Version 0.2, 10 July 2007
Project Name:

Collaborative Climate Community Data and Processing Grid (C3Grid),
WP6: C3Grid Workflow Scheduling Service

Contact:

Alexander Papaspyrou <alexander.papaspyrou@tu-dortmund.de>

Christian Grimme <christian.grimme@udo.edu>

Date:

20.02.2008
Introduction

The Collaborative Climate Community Data and Processing Grid (C3Grid) is a cooperation of earth system science and computer science researchers that aims to provide an integrated Grid technology solution for Earth System Science.

Major challenges regarding workflow planning and management include

· Standardized access to heterogeneous and distributed data archives and intelligent data preselection and preprocessing to minimize wide-area transfers.

· Automatic co-allocation of compute and data resources to ensure just-in-time data availability for compute jobs using planned transfers.

· Unified usage of compute resources with next-generation scheduling features such as negotiation and agreement for advance reservation.

The C3Grid Workflow Scheduling Service (WSS) provides comprehensive support for submission, planning, execution, and control of workflows with respect to the aforementioned requirements.
Implemented JSDL Elements:

Please check the elements that you implemented in the table below. Additional comments are welcome. For example, problems implementing an element; restrictions placed beyond what was specified in the specification; reasons for not implementing a feature.
	JSDL Element
	Yes
	No
	N/A
	Comments

	JobIdentification 
	
	
	
	

	JobName 
	X
	
	
	

	JobAnnotation 
	
	X
	
	Not currently.

	JobProject
	
	X
	
	Not currently.

	Application 
	
	
	
	

	ApplicationName 
	
	X
	
	Planned (for predefined, user portal-selectable workflows).

	ApplicationVersion 
	
	X
	
	Planned (for predefined, Grid portal-selectable workflows).

	Resources 
	
	
	
	

	CandidateHosts 
	X
	
	
	For user preselection, portal preselection (data staging jobs only), and scheduler (candidate set generator) preselection

	HostName 
	X
	
	
	Can be virtual (aka. key for  Information System)

	FileSystem 
	X
	
	
	

	MountPoint 
	X
	
	
	If provider-defined in Information System

	MountSource 
	
	X
	
	

	DiskSpace 
	
	X
	
	

	FileSystemType 
	
	X
	
	

	ExclusiveExecution 
	
	X
	
	

	OperatingSystem 
	
	X
	
	Planned (pending implementation)

	OperatingSystemType 
	
	X
	
	Planned (pending implementation)

	OperatingSystemName 
	
	X
	
	Planned (pending implementation)

	OperatingSystemVersion 
	
	X
	
	Planned (pending implementation)

	CPUArchitecture 
	
	X
	
	Planned (pending implementation)

	CPUArchitectureName 
	
	X
	
	Planned (pending implementation)

	IndividualCPUSpeed
	
	X
	
	

	IndividualCPUTime 
	
	X
	
	

	IndividualCPUCount 
	
	X
	
	

	IndividualNetworkBandwidth 
	
	X
	
	

	IndividualPhysicalMemory 
	
	X
	
	

	IndividualVirtualMemory 
	
	X
	
	

	IndividualDiskSpace 
	
	X
	
	

	TotalCPUTime 
	
	X
	
	Planned (pending implementation)

	TotalCPUCount 
	
	X
	
	Planned (pending implementation)

	TotalPhysicalMemory
	
	X
	
	Planned (pending implementation)

	TotalVirtualMemory
	
	X
	
	

	TotalDiskSpace 
	
	X
	
	Planned (pending implementation)

	TotalResourceCount
	
	X
	
	

	DataStaging


	
	
	
	

	FileName
	X
	
	
	

	FilesystemName
	X
	
	
	

	CreationFlag
	
	X
	
	

	DeleteOnTermination
	
	X
	
	Planned (pending implementation)

	Source
	X
	
	
	

	Target
	X
	
	
	

	POSIXApplication  
	
	
	
	

	Executable 
	X
	
	
	

	Argument 
	X
	
	
	

	Input 
	X
	
	
	

	Output 
	X
	
	
	

	Error 
	X
	
	
	

	WorkingDirectory 
	X
	
	
	

	Environment 
	X
	
	
	

	WallTimeLimit
	X
	
	
	

	FileSizeLimit 
	
	X
	
	

	CoreDumpLimit
	
	X
	
	

	DataSegmentLimit 
	
	X
	
	

	LockedMemoryLimit 
	
	X
	
	

	MemoryLimit 
	X
	
	
	

	OpenDescriptorsLimit 
	
	X
	
	

	PipeSizeLimit 
	
	X
	
	

	StackSizeLimit 
	
	X
	
	

	CPUTimeLimit 
	X
	
	
	

	ProcessCountLimit 
	
	X
	
	

	VirtualMemoryLimit 
	
	X
	
	

	CPUTimeLimit 
	X
	
	
	

	ProcessCountLimit 
	
	X
	
	

	VirtualMemoryLimit 
	
	X
	
	

	ThreadCountLimit 
	
	X
	
	

	UserName 
	
	X
	
	

	GroupName
	
	X
	
	

	HPCProfileApplication
	
	
	
	

	Executable 
	
	X
	
	Planned (pending implementation)

	Argument 
	
	X
	
	Planned (pending implementation)

	Input 
	
	X
	
	Planned (pending implementation)

	Output 
	
	X
	
	Planned (pending implementation)

	Error 
	
	X
	
	Planned (pending implementation)

	WorkingDirectory 
	
	X
	
	Planned (pending implementation)

	Environment 
	
	X
	
	Planned (pending implementation)

	UserName 
	
	X
	
	


Other problems encountered:

Did you have any problems with the specification besides comments you may have added to the table above?
A major concern of our project was the support of workflows. Within C3Grid, a simple, proprietary XML dialect for DAG-style job definitions has been designed and implemented. However, JSDL does not directly support the connection of output files from one job to input files of another job.
To overcome this deficiency, the <jsdl:DataStaging> “name” attribute has been used for this: the workflow engine detects identical values of this attribute and connects the corresponding data staging elements from two JSDL definitions as input and output. Then, the scheduler dynamically inserts data transfer tasks into the workflow depending on job and network allocation decisions.
To this end, the DataStaging contents are interpreted as follows:

· No <jsdl:Source> and no <jsdl:Target> leads to an automatic transfer injection by the scheduler, depending on its decisions.

· A <jsdl:Source> and no <jsdl:Target> leads to an import from a user-defined source to a scheduler-selected target, depending on its decisions. This applies to data within the workflow at the beginning of a branch within the graph.

· No <jsdl:Source> and a <jsdl:Target> leads to an export from a scheduler-selected source (based on previous decisions) to a user-defined target. This applies to data within the workflow at the end of a branch within the graph.

Regarding the <jsdl:URI> element, project-specific namespaces are used.
Mappings to existing systems:

If you mapped JSDL to an existing system (batch or otherwise), please provide a list of systems you mapped to (with online pointers if available).
Were there any specific problems mapping to any of these systems? 
	JSDL w/ POSIXApplication
	RSL for Globus Toolkit 4.x

	Argument
	argument

	WorkingDirectory
	directory

	Environment
	environment

	Executable
	executable

	CPUTimeLimit
	maxCpuTime

	MemoryLimit
	maxMemory

	WalltimeLimit
	maxWallTime

	Error
	stderr

	Input
	stdin

	Output
	stdout


Mappings for HPCApplication and SPMDApplication are pending implementation.
Enhancements:
If you extended JSDL with your own features, please provide a list; and a short description or online pointer to features you added.
An additional application profile has been created, which is C3Grid-proprietary and encapsulates the extraction of climate data sets from Web Service-accessible databases to file systems. Currently, however, the specification has not been published and is used internally only.
Participation in interoperability tests:

Did you participate in any JSDL interoperability test, official or otherwise? For example, the HPC Profile Interop at SC06, or some other informal venue, etc. 

Is there a description of the JSDL features tested? (This is not necessary for the HPC Profile Interop.)
No.
Security:
What security model did you use with JSDL? For example, how did you secure submissions of JSDL documents? 

Did you include any security information in JSDL documents? 

Were there any problems combining JSDL with your security solution?
Our security model is the usage of WS-Security (both message and conversation level) and TLS for the transport. It is planned to use Shibboleth SAML assertions for authorization in the future; currently, however, it is unclear whether this information (or a pointer to it) will be included in JSDL.
� See Section „Other Problems encountered“.





