

-> Vsite
-> Resource.CapacityResource.Storage.PathedStorage
AlternativeUspace
| Home
| Root
| StorageServer
| Temp
| USpace

-> request

OperatingSystemName{1,1}
OperatingSystemVersion{0,1}
CPUArchitecture{0,1}
CPUArchitectureName{1,1}
Individual CPUSpeed{0,1}
Individual CPUTime{0,1}
AbstractAction.ActionGroup.Abstract]ob.JSDLImpl
resources.cpu_count
-> Resource.CapacityResource.PerformanceResource.Network
performance

Individual CPUCount{0,1} ->
IndividualNetworkBandwidth{0,1}

IndividualPhysicalMemory{0,1}
IndividualVirtualMemory{0,1} -> AbstractAction.ActionGroup.Abstract]ob.JSDLImpl
resources.virtual memory_limit
| Resource.CapacityResource
Memory.request
IndividualDiskSpace{0,1}
Total CPUTime{0,1}
AbstractAction.ActionGroup.Abstract]ob.JSDLImpl
Total CPUCount{0,1} > resources.cpu_count
TotalPhysicalMemory{0,1}
TotalVirtualMemory{0,1} -> AbstractAction.ActionGroup.AbstractJob.JSDLImpl
resources.virtual memory limit
| Resource.CapacityResource.Memory.request
TotalDiskSpace{0,1}
TotalResourceCount{0,1} -> Resource.CapacityResource.Node
DataStaging{0,n}
AbstractAction.ActionGroup.Abstract]ob.JSDLImpl

FileName{1,1} -> stagelnFile.local name

| stageOutFile.local name
FileSystemName{0,1} -> stagelnFile.local file system name

| stageOutFile.local file system name
CreationFlag{1,1} -> stagelnFile.overwrite

4

| stageOutFile.overwrite
DeleteOnTermination{0,1}
Source{0,1}
URI{1,1} -> stagelnFile.vsite
| stagelnFile.file system name
| stagelInFile.file name
Target{0,1}
URI{1,1} -> stageOutFile.vsite
| stageOutFile.file system name
| stageOutFile.file name

The jobDefinition's attribute id is ignored.

For each JobDescription element there is one and only ONe AbstractAction.ActionGroup.AbstractJob .
Each abstractjob can't contain more than three ActionGroup : one for the import tasks, one
for the application task and one for the export tasks.

The abstractjob can't contain more than one application.

1.2.1 JobIdentification

The jobName element is mapped to the COI’I‘GSpOI’ldng AbstractAction.ActionGroup.Abstractjob.name .
The Dpescription element is ignored.

While the content of jobAnnotation and jobProject €lements is concatenated in a unique (for
each of the two elements) string and mapped respectively to AbstractAction.notes and
Utility.UserAttributesConverter.project .

In general all the elements with a multiplicity bigger than one, related to java object
with multiplicity one, are managed in this way: the content of each instance is
concatenated in a unique string, separated with single space and mapped to the
corresponding ajo element. So, for example :

<jsdl:JobAnnotation>first release</jsdl:JobAnnotation>
<jsdl:JobAnnotation>by Claudio Cacciari</jsdl:JobAnnotation>
<jsdl:JobAnnotation>12/12/2004</jsdl:JobAnnotation>

becomes :

“first release by Claudio Cacciari 12/12/2004”

1.2.2 Application

The ApplicationName element can be mapped to
Resource.CapabilityResource.SoftwareResource.Application.name or to the class
AbstractAction.ActionGroup.Abstractjob.JSDLImpl, method setApplication, PDarl ameter name. The same path
is used for ApplicationVersion, while Description is associated only to the JSDLImpl class.

This last one is the implementation of an AJO created from a JSDL template.

The choice to map ApplicationName and Applicationversion as a software resource or as an
application depends on the presence of the explicit path to the executable.

If the executable path is explicit the job description is interpreted as a user defined
application and appiicationName is translated to a software resource whose presence on
the target machine is mandatory, while if it is missing, applicationName is considered as a
symbolic name and the job will be associated to a specific application on the target

machine.

Also the elements under posixapplication are related to the executable if it is declared or
to the abstract application otherwise.

The Argument, Input, Output, Error and Environment €lements are mapped to the corresponding
parameters of the jsprmpi class, but Environment don't respect the rule above mentioned
about the mapping of elements with multiplicity bigger than one. Each element
Environment iS @ couple (name,value), thus the content of more instances can't be
concatenated and each element is mapped to one environmentvariable Of the ssprmmpi class.
The workingDirectory €lement is ignored because Unicore assigns a working directory to
the user.

All these last elements, Executable included, can have the attribute filesystemName . If it is
present, the element's content string must be interpreted as a filename relative to the
mount point of the named file system.

But Unicore doesn't allow to specify the mount point from the client side, it is fixed on
the server side, so the client can use only symbolic names as file systems references.
In order to solve the problem the content of fiesystemName is interpreted as a Unicore
symbolic name.

Besides Unicore executes the job only under the uspace (the Unicore working
directory), therefore all files requested by the job before the execution have to be
copied into the uspace, generating stage in tasks which are not explicit in the JSDL
job description.

So, for example, writing :

<jsdl-posix:Executable filesystemName="HOME">
testl.sh
</jsdl-posix:Executable>

is the same as :

<jsdl-posix:Executable>
testl.sh
</jsdl-posix:Executable>

<jsdl:DataStaging>
<jsdl:FileName>testl.sh</jsdl:FileName>
<jsdl:FileSystemName>USPACE</jsdl:FileSystemName>
<jsdl:CreationFlag>jsdl:overwrite</jsdl:CreationFlag>
<jsdl:DeleteOnTermination>true</jsdl:DeleteOnTermination>
<jsdl:Source>

<jsdl:URI>file:///testl.sh#home</jsdl:URI>

</jsdl:Source>

</jsdl:DataStaging>

This solution doesn't work for the Environment element because if we try to write :
<jsdl-posix:Environment name="TMPDIR” filesystemName="TMP"” />

we would export the variable TMPDI R=TMP because Unicore doesn't replace the content
of an environment variable. Therefore, in this case, the attribute fiesystemName Will be

ignored.

All the Limit elements are translated to the corresponding Resource.CapabilityResource.Limit and
three of them also to the respective limit parameter of the jsprLmmpr class.

The only important element related to the user's identity is userName which is
associated to utility.UserAttributesConverter.xlogin and whose value is the local user name of the
job owner under the target machine where the job will be executed.

The GroupName element is ignored.

1.2.3 Resources

The element HostName under candidateHosts iS mapped to a vsite Object, that is a collection
of resources on which a job runs. A typical configuration is a Unicore gateway for
each organization (usite) and a vsite for each machine of an organization, so to
determine univocally the job target machine is necessary to specify the URL of the
gateway and the symbolic name of the vsite.

In order to express this information as a unique URI, the path field of the URI is
interpreted as the vsite symbolic name. It will be :

ssl://gateway hostname:gateway port/vsite name

If there is more than one HostName Only the last one is considered.

The element FileSystem is associated to the Resource.CapacityResource.Storage.PathedStorage ClaSS,
whose subtypes represent different type of file storage. They are Home, Root, Temp, USpace,
AlternativeUspace and StorageServer, where AlternativeUspace is the WOI"kil’lg' directory of another
job (on the same Vsite and owned by the same User) and SstorageServer represents
various resource such as bulk storage and tape archives and backup facilities as well
as conventional file systems not modelled by other classes.

The elements Description, MountPoint, MountSource and FileSystemType A€ ignored.

The piskspace one is mapped to the parameter request for each storage subtypes.
However this parameter sets the amount of disk space of a particular storage
resource requested by the containing Unicore task (that is an import or export
operation or the execution of an application).

If the Unicore task doesn't perform operations on the file system whose disk space
has been requested the job fails.

This means, for example, that if a job contains two export tasks, one copies a file to
the home space, requiring 10 MB and the other to the temp space, requiring 20 MB,
the two disk space requests have to be associated to the respective tasks, not to the
whole job. This is not a mapping problem, but a JSDL document parsing and AJO
building issue.

Besides the piskspace's content is a range of values, while the request parameter is a java
double. There is more than one possibility to extract a value from a range. For all the
elements with a range type content the weakest constraint was chosen that is the
minimum value of the range.

The elements ExclusiveExecution, OperatingSystem, CPUArchitecture, IndividualCPUTime,
IndividualPhysicalMemory, IndividualDiskSpace, IndividualCPUSpeed, TotalPhysicalMemory and TotalDiskSpace aAre
ignored.

The element individualcPUCount iS related to the cpu count parameter of the jsprmpr class and
interpreted as the the number of CPUs for each of the resources to be allocated to the

job submission. And the total number of resources, TotalResourceCount, iS considered as
the number of nodes of a cluster.

In Unicore CPUs and memory requests are always managed as per node requests.
Therefore also the TotalcPucount element is mapped to the cpu count parameter, but
divided by the TotalResourcecount's content and rounded off to the superior integer.

The possible cases are :

IndividualCPUCount TotalCPUCount TotalResourceCount -> CPUs nodes

n m k n k

m k ceillm/k) k

n k n k

n m n 1

n n 1

m m 1

k 1 k

The same solution is adopted for the mdividualvirtualMemory and the TotalvirtualMemory
elements.

Another aspect is that one related to the measurement units.

The content of the elements IndividualVirtualMemory, TotalVirtualMemory, IndividualNetworkBandwidth
and bpiskspace iS expressed in bytes, while the respective AJO resources are in
megabytes so it is necessary a conversion.

It is the same for the Limit elements related to memory and disk space.

1.2.4 Data Staging

The patastaging elements group is interpreted as a stage in operation if it is present the
element source and as a stage out operation if there is an element Target . For the same
reason FileName, FileSystemName and uri are mapped to the addStagelnFile or
addStageOutFile method of the jsprmpr class.

The CreationFlag element allows three different values : overwite, dontOverwrite and append, but
only the first two are mapped, because Unicore doesn't support the append
operation.

The element DeleteOnTermination iS ignored.

All the stage in files are imported before the execution of the job, all the stage out
ones are exported after. If a stage in or stage out operation fails, the job fails.

In order to express the information related to the file name and the file system name
with a unique URI, the query part of a URI is considered as the file path and the
fragment one as the file system name :

upl://gateway hostname:gateway port/vsite name?path to file#file system name

In case of file transfer within the same machine (the same Unicore vsite), the path
field of the URI is interpreted as file path :

file:///<path to file>#file system name

1.3 JSDL example

The following code is an example of JSDL job.

<?xml version="1.0" encoding="UTF-8"7?>

<jsdl:JobDefinition xmlns="http://www.example.org/"
xmlns: jsdl="http://schemas.ggf.org/jsdl1/2005/06/jsdl"
xmlns: jsdl-posix="http://schemas.ggf.org/jsdl/2005/05/jsdl-posix"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<jsdl:JobDescription>
<jsdl:JobIdentification>
<jsdl:JobName>My Gnuplot invocation</jsdl:JobName>
<jsdl:Description> Simple application invokation:
User wants to run the application 'gnuplot' to
produce a plotted graphical file based on some data
shipped in from elsewhere(perhaps as part of a
workflow). A front-end application will then build
into an animation of spinning data.

Front—-end application knows URI for data file which
must be staged-in. Front-end application wants to
stage in a control file that it specifies directly
which directs gnuplot to produce the output files.

In case of error, messages should be produced on
stderr (also to be staged on completion) and no
images are to be transferred.
</jsdl:Description>
</jsdl:JobIdentification>
<jsdl:Application>
<jsdl:ApplicationName>gnuplot</jsdl:ApplicationName>
<jsdl-posix:POSIXApplication>
<jsdl-posix:Executable>gnuplot</jsdl-posix:Executable>
<jsdl-posix:Argument>control.txt</jsdl-posix:Argument>
<jsdl-posix:Input>input.dat</jsdl-posix:Input>
<jsdl-posix:Output>outputl.png</jsdl-posix:Output>
</jsdl-posix:POSIXApplication>
</jsdl:Application>
<jsdl:Resources>
<jsdl:CandidateHosts>
<jsdl:HostName>ssl://pc-cacciari.cineca.it:4433/PC-
CACCIARI</jsdl:HostName>
</jsdl:CandidateHosts>
<jsdl:FileSystem name="ROOT">
<jsdl:Description>root dir</jsdl:Description>
</jsdl:FileSystem>
<jsdl:IndividualVirtualMemory>
<jsdl:LowerBoundedRange>134217728.0</jsdl:LowerBoundedRange>
</jsdl:IndividualVirtualMemory>
<jsdl:TotalCPUCount>
<jsdl:Exact>1.0</jsdl:Exact>
</jsdl:TotalCPUCount>
</jsdl:Resources>
<jsdl:DataStaging>

<jsdl:FileName>gnuplot</jsdl:FileName>
<jsdl:CreationFlag>jsdl:overwrite</jsdl:CreationFlag>
<jsdl:DeleteOnTermination>true</jsdl:DeleteOnTermination>
<jsdl:Source>
<jsdl:URI>file:///usr/bin/gnuplot#RO0OT</jsdl:URI>
</jsdl:Source>
</jsdl:DataStaging>
<jsdl:DataStaging>
<jsdl:FileName>control.txt</jsdl:FileName>
<jsdl:CreationFlag>jsdl:overwrite</jsdl:CreationFlag>
<jsdl:DeleteOnTermination>true</jsdl:DeleteOnTermination>
<jsdl:Source>
<jsdl:URI>file:///control.txt#HOME</jsdl:URI>
</jsdl:Source>
</jsdl:DataStaging>
<jsdl:DataStaging>
<jsdl:FileName>input.dat</jsdl:FileName>
<jsdl:CreationFlag>jsdl:overwrite</jsdl:CreationFlag>
<jsdl:DeleteOnTermination>true</jsdl:DeleteOnTermination>
<jsdl:Source>
<jsdl:URI>file:///input.dat#HOME</jsdl:URI>
</jsdl:Source>
</jsdl:DataStaging>
<jsdl:DataStaging>
<jsdl:FileName>outputl.png</jsdl:FileName>
<jsdl:CreationFlag>jsdl:overwrite</jsdl:CreationFlag>
<jsdl:DeleteOnTermination>true</jsdl:DeleteOnTermination>
<jsdl:Target>
<jsdl:URI>file:///outputl.png#HOME</jsdl:URI>
</jsdl:Target>
</jsdl:DataStaging>
</jsdl:JobDescription>
</jsdl:JobDefinition>

and this is the corresponding AJO tasks tree :

fad jsoLImpl

L= @ ActionCroup
¢>!ﬂi CopFile
- .!!l:apwfne

b UserTask
b <oy b akePorfolio
o= M akePortfolio
b EActinnGrnup
¢ [AG| copyaciox
&= CopyFile

o [aT] [Corvie]

10

2.Glossary

AJO : Abstract Job Object

GGF : Global Grid Forum

JSDL : Job Submission Description Language

JSDL-WG : Job Submission Description Language Working Group
URI : Uniform Resource Identifier

URL : Uniform Resource Locator

11

3.References

1. Ali Anjomshoaa, Fred Brisard, An Ly, Stephen McGough, Darren Pulsipher,

Andreas Savva. Job Submission Description Language (JSDL) Specification Version
1.0.

2. http://unicore.sourceforge.net/

12

