GFD-R

Eddy Caron, ENS Lyon

Category: Recommendation
C. Lee, The Aerospace Corp.

GridRPC Working Group

H. Nakada, AIST

June 13, 2007

A GridRPC Model and API for

Advanced and Middleware Applications
Status of This Memo

This document provides a recommendation to the Grid community on a proposed model and API for a grid-enabled remote procedure call. Distribution is unlimited.

Copyright Notice

Copyright © Open Grid Forum (2007). All Rights Reserved.

Abstract
This document presents advanced features of a model and API for GridRPC, i.e., a remote procedure call (RPC) mechanism for grid environments. Specifically this document is targeted for applications by advanced users and middleware developers. This document cannot be fully understood in isolation; it must be considered in conjunction with A GridRPC Model and API for End-User Applications which documents the fundamental concepts for this GridRPC model. This document extends the End-User API in the following ways. (1) Variable length array arguments are defined to be used in middleware libraries based on GridRPC. (2) Call attribute introspection is supported where arguments and other GridRPC elements are first class objects that can be managed. (3) Support for persistent data and workflow management is provided that exposes just enough semantics in the API to be able to deal with underlying grid workflow engines.
Contents

1Abstract

21.
Introduction

22.
Variable Length Array Arguments

22.1
Additional GridRPC Data Types

22.2
Argument Array Functions

42.3
Array-based GridRPC Call Functions

53.
Persistent Data and Workflow Management

53.1
Introduction

53.2
Data Management Motivation

63.3
GridRPC Data Management Model

63.4
Data Management API

83.5
Examples

94.
Additional Error Codes

95.
Related Work

106.
Security Considerations

10Author Contact Information

11Intellectual Property Statement

11Full Copyright Notice

11References

1. Introduction
The goal of this document is to clearly and unambiguously extend the syntax and semantics of GridRPC, a remote procedure call (RPC) mechanism for grid environments, thereby providing support for advanced applications and middleware libraries based on GridRPC. This document cannot be fully understood in isolation; it must be read an understood in conjunction with {\em A GridRPC Model and API for End-User Applications} \cite{EU_API_04} which documents the fundamental concepts for this GridRPC model. A preliminary version of that document appeared as \cite{GridRPC_GCW02}. A longer version is available as \cite{GridRPC_APM02}.
This document extends the End-User API in the three following ways: (1) variable length array arguments, (2) call attribute introspection, and (3) support for persistent data and workflow management. These capabilities are defined in the next three sections.

2. Variable Length Array Arguments
2.1 Additional GridRPC Data Types

grpc_arg_array_t

this data type is used for argument array.

2.2 Argument Array Functions

grpc_error_t
grpc_arg_array_init(
grpc_arg_array_t
*array,
int

size)
This initializes a new argument array structure. The first argument gives the second argument gives the size of the array.
	Error Code Identifier
	Meaning

	GRPC_NO_ERROR
	Success

	GRPC_NOT_INITIALIZED
	GRPC client not initialized yet

	GRPC_OTHER_ERROR_CODE
	Internal error detected

grpc_error_t
grpc_arg_array_set(
grpc_arg_array_t
*array,
int

index,
void

* arg)
This sets the ‘arg’ to the specified position on the ‘array’ by ‘index’.
	Error Code Identifier
	Meaning

	GRPC_NO_ERROR
	Success

	GRPC_NOT_INITIALIZED
	GRPC client not initialized yet

	GRPC_ARRAY_NOT_INITIALIZED
	The argument array is not initialized yet

	GRPC_ARRAY_OUT_OF_INDEX
	The index was too small / large for the array

	GRPC_OTHER_ERROR_CODE
	Internal error detected

grpc_error_t
grpc_arg_array_get(
grpc_arg_array_t
*array,
int

index,
void

**argPtr)
This gets the argument content in ‘array’ at ‘index’ to ‘argPtr’
	Error Code Identifier
	Meaning

	GRPC_NO_ERROR
	Success

	GRPC_NOT_INITIALIZED
	GRPC client not initialized yet

	GRPC_ARRAY_NOT_INITIALIZED
	The argument array is not initialized yet

	GRPC_ARRAY_OUT_OF_INDEX
	The index was too small / large for the array

	GRPC_OTHER_ERROR_CODE
	Internal error detected

grpc_error_t
grpc_arg_array_copy(

grpc_arg_array_t
*src,

grpc_arg_array_t
*dst)

This makes a deep copy of the argument array ‘src’ and store it into ‘dst’. The ‘dst’ have to be initialized with the grpc_arg_array_init in advance. “Deep copy’ means that all the stored content has to be also copied, i.e., if there are 2-dimensional arrays of double, a memory area has to be allocated and the content has to be properly copied to the new area.
	Error Code Identifier
	Meaning

	GRPC_NO_ERROR
	Success

	GRPC_NOT_INITIALIZED
	GRPC client not initialized yet

	GRPC_ARRAY_NOT_INITIALIZED
	The argument array is not initialized yet

	GRPC_OTHER_ERROR_CODE
	Internal error detected

grpc_error_t
grpc_arg_array_destruct(

grpc_arg_array_t
*array)

This frees the structure. Note that the content stored in the stack will *not* be freed.
	Error Code Identifier
	Meaning

	GRPC_NO_ERROR
	Success

	GRPC_NOT_INITIALIZED
	GRPC client not initialized yet

	GRPC_ARRAY_NOT_INITIALIZED
	The argument array is not initialized yet

	GRPC_OTHER_ERROR_CODE
	Internal error detected

2.3 Array-based GridRPC Call Functions

Two GridRPC call functions are available for end-users. These two calls are similar but provide either blocking (synchronous) or non-blocking (asynchronous) behavior. In the non-blocking case, a session ID is returned that is subsequently used to test for completion.

grpc_error_t
grpc_call_array(
grpc_function_handle_t
*handle,
grpc_arg_array_t

* args)
This makes a blocking remote procedure call with a variable number of arguments specified with grpc_arg_array_t structure.

	Error Code Identifier
	Meaning

	GRPC_NO_ERROR
	Success

	GRPC_NOT_INITIALIZED
	GRPC client not initialized yet

	GRPC_SERVER_NOT_FOUND
	GRPC client cannot find the specified server

	GRPC_FUNCTION_NOT_FOUND
	GRPC client cannot find the function on the specified server

	GRPC_INVALID_FUNCTION_HANDLE
	Function handle pointed to by handle is not valid

	GRPC_RPC_REFUSED
	RPC invocation refused by the server, possibly because of a security issue

	GPRC_COMMUNICATION_FAILED
	Communication with the server failed somehow

	GRPC_OTHER_ERROR_CODE
	Internal error detected

grpc_error_t
grpc_call_array_async(

grpc_function_handle_t
*handle,

grpc_sessionid_t

*sessionID,

grpc_arg_array_t

*args)

This makes a non-blocking remote procedure call with a variable number of arguments. A session ID is returned that can be used to probe or wait for completion, cancel the call, and check for the error status of a call.

	Error Code Identifier
	Meaning

	GRPC_NO_ERROR
	Success

	GRPC_NOT_INITIALIZED
	GRPC client not initialized yet

	GRPC_SERVER_NOT_FOUND
	GRPC client cannot find the specified server

	GRPC_FUNCTION_NOT_FOUND
	GRPC client cannot find the function on the specified server

	GRPC_INVALID_FUNCTION_HANDLE
	Function handle pointed to by handle is not valid

	GRPC_RPC_REFUSED
	RPC invocation refused by the server, possibly because of a security issue

	GPRC_COMMUNICATION_FAILED
	Communication with the server failed somehow

	GRPC_OTHER_ERROR_CODE
	Internal error detected

The GridRPC Recommendation does not define which implementation-related operations may be assumed to be complete when an asynchronous call returns. However, all asynchronous GridRPC calls must return as soon as possible after it is safe for a user to modify any input argument buffers.

3. Persistent Data and Workflow Management
3.1 Introduction

The goal of this document is to define a data management extension to the GridRPC API for End-User applications. As for the GridRPC API document [1], it is out of the scope of this document to discuss the implementation of data management mechanisms inside a GridRPC platform or on a data storage server. The motivation of the data management extension is to provide explicit functions to handle data exchanges between a data storage service, a GridRPC platform, and the client. The GridRPC API defines a RPC mechanism to access Network Enabled Servers. However, an application needs data to run and generates some output data, which have to be transferred. As the size of the data may be large in grid environments,

it ismandatory to optimize the transfers of large data and avoid useless exchanges. Several cases may be considered depending on where data are stored: on an external data storage, inside the GridRPC platform or on the client side. In all these cases, the knowledge of “what to do with these data?” is owned by the client. Then, the GridRPC API must be extended to provide functions for explicit and simple data management.

We firstly present a motivation for the data management and in Section 3, the proposed data management model is introduced. The main contribution of this document is given in Section 4 where we describe our proposal for a data management API.
3.2 Data Management Motivation

The main motivation of the data management extension is to provide a way to explicitly manage the data and their placement in the GridRPC model. With the help of this explicit management, the client will avoid useless transfers of large data. However, the client may not want to, or may not know how to manage data. Then, the default behavior of the GridRPC Data Management extension must be in accordance with the GridRPC API document. To illustrate the motivation of data management, we give now some examples describing when it can be used.

[image: image1.wmf]
Figure 1: Data locations in the GridRPC model

In a GridRPC environment, data can be stored either on a client host, on a data storage server, on a computational server or inside the GridRPC platform, as shown in Figure 1. When clients do not need to manage their data, then the basic GridRPC API is sufficient. On each grpc_call(), data is transferred between a client and the computational server used. Once the computation performed, results are sent back to the client. However, to minimize data transfers, clients need data management functions.

Next, we explain two different cases concerning external data and internal data.
· External data are placed on servers, like data repositories. These servers are not registered inside the platform but can be directly accessed to read/write data. The use of such data implies several data transfers if the client uses the basic GridRPC API: the client must download the data and then send it to the GridRPC platform when issuing the call to grpc_call(). One of these transfers should be avoided: the client may just give a data reference (or handle) to the platform/server and the transfer is completed by the platform/server. Consider a client, with small data storage capacities, that needs to issue a request on large data stored in a data storage server. It is costly, and it may be not possible to send the data first to the client before issuing the call. The client could also need to directly store its results from the computational server to the data storage, or share an input or output data with other users of the GridRPC platform. Examples of such Data Storage servers are IBP [2] or SRB [3]. Among the different available examples of this approach, we can cite: (1) the Distributed Storage Infrastructure of NetSolve [6] ; (2) the utilization of JuxMem in DIET [8]. This approach is well suited for, but not limited to, long life persistent data.
· Internal data are managed inside the GridRPC platform. Their placement depends on computations and it may be transparent to clients: in this case, the GridRPC middleware can manage data. Temporary data, generated by request sequencing [4], are examples of internal data. For instance, a client issues two calls to solve the same problem and the second call use input or output data from the first call. This is the case if we solve C =t (A × B), where A and B are matrices. If the client do not find a solver which computes these two operations in one step, then he must issue two calls: W = A × B and C =t W. But the value of W is of no interest for him. Then, this matrix should not be sent back to the client host. Temporary data should be leaved inside the platform, close to or on the computational server, when clients do not need it. Other cases of useless temporary data occur when the results of a simulation are sent to a graphical viewer as done in most Problem Solving Environments. Among the examples of internal data management, we can cite the Data Tree Management infrastructure used in DIET [5], and the data layer omniStorage in omniRPC [7]. This approach
3.3 GridRPC Data Management Model

As exposed in the previous section, we consider two different types of data: external and internal data.
In the external data case, data are explicitly stored on a storage depot. Clients manage explicitly their data. When clients invoke a server, they give a data reference to identify the data used for the computation. A client can use already existing data by just providing the data identification given by the storage service. In the internal data case, the data management service tries to read/write the data inside the GridRPC platform, from the client side or on a computational server. In this case, either the client knows where the data is stored and can manage the transfer (he can use the same calls than the ones to manage external data stored on a storage server), either the data is transparently managed by the GridRPC middleware, in which case the middleware provides mechanisms for transfers between computational servers.
 These two approaches are complementary in the data　management　model proposed here. The GridRPC platform and the data storage interact to implement data transfers. Note that some additional functionalities which are not addressed in this document, can be designed, such as: reusable data generated by a computation could be stored during a TTL (Time To Leave) on the computational server before being sent to data storage servers; or when the storage capacity of a computational server is overloaded, it may be sent to another data storage server.

In both cases, it is mandatory to identify each data. All data stored either in the platform or on storage servers will be identified by Data Handles and Storage Information. Without lack of generality, we define the GridRPC data type as either the data used for a computational problem, either both a Data Handle and storage information. Indeed, when a computational server receives a GridRPC data which does not contain the computational data, it must know the unique name of the data with the Data Handle, and must know its location to get it andwhere the client wants to save it after the computation. Thus storage informationmust record the original location of the data and the destination of the data.
3.4 Data Management API

In [1], data used as input/output parameters are provided within the <varargs> notation of the　grpc_call() and grpc_call_async() functions. Without lack of generality, and in order to propose　an API independent of the language of implementation, we refer to grpc_data_t as the type of such　variables. Thus, in the following, a grpc_data_t is any kind of data, or contains a reference on the computational　data, which we call a Data Handle, as well as some Storage Information.

Next, we firstly define some data types for GridRPC data, Data Handles and Storage Information. We　present afterwards the different functions to managed them, composing the proposed API for GridRPC　Data Management.

Note that in the following, we refer to “GridRPC data” to designate the generic data which is used in the GridRPC calls and “data” to designate the content data.
3.4.1 GridRPC data types
We introduce here the notion of a GridRPC data which at least includes the data or a data handle, and may contains some information about the data itself (e.g., type, size) as well as information on its location and the protocol used to access it (e.g., the URL of a specific server, a link with a Storage Resource Broker, containing the correct protocol to use). A data handle is essentially a unique reference to a data that may reside anywhere. Data and data handles can be created separately. By managing GridRPC data with data handles, clients do not have to know where data are currently stored.

3.4.1.1 The grpc_data_t type

A data in a GridRPC middleware is defined by the grpc_data_t type. It relies on a data, or on a grpc_data_handle_t type and a grpc_data_storage_info_t type to access it. Consequently, the grpc_data_t type can be seen as a structure containing the data itself and/or a grpc_data_handle_t. The grpc_data_storage_info_t type can also be stored in the grpc_data_t structure or it can also be stored and managed inside the GridRPC data middleware.

3.4.1.2 The grpc_data_handle_t type

A variable of this type represents a specific data. It is allocated by the user. After a data handle was initialized, it may be used in a server invocation. The lifetime of a data handle is determined when the user invalidates it. Data handles are created/allocated by simply creating a variable of this type.

3.4.1.3 The grpc_data_storage_info_t type

Variables of this type represent information on a specific data which can be local or remote. It is at least composed of:

· Two URLs, one to access the data and one if the data has to be stored somewhere from this server (for example, an OUT parameter to transfer at the end of a computation).
· Information concerning the mode of management. For example, data management is defaulted to the one of the standard GridRPC paradigm, but it can be noted for example as PERSISTENT, which corresponds to a transparentmanagement by the GridRPC middleware, or STICKY, in which case the data cannot migrate but can be replicated.
· Information concerning the type of the data, as well as its size.

Details on Storage Information

· URL: it defines the location where a data is stored. It can be built like “PROTOCOL://machine_name:PORT/path_to_data” and thus, contains at least four fields. Some straightforward examples are given in Section 4.2 and several full examples of utilization can be found in Section 5.

· char * protocol: one of the token {“NFS”, “LOCAL_MEMORY”, “IBP”, “LOCAL_FS”, “MIDDLEWARE”, “HTTP”}, and gives some information on how to access the data (the list can be extended).

· char * hostname: the name of the server on which resides the data.

· int port: the port to use to access the data.

· char * path: the full path of the data.

· The management mode is an enumerated type grpc_DM_mode_t defined by the client. It is related to the following policy values:

· VOLATILE: used when the data is not kept inside the platform after a computation (the default usage for GridRPC API).
· STICKY: used when a data is kept inside the platform but cannot be moved between the servers. In that case the data is not given back to the client after computation. This is used if the client needs that data in the platform for a second computation on the same server for example.

· STICKY_RETURN: used when a data is kept inside the platform but a copy is sent back to the client. Potential coherency issues may arise. The data item stays on the server where the computation has been done.

· PERSISTENT: used when a data has to be kept on the platform. The data is not sent back to the client and potential coherency issues may arise. Moreover, the data item can migrate or be replicated between servers depending on scheduling decisions.

· PERSISTENT_RETURN: used when a data is kept inside the platform but a copy is sent back to the client. This mode is useful when the client needs intermediate results. Potential coherency issues may arise. The data item can migrate or be replicated between servers depending on scheduling decisions.

· The type of the data is an enumerated type grpc_DM_type_t defined by the client: it describes the type of the data, for example DOUBLE, ARRAY OF INT, etc.

Note: All information concerning a data can be stored within the GridRPC Data Management middleware, or within the grpc_data_t type. Nonetheless, this document does not focus on implementation. Furthermore, some information describing all the locations of a data can also be stored, for performance reasons, but that kind of features may be proposed later as an extension of the present document.
3.4.2 Example of use

· A GridRPC data corresponding to an input matrix stored in memory can partly be constructed with　the information of PROTOCOL=LOCAL_MEMORY, PORT is a null string, the machine name is the one of the localhost and path_to_data is the path used to access the data in memory (such as a pointer in C language).

· The URL “HTTP://myName:/myhome/data/matrix1” corresponds to the location of a file named matrix1, which we can access on the machine named myName, with the http protocol. Typically, the data, stored as a file, can be downloaded with a command like

“wget http://myName/myhome/data/matrix1”.
3.4.3 Data Management Functions
Data handles are provided by the GridRPC Data Management middleware. They must be unique, and the middleware must record some information about the data, such as the location, the size, etc. The init function sets the data handle to the data it identifies, while the user provides needed information concerning the location on where the data is stored and where it has to be stored after the computation. Using this function, all the semantic needed to provide data management and data persistence can be covered.

Data exchanges between client and explicit locations (computational servers or storage servers) are done using the read and write functions. The GridRPC data can also be inspected to get more information about the status of the data or its location. Finally, one can free the GridRPC data. This will unbind the handle and the data.

To provide identification of long lived data, data handles should be saved and restored, for instance in a file. This will allow two different users to share the same data. Security and data life cycle management issues are not of the API concerns.

Examples of the use of this API are given in Section 5.

3.4.3.1 The init function

The init function initializes the GridRPC data with a specific data. This data may be available locally or on a remote storage server. Both identifications can be used. GridRPC data referencing input parameters must be initialized with identified data before being used in a grpc_call(). GridRPC data referencing output parameters do not have to be initialized.
Function prototype:
grpc_error_t grpc_data_init(grpc_data_t * data,

char * URL_input,

char * URL_output,

grpc_DM_type_t variable_type,

grpc_DM_mode_t storage_mode);
input and output parameters are strings, which give the location on where to transfer the data from, and the location on where to possibly transfer the data to as explained previously.

Note that some of the parameters, such as the output parameter, can be unset. Furthermore, if the function is calledwith a grpc_data_twhich has been used in a previous call, fields corresponding to information already given are overwritten.
3.4.3.2 The write function

This function writes a GridRPC data identified by data to the output location set during the init call in the output parameters fields. For commodity reasons, a list of additional servers on which the data has to be uploaded can be provided. In that case, the protocol defined during the init call is used. Some broadcast/multicast mechanisms can then be implemented in the GridRPC data middleware in order to improve performance.

Function prototype:

grpc_error_t grpc_write(grpc_data_t data, <char * server_name>);

3.4.3.3 The read function

This function reads a data stored inside the platform or on a specific storage server.

Function prototype:

grpc_error_t grpc_read(grpc_data_t* data);

After calling the grpc_read function, the data will be available in the GridRPC data type data, which will also still contain the Data Handle.

3.4.3.4 The grpc_free_data function

This function frees the GridRPC data identified by data. There is no particular assumption on what to do with the data but the data handle will not identify the GridRPC data anymore. This function may be used to explicitly erase the data on a storage resource.

Function prototype:

grpc_error_t grpc_free_data(grpc_data_t data);

After calling this function, the data GridRPC data does not reference the data anymore.

3.4.3.5 The get_data_info function

This function let the user access information about the grpc_data_t. It returns information on data characteristics, status, and location.

Function prototype:

grpc_error_t grpc_get_data_info(grpc_data_t data, grpc_data_info_type info,

char * info);

The grpc_data_info_type is defined by the following, which can of course be extended. Note that the HANDLE which can be retrieved here, is of no use to manage data with the API given in this document: handles are initialized in the init call function, stored in the grpc_data_t, and users are not concerned by managing them directly.

· HANDLE

· INPUT_URL
· OUTPUT_URL

· MANAGEMENT_MODE

· SIZE

· TYPE (used to know to which type of the language the data corresponds)

· LOCATIONS_LIST

3.4.3.6 The load_data and save_data functions

In order to communicate a reference between Grid users, for example in case of large size data, one should be able to store a GridRPC data in a file. The file can then be shared, for example by mail, and one can be able to load the corresponding information.

Function prototype:

grpc_error_t grpc_load_data(grpc_data_t data, char * filename);

grpc_error_t grpc_save_data(grpc_data_t data, char * filename);

If the GridRPC data contains the data in addition to data management information (data handle, size, type, etc.), then only data information is saved in the file.

3.5 Examples
In this section, we give examples of the data management API usage to illustrate its interest. Depending on the passing mode of the arguments (data), we show how to optimize data placement and avoid useless transfers. We do not consider these examples as an exhaustive list but they can help to understand the way to build a data management API in GridRPC middleware.

3.5.1 Basic example

In this example (see Figure 2), we show how to use the GridRPC data management functions when the

data does not need to be stored inside the platform or on a storage resource. This example corresponds to

the default behavior of the data management performed in the GridRPC paradigm, but conducted by the

client with data handles.

Input Data

Here, we illustrate the way to send a local data (in memory and on disk) to the GridRPC platform. In this example, the client issues a call with two input data A and B. A and B are local to the client. Note that we use the &A notation in the URL for commodity reason, but the real memory address should be given here.

1 grpc_function_handle_init (handle1 , " karadoc.aist.go.jp" , "_");

2 grpc_data_init (&dhA, "LOCAL_MEMORY://britannia.ens−lyon.fr/&A" , NULL, DOUBLE, NULL);

3 grpc_data_init (&dhB , "NFS://britannia.ens−lyon.fr/home/user/B.dat" , NULL, DOUBLE, NULL);

4 grpc_data_init (&dhC, NULL, "NFS://britannia.ens−lyon.fr/home/user/C.out" , DOUBLE, NULL);

5 grpc_call(handle1 ,dhA, dhB, &dhC) ;

Figure 2: Simple RPC call with input and output data.

Output Data

Output data C is sent back to the client because in our case, no data conservation is needed. In this example, the client issues a call with A and B as input data and C as output data.

3.5.2 Storage with external storage resources

In this example we show how to use the GridRPC data management when the data is stored on an external

data repository. Figure 3 shows how to manage external data repository as IBP or SRB.

1 grpc_function_handle_init (handle1 , " karadoc.aist.go.jp" , "_") ;

2 grpc_data_init (&dhA, "IBP://kaamelott.cs.utk.edu/1212#A.dat/ReadKey/READ" , "NFS://britannia.ens−lyon.fr/home/user/A. dat" , DOUBLE, NULL);

3 grpc_data_init (&dhB , "SRB://carmelide.ens−lyon.fr/COLLECTION/Simulations/B.dat" , "IBP://kaamelott.cs.utk.edu/1213#B. dat/WriteKey/WRITE" , DOUBLE, NULL) ;

4 grpc_data_init (&dhC, NULL, "NFS://britannia.ens−lyon.fr/home/user/C.out", DOUBLE, NULL) ;

5 grpc_call(handle1 ,dhA, dhB, &dhC) ;

Figure 3: Simple RPC call with input and output data using external storage resources.

Input Data

Here, we illustrate the way to send a remote data stored on SRB or IBP server to the GridRPC platform. In

this example, the client issues a call with two input data A and B. A is available on SRB repository and B is available on IBP repository. With the input and output parameters from the grpc_data_init() function we can move the data from a repository to another:

• A is read from SRB server and will be sent to the client.

• B is read from IBP server and will be sent to SRB server.

Output Data

Output data C is sent back to the client.

3.5.3 Example with STICKY mode

In this example we show how to re-use data on a specific server without resending them. Client wants to compute C = C × An using the service "*" on server karadoc.

1 grpc_ function_handle_init (handle1, "karadoc.aist.go.jp", "_") ;

2 grpc_data_init (&dhA, "LOCAL_MEMORY://britannia.ens−lyon.fr/&A", "LOCAL_MEMORY://karadoc.aist.go.jp", DOUBLE, STICKY);

3 grpc_data_init (&dhC, "NFS://britannia.ens−lyon.fr/home/user/C.in", "LOCAL_MEMORY://karadoc.aist.go.jp", DOUBLE, STICKY) ;

4

5 for (i =0 ; i <n+1 ; i ++)

6 {

7 if (i ==1)
8 grpc_data_init(&dhC, "LOCAL_MEMORY://karadoc.aist.go.jp", NULL, DOUBLE, STICKY);

9 if (i == n)
10 grpc_data_init(&dhC, "LOCAL_MEMORY://karadoc.aist.go.jp", "NFS://britannia.ens−lyon.fr/home/user/C.out", DOUBLE, NULL);

11

12 grpc_call(handle1, dhA, dhC, dhC) ;

13 }

14 grpc_free_data(dhA) ;

15 grpc_free_data(dhC) ;

Figure 4: GridRPC call with data management using persistence through the STICKY mode.
In this example (see Figure 4), we show how to use the GridRPC data management functions when the data needs to be stored inside the platform. In this example we consider the client needs to keep the data on the same server. The STICKY mode provides this behavior.

Input Data

Data A will be used and will remain on server karadoc, we can use the STICKY parameter to keep the data on server karadoc. Data C is an input/output data. The first grpc_data_init for this data requires only an input location and the STICKY mode.

Output Data

Output data C is generated on server karadoc but only the last result is useful for the client. Thus, to send the final result to the client we update the output location just before the last grpc_call().

Example with PERSISTENT mode

In this example (see Figure 5), we show how to use the GridRPC data management functions when the data needs to be stored inside the platform (or on a storage resources, this point depends on the middleware implementation). In this example we consider that the persistence data is kept in memory. Three grpc_call() are performed, two on server karadoc and one on server perceval working on the same data.

The goal of the code here is to compute C = A×(B +A×B), which is done by doing the steps C = A×B, then C = B + C and finally C = A × C.

1 grpc_function_handle_init (handle1 , "karadoc.aist.go.jp" , "_") ;

2 grpc_function_handle_init (handle2 , "perceval.rush.aero.org" , "_") ;

3 grpc_function_handle_init (handle3 , "karadoc.aist.go.jp" , "+") ;

4 grpc_data_init (&dhA, "LOCAL_MEMORY://britannia.ens−lyon.fr/&A", NULL, DOUBLE, STICKY) ;

5 grpc_data_init (&dhB , "NFS://britannia.ens−lyon.fr/home/user/B . dat" , NULL, DOUBLE, PERSISTENT) ;

6 grpc_data_init (&dhC, NULL, "LOCAL_MEMORY://karadoc.aist.go.jp" , DOUBLE, PERSISTENT) ;

7 grpc_call(handle1 ,dhA, dhB,&dhC) ;

8 grpc_data_init (&dhC, "LOCAL_MEMORY://karadoc.aist.go.jp" , "LOCAL_MEMORY://perceval.rush.aero.org" , DOUBLE, PERSISTENT) ;

9 grpc_call (handle2 , dhB , dhC, &dhC) ;

10 grpc_data_init (&dhC, "LOCAL_MEMORY://perceval.rush.aero.org" , "NFS://britannia.ens−lyon.fr/home/user/C.out " , DOUBLE, PERSISTENT) ;

11 grpc_call(handle3 ,dhA, dhC, &dhC) ;

Figure 5: Three RPC call with data management using persistence.

Input Data

Data A will be used only on server karadoc, we can use the STICKY parameter to keep the data on server karadoc (see section 4. 5.3). Thus A is already available when the third grpc_call() is performed. The data B is used on two servers. With the PERSISTENTmode the second grpc_call() implies that the data moves (or is duplicated) from server karadoc to server perceval.

Output Data

Output data C is created on server karadoc (grpc_call() line 7). At Line 8, C moves (or is duplicated) from server karadoc to server perceval. Line 9, Cmoves (or is duplicated) from server perceval to server karadoc and at the end, data C is sent back to the client.
4. Additional Error Codes

Since this API is designed as the addendum for the End-User API, this API shares The error code identifiers with the End-User API document. Table 1 gives the additional error code identifies related to argument array functions that can be used with variables of type grpc_error_t. These error codes are generated and used in the same way as error codes in the End-User document. These error codes satisfy:
0 = GRPC NO ERROR < GRPC ... < GRPC LAST ERROR CODE
Table 1. Additional Error Codes for argument array functions

	Error Code Identifier
	Meaning

	GRPC_ARRAY_NOT_INITIALIZED
	The argument array is not initialized yet

	GRPC_ARRAY_OUT_OF_INDEX
	The index was too small / large for the array

	GRPC_ARRAY_NOT_FILLED
	The argument array was initialized but not properly full filled with the argument value.

5. Related Work
Comment, CAL: This is just copied from the End-User doc. It really should be tailored to work that is related to

building middleware libraries, introspection, and workflow management.
The concept of Remote Procedure Call (RPC) has been widely used in distributed computing and distributed systems for many years [4]. It provides an elegant and simple abstraction that allows distributed components to communicate with well-defined semantics. RPC implementations face a number of difficult issues, including the definition of appropriate Application Programming Interfaces (APIs), wire protocols, and Interface Description Languages (IDLs). Corresponding implementation choices lead to trade-offs between flexibility, portability, and performance.

A number of previous works has focused on the development of high performance RPC mechanisms either for single processors or for tightly-coupled homogeneous parallel computers such as shared-memory multiprocessors [7, 3, 13, 2]. A contribution of those works is to achieve high performance by providing RPC mechanisms that map directly to low-level O/S and hardware functionalities (e.g. to move away from implementations that were built on top of existing message passing mechanisms as in [5]). By contrast, GridRPC targets heterogeneous and loosely-coupled systems over wide-are networks, raising a different set of concerns and goals.

This current work grew out of the Advanced Programming Models Research Group [10]. This group surveyed and evaluated many programming models [11, 12], including GridRPC. Some representative GridRPC systems are NetSolve [6, 20], and Ninf [14, 19]. Historically, both projects started about the same time, and in fact both systems facilitate similar sets of features. A number of related experimental systems exist, such as RCS [1] and Punch (http://punch.purdue.edu). Those systems seek to provide ways for Grid users to easily send requests to remote application servers from their desktop. GridRPC seeks to unify those efforts.

This work is also related to the XML-RPC (http://www.xml-rpc.com) and SOAP [18] efforts. Those systems use HTTP to pass XML fragments that describe input parameters and retrieve output results during RPC calls. In scientific computing, parameters to RPC calls are often large arrays of numerical data (e.g. double precision matrices). The work in [9] made it clear that using XML encoding has several caveats for those types of data (e.g. lack of floating-point precision, cost of encoding/decoding). Nonetheless, recent work [17] has shown that GridRPC could be effectively built upon future Grid software based on Web Services such as OGSA [8].

6. Security Considerations

Security issues of GridRPC are implementation-dependent and this document does not specifically address security in the API. For reference, security mechanisms of Ninf-G and NetSolve are described in this section. Security infrastructure of Ninf-G is based on GSI which is based on public key encryption, X.509 certificates, and the Secure Sockets Layer (SSL) communication protocol. This means that not only all the components are protected properly, but they can also utilize other Globus components, such as GridFTP servers, seamlessly and securely. NetSolve’s current security is based on the ability to generate access control lists that are used to grant and deny access to the NetSolve servers. NetSolve uses Kerberos V5 services for authentication. The Kerberos extensions of NetSolve provide it with trusted mechanisms by which to control access to computational resources. At this time, the Kerberized version of NetSolve performs no encryption of the data exchanged among NetSolve clients, servers, or agents, nor is there any integrity protection for the data stream.

Author Contact Information
Yves Caniou

UCBL / LIP / INRIA

Yves.Caniou@ens-lyon.fr
Eddy Caron

ENS Lyon / LIP / INRIA

Eddy.Caron@ens-lyon.fr
Hidemoto Nakada
National Institute of Advanced Industrial Science and Technology

hide-nakada@aist.go.jp

Craig A. Lee

The Aerospace Corporation, M1-102

2350 E. El Segundo Blvd.

El Segundo, CA 90245

lee@aero.org

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this recommendation. Please address the information to the GGF Executive Director.

Full Copyright Notice

Copyright (C) Global Grid Forum (2005). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the GGF or other organizations, except as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the GGF Document process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

References

[1] P. Arbenz, W. Gander, and M. Oettli. The Remote Computation System. Parallel Computing, 23:1421-1428, 1997.
[2] I. Aumage, L. Boug, A. Denis, J.-F. Mhaut, G. Mercier, R. Namyst, and L. Prylli. Madeleine II: A Portable and Efficient Communication Library for High-Performance Cluster Computing. In Proceedings of the IEEE Intl Conference on Cluster Computing (Cluster 2000), pages 78-87, 2000.

[3] B. Bershad, T. Anderson, E. Lazowska, and H. Levy. Lightweight Remote Procedure Call. ACM Transactions on Computer Systems (TOCS), 8(1):37-55, 1990.

[4] A. Birrel and G. Nelson. Implementing Remote Procedure Calls. ACM Transactions on Computer Systems (TOCS), 2(1):39-59, 1984.

[5] L. Boug, J.-F. Mhaut, and R. Namyst. Efficient Communications in Multithreaded Runtime Systems. In Proceedings of the 3rd Workshop on Runtime Systems for Parallel Programming (RTSPP’99), volume 1568 of Lecture Notes in Computer Science, Springer Verlag, pages 468-484, 1999.

[6] H. Casanova and J. Dongarra. NetSolve: A Network Server for Solving Computational Science Problems. In Proceedings of Super Computing ’96, 1996.

[7] C.-C. Chang, G. Czajkowski, and T. von Eicken. MRPC: A High Performance RPC System for MPMD Parallel Computing. Software – Practice and Experience, 29(1):43-66, 1999.

[8] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration. http://www.globus.org/ogsa, January 2002.
[9] M. Govindaraju, A. Slominski, V. Choppella, R. Bramley, and D. Gannon. Requirements for and Evaluation of RMI Protocols for Scientific Computing. In Proceedings of SC’2000, Dallas, TX, 2000.

[10] Grid Forum Advanced Programming Models Working Group. Web site. https://forge.gridforum.org/projects/gridrpc-wg/

[11] C. Lee, S. Matsuoka, D. Talia, A. Sussman, M. Mueller, G. Allen, and J. Saltz. A Grid Programming Primer. http://www.eece.unm.edu/~apm/docs/APM_Primer_0801.pdf, August 2001.

[12] C. Lee and D. Talia. Grid programming models: Current tools, issues and directions. In Berman, Fox, and Hey, editors, Grid Computing: Making the Global Infrastructure a Reality, pages 555-578. Wiley, 2003.
[13] J. Liedtke. Improving IPC by Kernel Design. In Proceedings of the 14th ACM Symposium on Operating Systems Principles (SOSP), Asheville, NC, Dec. 1993.

[14] H. Nakada, M. Sato, and S. Sekiguchi. Design and Implementation of Ninf: towards a Global Computing Infrastructure. Future Generation Computing Systems, Metacomputing Issue, 15(5-6):649-658, 1999.
[15] K. Seymour et al. An Overview of GridRPC: A Remote Procedure Call API for Grid Computing. In Proceedings of the 3rd International Workshop on Grid Computing, volume 2536, pages 274-278. Springer-Verlag, Lecture Notes in Computer Science, November 2002.
[16] K. Seymour et al. GridRPC: A Remote Procedure Call API for Grid Computing. In Proceedings of the International Workshop on Grid 2002, pages 274-278, 2002.

[17] S. Shirasuna, H. Nakada, S. Matsuoka, and S. Sekiguchi. Evaluating Web Services Based Implementation of GridRPC. In Proceedings of HPDC11, pages 237-245, 2002.
[18] Simple Object Access Protocol (SOAP) 1.1. http://www.w3.org/TR/SOAP, May 2000, W3C Note.

[19] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka. Ninf-G: A Reference Implementation of RPC-based Programming Middleware for Grid Computing. Journal of Grid Computing, 1(1):41-51, 2003.

[20] D. Arnold, S. Browne, J. Dongarra, G. Fagg, and K. Moore. Secure Remote Access to Numerical Software and Computational Hardware. In Proceedings of the DoD HPC Users Group Conference (HPCUG) 2000, 2000.
[21] T. Suzumura, T. Nakagawa, S. Matsuoka, H. Nakada, and S. Sekiguchi, Are Global Computing Systems Useful? - Comparison of Client-Server Global Computing Systems Ninf, NetSolve versus CORBA, In Proceedings of International Parallel and Distributed Processing Symposium 2000, 2000.[image: image2.png]
gridrpc@ggf.org

1

