
GFD-R.052 -summary May 28th, 2007

lee@aero.org 1

A GridRPC Model and API for End-User Applications
- Summary for Submission to the OGSG -

Copyright Notice

Copyright © Global Grid Forum (2005). All Rights Reserved.
Copyright © Open Grid Forum (2007). All Rights Reserved.

Abstract

This document presents a model and API for GridRPC, i.e., a remote procedure call (RPC)
mechanism for grid environments. Specifically this document is targeted for end-user
applications, not middleware. That is to say, this document presents a simpler version of the
GridRPC model and API that is completely sufficient for end-users and does not include the more
complex features and capabilities required for building middleware. As a Recommendations track
document in the Global Grid Forum, the goal of this document is to clearly and unambiguously
define the syntax and semantics for GridRPC, thereby enabling a growing user base to take
an advantage of multiple implementations. The motivation for this document is to provide an
easy avenue of adoption for grid computing, since (1) RPC is an established distributed
computing paradigm, and (2) there is a growing user-base for network-enabled services. By
doing so, this document will also facilitate the development of multiple implementations.

1. Introduction

The goal of this document is to clearly and unambiguously define the syntax and semantics for
GridRPC, a remote procedure call (RPC) mechanism for grid environments, thereby providing an
avenue of easy access to grid computing. Specifically this document is targeted for end-user
applications that do not require the more complex features and capabilities required for
middleware packages. As such, it is outside the scope of this document to review or discuss
those issues related to middleware, or the important issues related to network-enabled services
or to provide any kind of tutorial information. Nonetheless, a Related Work section is provided to
capture many references and pointers to relevant works that have lead up to this document. A
preliminary version of this model and API appeared as [15]. A longer version of that paper is
available as [16]. Comparison with CORBA is shown as [21].

2. The Basic GridRPC Model

Figure 1. The Basic GridRPC Model.

GFD-R.052 -summary May 28th, 2007

lee@aero.org 2

Figure 1 illustrates the basic GridRPC model. The functions shown here are very fundamental
and, hence, appear in many other systems. A service registers with a registry. A client
subsequently contacts the registry to look-up a desired service and the registry returns a handle
to the client. The client then uses the handle to call the service which eventually returns the
results.
In the GridRPC terminology adopted here, the service handle is a function handle which

represents a mapping from a simple, flat function name string to an instance of that function on a
particular server. Once a particular function-to-server mapping has been established by
initializing a function handle, all RPC calls using that function handle will be executed on the
server specified in that binding. A session ID is an identifier representing a particular non-
blocking GridRPC call. The session ID is used throughout the API to allow users to obtain the
status of a previously submitted non-blocking call, to wait for a call to complete, to cancel a call,
or to check the error code of a call.

3. Document Scope

This simple, common model nonetheless represents multiple fundamental issues. It is clearly
impossible to deal with them all at the same time. Hence, we now clarify what this document
defines and does not define.

3.1 In Scope
This document focuses on just defining the API and the minimal programming model needed to

understand and use the API for end-user applications. More specifically, it focuses on simple,
client-server interaction since this comprises the majority of usage scenarios.

3.2 Out of Scope
The following topics are very important but are nonetheless out of the scope of this document:

・ Middleware.
Middleware must be able to deal with situations that don't typically arise in end-user code, e.g., a
variable number of arguments in a specific GridRPC call that is not known until call time.

・ Service Discovery.
How the actual service registry or look-up is done is not addressed in this document. It is
assumed that some type of registry or grid information service is available to accomplish this
function.

・ Non-flat Service Names.

The current API assumes simple name strings for GridRPC services. Describing and discovering
GridRPC services by attributes or metadata schemas would certainly be very useful but is not
addressed here.

・ General Workflow.

Defining general mechanisms for managing grid workflows are not in the scope of this document.
However, simple extensions to the API may be possible that allow the use of workflow
management tools.

・ Interoperability between Implementations.

Since this document focuses on the GridRPC API, it says nothing about the protocols used to
communicate between clients, servers, and registries. Hence, it does not address interoperability.

4. The GridRPC API

We begin the presentation of the GridRPC API by defining the data types used. We then
present the initialization/finalization calls, function handle management calls, the function calls

GFD-R.052 -summary May 28th, 2007

lee@aero.org 3

themselves, and the control and wait calls. Each call definition includes a table of possible error
codes that it can return.

4.1 GridRPC Data Types
grpc_function_handle_t

Variables of this data type represent a specific remote function that has been bound to a specific
 server which might be chosen by underlying GridRPC system. They are allocated by the user.
After a function handle is initialized, it may be used to invoke the associated remote function as
many times as desired. The lifetime of a function handle is determined when the user invalidates
the function handle with a handle destruct call.

grpc_sessionid_t

Variables of this data type represent a specific non-blocking GridRPC call. Session IDs are used
to probe or wait for call completion, to cancel a call, or to check the error status of a call. Session
IDs are also allocated by the user but their lifetime is determined automatically. A session ID is
initialized when a non-blocking GridRPC call is made. It is invalidated, or destroyed, when (1) all
return arguments have been received, and (2) a wait function has returned a ``call complete’’
status to the application. If an invalid session ID is passed to any GridRPC call, an error will
result.

grpc_error_t

This data type is used for all error and return status codes from GridRPC functions.

4.2 Initializing and Finalizing Functions
The initialize and finalize functions are similar to the MPI initialize and finalize calls. Client

GridRPC calls before initialization or after finalization will fail.

grpc_error_t grpc_initialize(char *config_file_name)

This function reads the configuration file and initializes the required modules. After this function is
called once, subsequent call will return with GRPC_ALREADY_INITIALIZED.
grpc_error_t grpc_finalize(void)

This function releases any resources being used by GridRPC, canceling all the unfinished
asynchronous calls.

4.3 Remote Function Handle Management Functions
The function handle management group of functions allows the creation and destruction of

function handles.

grpc_error_t grpc_function_handle_default(

grpc_function_handle_t *handle,
char *func_name)

This creates a new function handle using a default server associated with the given function
name. This default could be a pre-determined server or it could be a server that is dynamically
chosen by the resource discovery mechanisms of the underlying GridRPC implementation. The
server selection process could be postponed until the actual call is made on the handle. Once
selection is made, all the calls through the handle must go to the server.

grpc_error_t grpc_function_handle_init(

grpc_function_handle_t *handle,
char *server_name,
char *func_name)

This creates a new function handle with a server explicitly specified by the user.

grpc_error_t grpc_function_handle_destruct(grpc_function_handle_t *handle)

This releases all information and resources associated with the specified function handle. It also
cancels a running session bound to the handle, if exists, before releasing the handle itself.

GFD-R.052 -summary May 28th, 2007

lee@aero.org 4

grpc_error_t grpc_get_handle(

grpc_function_handle_t **handle,
grpc_sessionid_t sessionID)

This returns the function handle corresponding to the given session ID (that is, corresponding to

that particular non-blocking request).

4.4 GridRPC Call Functions
 Two GridRPC call functions are available for end-users. These two calls are similar but provide
either blocking (synchronous) or non-blocking (asynchronous) behavior. In the non-blocking case,
a session ID is returned that is subsequently used to test for completion.

grpc_error_t grpc_call(grpc_function_handle_t *handle, <varargs>)

This makes a blocking remote procedure call with a variable number of arguments.

grpc_error_t grpc_call_async(

grpc_function_handle_t *handle,
grpc_sessionid_t *sessionID,
<varargs>)

This makes a non-blocking remote procedure call with a variable number of arguments. A
session ID is returned that can be used to probe or wait for completion, cancel the call, and check
for the error status of a call.

The GridRPC Recommendation does not define which implementation-related operations may
be assumed to be complete when an asynchronous call returns. However, all asynchronous
GridRPC calls must return as soon as possible after it is safe for a user to modify any input
argument buffers.

4.5 Asynchronous GridRPC Control Functions
 The following functions apply only to previously submitted non-blocking requests.

grpc_error_t grpc_probe(grpc_sessionid_t sessionID)

This call checks whether the asynchronous GridRPC call represented by the session ID
sessionID has completed. If it has completed, GRPC_NO_ERROR is returned. Otherwise,
GRPC_NOT_COMPLETED is returned.

grpc_error_t grpc_probe_or(

grpc_sessionid_t *idArray,
size_t length,
grpc_sessionid_t *idPtr)

This call checks whether the asynchronous GridRPC calls represented by the array of session
IDs in idArray have completed. If any calls have completed, the function return value is
GRPC_NO_ERROR and the grpc_sessionid_t pointed to by *idPtr contains exactly one valid,

completed call. If no call has completed, the function return value is
GRPC_NONE_COMPLETED and the grpc_sessionid_t pointed to by *idPtr is undefined. If any
of the session IDs in idArray are invalid, no operations will occur and an
GRPC_INVALID_SESSION_ID error will be returned. However, the array of session IDs may

contain completed session IDs without causing an error.

grpc_error_t grpc_cancel(grpc_sessionid_t sessionID)

This cancels the specified asynchronous GridRPC call.

grpc_error_t grpc_cancel_all(void)

This cancels all outstanding asynchronous GridRPC calls.

Rationale:

GFD-R.052 -summary May 28th, 2007

lee@aero.org 5

 A ``cancel array’’ call was considered but dismissed since it would cause difficult error handling.
End of Rationale.

4.6 Synchronous GridRPC Wait Functions
 The following five functions apply only to previously submitted non-blocking requests. These
calls allow an application to express desired non-deterministic completion semantics to the
underlying system, rather than repeatedly polling on a set of session IDs.

grpc_error_t grpc_wait(grpc_sessionid_t sessionID)

This blocks until the specified non-blocking requests to complete.

grpc_error_t grpc_wait_and(

grpc_sessionid_t *idArray,
size_t length)

This blocks until all of the specified non-blocking requests in idArray have completed.

grpc_error_t grpc_wait_or(

grpc_sessionid_t *idArray,
size_t length,
grpc_sessionid_t *idPtr)

This blocks until any of the specified non-blocking requests in idArray has completed. On a
successful return, idPtr points to a completed request.

grpc_error_t grpc_wait_all(void)

This blocks until all previously issued non-blocking requests have completed.

grpc_error_t grpc_wait_any(grpc_sessionid_t *idPtr)

This blocks until any previously issued non-blocking requests has completed. On a successful
return, idPtr points to a completed request.

4.7 Error codes and Error Reporting Functions
 When a GridRPC call fails, an error code is returned. The table is omitted here for brevity.

These error codes satisfy:

0 = GRPC_NO_ERROR < GRPC_... < GRPC_LAST_ERROR_CODE
This specifies a useful numerical ordering of the error codes based on the set of integers without
specifying a specific implementation.
 The ability to check the error code of previously submitted requests is provided. The following
error reporting functions provide error codes and human-readable error descriptions. These error
descriptions can be more informative about the actual cause of the error.

char *grpc_error_string(grpc_error_t error_code)

This returns the error description string, given a GridRPC error code. If the error code is
unrecognized for any reason, the string GRPC_UNKNOWN_ERROR_CODE is returned.

grpc_error_t grpc_get_error(grpc_sessionid_t sessionID)

This returns the error code associated with a given non-blocking request.

grpc_error_t grpc_get_failed_sessionid(grpc_sessionid_t *idPtr)
This returns the session ID associated with the most recent GRPC_SESSION_FAILED error.

This provides additional error information on a specific session ID that failed for calls that deal
with sets of session IDs, either implicitly, such as grpc_wait_all(), or explicitly, such as
grpc_wait_and(). When there are more than two failed sessions, this function will return the

session ID one by one. To make sure that all the failed sessions are handled, users have to call
this function repeatedly until it returns GRPC_SESSIONID_VOID.

GFD-R.052 -summary May 28th, 2007

lee@aero.org 6

5. Security Considerations

Security issues of GridRPC are implementation-dependent and this document does not
specifically address security in the API. For reference, security mechanisms of Ninf-G and
NetSolve are described in this section. Security infrastructure of Ninf-G is based on GSI which is
based on public key encryption, X.509 certificates, and the Secure Sockets Layer (SSL)
communication protocol. This means that not only all the components are protected properly, but
they can also utilize other Globus components, such as GridFTP servers, seamlessly and
securely. NetSolve’s current security is based on the ability to generate access control lists that
are used to grant and deny access to the NetSolve servers. NetSolve uses Kerberos V5 services
for authentication. The Kerberos extensions of NetSolve provide it with trusted mechanisms by
which to control access to computational resources. At this time, the Kerberized version of
NetSolve performs no encryption of the data exchanged among NetSolve clients, servers, or
agents, nor is there any integrity protection for the data stream.

Author Contact Information

Hidemoto Nakada
National Institute of Advanced Industrial Science and Technology
hide-nakada@aist.go.jp

Satoshi Matsuoka
Tokyo Institute of Technology
National Institute of Informatics
matsu@is.titech.ac.jp

Keith Seymour
University of Tennessee, Knoxville
Seymour@cs.utk.edu

Jack Dongarra
University of Tennessee, Knoville
dongarra@cs.utk.edu

Craig A. Lee
The Aerospace Corporation, M1-102
2350 E. El Segundo Blvd.
El Segundo, CA 90245
lee@aero.org

Henri Casanova
University of California, San Diego
San Diego Supercomputer Center
Casanova@cs.ucsd.edu

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other

rights that might be claimed to pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights might or might not be available;
neither does it represent that it has made any effort to identify any such rights. Copies of claims
of rights made available for publication and any assurances of licenses to be made available, or
the result of an attempt made to obtain a general license or permission for the use of such
proprietary rights by implementers or users of this specification can be obtained from the GGF
Secretariat.

GFD-R.052 -summary May 28th, 2007

lee@aero.org 7

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director.

Full Copyright Notice

Copyright (C) Global Grid Forum (2005). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative

works that comment on or otherwise explain it or assist in its implementation may be prepared,
copied, published and distributed, in whole or in part, without restriction of any kind, provided that
the above copyright notice and this paragraph are included on all such copies and derivative
works. However, this document itself may not be modified in any way, such as by removing the
copyright notice or references to the GGF or other organizations, except as needed for the
purpose of developing Grid Recommendations in which case the procedures for copyrights
defined in the GGF Document process must be followed, or as required to translate it into
languages other than English.
The limited permissions granted above are perpetual and will not be revoked by the GGF or its

successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and THE

GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE."

