GWD-R (draft-ggf-jsdl-spec-0.9.5)

Authors:
Job Submission Description Language (JSDL) Specification
Ali Anjomshoaa, EPCC
http://forge.gridforum.org/projects/jsdl-wg

Fred Brisard, CA

An Ly, CA

Stephen McGough, LeSC

Darren Pulsipher, Ovoca LLC
Andreas Savva, Fujitsu (Editor)

15 March 2005
Job Submission Description Language (JSDL) Specification version 0.9.5
15 March 2005

Job Submission Description Language (JSDL) Specification
Version 0.9.4
Status of this Memo

This document provides information to the Grid community regarding the specification of the Job Submission Description Language (JSDL). Distribution is unlimited.
This document is being constantly updated. The latest version can be found at: https://forge.gridforum.org/projects/jsdl-wg/document/draft-ggf-jsdl-spec/en/
Copyright Notice

Copyright © Global Grid Forum (2003-2005). All Rights Reserved.

Abstract

This specification document details the semantics and structure of the Job Submission Description Language (JSDL). JSDL is used to describe the requirements of computational jobs for submission to resources, particularly in Grid environments (though not restricted to the latter). The normative XML schema for the JSDL is contained in the Appendix, along with examples of JSDL documents based on this schema.

Contents

1Job Submission Description Language (JSDL) Specification

Version 0.9.4
1
Status of this Memo
1
Copyright Notice
1
Abstract
1
1
Introduction
5
2
Notational Conventions
6
3
The Scope of JSDL
7
3.1
Out of scope
9
3.1.1
Numerical Operators
9
4
The JSDL Structure
9
4.1
JSDL Document Layout
9
4.2
JSDL Element Type Information
10
4.2.1
Normative XML Schema Types
10
4.2.2
JSDL types
10
5
The JSDL Core Element Set
13
5.1
Job Structure Elements
13
5.1.1
JobDefinition
13
5.1.2
JobDescription
14
5.1.3
Description Element
14
5.2
Job Identity Elements
15
5.2.1
JobIdentification
15
5.2.2
JobName
15
5.2.3
JobAnnotation
16
5.2.4
JobProject
16
5.3
User Elements
17
5.3.1
User
17
5.3.2
ExecutionUserID
17
5.3.3
ExecutionGroupID
18
5.3.4
UserGroup
18
5.4
Application Requirements
19
5.4.1
Application Element
19
5.4.2
ApplicationName Element
19
5.4.3
ApplicationVersion Element
20
5.5
Resource Elements
20
5.5.1
Resource
20
5.5.2
HostName
21
5.5.3
CPUArchitecture
21
5.5.4
CPUSpeed
21
5.5.5
CPUTime
22
5.5.6
CPUCount
22
5.5.7
ResourceCount
23
5.5.8
PhysicalMemory
23
5.5.9
VirtualMemory
23
5.5.10
NetworkBandwidth
24
5.5.11
FileSystem
24
5.5.12
MountPoint of FileSystem
25
5.5.13
MountSource of FileSystem
26
5.5.14
DiskSpace of File System
27
5.5.15
FileSystemType of File System
27
5.5.16
ExclusiveExecution
28
5.5.17
OperatingSystem
28
5.5.18
OperatingSystemType
29
5.5.19
OperatingSystemVersion
29
5.5.20
Additional Resources
30
5.6
Data Staging Elements
30
5.6.1
DataStaging Element
30
5.6.2
FileName Element
32
5.6.3
FileSystemID Element
33
5.6.4
CreationFlag Element
33
5.6.5
DeleteOnTermination Element
34
5.6.6
Source Element
34
5.6.7
URI Element
35
5.6.8
Target Element
36
5.7
Limits Elements
37
5.7.1
Limits Element
37
5.7.2
Limit Element
37
6
Process Topology
38
7
Extending JSDL
40
7.1
Attribute Extension
40
7.2
Element Extension
40
7.3
Extension Examples
40
8
Normative Extensions
40
8.1
Executables on POSIX conformant hosts
40
8.1.1
POSIXApplication Element
40
8.1.2
Executable Element
41
8.1.3
Argument Element
42
8.1.4
Input Element
43
8.1.5
Output Element
43
8.1.6
Error Element
44
8.1.7
WorkingDirectory Element
44
8.1.8
Environment Element
44
8.1.9
TileSize Element
45
8.1.10
WallTime Element
45
8.1.11
FileSize Element
46
8.1.12
CoreDump Element
46
8.1.13
DataSegment Element
46
8.1.14
LockedMemory Element
47
8.1.15
Memory Element
47
8.1.16
OpenDescriptors Element
48
8.1.17
PipeSize Element
48
8.1.18
StackSize Element
48
8.1.19
CPUTime Element
49
8.1.20
ProcessCount Element
49
8.1.21
VirtualMemory Element
50
8.1.22
ThreadCount Element
50
9
Security Considerations
50
Author Information
51
Contributors
51
Acknowledgements
51
Glossary
51
Full Copyright Notice
51
Intellectual Property Statement
52
Normative References
52
Informative References
52
Appendix 1: Full version of the pseudo-schema
53
Appendix 2: Normative Schema
53
Appendix 3: Translation Tables
53
Appendix 4: JSDL Examples
53

1 Introduction
The Job Submission Description Language (JSDL) is a language for describing the requirements of computational jobs for submission to job management systems. The JSDL language contains a vocabulary that facilitates the expression of those requirements as a set of JSDL job elements. The structure of the language provides the grammar, and therefore, the syntax for the JSDL.

There is a very real need for the JSDL as it will enable jobs to be described in a standard way so that their description may be ported to, and understood by, different job management systems. These systems, which include batch systems, will typically have their own languages and means for describing computational jobs and managing them. Currently, to make use of multiple job management systems a user has to have several job descriptions, one for each of the existing systems that they wish to use.

Moreover, Grid environments that involve the interaction of a number of different job management systems in a heterogeneous environment, require that there is a standard intermediary language for the description of computational jobs, which can be understood by all of those job management systems. It will be necessary for implementers of those job management systems to provide the necessary means by which to translate the JSDL into the specific language for their system, or to be able to parse and utilize the JSDL in its native form. This will enable many existing job management systems that may exist in complex heterogeneous environments, such as computational Grids, to make use of a single job submission description.

The JSDL language elements allow the description of the requirements of computational jobs. JSDL version 1.0 elements fall broadly into the following categories:
· Job identification requirements;
· Resource requirements; and

· Data requirements.

Once the necessary job requirements have been captured in a JSDL document, the document can be used for job submission into potentially complex and heterogeneous job management environments. The JSDL document is a job template and does not contain any information that is specific to a job instance. It can therefore be submitted into any number of environment types and represent any number of job instances. Information specific to individual job instances may be maintained by the underlying job management systems, possibly in separate documents.
A large variety of job management systems may consume a JSDL document,(e.g. Job Submission Clients, Job and Resource Schedulers, Job and Resource Brokers, Accounting Systems, Security Systems, Archiving Systems, Provenance (Audit) Systems, and so on).
[Insert Dave’s Diagram with general names about architecture and where JSDL can be used]
[image: image1.png]

Figure 1: JSDL consumers
2 Notational Conventions

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” are to be interpreted as described in RFC-2119 [ref RFC 2119].

Pseudo-schemas are provided for each component, before the description of the component. They use BNF-style conventions for attributes and elements: ? denotes optionality (i.e. zero or one occurrences), * denotes zero or more occurrences, + one or more occurrences, [and] are used to form groups, | represents choice. Attributes are conventionally assigned a value which corresponds to their type, as defined in the normative schema. [ref W3C]
<!-- sample pseudo-schema -->

<defined_element

 required_attribute_of_type_string="xs:string"

 optional_attribute_of_type_int="xs:int"? >

 <required_element />

 <optional_element />?

 <one_or_more_of_these_elements />+

 [<choice_1 /> | <choice_2 />]*

</defined_element>

This specification uses namespace prefixes throughout; they are listed in Table 1. Note that the choice of any namespace prefix is arbitrary and not semantically significant.

Table 1: Prefixes and namespaces used in this specification.

	Prefix
	Namespace

	xsd
	http://www.w3.org/2001/XMLSchema

	jsdl
	http://www.ggf.org/namespaces/2004/11/jsdl-0.9.xsd

	jsdl-exec
	http://www.ggf.org/namespaces/2004/11/jsdl-exec-0.9.xsd

The terms JSDL element and JSDL attribute indicate that the corresponding language construct is represented as an XML element and XML attribute in the schema.

The key word present refers to a construct being present in the JSDL document.

The key word support refers to a consuming system being able to parse, interpret and assign to a JSDL element or attribute the semantics described in this specification. It does not necessarily mean that the consuming system can act on the construct or interpret it.

3 The Scope of JSDL

It should cover:

· Why no security or scheduling elements are defined

· Cover JSDL version 1 scope

· Template and what that means
 (we don’t define job instances or what a job is)

· Why no security or scheduling element are defined

· A diagram showing where JSDL fits in the OGSA architecture (borrow from OGSA EMS). Also look at the Grid Scheduling Architecture WG as well. Also DRM.
· Positioning and relation of JSDL version 1 relative to other GGF efforts such as WS-Agreement, CDDLM, etc. (Also how JSDL would be used in conjunction with them.)

· I think that it is dangerous to cross-reference to other specifications at this time, especially since all of these are extremely unstable. Their instability will put the accuracy and relevance of this specification at risk.

[image: image2]
Figure 2: Relation of JSDL to other standards

Key to the above figure:

RRL – Resource Requirements Language

SDL – Scheduling Description Language

WS-A – Web Service Agreement

JPL – Job Policy Language

JLM – Job Lifetime Management

JSDL should not be seen as the only language for submitting jobs to the Grid. Instead JSDL should be seen as one of many languages, and standards, that are required for the submission of a job. Outlined here (see Figure 2) are the other elements that are required in order to submit jobs to the Grid. Many of these languages are currently undefined though are required for the submission of jobs.

The JSDL document requires a sub-language for describing the resource requirements for a Job, termed a Resource Requirements Language (RRL). A full definition of this RRL language would be a full specification in its own right and is thus beyond the scope of this specification. We provide, however, a core set of terms that this language should contain and encourage others to expand on this.

Scheduling, and the description of this scheduling, is a complicated area of job submission. This could include such things as time based scheduling, scheduling of repeated submission and is therefore out of scope of the JSDL. We do however see a Scheduling Description Language as a sister language to JSDL.

Lifetime management of jobs is important and we see there is a need for a Job Lifetime Management (JLM) language. As this deals with more than the submission stage this is outside the scope of JSDL. Again we see this as a sister language to JSDL.

Job policy encompasses the stage of job submission though it also covers many other aspects of the jobs existence. Thus is again outside the scope of the JSDL. Likewise a Job Policy Language (JPL) could be seen as a sister language to JSDL.

Building up an agreement between a resource and a job submitter is currently the work of the WS-Agreement group. We see WS-Agreement as a useful tool in the submission of a job. However, many systems currently in use don’t require such functionality. We therefore see it that JSDL can be deployed in an environment with or without WS-Agreement.

JSDL is designed for submitting single jobs to resources. There is great interest in developing workflow aware languages. This we feel is well outside the scope of the JSDL group. Many other groups within (and without) the GGF. We would however encourage these groups to use JSDL to describe individual jobs.

3.1 Out of scope

The following functionality is out of scope of JSDL specification version 1.0.

[ADD MORE HERE]
3.1.1 Numerical Operators

Numerical operators will not be supported in the JSDL specification version 1.0. Numerical operators include:
· + - addition

· - - subtraction

· * - multiplication

· / - division

· % - modulus (this is the remainder when you divide by something)

Numerical operators can be used through the general XML extensibility mechanism. For example:
<foo:CustomResource> mem * cpus > 1000</foo:CustomResource>
4 The JSDL Structure

4.1 JSDL Document Layout

A JSDL document is described using XML and adheres to the normative XSD schema contained in §Appendix 2:. The following sections describe the organisation of a JSDL document.
The document is organized as follows: The root element “JobDefinition” contains a single mandatory child element named “JobDescription. The JobDescription contains elements that describe the job: JobIndentification, User, Application, Resource, and DataStaging. A pseudo schema example follows:

<JobDefinition>

 <JobDescription>

 <JobIdentification ... />?

 <User ... />?

 <Application ... />

 <Resource ... />*

 <DataStaging ... />*

</JobDescription>

</JobDefinition>

4.2 JSDL Element Type Information
The JSDL specification adopts a number of normative xsd types. It also defines a number of types specific to the description of job requirements.

The JSDL-WG has based the definition of a number of types on existing standards, in particular CIM and POSIX. Since there is no available normative XML schema definition of these types one is provided here. The types defined based on CIM are Processor Architectures
, and Operating Systems. The Limit types are based on POSIX.
A number of types define a special value ‘other’. This value can be used to introduce elements from other specifications.

4.2.1 Normative XML Schema Types

The JSDL specification adopts the following normative xsd types:

· xsd:string - Data of this type has no required restrictions on the length or available characters.

· xsd:normalizedString

· xsd:positiveInteger

· xsd:boolean

· xsd:NCName

· xsd:anyType

· xsd:token

· xsd:any##other

· Complex

4.2.2 JSDL types

The following additional types are defined by the JSDL schema version 1.0.

4.2.2.1 Processor Architectures (jsdl:ProcessorArchitectureEnumeration)

The processor architecture is defined by the ISA processor architecture value for the machine. The following are the values that MUST be supported.

· sparc

· powerpc

· x86

· parisc

· mips

· ia64

· arm

· other

The values can be extended as additional CPU Architectures are identified.

4.2.2.2 Filesystem Types (jsdl:FileSystemTypeEnumeration)

The following are the defined filesystem types that MUST be supported.

· swap – conventional swap space for paging out memory

· tmp – conventional temporary space for a file that is periodically removed. The space is unavailable after the job completes.

· spool – temporary space for a file that may persist after the completes.

· normal – This is a normal space for files to be written to and read from. Files are not deleted after the job except explicitly by the user.

This list of types is extensible. Extensions of this token set MUST NOT be inside the jsdl namespace.

4.2.2.3 Operating System Types (jsdl:OperatingSystemTypeEnumeration)

The following values MAY be supported by the consuming system. If the consuming system supports the following values they MUST interpret them accordingly.

The values listed here are from the OSType field of the CIM_OperatingSystem model.

	Normative JSDL Names

	Unknown
	WINNT
	LINUX
	HP_MPE

	Other
	WINCE
	Lynx
	NextStep

	MACOS
	NCR3000
	XENIX
	PalmPilot

	ATTUNIX
	NetWare
	VM
	Rhapsody

	DGUX
	OSF
	Interactive_UNIX
	Windows_2000

	DECNT
	DC_OS
	BSDUNIX
	Dedicated

	Tru64_UNIX
	Reliant_UNIX
	FreeBSD
	OS_390

	OpenVMS
	SCO_UnixWare
	NetBSD
	VSE

	HPUX
	SCO_OpenServer
	GNU_Hurd
	TPF

	AIX
	Sequent
	OS9
	Windows_R_Me

	MVS
	IRIX
	MACH_Kernel
	Caldera_Open_UNIX

	OS400
	Solaris
	Inferno
	OpenBSD

	OS_2
	SunOS
	QNX
	Not_Applicable

	JavaVM
	U6000
	EPOC
	Windows_XP

	MSDOS
	ASERIES
	IxWorks
	z_OS

	WIN3x
	TandemNSK
	VxWorks
	Microsoft_Windows_Server_2003

	WIN95
	TandemNT
	MiNT
	Microsoft_Windows_Server_2003_64-Bit

	WIN98

	BS2000
	BeOS
	

4.2.2.4 File Creation Flags (jsdl:CreationFlagEnumeration)

This element is an enumeration of the following values:

· Overwrite –overwrite an existing file with the same name; create a new one otherwise.

· DontOverwrite—do not overwrite an existing file with the same name.

· Append –append to an existing file with the same name; create a new one otherwise.

· Prepend – prepend to an existing file with the same name; create a new one otherwise.

4.2.2.5 Range Value (jsdl:RangeValueType)

A range value is a complex type that allows to define exact values (with an optional epsilon argument), left-open or right-open intervals and ranges. All numbers given are of type xsd:double. UpperBoundedRanges and LowerBoundedRanges are limited to the upper or lower bound, respectively. They are “unlimited” to infinity (either negative or positive, respectively) subject to the consuming system’s capabilities. Expressed in Java, this “infinity” would be java.lang.Double.NEGATIVE_INFINITY and java.lang.Double.POSITIVE_INFINITY, respectively.
The optional attribute “exclusiveBound” has the default value of “false” if it is not specified. If the optional attribute “epsilon” is not specified, an exact match MUST be assumed. If an exact match cannot be provided in such case, the document MUST be rejected by the consuming system.
RangeValues that specify intersecting ranges MAY be collapsed by the consuming system in order to match the given job description, but the JSDL document MUST NOT be changed itself.
This type MUST be supported by the consuming system.
Pseudo-Code
<...>
 <UpperBoundedRange exclusiveBound="xsd:boolean"?>

 xsd:double

 </UpperBoundedRange> ?

 <LowerBoundedRange exclusiveBound="xsd:boolean"? >

 xsd:double

 </LowerBoundedRange> ?

 <Exact epsilon=”xsd:double”?> xsd:double </Exact> *

 <Range>

 <LowerBound exclusiveBound="xsd:boolean"? >

 xsd:double

 <LowerBound>

 <UpperBound exclusiveBound="xsd:boolean"? >

 xsd:double

 </UpperBound>

 </Range> *

</...>
4.2.2.5.1 Example

The expression “5, 6.7777, 7.0, [50.3-99.5[, [100-” would be encoded in a RangeValue like this:

<...>

 <LowerBoundedRange> 100.0 </LowerBoundedRange>

 <Exact> 5.0 </Exact>
 <Exact epsilon=”0.00001”> 6.7777 </Exact>

 <Exact> 7.0 </Exact>
 <Range>

 <LowerBound> 50.3 </LowerBound>

 <UpperBound exclusiveBound=”true”> 99.5 </UpperBound>
 </Range>
</...>
5 The JSDL Core Element Set

The JSDL core element set contains the semantics for elements that MUST be supported by JSDL compliant job management systems. It is not necessary that all of the core elements be supported by those systems. A system MUST, however, be able to parse and handle all of the core elements.

5.1 Job Structure Elements

5.1.1 JobDefinition

5.1.1.1 Definition

This element describes the Job and it requirements. It contains a Job Description section. It MUST be supported. It is the root element of the JSDL document and MUST be present.

5.1.1.2 Multiplicity - 1

5.1.1.3 Type – Complex

This complex type MUST support the following elements:

· JobDescription

5.1.1.4 Attributes

·
·
·
· id – the id of the Job definition document. This is defines as a xsd:ID and is in the default namespace of the document. The id MAY be omitted.

5.1.1.5 Pseudo Schema

<JobDefinition id=”xsd:ID”?
>

 <JobDescription ... />

 <xsd:any##other/>*

</JobDefinition>

5.1.1.6 Example

5.1.2 JobDescription

5.1.2.1 Definition

This element describes the Job and it requirements. It contains Job Identification, User, Application, Resources, and DataStaging elements. It MUST be supported. It MUST be a sub-element of JobDefinition.

5.1.2.2 Multiplicity - 1

5.1.2.3 Type – Complex

This complex type MUST support the following elements:

· JobIdentification

· User

· Application

· Resource

· DataStaging

5.1.2.4 Attributes

None

5.1.2.5 Pseudo Schema

<JobDescription>

 <JobIdentification ... />?

 <User ... />?

 <Application ... />?

 <Resource ... />*

 <DataStaging ... />*

 <xsd:any##other>*

</JobDescription>

5.1.2.6 Example

5.1.3 Description Element

5.1.3.1 Definition

This element provides descriptive information about its containing complex element. It MUST be supported. It can be present as a sub-element of a number of other JSDL elements: JobIdentification, Application, FileSystem, etc. If this is not present as a sub-element then no description is defined. This is a human readable string.

5.1.3.2 Multiplicity – 0-1

5.1.3.3 Type – xsd:string

5.1.3.4 Attributes

None.

5.1.3.5 Pseudo Schema

<Description> xsd:string </Description>

5.2 Job Identity Elements
5.2.1 JobIdentification

5.2.1.1 Definition

This element contains all other elements that identify the Job. It contains the following elements: Job Name, Job Description, Job Annotation, and Job Project. It MUST be supported. It MUST be a sub-element of JobDescription if it is present. If this element is not present then its value, including all of its sub-elements, is undefined.

5.2.1.2 Multiplicity – 0-1

5.2.1.3 Type – Complex

This complex type MUST support the following elements:

· JobName,

· Description,

· JobAnnotation,

· JobProject,

· xsd:any##other – any other xml elements not part of this schema.

5.2.1.4 Attributes

None

5.2.1.5 Pseudo Schema

<JobIdentification>

 <JobName ... />?

 <Description ... />?

 <JobAnnotation ... />*

 <JobProject ... />*

 <xsd:any##other>*

</JobIdentification>?

5.2.1.6 Example
5.2.2 JobName

5.2.2.1 Definition

A string that MAY be specified by a user to name the job specified in this JSDL document. It may not be unique to a particular JSDL document, which means that a user MAY specify the same JobName for multiple JSDL documents. It MUST be supported. It MUST be a sub-element of JobIdentification if it is present. If this element is not present then it is not defined.

5.2.2.2 Multiplicity – 0-1

5.2.2.3 Type – xsd:string

5.2.2.4 Attributes

None

5.2.2.5 Pseudo Schema

<JobName> xsd:string </JobName>?

5.2.2.6 Example

May be used for search and sort purposes and for job management.
5.2.3 JobAnnotation
5.2.3.1 Definition

A string that MAY be specified by a user to annotate the job. It MUST be supported. It MUST be a sub-element of JobIdentification if it is present.

5.2.3.2 Multiplicity – 0-n

5.2.3.3 Type – xsd:string

5.2.3.4 Attributes

None

5.2.3.5 Pseudo Schema

<JobAnnotation> xsd:string </JobAnnotation>*

5.2.3.6 Example

May be used for search and sort purposes and for job management.
5.2.4 JobProject

5.2.4.1 Definition

A string specifying the project to which the job belongs. The project CAN be used to by accounting systems or access control systems. It MUST be supported. It MUST be a sub-element of JobIdentification if it is present. The interpretation of the JobProject elements is left to the implementation of the consuming system.

5.2.4.2 Multiplicity – 0-n

5.2.4.3 Type – xsd:string

5.2.4.4 Attributes

None

5.2.4.5 Pseudo Schema

<JobProject> xsd:string </JobProject>*

5.2.4.6 Example

The JobProject element MAY be used for access control and accounting mechanisms.

5.3 User Elements

5.3.1 User

5.3.1.1 Definition

This element contains all other elements that identify the User. It contains the following elements: UserCredential, ExecutionUserID, and ExecutionGroupID. It MUST be supported. It MUST be a sub-element of JobDescription if it is present. If this is not present then the consuming system MUST have some defined behavior which could be execute as a default user or reject the document.

5.3.1.2 Multiplicity – 0-1

5.3.1.3 Type – Complex

This complex type MUST support the following elements:

· UserCredential,

· ExecutionUserID,

· ExecutionGroupID,

· xsd:any##other – any other xml element not part of this schema.

5.3.1.4 Attributes

5.3.1.5 Pseudo Schema

<User>

 <UserCredential ... />?

 <ExecutionUserID ... />?

 <ExecutionGroupID ... />?

 <xsd:any##other>*

</User>?

5.3.1.6 Example

5.3.2 ExecutionUserID
5.3.2.1 Definition

The user ID of the user on the execution system. This element has the type of a string. It MUST be supported. It MUST be a sub-element of User if it is present. If it is not present then the consuming system MAY select a user id based on implementation. If this is not present then it is not defined.

5.3.2.2 Multiplicity – 0-1

5.3.2.3 Type – xsd:string

5.3.2.4 Attributes

None

5.3.2.5 Pseudo Schema

<ExecutionUserID> xsd:string </ExecutionUserID>?

5.3.2.6 Example

This might be a UNIX user id.

5.3.3 ExecutionGroupID
5.3.3.1 Definition

The group ID of the user’s group on the execution system. This element has the type of a string. It MUST be supported. It MUST be a sub-element of User if it is present. If it is not present then the consuming system MAY select a group ID based on implementation. If this is not present then it is not defined.

5.3.3.2 Multiplicity – 0-1

5.3.3.3 Type – xsd:string

5.3.3.4 Attributes

None

5.3.3.5 Pseudo Schema

<ExecutionGroupID> xsd:string </ExecutionGroupID>?

5.3.3.6 Example

This might be a UNIX group id.

5.3.4 UserGroup

5.3.4.1 Definition

This element is a string specifying a group of the user that is associated with the job. This element contains the credentials used to execute the job in the grid. It MUST be supported. It MUST be a sub-element of User if it is present.

5.3.4.2 Multiplicity – 0-n

5.3.4.3 Type – xsd:string

5.3.4.4 Attributes

None

5.3.4.5 Pseudo Schema

<UserGroup> xsd:string </UserGroup>*

5.3.4.6 Example

This MAY be used by a job submission system to allow scheduling according to fair share policies, account practices, etc... The UserGroup element MAY represent the name of a Virtual Organization to which the user submitting the job belongs..

5.4 Application Requirements

5.4.1 Application Element

5.4.1.1 Definition

This element describes the Application and its requirements. It contains ApplicationName, ApplicationVersion and Description It serves as a high level generic container for specific application definitions that are most likely to be understood by only a small fraction of JSDL implementors. A POSIX compliant normative extension is given in chapter 8. Used without any extension, it uniformly describes an application by its name and version number. It MUST be supported. It MUST be a sub-element of the JobDescription element. If this is not present then this job definition does not define an application to execute. This could be a data staging job, or a null job.

5.4.1.2 Multiplicity – 0-1

5.4.1.3 Type – Complex

This complex type MUST support the following elements:

· ApplicationName

· ApplicationVersion

· Description

5.4.1.4 Attributes

5.4.1.5 Pseudo Schema

<Application>

 <ApplicationName ... />?

 <ApplicationVersion ... />?

 <Description ... />?
 <xsd:any##other/>*

</Application>?

5.4.1.6 Example

5.4.2 ApplicationName Element

5.4.2.1 Definition

This element is the name of the application and is used to identify the application independent of its execution on a host or system. It MUST be supported. It MUST be a sub-element of the Application Element. If this is not present then it is not defined and a null job is assumed if there is no Executable Element present.

5.4.2.2 Multiplicity – 0-1

5.4.2.3 Type – xsd:string

5.4.2.4 Attributes

5.4.2.5 Pseudo Schema

<ApplicationName> xsd:string </ApplicationName>?

5.4.2.6 Example

5.4.3 ApplicationVersion Element

5.4.3.1 Definition

This element is the version of the application to be executed. It SHOULD be supported. If supported then the consuming system MUST use exact textual match to select the version of the application. If the exact match cannot be found then the document MUST be rejected. If not supported then the consuming system MUST reject the document.
 It MUST be a sub-element of the Application Element. If this is not present then it is not defined and any version of the application can be executed.

5.4.3.2 Multiplicity – 0-1

5.4.3.3 Type – xsd:string

5.4.3.4 Attributes

5.4.3.5 Pseudo Schema

<ApplicationVersion> xsd:string </ApplicationVersion>?

5.4.3.6 Example

5.5 Resource Elements

The resource elements are described in groups for clarity only. The actual structure will be defined by the normative JSDL schema. It is anticipated that most JSDL resource elements will be at the base level.
5.5.1 Resource

5.5.1.1 Definition

This element describes the resource requirements of the job. It contains several elements. It MUST be supported. It MUST be a sub-element of the JobDescription element.

5.5.1.2 Multiplicity – 0-1

5.5.1.3 Type – Complex

This complex type MUST support the following elements:

· …

5.5.1.4 Attributes

5.5.1.5 Pseudo Schema

<Resource>

 <HostName ... />*
 ...

 <xsd:any##other>*

</Resource>*

5.5.1.6 Example

5.5.2 HostName

5.5.2.1 Definition

This element is a string specifying a hostname that is allowed by the job in the execution environment. This element specifies a machine name. It MUST be supported. It MUST be a sub-element of the Resource Element. If this is not present then it is not defined.

5.5.2.2 Multiplicity – 0-n

5.5.2.3 Type – xsd:string

5.5.2.4 Attributes

5.5.2.5 Pseudo Schema

<HostName> xsd:string </HostName>?

5.5.2.6 Example

This can be a logical group of hosts or a single host. The value refers to the named logical group, cluster, virtual machine …

5.5.3 CPUArchitecture

5.5.3.1 Definition

This element is a string specifying the CPU architecture required by the job in the execution environment. It MUST be supported. It MUST be a sub-element of the Resource Element. If this is not present then it is not defined and the consuming systems default behavior is assumed.

5.5.3.2 Multiplicity – 0-1

5.5.3.3 Type – jsdl:ProcessorArchitectureEnumeration

5.5.3.4 Attributes

5.5.3.5 Pseudo Schema

<CPUArchitecture> jsdl:ProcessorArchitectureEnumeration </CPUArchitecture>?

5.5.3.6 Example

5.5.4 CPUSpeed

5.5.4.1 Definition

This element is a range value specifying the speed of CPU required by the job in the execution environment. The CPUSpeed is given in multiples of “Hz” (Hertz). It MUST be supported. It MUST be a sub-element of the Resource Element. If this is not present then it is not defined.

5.5.4.2 Multiplicity – 0-1

5.5.4.3 Type – jsdl:RangeValueType
5.5.4.4 Attributes

5.5.4.5 Pseudo Schema

5.5.4.6 Example

5.5.5 CPUTime

5.5.5.1 Definition

This element is a range value specifying total number of CPU seconds required to run to execute the job. It MUST be supported. It MUST be a sub-element of the Resource Element. If this is not present then it is not defined.

5.5.5.2 Multiplicity – 0-1

5.5.5.3 Type – jsdl:RangeValueTypee
5.5.5.4 Attributes

5.5.5.5 Pseudo Schema

<CPUTime> jsdl:RangeValueType </CPUTime>?

<CPUSpeed> jsdl:RangeValueType </CPUSpeed>?

5.5.5.6 Example

5.5.6 CPUCount

5.5.6.1 Definition

This element is a range value specifying number of CPUs for the containing resource element. It MUST be supported. It MUST be a sub-element of the Resource Element. If this is not present then it is not defined.

5.5.6.2 Multiplicity – 0-1

5.5.6.3 Type – jsdlRrangeValueType
5.5.6.4 Attributes

5.5.6.5 Pseudo Schema

<CPUCount> jsdl:RangeValueType </CPUCount>?

5.5.6.6 Example
5.5.7 ResourceCount

5.5.7.1 Definition

This element is a range value specifying number of instances of the containing resource element required by the job. It MUST be supported. It MUST be a sub-element of the Resource Element. If this element is omitted then it MUST default to the value of 1.

5.5.7.2 Multiplicity – 0-1

5.5.7.3 Type – jsdl:RangeValueType
5.5.7.4 Attributes

5.5.7.5 Pseudo Schema

<ResourceCount> jsdl:RangeValueType </ResourceCount>?

5.5.7.6 Example
5.5.8 PhysicalMemory

5.5.8.1 Definition

This element is a range value specifying the required amount of physical memory for the containing resource element. The amount is specified as multiple of Bytes (octets of bits). It MUST be supported. It MUST be a sub-element of the Resource Element. If this is not present then it is not defined.

5.5.8.2 Multiplicity – 0-1

5.5.8.3 Type – jsdl:RangeValueType
5.5.8.4 Attributes

5.5.8.5 Pseudo Schema

<PhysicalMemory> jsdl:RangeValueType </PhysicalMemory>?

5.5.8.6 Example
5.5.9 VirtualMemory

5.5.9.1 Definition

This element is a range value specifying the required amount of virtual memory for the containing resource element. The amount is specified as multiple of Bytes (octets of bits). It MUST be supported. It MUST be a sub-element of the Resource Element. If this is not present then it is not defined.

5.5.9.2 Multiplicity – 0-1

5.5.9.3 Type – jsdl:RangeValueType
5.5.9.4 Attributes

5.5.9.5 Pseudo Schema

<VirtualMemory> jsdl:RangeValueType </VirtualMemory>?

5.5.9.6 Example
5.5.10 NetworkBandwidth

5.5.10.1 Definition

This element is a range value specifying the bandwidth requirements of the containing resource element. The amount is specified as multiple of Bits per second. It MUST be supported. It MUST be a sub-element of the Resource Element. If this is not present then it is not defined.

5.5.10.2 Multiplicity – 0-1

5.5.10.3 Type – jsdl:RangeValueType
5.5.10.4 Attributes

5.5.10.5 Pseudo Schema

<NetworkBandwidth> xsd:RangeValueType </NetworkBandwidth>?

5.5.10.6 Example

5.5.11 FileSystem

5.5.11.1 Definition

This is a complex type that describes a location and capacity of storage required for the containing resource element. It MUST be supported. It MUST be a sub-element of the Resource Element.

5.5.11.2 Multiplicity – 0-n

This complex type MUST support the following elements:

· Description

· MountPoint

· MountSource

· DiskSpace

· FileSystemType
5.5.11.3 Type – Complex

5.5.11.4 Attributes

· name – xsd:NCName – The name of the Filesystem. A small number of well known names are defined and can be used here. See XXX.

5.5.11.5 Pseudo Schema

<FileSystem name=”xsd:NCName”>

 <Description ... />?

 <MountPoint ... />/>?

 <MountSource ... />?
 <DiskSpace ... />?

 <FileSystemType ... />?

 <xsd:any##other/>*

</FileSystem>*

5.5.11.6 Example

The filesystem “HOME” must have at most 10GB capacity. The execution system is free to choose an appropriate MountPoint since no value is provided.

<jsdl:FileSystem name=”jsdl:HOME”
>

<jsdl:Description> Steve’s home </jsdl:Description>

<jsdl:DiskSpace>-10</jsdl:DiskSpace>

<jsdl:FileSystemType>jsdl:normal</jsdl:FileSystemType>
</jsdl:FileSystem>

The filesystem “HOME” must have at least 1GB capacity and must be provided in the location contained in MountPoint.

<jsdl:FileSystem name=”jsdl:HOME”>

<jsdl:Description> Ali’s home </jsdl:Description>

<jsdl:MountPoint>/home/ali</jsdl:MountPoint>

<jsdl:DiskSpace>1-</jsdl:DiskSpace>

<FileSystemType>jsdl:normal</FileSystemType>

</jsdl:FileSystem>

The filesystem “TMP” must have at least 1GB capacity. The execution system is free to choose an appropriate MountPoint.

<jsdl:FileSystem name=”jsdl:TMP”>

<jsdl:DiskSpace>1-</jsdl:DiskSpace>

<jsdl:FileSystemType>jsdl:tmp</jsdl:FileSystemType>

</jsdl:FileSystem>

The filesystem “FASTSTORAGE” must be made available. The execution system is free to choose an appropriate MountPoint. An extension specifies additional requirements, e.g., high performance.

<jsdl:FileSystem>

<jsdl:DiskSpace>1</jsdl:DiskSpace>

<jsdl:FileSystemType>jsdl:normal</jsdl:FileSystemType>

<tns:Performance>tns:high</tns:Performance>

</jsdl:FileSystem>
5.5.12 MountPoint of FileSystem

5.5.12.1 Definition

This is a string that describes a local location that MUST be made available in the containing resource element for the job. It MUST be supported. It MUST be a sub-element of the FileSystem Element.

If MountPoint is not defined the consuming system may choose the local location in which to provide the requested FileSystem. In this case the execution environment MUST
contain an environment variable (subject to the rules of ApplicationType) with the name of the name attribute of the containing FileSystem element. The value of the environment variable must be the actual local location.
5.5.12.2 Multiplicity – 0-1

5.5.12.3 Type – xsd:string

5.5.12.4 Attributes

5.5.12.5 Pseudo Schema

<MountPoint> xsd:string </MountPoint>?

5.5.12.6 Example

The filesystem “HOME” must be made available in “/home/darren”

<jsdl:FileSystem name=”jsdl:HOME”>

...

<jsd:MountPoint>/home/darren</jsdl:MountPoint>

</jsdl:FileSystem>

The filesystem “HOME” must be made available in “c:\Documents and Settings\fred”

<jsdl:FileSystem name=”jsdl:HOME”>

...

<jsdl:MountPoint>c:\Documents and Settings\fred</jsdl:MountPoint>

</jsdl:FileSystem>

The filesystem “HOME” was requested with no MountPoint element defined.The filesystem was made available at the local location “/usr/x00a10” and the the job’s environment (assuming executable ApplicationType) contains the following environment variable:

HOME=/usr/x00a10
5.5.13 MountSource of FileSystem

5.5.13.1 Definition

This is a string that describes a remote location that MUST be made available for the job in the requested resource. It MUST be supported. It MUST be a sub-element of the FileSystem Element.

5.5.13.2 Multiplicity – 0-1

5.5.13.3 Type – xsd:string

5.5.13.4 Attributes

5.5.13.5 Pseudo Schema

<MountSource> xsd:string </MountSource>?

5.5.13.6 Example

An example of a remote location:

<jsdl:FileSystem>

...

<jsdl:MountSource>bach:/export/home/steve</jsdl:MountSource>

</jsdl:FileSystem>

5.5.14 DiskSpace
of File System

5.5.14.1 Definition

This is a range value that describes the amount of free writable space on the containing FileSystem element for the job. It MUST be supported. It MUST be a sub-element of the FileSystem Element or a sub-element of Resource.
 If this element is omitted then it MAY be assumed that the containing FileSystem element is not writable.

5.5.14.2 Multiplicity – 0-1

5.5.14.3 Type – jsdl:RangeValueType
5.5.14.4 Attributes

5.5.14.5 Pseudo Schema

<DiskSpace> jsdl:RangeValueType </DiskSpace>?

5.5.14.6 Example

A filesystem with at least 1GB of free space:
<jsdl:FileSystem name=”jsdl:HOME”>

...

<jsdl:DiskSpace>1048576</jsdl:DiskSpace>

</jsdl:FileSystem>

A filesystem with at most 1GB of free space:

<jsdl:FileSystem name=”jsdl:TMP”>

...

<jsdl:DiskSpace units=”GB” operator=”jsdl:lessThanEqualTo”>1</jsdl:DiskSpace>

</jsdl:FileSystem>
5.5.15 FileSystemType of File System

5.5.15.1 Definition

This is a token that describes the type of filesystem of the containing FileSystem element. It MUST be supported. It MUST be a sub-element of the FileSystem Element. If this element is omitted then it MUST be the normal type.

5.5.15.2 Multiplicity – 0-1

5.5.15.3 Type – jsdl:FileSystemTypeEnumeration

5.5.15.4 Attributes

5.5.15.5 Pseudo Schema

<FileSystemType> jsdl:FileSystemTypeEnumeration </FileSystemType>?

5.5.15.6 Example

<jsdl:FileSystem name=”jsdl:HOME”>

...

<jsdl:FileSystemType>jsdl:normal</jsdl:FileSystemType>

</jsdl:FileSystem>
5.5.16 ExclusiveExecution

5.5.16.1 Definition

This is a boolean that designates whether the job must be the only job run at a time on the machine by the consuming system. It MUST be supported. It MUST be a sub-element of the Resource Element. If this element is omitted then it MUST default to not exclusive.

5.5.16.2 Multiplicity – 0-1

5.5.16.3 Type – xsd:boolean

· True – run exclusively on the resource

· False – others can run at the same time.

5.5.16.4 Attributes

5.5.16.5 Pseudo Schema

<ExclusiveExecution> xsd:boolean </ExclusiveExecution>?

5.5.16.6 Example

5.5.17 OperatingSystem

5.5.17.1 Definition

This is a complex type that contains a description, version, and type of operating system. It MUST be supported. It MUST be a sub-element of the Resource Element. If this element is omitted then it is a free choice of the consuming system.

5.5.17.2 Multiplicity – 0-1

5.5.17.3 Type – Complex

· Description

· Version

· Type

5.5.17.4 Attributes

5.5.17.5 Pseudo Schema

<OperatingSystem>

 <OperatingSystemType ... />?

 <OperatingSystemVersion ... />?

 <Description ... />?

 <xsd:any##other/>*

</OperatingSystem>?

5.5.17.6 Example

5.5.18 OperatingSystemType

5.5.18.1 Definition

This is a token type that contains the name of the operating system. It MUST be supported. It MUST be a sub-element of the OperatingSystem Element. If this element is omitted then it is a free choice of the consuming system.

5.5.18.2 Multiplicity – 0-1

5.5.18.3 Type – jsdl:OperatingSystemTypeEnumeration

5.5.18.4 Attributes

5.5.18.5 Pseudo Schemas

<OperatingSystemType> jsdl:OperatingSystemTypeEnumeration </OperatingSystemType>?

5.5.18.6 Example

5.5.19 OperatingSystemVersion

5.5.19.1 Definition

This element is the version of the operating system that the job is to be executed on. It SHOULD be supported. If supported then the consuming system MUST use exact textual match to select the version of the operating system. If the exact match cannot be found then the document MUST be rejected. If not supported then the consuming system MUST reject the document.
It MUST be a sub-element of the OperatingSystem Element. If this is not present then it is any version of the operating system.

5.5.19.2 Multiplicity – 0-1

5.5.19.3 Type – xsd:string

5.5.19.4 Attributes

5.5.19.5 Pseudo Schema

<OperatingSystemVersion> xsd:string </OperatingSystemVersion>?

5.5.19.6 Example

5.5.20 Additional Resources

It is possible to extend JSDL (see §7) to describe additional resources. The kind of resources that could be described this way are licenses, named resources, software libraries, software packages, special hardware, and so on.

5.6 Data Staging Elements

5.6.1 DataStaging Element

5.6.1.1 Definition

Data staging defines the files that should be moved to the execution host (stage in) and the files that should be moved from the execution host (stage out). Files are staged in before the job starts executing. Files are staged out after the job terminates. This element MUST be supported. It MUST be a sub-element of the JobDescription elements.

The user from the Job Description Element MUST be the owner of the local file that is created based on the definition of the Source element.

If a directory is specified in the FileName Element or Source Element then a recursive copy will be performed. If the execution environment does not support recursive copying an error should be reported. The specification of this error, including how or when it is raised, is out of scope of the JSDL specification.

It is possible to stage out the same file to more than once by specifying the same FileName (on the same FileSystem) in multiple stage out DataStaging elements.

It is also possible, but deprecated, to use the same FileName in separate DataStaging elements to stage in to the same local file. The result is unspecified.

The ordering of the DataStaging elements in the JSDL document is not significant. That is, the order of the DataStaging elements in the document does not imply any ordering, besides the ordering already mentioned concerning job execution, in carrying out the different stage in (or stage out) operations.

More complex file transfers, for example, conditional transfers based on job termination status are out of scope.

Permission and Access control for the staged files should be handled by the implementation and is out of scope of the JSDL specification.

More complicated deployment scenarios than the file staging described here (e.g., deployment and configuration of the execution environment itself) are out of scope of the JSDL specification.

5.6.1.2 Multiplicity – 0-n

5.6.1.3 Type – Complex

This complex type MUST support the following elements:

· FileName

· FileSystemID

· CreationFlag

· DeleteOnTermination

· Source

· Target

5.6.1.4 Attributes

5.6.1.5 Pseudo Schema

<DataStaging>

 <FileName ... />

 <FileSystemID ... />?

 <CreationFlag ... />

 <DeleteOnTermination ... />?

 <Source ... />*

 <Target ... />*

 <xsd:any##other/>*

</DataStaging>*

5.6.1.6 Example

A simple example of staging in a file:

<jsdl:DataStaging>

<jsdl:FileName>control.txt</jsdl:FileName>

<jsdl:Source>http://foo.bar.com/~me/control.txt</jsdl:Source>

<jsdl:CreationFlag>jsdl:overwrite</jsdl:CreationFlag>

<jsdl:DeleteOnTermination>true</jsdl:DeleteOnTermination>

</jsdl:DataStaging>

A simple example of staging in a file relative to a FileSystem

<jsdl:FileSystem> ... </jsdl:FileSystem>

...

<jsdl:DataStaging>

<jsdl:FileName>control.txt</jsdl:FileName>
<jsdl:FileSystemID>HOME</jsdl:FileSystemID>
<jsdl:Source>http://foo.bar.com/~me/control.txt</jsdl:Source>

<jsdl:CreationFlag>jsdl:overwrite</jsdl:CreationFlag>

<jsdl:DeleteOnTermination>true</jsdl:DeleteOnTermination>

</jsdl:DataStaging>

Stage In and Stage Out – It is possible to define both Source and Target elements so that the file is first staged in before the job starts execution and staged out after the job finishes.

<jsdl:DataStaging>

<jsdl:FileName>state.txt</jsdl:FileName>

<jsdl:Source>http://node1/~me/state.txt</jsdl:Source>
<jsdl:Target>http://node2/~me/state.txt</jsdl:Target>

<jsdl:CreationFlag>jsdl:overwrite</jsdl:CreationFlag>

<jsdl:DeleteOnTermination>true</jsdl:DeleteOnTermination>

</jsdl:DataStaging>

Multiple stage out operations may be specified by using the same FileName (on the same FileSystem) in separate DataStaging Elements.

<jsdl:DataStaging>

<jsdl:FileName>result.txt</jsdl:FileName>

<jsdl:Target>http://node1/~me/result.txt</jsdl:Target>
...

</jsdl:DataStaging>
...

<jsdl:DataStaging>

<jsdl:FileName>result.txt</jsdl:FileName>

<jsdl:Target>http://node2/~me/result.txt</jsdl:Target>
...

</jsdl:DataStaging>

It is also possible to use the same FileName in separate DataStaging elements to stage in to the same local file. The result of staging in to the same FileName on the same FileSystem are unspecified, however, since no the order is implied.

5.6.2 FileName Element

5.6.2.1 Definition

This element is a string specifying the local name of the file (or directory) on the execution host. The FileName MUST be a relative path (see FileSystemSpaceName property). In other words it MUST NOT start with an initial ‘/’. The FileName may be a hierarchical directory path of the form <directory>/<directory>/.../<name>. The only delimiter allowed is /. The <name> may be either a directory or a file. It MUST be supported. It MUST be a sub-element of the DataStaging Elements.

The user from the Job Description Element MUST be the owner of the local file that is created based on the definition of the Source element.

5.6.2.2 Multiplicity – 1

5.6.2.3 Type – xsd:string

5.6.2.4 Attributes

5.6.2.5 Pseudo Schema

<FileName> xsd:string </FileName>

5.6.2.6 Example

A filename:
<jsdl:DataStaging>
<jsdl:FileName>control.txt</jsdl:Filename>

...

</jsdl:DataStaging>
A hierarchical directory path specifying a file:

<jsdl:DataStaging>
<jsdl:FileName>job1/input/control.txt</jsdl:FileName>

...

<jsdl:DataStaging>
A hierarchical directory path specifying a directory:

<jsdl:DataStaging>

<jsdl:FileName>job1/input</jsdl:FileName>

...

</jsdl:DataStaging>
5.6.3 FileSystemID Element

5.6.3.1 Definition

If the FileSystemID is specified then the FileName is relative to the specified FileSystem declaration referenced by the name. In this case there MUST also be a FileSystem Element with the same name. Otherwise the FileName is relative to the working job directory as specified by WorkingDirectory element. If the WorkingDirectory is also not specified then the base location is determined by the consuming system. It MUST be supported. It MUST be a sub-element of the DataStaging element. If this is not present then it is not defined.

5.6.3.2 Multiplicity – 0-1

5.6.3.3 Type – xsd:NCName

5.6.3.4 Attributes

5.6.3.5 Pseudo Schema

<FileSystemID> xsd:NCName </FileSystemID>?

5.6.3.6 Example

Staging a file to a specific filesystem:

<jsdl:FileSystem > ... </jsdl:FileSystem>

...

<jsdl:DataStaging>

<jsdl:FileSystemID>HOME</jsdl:FileSystemID>

...

</jsdl:DataStaging>
5.6.4 CreationFlag Element

5.6.4.1 Definition

This element, if specified, determines whether the file created on the local execution system can overwrite, append, or prepend to an existing file. A typical value for this element, expected to be commonly supported, is overwrite. If this element is not specified then behavior depends on the consuming system. It MUST be supported. It MUST be a sub-element of the DataStaging Element.

5.6.4.2 Multiplicity – 1

5.6.4.3 Type – jsdl:CreationFlagEnumeration

5.6.4.4 Attributes

5.6.4.5 Pseudo Schema

<CreationFlag> jsdl:CreationFlagEnumeration </CreationFlag>

5.6.4.6 Example

<jsdl:DataStaging>

<jsdl:CreationFlag>jsdl:overwrite</jsdl:CreationFlag>
...

</jsdl:DataStaging>

5.6.5 DeleteOnTermination Element

5.6.5.1 Definition

If true the file is deleted after the job terminates or after the file has been staged out. Otherwise the file remains on the execution host (subject to the persistency of the FileSystem it is on). If not present, behavior is unspecified and depends on the consuming system. It MUST be supported. It MUST be a sub-element of the DataStaging Element.

5.6.5.2 Multiplicity – 0-1

5.6.5.3 Type – xsd:boolean

· True – Remove the file after the job terminates.

· False – Do not remove the file after the job terminates.

5.6.5.4 Attributes

5.6.5.5 Pseudo Schema

<DeleteOnTermination> xsd:boolean </DeleteOnTermination>?

5.6.5.6 Example

<jsdl:DataStaging>

<jsdl:DeleteOnTermination>true</jsdl:DeleteOnTermination>

...

</jsdl:DataStaging>

5.6.6 Source Element

5.6.6.1 Definition

A Source element contains the location and may contain a user on the remote system. This file MUST be staged in from the location specified by the URL as the user on the remote host before the job has started. If this element is not present then the file does not have to be staged in. It MUST be supported. It MUST be a sub-element of the DataStaging Element.

5.6.6.2 Multiplicity – 0-1

5.6.6.3 Type – Complex

· User Element – Use the User Element from the User Section above. If this element is missing then the User from the Job Description Element MUST be used.

· URI Element – a URI according to URI [ref RFC1738]. This element MUST be defined.

5.6.6.4 Attributes

5.6.6.5 Pseudo Schema

<Source>

 <User ... />?

 <URI ... />?

 <xsd:any##other>*

</Source>?

5.6.6.6 Example

The source is a single file:

<jsdl:DataStaging>

<jsdl:Source>http://foo.bar.com/~me/control.txt</jsdl:Source>

...

</jsdl:DataStaging>
The source is a directory:

<jsdl:DataStaging>

<jsdl:Source>http://foo.bar.com/~me/job1/input</jsdl:Source>

...

</jsdl:DataStaging>
The URL may specify any protocol, not just http:

<jsdl:DataStaging>
<jsdl:Source>ftp://foo.bar.com/~me/job1/input</jsdl:Source>

...

</jsdl:DataStaging>
or

<jsdl:DataStaging>

<jsdl:Source>rsync://foo.bar.com/~me/job1/input</jsdl:Source>

...

</jsdl:DataStaging>
5.6.7 URI Element

5.6.7.1 Definition

This is a URI [ref RFC1738] specifying location (and protocol) that can be used to stage in or out a file. It MUST be supported. It MUST be a sub-element of the Source or Target Elements.

5.6.7.2 Multiplicity – 1

5.6.7.3 Type – xsd:anyURI

5.6.7.4 Attributes

5.6.7.5 Pseudo Schema

<URI> xsd:anyURI </URI>

5.6.7.6 Example
5.6.8 Target Element

5.6.8.1 Definition

A Target element contains the location and may contain a user on the remote system. This file MUST be staged out to the location specified by the URL as the user on the remote host after the job has teminated. If this element is not present then the file does not have to be staged out. It MUST be supported. It MUST be a sub-element of the DataStaging Element.

5.6.8.2 Multiplicity – 0-1

5.6.8.3 Type – Complex

· User Element – Use the User Element from the User Section above. If this element is missing then the User from the Job Description Element MUST be used.

· URL Element – a URL according to URL [ref RFC1738]. This element MUST be defined.

5.6.8.4 Attributes

5.6.8.5 Pseudo Schema

<Target>

 <User ... />?

 <URL ... />

 <xsd:any##other>*

</Target>?

5.6.8.6 Example

The target may be a single file:

<jsdl:DataStaging>

<jsdl:Target>http://foo.bar.com/~me/job1/output/output.txt</jsdl:Target>

...

</jsdl:DataStaging>
Or a directory:

<jsdl:DataStaging>

<jsdl:Target>http://foo.bar.com/~me/job1/output</jsdl:Target>

...

</jsdl:DataStaging>

6 Process Topology

[Needs review.Still incomplete]
Process topology can be used to define the amount of processing power that an application will use as well as how that processing power should be allocated across a number of resources (hosts). Process topology is expressed using a combination of elements: ProcessCount and TileSize under the Application element; CPUCount and ResourceCount under the Resource element. All these elements do not have to be used at the same time.

Definitions of these elements are given in earlier sections. Here we give examples of how these elements may be combined to express different use cases.

NOTE: ‘process’ here seems to be a misnomer. It should probably be something like ‘processing element’ as discussed in a recent call with the mapping to a CPU. In any case the definition of ProcessCount does not control the actual number of processes or threads that the execution will create.
Sample use cases:

· A job that will requires 4 CPUs on one node using a specific resource definition.
<Application>

...
</Application>

...

<Resource>
...

<CPUCount operator=”equalsTo”>4</CPUCount>

<ResourceCount operator=”equalsTo”>1</ResourceCount>
</Resource>

· The same use case as above but described using ProcessCount and TileSize. In this case it is possible that the allocated resource has more than 4 CPUs (?or less depending on the allocation policy?)

<Application>

...

<ProcessCount operator=”equalsTo”>4</ProcessCount>

<TileSize>4</TileSize>
</Application>

...

<Resource>
...

</Resource>

· A job that will use 8 ‘processes’ which should be mapped to resources in units (tiles) of 2. The resources must be of a specific architecture. (Presumably 4 nodes with 2 cpus each would be allocated to this job but other combinations are also possible. E.g., 1 node with 8 cpus.)

<Application>

...

<ProcessCount operator=”equalsTo”>8</ProcessCount>

<TileSize>2</TileSize>
</Application>

...

<Resource>
...

<CPUArchitecture> jsdl:ia64 </CPUArchitecture>
</Resource>
· A job that will use 8 ‘processes’ which should be mapped to resources in tiles of 2. The resources must be of a specific architecture and they must all have at least 2 CPUs. (Up to 4 hosts could be allocated to this job.)

<Application>

...

<ProcessCount operator=”equalsTo”>8</ProcessCount>

<TileSize>2</TileSize>
</Application>

...

<Resource>
...

<CPUArchitecture> jsdl:ia64 </CPUArchitecture>

<CPUCount operator=”moreThanEqualTo”>2</CPUCount>
</Resource>
· A job that will use 8 ‘processes’ which should be mapped to resources in tiles of 2. At least 2 resources should be allocated. (It is possible that up to 4 resources would be allocated.)

<Application>

...

<ProcessCount operator=”equalsTo”>8</ProcessCount>

<TileSize>2</TileSize>
</Application>

...

<Resource>
...

<ResourceCount operator=”moreThanEqualTo”>2</ResourceCount>
</Resource>
7 Extending JSDL

JSDL has an extension mechanism that allows for custom element, or the extension of existing elements. There are two extension mechanisms available (attribute and element).

7.1 Attribute Extension

You can add any attribute from your namespace to add to any element in the JSDL Document.
7.2 Element Extension

TBD
7.3 Extension Examples

TBD.

8 Normative Extensions

The following list of extensions is normatively defined by JSDL.

8.1 Executables on POSIX conformant hosts

This normative extension defines a schema describing an application executed on a POSIX comliant system.

The schema has the normative namespace “http://schemas.ggf.org/jsdl/2005/03/apps/posix”.

8.1.1 POSIXApplication Element

8.1.1.1 Definition

This element describes a POSIX style Application and its requirements. It contains Executable, Argument, Input, Output, Error, WorkingDirectory, Environment, TileSize, and ProcessCount. It MUST be supported. If used, it MUST be a sub-element of the Application element.

8.1.1.2 Multiplicity – 1

8.1.1.3 Type – Complex

This complex type MUST support the following elements:

· Executable

· Argument

· Input

· Output

· Error

· WorkingDirectory

· Environment

· TileSize

· WallTime

· FileSize

· CoreDump

· DataSegment

· LockedMemory

· Memory

· OpenDescriptors

· PipeSize

· StackSize

· CPUTime

· ProcessCount

· VirtualMemory

· ThreadCount

8.1.1.4 Attributes

· name – the name of this definition. Its type is xsd:NCName so that it can be reused and referred to from outside the containing JSDL document.

8.1.1.5 Pseudo Schema

<POSIXApplication name=”xsd:NCName”>

 <Executable ... />

 <Argument ... />*

 <Input ... />?

 <Output ... />?

 <Error ... />?

 <WorkingDirectory ... />?

 <Environment ... />*

 <TileSize ... />?

 <WallTime ... />?

 <FileSize ... />?

 <CoreDump ... />?

 <DataSegment ... />?

 <LockedMemory ... />?

 <Memory ... />?

 <OpenDescriptors ... />?

 <PipeSize ... />?

 <StackSize ... />?

 <CPUTime ... />?

 <ProcessCount ... />?

 <VirtualMemory ... />?

 <ThreadCount ... />?

</POSIXApplication>

8.1.1.6 Example

8.1.2 Executable Element

8.1.2.1 Definition

A string specifying the command to execute. It MUST be supported. It MUST be a sub-element of the POSIXApplication Element.

8.1.2.2 Multiplicity – 1

8.1.2.3 Type – xsd:string

8.1.2.4 Attributes

8.1.2.5 Pseudo Schema

<Executable> xsd:string </Executable>

8.1.2.6 Example

8.1.3 Argument Element

8.1.3.1 Definition

This element is a constrained normalized string specifying an argument element for the application. The constraint imposed is “whiteSpace” with the value “collapsed” (as defined in XML Schema) to ensure compatibility with command line translations. jsdl:Argument elements can be empty and MUST NOT be collapsed. It MUST be supported. It MUST be a sub-element of the POSIXApplication element.
8.1.3.2 Multiplicity – 0-n

8.1.3.3 Type – normalizedString (constrained by “whiteSpace = collapsed”)

8.1.3.4 Attributes

8.1.3.5 Pseudo Schema

<Argument> xsd:normalizedString(whiteSpace=”collapsed”) </Argument>*
8.1.3.6 Example

Specify CLASSPATH and the class to invoke for a Java application:
<jsdl:Arguments>
<jsdl:Argument>-cp</jsdl:Argument>
<jsdl:Argument>./example.jar</jsdl:Argument>
<jsdl:Argument>org.example.Main</jsdl:Argument>

</jsdl:Arguments>

would be translated to ‘[java] -cp ./example.jar org.example.Main’
Start the Apache2 service on a Windows box without being Administrator:

<jsdl:Arguments>
 <jsdl:Argument>/user:Administrator@WORKGROUP</jsdl:Argument>

 <jsdl:Argument>net start Apache2</jsdl:Argument>

</jsdl:Arguments>

would be translated to ‘[runas] /user:Administrator@WORKGROUP “net start Apache2”’

Echo a concatenated list of arguments to stdout:

<jsdl:Argument>foo</jsdl:Argument>

<jsdl:Argument>bar</jsdl:Argument>

<jsdl:Argument>baz</jsdl:Argument>

would be translated to ‘[echo]foo bar baz’

<jsdl:Argument>foo</jsdl:Argument>

<jsdl:Argument>bar</jsdl:Argument>

<jsdl:Argument></jsdl:Argument>

<jsdl:Argument>baz</jsdl:Argument>

would be translated to ‘[echo]foo bar “” baz’

<jsdl:Argument>foo</jsdl:Argument>

<jsdl:Argument>bar</jsdl:Argument>

<jsdl:Argument>baz</jsdl:Argument>

<jsdl:Argument></jsdl:Argument>

would be translated to ‘[echo]foo bar baz “”’

8.1.4 Input Element

8.1.4.1 Definition

This element is a string specifying the input for the command. It MUST be supported. It MUST be a sub-element of the POSIXApplication Element. If this is not present then it is not defined and the execution environment’s default behavior is assumed.

8.1.4.2 Multiplicity – 0-1

8.1.4.3 Type – xsd:string

8.1.4.4 Attributes

8.1.4.5 Pseudo Schema

<Input> xsd:string </Input>?

8.1.4.6 Example

Allow redirection of stdin from a specific location depending on the host.
8.1.5 Output Element

8.1.5.1 Definition

This element is a string specifying the output for the command. It MUST be supported. It MUST be a sub-element of the POSIXApplication Element. If this is not present then it is not defined and the execution environment’s default behavior is assumed.

8.1.5.2 Multiplicity – 0-1

8.1.5.3 Type – xsd:string

8.1.5.4 Attributes

8.1.5.5 Pseudo Schema

<Output> xsd:string </Output>?

8.1.5.6 Example

Allow redirection of stdout to a specific location depending on the host.
8.1.6 Error Element

8.1.6.1 Definition

This element is a string specifying the error output for the command. It MUST be supported. It MUST be a sub-element of the POSIXApplication Element. If this is not present then it is not defined and the execution environment’s default behavior is assumed.

8.1.6.2 Multiplicity – 0-1

8.1.6.3 Type – xsd:string

8.1.6.4 Attributes

8.1.6.5 Pseudo Schema

<Error> xsd:string </Error>?

8.1.6.6 Example

Allow redirection of stderr to a specific location depending on the host.
8.1.7 WorkingDirectory Element

8.1.7.1 Definition

This element is a string specifying the starting directory required by the job to execute. It MUST be supported. It MUST be a sub-element of the POSIXApplication Element. If this is not present then it is not defined and the execution environment’s default behavior is assumed.

8.1.7.2 Multiplicity – 0-1

8.1.7.3 Type – xsd:string

8.1.7.4 Attributes

8.1.7.5 Pseudo Schema

<WorkingDirectory> xsd:string </WorkingDirectory>?

8.1.7.6 Example

In many cases the working directory can be related to a FileSystem element by specifying the WorkingDirectory’s path to be the same as the local mount path of the FileSystem Element. The WorkingDirectory element does not have a required direct relationship to a particular FileSystem element.

8.1.8 Environment Element

8.1.8.1 Definition

This element is specifying the name and value of an environment variable that will be defined for the job in the execution environment. It MUST be supported. It MUST be a sub-element of the POSIXApplication Element.

8.1.8.2 Multiplicity – 0-n

8.1.8.3 Type – xsd:string

This is the value of the environment variable.

8.1.8.4 Attributes

· name – The name of the environment variable.

8.1.8.5 Pseudo Schema

<Environment name=”xsd”NCName”> xsd:string </Environment>*

8.1.8.6 Example

8.1.9 TileSize Element

8.1.9.1 Definition

This element is a positive integer that describes the number of processes
to be allocated as a group that the application will use to execute the job. It MUST be a sub-element of the POSIXApplication Element. It MUST be supported. If this is not present then it is 1.

8.1.9.2 Multiplicity – 0-1

8.1.9.3 Type – xsd:positiveInteger

8.1.9.4 Attributes

8.1.9.5 Pseudo Schema

<TileSize> xsd:positiveInteger </TileSize>?

8.1.9.6 Example
8.1.10 WallTime Element

8.1.10.1 Definition

This element is a positive integer that describes the number of walltime seconds the process is allowed to consume. It MUST be a sub-element of the POSIXApplication Element. It MUST be supported. If this is not present then it is unlimited.

8.1.10.2 Multiplicity – 0-1

8.1.10.3 Type – xsd:positiveInteger

8.1.10.4 Attributes

8.1.10.5 Pseudo Schema

<WallTime> xsd:positiveInteger </WallTime>?

8.1.10.6 Example
8.1.11 FileSize Element

8.1.11.1 Definition

This element is a positive integer that describes the maximum filesize of any given file associated with this job. The file size is given in Byytes (octets of bits). It MUST be a sub-element of the POSIXApplication Element. It MUST be supported. If this is not present then it is unlimited.

8.1.11.2 Multiplicity – 0-1

8.1.11.3 Type – xsd:positiveInteger

8.1.11.4 Attributes

8.1.11.5 Pseudo Schema

<FileSize> xsd:positiveInteger </FileSize>?

8.1.11.6 Example
8.1.12 CoreDump Element

8.1.12.1 Definition

This element is a positive integer that describes the maximum size of core dumps a job may create. The size is given in Bytes (octets of bits). It MUST be a sub-element of the POSIXApplication Element. It MUST be supported. If this is not present then it is unlimited.

8.1.12.2 Multiplicity – 0-1

8.1.12.3 Type – xsd:positiveInteger

8.1.12.4 Attributes

8.1.12.5 Pseudo Schema

<CoreDump> xsd:positiveInteger </CoreDump>?

8.1.12.6 Example
8.1.13 DataSegment Element

8.1.13.1 Definition

This element is a positive integer that limits the data segment to the given size. The amount is given in Bytes (octets of bits). It MUST be a sub-element of the POSIXApplication Element. It MUST be supported. If this is not present then it is unlimited.

8.1.13.2 Multiplicity – 0-1

8.1.13.3 Type – xsd:positiveInteger

8.1.13.4 Attributes

8.1.13.5 Pseudo Schema

<DataSegment> xsd:positiveInteger </DataSegment>?

8.1.13.6 Example
8.1.14 LockedMemory Element

8.1.14.1 Definition

This element is a positive integer that describes the maximum amount of physical memory this job is allowed to locck. The amount is given in Bytes (octets of bits). It MUST be a sub-element of the POSIXApplication Element. It MUST be supported. If this is not present then it is unlimited.

8.1.14.2 Multiplicity – 0-1

8.1.14.3 Type – xsd:positiveInteger

8.1.14.4 Attributes

8.1.14.5 Pseudo Schema

<LockedMemory> xsd:positiveInteger </LockedMemory>?

8.1.14.6 Example
8.1.15 Memory Element

8.1.15.1 Definition

TBD
 The amount is given in Bytes (octets of Bits). It MUST be a sub-element of the POSIXApplication element. It MUST be supported. If it is not present it is unlimited.

8.1.15.2 Multiplicity – 0-1

8.1.15.3 Type – xsd:positiveInteger

8.1.15.4 Attributes

8.1.15.5 Pseudo Schema

<Memory> xsd:positiveInteger </Memory>?

8.1.15.6 Example
8.1.16 OpenDescriptors Element

8.1.16.1 Definition

This element is a positive integer that describes the maximum number of open (file?) descriptors a job can have. It MUST be a sub-element of the POSIXApplication Element. It MUST be supported. If this is not present then it is unlimited.

8.1.16.2 Multiplicity – 0-1

8.1.16.3 Type – xsd:positiveInteger

8.1.16.4 Attributes

8.1.16.5 Pseudo Schema

<OpenDescriptors> xsd:positiveInteger </OppenDescriptors>?

8.1.16.6 Example
8.1.17 PipeSize Element

8.1.17.1 Definition

TBD.
 It MUST be a sub-element of the POSIXApplication Element. It MUST be supported. If this is not present then it is unlimited.

8.1.17.2 Multiplicity – 0-1

8.1.17.3 Type – xsd:positiveInteger

8.1.17.4 Attributes

8.1.17.5 Pseudo Schema

<PipeSize> xsd:positiveInteger </PipeSize>?

8.1.17.6 Example
8.1.18 StackSize Element

8.1.18.1 Definition

This element is a positive integer that describes maximum size of the execution stack for this job. The amount is given in Bytes (octets of Bits). It MUST be a sub-element of the POSIXApplication Element. It MUST be supported. If this is not present then it is unlimited.

8.1.18.2 Multiplicity – 0-1

8.1.18.3 Type – xsd:positiveInteger

8.1.18.4 Attributes

8.1.18.5 Pseudo Schema

<StackSize> xsd:positiveInteger </StackSize>?

8.1.18.6 Example
8.1.19 CPUTime Element

8.1.19.1 Definition

This element is a positive integer that describes the number of CPU time seconds a job is allowed to consume before a SIGXCPU signal is sent to the job. The amount is given in seconds. It MUST be a sub-element of the POSIXApplication Element. It MUST be supported. If this is not present then it is not defined and a SIGXCPU signal MUST NOT be sent.

8.1.19.2 Multiplicity – 0-1

8.1.19.3 Type – xsd:positiveInteger

8.1.19.4 Attributes

8.1.19.5 Pseudo Schema

<CPUTime> xsd:positiveInteger </CPUTime>?

8.1.19.6 Example
8.1.20 ProcessCount Element

8.1.20.1 Definition

This element is a positive integer that describes the maximum allowed number of processes this job may spawn. It MUST be a sub-element of the POSIXApplication Element. It MUST be supported. If this is not present then it is unlimited.

8.1.20.2 Multiplicity – 0-1

8.1.20.3 Type – xsd:positiveInteger

8.1.20.4 Attributes

8.1.20.5 Pseudo Schema

<ProcessCount> xsd:positiveInteger </ProcessCount>?

8.1.20.6 Example
8.1.21 VirtualMemory Element

8.1.21.1 Definition

This element is a positive integer that describes the maximum allowed amount of virtual memory this job can allocate. The amount is given in Bytes (octets of Bits). It MUST be a sub-element of the POSIXApplication Element. It MUST be supported. If this is not present then it is unlimited.

8.1.21.2 Multiplicity – 0-1

8.1.21.3 Type – xsd:positiveInteger

8.1.21.4 Attributes

8.1.21.5 Pseudo Schema

<VirtualMemory> xsd:positiveInteger </VirtualMemory>?

8.1.21.6 Example
8.1.22 ThreadCount Element

8.1.22.1 Definition

This element is a positive integer that describes the number of threads this job is allowed to create. It MUST be a sub-element of the POSIXApplication Element. It MUST be supported. If this is not present then it is unlimited.

8.1.22.2 Multiplicity – 0-1

8.1.22.3 Type – xsd:positiveInteger

8.1.22.4 Attributes

8.1.22.5 Pseudo Schema

<ThreadCount> xsd:positiveInteger </ThreadCount>?

8.1.22.6 Example
9 Security Considerations
This specification defines a language for describing the requirements of computational jobs for submission to Grids and other job management systems. It is assumed that job submission must be secured but such mechanisms are out of scope of this specification.

The ability to describe what rights are needed for job execution is very important. JSDL version 1.0 focuses on the description of the computational requirements and supports a simple security model. Users can specify the identity to be used when executing a job or staging files. The identity for staging files may be different from that used to execute the job or from other staging operations. More demanding scenarios clearly exist. It is expected that JSDL documents should be composed with more specialized security or policy languages to express more fine-grained delegation of rights when required.

Author Information

Ali Anjomshoaa

EPCC

ali@epcc.ed.ac.uk

Fred Brisard

Computer Associates Intl, Inc.

Fred.Brisard@ca.com

An Ly

Computer Associates Intl, Inc.

an.ly@ca.com

Stephen McGough

London e-Science Center

asm100@doc.ic.ac.uk

Darren Pulsipher

Ovoca LLC
Andreas Savva
Grid Computing and Bioinformatics Laboratory
Fujitsu Laboratories
4-1-1, Kamikodanaka, Nakahara, Kawasaki City, Japan
Phone: +81-44-754-2628
Email: andreas.savva@jp.fujitsu.com

Contributors

We gratefully acknowledge the contributions made to this specification by Michel Drescher, Donal Fellows, William Lee, Chris Smith, David Snelling, ….
Acknowledgements

We are grateful to numerous colleagues for discussions on the topics covered in this document, in particular (in alphabetical order, with apologies to anybody we've missed) Lee Cook, ….

Glossary

Full Copyright Notice

Copyright © Global Grid Forum (2003-2005). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the GGF or other organizations, except as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the GGF Document process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this recommendation. Please address the information to the GGF Executive Director (see contact information at GGF website).
Normative References

[RFC 2119] Bradner, S. Key words for use in RFCs to Indicate Requirement Levels. Internet Engineering Task Force, RFC 2119, March 1997. Available at

http://www.ietf.org/rfc/rfc2119.txt
Informative References

[WS-Agreement] Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Pruyne, J., Rofrano, J., Tuecke, S. and Xu, M. Web Services Agreement Specification (WS-Agreement). Global Grid Forum GRAAP-WG, Draft, August 2004.

Appendix 1: Full version of the pseudo-schema

Appendix 2: Normative Schema

Appendix 3: Translation Tables

Appendix 4: JSDL Examples

TBD
…

…

JPL

JLM

WS-A

SDL

RRL

JSDL

Job

…

…

JPL

JLM

WS-A

SDL

RRL

JSDL

Job

…

…

JPL

JLM

WS-A

SDL

RRL

JSDL

Job

…

…

JPL

JLM

WS-A

SDL

RRL

JSDL

Job

Workflow

� To discuss

�Some of this is already in the introduction.

�Is this correct?

�Placeholder. Need to put in a proper place with more explanation.

�Do we want to add a general statement that when a normative XML schema for the CIM becomes available we will simply refer to that schema?

�This table should still go to the back.

�Need to discuss compliance levels more.

�This shouldn’t be changed to sid, right?

�Need a few more words here.

�XXX This is not fully synced yet.

�This doesn’t mean that the job has to use it, which I think was Donal’s point. Something to discuss.

�Agreed to also allow this one level up as well. Not revised yet.

�Check that this also made it in he schema.

�A few more words needed here.

�Somewhat speculative change based on Jan 18 call discussion. Recheck and revise.

�These are somewhat artificial

�This section needs an owner.

�This is probably the wrong term.

�Can somebody give a meaningful definition here?

�Need some description here!!

�Need full information for all authors

�

If you think you should be listed in the Contributors or in the Acknowledgements please email Andreas Savva or one of the other co-authors.

�Taken out to make the document more usable for now. It’s changing too much to keep this in for now.

�Recurring action: Update with latest schema

�Same here. After all, saved us almost 20 pages that do not need to be kept on track.

jsdl-wg@gridforum.org

1
jsdl-wg@gridforum.org

39

