
Proposal for a Data Management API within the GridRPC

Y. Caniou, E. Caron, F. Desprez, G. Le Mahec, H. Nakada and Y. Tanimura

October 14, 2009

Status of This Memo

This document (version 0.91:2009-10-12) provides a recommendation to the Grid community on a proposed
model and API for data management to GridRPC. Distribution is unlimited.

Copyright Notice

Copyright c© Open Grid Forum (2007). All Rights Reserved.

Abstract

This document follows the document produced by the GridRPC-WG on
GridRPC Model and API for End-User applications [1]. This new docu-
ment aims to complete the GridRPC API with Data Management mecha-
nisms and API.
This document is not intended to provide features and capabilities for
building data management middleware. Its goal is to complete the
GridRPC set of functions and definitions to allow users to manipulate their
data. The motivation for this document is to provide explicit functions to
manipulate the exchange of data between a GridRPC platform and a client
since (1) the size of the data used in Grid applications may be large and
useless data transfers must be avoided; (2) data are not always stored on
the client side but may be made available either on a storage resource or
within the GridRPC platform. Nonetheless, all functions in the API have
been thought to be called by each part in a GridRPC platform (client, agent
and server) if needed.

1

Contents

1 Introduction 3

2 Data Management motivation 3

3 GridRPC Data Management model 4

4 Data Management API 5
4.1 GridRPC data types . 5
4.2 Examples of use . 7
4.3 Data Management functions . 7

References 14

A Examples of use of the API 16
A.1 Basic example . 16
A.2 Example with external storage resources . 17
A.3 Example with persistence . 18
A.4 Example with prefetching . 19
A.5 Example with data migration . 21

B Table of Functions 23

C Table of Types 24

2

1 Introduction

The goal of this document is to define a data management extension to the GridRPC API for End-User
applications. As for the GridRPC API document [1], it is out of the scope of this document to discuss the
implementation of the API described in this document, which focuses on data management mechanisms
inside a GridRPC platform.

The motivation of the data management extension is to provide explicit functions to handle data ex-
changes between a data storage service, a GridRPC platform, and the client. The GridRPC API defines a
RPC mechanism to access Network Enabled Servers. However, an application needs data to run and gener-
ates some output data, which have to be transferred. As the size of data may be large in grid environments,
it is mandatory to optimize transfers of large data by avoiding useless exchanges. Several cases may be con-
sidered depending on where data are stored: on an external data storage, inside the GridRPC platform or
on the client side. In all these cases, the knowledge of “what to do with these data?” is owned by the client.
Then, the GridRPC API must be extended to provide functions for explicit and simple data management.

We firstly present a motivation for the data management and in Section 3, the proposed data manage-
ment model is introduced. The main contribution of this document is given in Section 4 where we describe
our proposal for a data management API.

2 Data Management motivation

The main motivation of the data management extension is to provide a way to explicitly manage the data
and their placement in the GridRPC model. With the help of this explicit management, the client will avoid
useless transfers of large data. However, the client may not want to, or may not know how to manage data.
Then, the default behavior of the GridRPC Data Management extension must be in accordance with the
GridRPC API document. To illustrate the motivation of data management, we give now some examples
describing when it can be used.

Client

Computational Server
Data Storage Resource

GridRPC Platform

����
����
����
����

���
���
���
���
���

���
���
���
���
���

������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Figure 1: Data locations in the GridRPC model

In a GridRPC environment, data can be stored either on a client host, on a data storage server, on a
computational server or inside the GridRPC platform, as shown in Figure 1. When clients do not need to
manage their data, then the basic GridRPC API is sufficient. On each grpc_call(), data is transfered
between a client and the computational server used. Once the computation performed, results are sent
back to the client. However, to minimize data transfers, clients need data management functions.

Next, we explain two different cases concerning external data and internal data:

• External data are placed on servers, like data repositories. These servers are not registered inside the
platform but can be directly accessed to read/write data. The use of such data implies several data
transfers if the client uses the basic GridRPC API: the client must download the data and then send

3

it to the GridRPC platform when issuing the call to grpc_call(). One of these transfers should be
avoided: the client may just give a data reference (or handle) to the platform/server and the transfer
is completed by the platform/server. Consider a client, with small data storage capacities, that needs
to issue a request on large data stored in a data storage server. It is costly, and it may be not possible
to send the data first to the client before issuing the call. The client could also need to directly store
its results from the computational server to the data storage, or share an input or output data with
other users of the GridRPC platform. Examples of such Data Storage servers are IBP [2] or SRB [3].
Among the different available examples of this approach, we can cite: (1) the Distributed Storage
Infrastructure of NetSolve [6]; (2) the utilization of JuxMem in DIET [8]. This approach is well suited
for, but not limited to, long life persistent data.

• Internal data are managed inside the GridRPC platform. Their placement depends on computations
and it may be transparent to clients: in this case, the GridRPC middleware can manage data. Tempo-
rary data, generated by request sequencing [4], are examples of internal data. For instance, a client
issues two calls to solve the same problem and the second call use input or output data from the first
call. This is the case if we solve C =t (A × B), where A and B are matrices. If the client do not find
a solver which computes these two operations in one step, then he must issue two calls: W = A × B
and C =t W . But the value of W is of no interest for him. Then, this matrix should not be sent back to
the client host. Temporary data should be leaved inside the platform, close to or on the computational
server, when clients do not need it. Other cases of useless temporary data occur when the results of a
simulation are sent to a graphical viewer as done in most Problem Solving Environments. Among the
examples of internal data management, we can cite the Data Tree Management infrastructure used
in DIET [5], and the data layer omniStorage in omniRPC [7]. This approach is suitable for, but not
limited to, intermediate results to be reused in case of request sequencing.

3 GridRPC Data Management model

As exposed in the previous section, we consider two different types of data: external and internal data.
In the external data case, data are explicitly stored on a storage depot. Clients manage explicitly their

data. When clients invoke a server, they give a data reference to identify the data used for the computation.
A client can use already existing data by just providing the data identification given by the storage service.

In the internal data case, the data management service tries to read/write the data inside the GridRPC
platform, from the client side or on a computational server. In this case, either the client knows where the
data is stored and can manage the transfer (he can use the same calls than the ones to manage external data
stored on a storage server), either the data is transparently managed by the GridRPC middleware, in which
case the middleware provides mechanisms for transfers between computational servers.

These two approaches are complementary in the data management model proposed here. The GridRPC
platform and the data storage interact to implement data transfers. Note that some additional function-
alities which are not addressed in this document, can be designed, such as: reusable data generated by a
computation could be stored during a TTL (Time To Leave) on the computational server before being sent
to data storage servers; or when the storage capacity of a computational server is overloaded, it may be
sent to another data storage server.

In both cases, it is mandatory to identify each data. All data stored either in the platform or on storage
servers will be identified by Data Handles and Storage Information. Without lack of generality, we define
the GridRPC data type as either the data used for a computational problem, either both a Data Handle and storage
information. Indeed, when a computational server receives a GridRPC data which does not contain the
computational data, it must know the unique name of the data with the Data Handle, and must know its
location to get it and where the client wants to save it after the computation. Thus storage information must
record the original location of the data and the destination of the data.

4

4 Data Management API

In [1], data used as input/output parameters are provided within the <varargs> notation of the
grpc_call() and grpc_call_async() functions. Without lack of generality, and in order to propose
an API independent of the language of implementation, we refer to grpc_data_t as the type of such vari-
ables. Thus, in the following, a grpc_data_t is any kind of computational data, or contains a reference
on the computational data, which we call a Data Handle, as well as some Storage Information.

In the following, we firstly define some data types for GridRPC data management. We present after-
wards the different functions to managed them, composing the proposed API for GridRPC Data Manage-
ment.

Note that from now on we refer to “GridRPC data” to designate the generic data which is used in the
GridRPC calls and “data” to designate the content data.

4.1 GridRPC data types

We introduce here the notion of a GridRPC data which at least includes the data or a data handle, and
may contains some information about the data itself (e.g., type, size) as well as information on its location
and the protocol used to access it (e.g., the URI of a specific server, a link with a Storage Resource Broker,
containing the correct protocol to use). A data handle is essentially a unique reference to a data that may
reside anywhere. Data and data handles can be created separately. By managing GridRPC data with data
handles, clients do not have to know where data are currently stored.

4.1.1 The grpc_data_t type

A data in a GridRPC middleware is defined by the grpc_data_t type. Variables of this type represent infor-
mation on a specific data which can be local or remote. It is at least composed of:

• Two NULL-terminated lists of URIs, one to access the data and one if the data has to be stored some-
where from this server (for example, an OUT parameter to transfer at the end of a computation).

• Information concerning the mode of management. For example, data management is defaulted to
the one of the standard GridRPC paradigm, but it can be noted for example as GRPC_PERSISTENT,
which corresponds to a transparent management by the GridRPC middleware.

• Information concerning the type of the data, as well as its size.

grpc_data_type_t Definition
GRPC_BOOL boolean

GRPC_INT integer
GRPC_DOUBLE double

GRPC_COMPLEX complex
GRPC_STRING string

GRPC_FILE file
GRPC_CONTAINER_OF_GRPC_DATA container of grpc_data_t

Table 1: Definition of grpc_data_type_t codes

5

Details on Storage Information

• URI: it defines the location where a data is stored. URI formalism is described in [9]. It can be built like
“protocol://machine_name:port/path_to_data” and thus, contains at least four fields. Some straight-
forward examples are given in Section 4.2 and several full examples of utilization can be found in
Section A.

– char * protocol: one of the token {“file”, “nfs”, “memory”, “ibp”, “local_fs”, “middleware”,
“http”}, and gives some information on how to access the data (the list is not exhaustive).

– char * hostname: the name of the server on which resides the data.

– int port: the port to use to access the data.

– char * path: the full path of the data or an ID.

• The management mode is an enumerated type grpc_data_mode_t defined by the client. It is useful
to set the behavior of the data on the platform. It is related to the following policy values. If the
middleware does not handle the given behavior, it throws an error.

– GRPC_VOLATILE: used when the data may not be kept inside the platform after a computation
(can be considered as the default usage for GridRPC API). Still, the Data Management middle-
ware can keep the data in the system, migrate and replicate it, for later use. Hence, potential
coherency issues may arise.

– GRPC_UNIQUE_VOLATILE, used when the data must not be kept inside the platform after a
computation for security reason for example (can be considered as the default usage for GridRPC
API).

– GRPC_PERSISTENT: used when a data has to be kept on the platform. The data is not sent back
to the client. Moreover, the data item can migrate or be replicated between servers depending
on scheduling decisions, and potential coherency issues may arise.

– GRPC_STICKY: used when a data is kept inside the platform but cannot be moved between the
servers. In that case the data is not given back to the client after computation. This is used if the
client needs that data in the platform for a second computation on the same server for example.
Note that in this case, the data can be replicated and that potential coherency issues may arise.

– GRPC_UNIQUE_STICKY: used when a data is kept inside the platform but cannot be moved
between the servers. In that case the data is not given back to the client after computation. This
is used if the client needs that data in the platform for a second computation on the same server
for example. Note that in this case, the data cannot be replicated for security reason for example.

– GRPC_END_LIST: this is not a type, but just marker, whichi is used to terminate
grpc_data_mode_t lists.

• The type of the data is an enumerated type grpc_data_type_t defined by the client: it describes
the type of the data, for example GRPC_DOUBLE, GRPC_INT, etc., as exposed in Table 1. We can
note that a special grpc_data_t can contain other grpc_data_t. That way, the user relies on the
GridRPC Data Middleware to transfer a set of grpc_data_t data. The matter of implementing it by
an array, a list or anything else is GridRPC Data Middleware dependant, then not in the purpose of
this document.

4.1.2 Function specific types

In this section, we describe some types that are only used in a given function. They are enumerated types,
and are given here for commodity reasons.

6

The grpc_completion_mode_t type. This type is used in grpc_data_wait() and is defined by the enu-
merated type { GRPC_WAIT_ALL, GRPC_WAIT_ANY } which can be extended. It is used to detail the behav-
ior of the waiting process: the function can wait for one or all transfers concerning data involved during
the call to grpc_data_wait().

The grpc_data_info_type_t type. This type is only used with the grpc_data_getinfo() function to
define the wanted information. It is an enumerated type defined with the following values (which can be
extended):

• GRPC_HANDLE

• GRPC_INPUT_URI

• GRPC_OUTPUT_URI

• GRPC_MANAGEMENT_MODE (used to know if a data is for example GRPC_VOLATILE, etc.)

• GRPC_SIZE

• GRPC_TYPE (used to know to which type of the language of implementation the data corresponds)

• GRPC_LOCATIONS_LIST

• GRPC_STATUS (used to know if a grpc data is “GRPC_IN_PLACE” or “GRPC_TRANSFERING”)

• GRPC_COHERENT (used to know if the considered data is managed by a Data Management mid-
dleware that ensures coherency in all replicas (and then, if this replica may or is up-to-date) – should
be dependent on the locations)

Note: Information is managed by the GridRPC Data Management API, which relies on at least one Data
Management middleware. Then, information concerning a data can be stored within the GridRPC Data
Management middleware, and/or within the grpc_data_t type. Nonetheless, this document does not
focus on implementation.

4.2 Examples of use

• A GridRPC data corresponding to an input matrix stored in memory can partly be constructed with
the information of protocol=memory, port is a null string, the machine name is the one of the
localhost and path_to_data is the path used to access the data in memory (such as a pointer in C
language, or a key that lets the GridRPC API either make the correspondance with the correct input
to give to the data middleware, either the key used by the data middleware).

• The URI “http://myName:/myhome/data/matrix1” corresponds to the location of a file named
matrix1, which we can access on the machine named myName, with the http proto-
col. Typically, the data, stored as a file, can be downloaded with a command like
“wget http://myName/myhome/data/matrix1”.

4.3 Data Management functions

Data handles are provided by the GridRPC Data Management middleware. They must be unique, and
the middleware must record some information about the data, such as the location, the size, etc. The
init function sets the data handle to the data it identifies, while the user provides needed information
concerning the location on where the data is stored and where it has to be stored after the computation.
Using this function, all the semantic needed to provide data management and data persistence can be
covered.

7

Data exchanges between client and explicit locations (computational servers or storage servers) are done
using the asynchronous read and asynchronous write functions. Consequently, the GridRPC data can also be
inspected, or probed, to get more information about the status of the data or its location. Functions are also
given to wait after the completion of some transfers. Finally, one can unbind the handle and the data, and
free the GridRPC data.

To provide identification of long lived data, data handles should be saved and restored, for instance in
a file. This will allow two different users to share the same data. Security and data life cycle management
issues are not of the API concerns.

Examples of the use of this API are given in Appendix A.

4.3.1 The init function

The init function initializes the GridRPC data with a specific data. This data may be available locally or on a
remote storage server. Both identifications can be used. GridRPC data referencing input parameters must
be initialized with identified data before being used in a grpc_call(). GridRPC data referencing output
parameters do not have to be initialized.

Function prototype:

grpc_error_t grpc_data_init(grpc_data_t * data,
const char ** list_of_URI_input,
const char ** list_of_URI_output,
const grpc_data_type_t data_type,
const size_t * data_dimensions_size,
const grpc_data_mode_t * list_of_data_mode);

list_of_URI_input and list_of_URI_output parameters are NULL-terminated lists of strings, which give
the different locations on where to transfer the data from, and the locations on where to possibly transfer
the data to, as explained previously. Hence, a list describes all the available locations known by the client,
in order for the GridRPC Data Management middleware to possibly implement some efficient and fault-
tolerant mechanisms to perform a choice among all the proposed selections (and the ones eventually known
by the Data Management middleware). In sake of simplicity, one can imagine that the default behavior
would be a sequential try until the transfer to/from one of them can be achieved.

Remarks:

• The data_dimensions_size parameter is a vector terminated by a zero value, containing the dimen-
sions of the data. For example, an array of [n m 0] would be used to describe a n×m matrix.

• If GRPC_UNIQUE_VOLATILE is used at the same time than a resolution_mode equal to
GRPC_NO_RESULT, then if List_of_URI_output is NULL, the result is lost.

• storage_mode is by default set to GRPC_VOLATILE. If the data has to be managed differently on at
least one another resource, for example GRPC_STICKY, then the storage management is applied to all
locations (which implies that the size of the list is the same than the size of the output list).

If a user wants to use the same handle in order to use the same data possibly being managed differ-
ently on numerous locations (for example GRPC_STICKY on given resources and GRPC_VOLATILE
on others), then he has to do it when calling the grpc_data_write() function.

• Some of the parameters, such as the output list parameter, can set to NULL if empty.

• If the function is called with a grpc_data_t which has been used in a previous call, fields corresponding
to information already given are overwritten.

• Error code identifiers and meanings are described in the table 2.

8

Error code identifier Meaning
GRPC_NO_ERROR Success
GRPC_NOT_INITIALIZED grpc_initialize was not called in advance
GRPC_NOT_SUPPORTED the capability is not supported
GRPC_INVALID_TYPE Specified type is not valid
GRPC_INVALID_MODE Specified mode is not valid
GRPC_MALFORMED_URI One of the URI is not valid
GRPC_OTHER_ERROR_CODE Internal error detected

Table 2: Error codes identifiers and meanings for the init fonction.

4.3.2 Functions specific to a special mode or data

Mappings of memory location to given names.

If he wants to use a data which is in memory, the user must provide some name in the URIs in the
input or output fields which has to be understood by the GridRPC Data Management layer in the GridRPC
system, in addition of the use of the memory protocol. For this reason, we provide here two functions:

Function prototype:

grpc_error_t grpc_data_memory_mapping_set(const char * key, void * data);
grpc_error_t grpc_data_memory_mapping_get(const char * key, void ** data);

The function grpc_data_memory_mapping_set() is used to make the relation between a data
stored in memory and a grpc_data_t data when the memory protocol is used: the aim is to set a keyword
that will be used in the URI used for example during the initialization of the data.

Error code identifiers and meanings are described in the table 3.

Error code identifier Meaning
GRPC_NO_ERROR Success

Table 3: Error codes identifiers and meanings for the memory mapping fonction.

9

Containers of grpc_data_t management functions.

In order to facilitate the use of some special structures like lists or arrays of grpc_data_t variables, the
two following functions let the user manipulate them at a higher level and without knowing the contents
of the structures.

Function prototype:

grpc_error_t grpc_data_container_set(grpc_data_t * container, int rank,
const grpc_data_t * data);

grpc_error_t grpc_data_container_get(const grpc_data_t * container, int rank,
grpc_data_t ** data);

The variable container is necessarily a grpc_data_t of type GRPC_CONTAINER_OF_GRPC_DATA. rank
is a given integer which acts as a key index, and data is the data that the user wants to add in or get from
the container. Note that getting the data does not remove the data from the container. Furthermore, the
container management is free of implementation.

Error code identifiers and meanings are described in the table 4.

Error code identifier Meaning
GRPC_NO_ERROR Success
GRPC_NOT_INITIALIZED grpc_initialize was not called in advance
GRPC_NOT_SUPPORTED the capability is not supported
GRPC_INVALID_TYPE Specified type is not valid
GRPC_INVALID_RANK Specified rank is not valid
GRPC_OTHER_ERROR_CODE Internal error detected

Table 4: Error codes identifiers and meanings for container management fonctions.

4.3.3 The transfer function

This function writes a GridRPC data identified by data to the output locations set during the init call in
the output parameters fields. For commodity reasons, a list of additional servers on which the data has to
be uploaded can be provided.

A user may want to be able to transfer data while computations are done. For example, if a computa-
tion can begin as soon as some data are downloaded but needs all of them to finish, the management of
data must use asynchronous mechanisms as default behavior. Then, this function initiates the call for the
transfers and returns immediately after.

Function prototype:

grpc_error_t grpc_data_transfer(grpc_data_t * data,
const char ** list_of_input_URI,
const char ** list_of_output_URI,
const grpc_data_mode_t * list_of_input_modes,
const grpc_data_mode_t * list_of_output_modes);

list_of_[input/output]_modes are NULL-terminated lists with the same number of items than
list_of_[input/output]_URI. For each URI describing the hostname, the protocol used to access the data,
etc., a management mode can be specified: a data can be flagged GRPC_STICKY on given resources. Hence,
list_of_[input/output]_modes can be used to set different management policies on some resources (for
example, set the data as GRPC_STICKY to a set of a resources and GRPC_PERSISTENT to the others) while

10

possibly benefiting of an “aggressive” write as the data is the same everywhere.

Remarks:

• If one of the list_of_[input/output]_modes is set to NULL, the management mode of the data is the
one specified during the initialization of the data, else the management mode is overridden.

• No information is given as when the transfer will indeed begin.

• If a user needs to know if the transfer is completed on one or another server (or all), he can use the
grpc_data_getinfo() function.

• If a user wants to wait of the completion of one or more transfers, he can use the grpc_data_wait()
function.

• If the data middleware (e.g., the GridRPC middleware or the data middleware on which it relies) does
not manage coherency between the duplicates on the platform, a correct call to this function can be
useful to ensure that all copies are up to date.

Error code identifiers and meanings are described in the table 5.

Error code identifier Meaning
GRPC_NO_ERROR Success
GRPC_NOT_INITIALIZED grpc_initialize was not called in advance
GRPC_NOT_SUPPORTED the capability is not supported
GRPC_INVALID_DATA Specified data is not valid
GRPC_MALFORMED_URI One of the URI is not valid
GRPC_OTHER_ERROR_CODE Internal error detected

Table 5: Error codes identifiers and meanings for the transfer fonction.

To discuss:

• A special ERROR if protocol not set or not correct should be given?

• A special ERROR if at least on server does not respond?

• A “diffusion mode” definition? Some broadcast/multicast mechanisms can then be implemented in
the GridRPC data middleware in order to improve performance. The diffusion mode can be used by
more intelligent data middleware to diffuse a data in a broadcast manner for example.

4.3.4 The grpc_data_wait() function

For convenient reasons, the function grpc_data_transfer() is asynchronous. Hence, a user have the
possibility to perform overlap transfers with computation and try to realize transfers in parallel. This
function can then be used by the user to wait for the completion of one or several transfers.

Function prototype:

grpc_error_t grpc_data_wait(const grpc_data_t ** list_of_data,
grpc_completion_mode_t mode);

Depending on the value of mode (GRPC_WAIT_ALL or GRPC_WAIT_ANY), the call returns when all or
one of the data listed in list_of_data is transfered, which means that for a given data, all transfers involved
for the input or output part are finished.

11

Remarks:

• If list_of_data is NULL, then either one or all data (depending on the value of mode) are transfered
since the call to grpc_initialize().

• The use of this function can be done in such a way that the server can test if data are in place (i.e., that
transfers involved in the grpc_data_transfer() on the client part have been completed) before
doing anything. If the user performs a grpc_data_transfer() of a grpc_data_t whose transfer
has not been completed, the behavior is depending on the data middleware which manage the data:
if the middleware implements some stamps mechanisms, then no problem will occur.

• This function considers only the information that the user is aware of: if the data is shared between
different users, then a call to grpc_data_wait() returns depending on the input of the user that
has performed the call. Hence, the call will not depend on an other user action.

Error code identifiers and meanings are are described in the table 6.

Error code identifier Meaning
GRPC_NO_ERROR Success
GRPC_NOT_INITIALIZED grpc_initialize was not called in advance
GRPC_NOT_SUPPORTED the capability is not supported
GRPC_INVALID_HANDLE Specified handle is invalid
GRPC_INVALID_DATA Specified data is not valid
GRPC_OTHER_ERROR_CODE Internal error detected

Table 6: Error codes identifiers and meanings for the wait fonction.

4.3.5 The unbind function

When the user does not need a handle anymore, but knows that the data may be used by another user for
example, he can unbind the handle and the GridRPC data by calling this function without actually freeing
the GridRPC data on the remote servers.

Function prototype:

grpc_error_t grpc_data_unbind(grpc_data_t * data);

After calling this function, data does not reference the data anymore.
Error code identifiers and meanings are are described in the table 7.

Error code identifier Meaning
GRPC_NO_ERROR Success
GRPC_NOT_INITIALIZED grpc_initialize was not called in advance
GRPC_NOT_SUPPORTED the capability is not supported
GRPC_OTHER_ERROR_CODE Internal error detected

Table 7: Error codes identifiers and meanings for the Unbind fonction.

12

4.3.6 The free function

This function frees the GridRPC data identified by data on a subset or on all the different locations where
the data is stored, and unbind the handle and the data. This function may be used to explicitly erase the
data on a storage resource.

Function prototype:

grpc_error_t grpc_data_free(grpc_data_t * data, const char ** URI_locations);

If URI_locations is NULL, then the data is erased on all the locations where it is stored, else it is freed on
all the location contained in the list of URI.

After calling this function, data does not reference the data anymore.
Error code identifiers and meanings are are described in the table 8.

Error code identifier Meaning
GRPC_NO_ERROR Success
GRPC_NOT_INITIALIZED grpc_initialize was not called in advance
GRPC_NOT_SUPPORTED the capability is not supported
GRPC_INVALID_DATA Specified data is invalid
GRPC_OTHER_ERROR_CODE Internal error detected

Table 8: Error codes identifiers and meanings for the free fonction.

4.3.7 A function to get information on a grpc_data_t variable

This function let the user access information about an instanciation of a grpc_data_t. It returns information
on data characteristics, status, locations, etc.

Function prototype:

grpc_error_t grpc_data_getinfo(const grpc_data_t * data,
grpc_data_info_type_t info_tag,
const char * URI,
char ** info);

The kind of information that the function gets is defined by the info_tag parameter. A server name can
be given to get some data information dependent on the location of where is the data (like GRPC_STICKY).
info is a NULL-terminated list containing the different available information corresponding to the request.

Remarks:

• For values equal to GRPC_INPUT_URI and GRPC_OUTPUT_URI, the returned list is the considered to
be information on the grpc data in the system, not only the information got locally for the handle (or
stored in the grpc_data_t).

• server_name can be set to NULL (default behavior). In that case, if the user tries to access the informa-
tion of the mode (GRPC_STICKY for example) and the data has different management mode on the
platform, then the value GRPC_UNDEFINED may be returned.

• If info_tag equals to GRPC_STATUS, then info can be one of the “GRPC_IN_PLACE” and
“GRPC_TRANSFERING” value)

Note that in case of info_tag is set to GRPC_HANDLE, information is of no use to manage data with the
given API: handles are initialized in the init call function, stored in the grpc_data_t.

Error code identifiers and meanings are are described in the table 9.

13

Error code identifier Meaning
GRPC_NO_ERROR Success
GRPC_NOT_INITIALIZED grpc_initialize was not called in advance
GRPC_NOT_SUPPORTED the capability is not supported
GRPC_INVALID_DATA Specified data is invalid
GRPC_OTHER_ERROR_CODE Internal error detected

Table 9: Error codes identifiers and meanings for the getinfo fonction.

4.3.8 The load_data and save_data functions

In order to communicate a reference between Grid users, for example in case of large size data, one should
be able to store a GridRPC data. The location can then be shared, for example by mail, and one can be able
to load the corresponding information.

Function prototype:

grpc_error_t grpc_data_load(const grpc_data_t * data, const char * URI_input);
grpc_error_t grpc_data_save(const grpc_data_t * data, const char * URI_output);

These functions are used to load/save the data descriptions. Even if the GridRPC data contains the data
in addition to metadata management informations (data handle, size, type, etc.), only data informations
have to be saved in the location. The format used by these functions is let to the developer’s choice. The
way the informations are shared by different middleware is out of scope of this document and should be
discussed in an interoperability recommendation document.

Error code identifiers and meanings are are described in the table 10.

Error code identifier Meaning
GRPC_NO_ERROR Success
GRPC_NOT_INITIALIZED grpc_initialize was not called in advance
GRPC_NOT_SUPPORTED the capability is not supported
GRPC_INVALID_DATA Specified data is invalid
GRPC_OTHER_ERROR_CODE Internal error detected

Table 10: Error codes identifiers and meanings for the load and save fonctions.

References
[1] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee and H. Casanova. : A GridRPC model and API for

End-Users Applications, Global Grid Forum, July 21, 2005, GFD-R.052

[2] J. Plank, M. Beck, W. Elwasif, T. Moore, M. Swany and R. Wolski : The Internet Backplane Protocol: Storage in the
network, Storage in the network. In NetStore ’99: Network Storage Symposium. Internet2, October 1999.

[3] C. Baru, R. Moore, A. Rajasekar and M. Wan : The SDSC Storage Resource Broker, In Procs. of CASCON’98, Toronto,
Canada, 1998

[4] D.C. Arnold, D. Bachmann and J. Dongarra : Request Sequencing: Optimizing Communication for the Grid, Lecture
Notes in Computer Science 2003, vol 1900, pp 1213

[5] B. Del Fabbro, D. Laiymani, J.-M. Nicod, and L. Philippe: A Data Persistency Approach for the DIET Metacomput-
ing Environment, Int. Conf. on Internet Computing, IC’04, 2004

14

[6] M. Beck, D.C. Arnold, A. Bassi, F. Berman, H. Casanova, J. Dongarra, T. Moore, G. Obertelli, J. Plank, M. Swany,S.
Vadhiyar and R. Wolski: Middleware for the Use of Storage in Communication, IN Parallel Computing, vol 28,
number 12, pp 1773-1788, 2002

[7] Y. Aida, Y. Nakajima, M. Sato, T. Sakurai, D. Takahashi and T. Boku : Performance Improvement by Data Man-
agement Layer in a Grid RPC System, IN the First International Conference on Grid and Pervasive Computing
(GPC2006), pp.324-335, Taiwan, May 3-5, 2006

[8] G. Antoniu, L. Bougé and M. Jan. : JuxMem: An Adaptive Supportive Platform for Data Sharing on the Grid, IN
Scalable Computing: Practice and Experience, Vol. 6(3):45-55, September 2005

[9] RFC 2396 (1998). Uniform Resource Identifiers (URI): Generic Syntax.

15

A Examples of use of the API

In this section, we give examples of the data management API usage to illustrate its interest. Depending
on the passing mode of the arguments (data), we show how to optimize data placement and avoid useless
transfers. We do not consider these examples as an exhaustive list but they can help to understand the way
to build a data management API in GridRPC middleware.

A.1 Basic example

grpc_function_handle_init(handle1,"karadoc.aist.go.jp","*");
grpc_data_init(&dhA,

(const char * []){"memory://britannia.ens-lyon.fr/&A", NULL},
NULL,
GRPC_DOUBLE, (size_t []){3, 3, 0},
(grpc_data_mode_t []){GRPC_VOLATILE, GRPC_END_LIST});

grpc_data_init(&dhB,
(const char * []){"nfs://britannia.ens-lyon.fr/home/user/B.dat", NULL},
NULL,
GRPC_DOUBLE, (size_t []){3, 3, 0},
(grpc_data_mode_t []){GRPC_VOLATILE, GRPC_END_LIST});

grpc_data_init(&dhC,
NULL,
(const char * []){"nfs://britannia.ens-lyon.fr/home/user/C.out", NULL},
GRPC_DOUBLE, (size_t []){3, 3, 0},
(grpc_data_mode_t []){GRPC_VOLATILE, GRPC_END_LIST});

grpc_call(handle1, &dhA, &dhB,&dhC);

Figure 2: Simple RPC call with input and output data.

In this example (see Figure 2), we show an example on how to use the GridRPC data management
functions when the data does not need to be stored inside the platform or on a storage resource. This
example corresponds to the default behavior of the data management performed in the GridRPC paradigm,
but conducted by the client with data handles.

16

A.1.1 Input data

Here, we illustrate the way to send a local data (in memory and on disk) to the GridRPC platform. In this
example, the client issues a call with two input data A and B. A and B are local to the client. Note that we
use the &A notation in the URI for commodity reason, but the real memory address should be given here.

A.1.2 Output data

Output data C is sent back to the client because in our case, no data conservation is needed. In this example,
the client issues a call with A and B as input data and C as output data. We note that the example uses the
GRPC_NO_RESULT resolution mode during the initialization of the grpc_data_t because the client man-
age the output data: the given URI is used to manage the data. If GRPC_RESULT_RETURN was used, there
could be two transfers: one more because of the normal GridRPC behavior of the GridRPC middleware
which transfers output data locally on the client (in that case, the client may have to question the GridRPC
middleware to get how to access the data).

A.2 Example with external storage resources

In this example we show how to use the GridRPC data management when the data is stored on an external
data repository.

Figure 3 shows how to manage external data repository as IBP or SRB.

grpc_function_handle_init(handle12,"karadoc.aist.go.jp","*");
grpc_data_init(&dhA,

(const char * []){"IBP://kaamelott.cs.utk.edu/1212#A.dat/ReadKey/READ", NULL},
(const char * []){"NFS://britannia.ens-lyon.fr/home/user/A.dat", NULL},
GRPC_DOUBLE, (size_t []){3, 3, 0},
(grpc_data_mode_t []){GRPC_VOLATILE, GRPC_END_LIST});

grpc_data_init(&dhB,
(const char * []){"SRB://carmelide.ens-lyon.fr/COLLECTION/Simulations/B.dat", NULL},
(const char * []){"IBP://kaamelott.cs.utk.edu/1213#B.dat/WriteKey/WRITE", NULL},
GRPC_DOUBLE, (size_t []){3, 3, 0},
(grpc_data_mode_t []){GRPC_VOLATILE, GRPC_END_LIST});

grpc_data_init(&dhC, NULL,
(const char * []){"NFS://britannia.ens-lyon.fr/home/user/C.out", NULL},
GRPC_DOUBLE, (size_t []){3, 3, 0},
(grpc_data_mode_t []){GRPC_VOLATILE, GRPC_END_LIST});

grpc_call(handle1,dhA,dhB,&dhC);

A.2.1 Input data

Here, we illustrate the way to send a remote data stored on SRB or IBP server to the GridRPC platform. In
this example, the client issues a call with two input data A and B. A is available on SRB repository and B is
available on IBP repository. With the input and output parameters from the grpc_data_init() function
we can move the data from a repository to another:

• A is read from SRB server and will be sent to the client.

• B is read from IBP server and will be sent to SRB server.

A.2.2 Output data

Output data C is sent back to the client.

17

Figure 3: Simple RPC call with input and output data using external storage resources.

A.3 Example with persistence

In this example we show how to re-use data on a specific server without resending them. Client wants to
compute C = C ×An using the service "*" on server karadoc.

double * A;
grpc_data_memory_mapping_set("A", A); // set mapping for memory scheme

grpc_function_handle_init(handle1,"karadoc.aist.go.jp","*");

grpc_data_init(&dhA,
(const char * []){"memory://britannia.ens-lyon.fr/A", NULL},
(const char * []){"memory://karadoc.aist.go.jp", NULL},
GRPC_DOUBLE, (size_t []){3, 3, 0},
(grpc_data_mode_t []){GRPC_STICKY, GRPC_END_LIST});

grpc_data_init(&dhC,
(const char * []){"NFS://britannia.ens-lyon.fr/home/user/C.in", NULL},
(const char * []){"memory://karadoc.aist.go.jp", NULL},
GRPC_DOUBLE, (size_t []){3, 3, 0},
(grpc_data_mode_t []){GRPC_STICKY, GRPC_END_LIST});

for(i=0;i<n+1;i++)
{

if(i==1)
grpc_data_init(&dhC,

(const char * []){"memory://karadoc.aist.go.jp", NULL}, NULL,
GRPC_DOUBLE, (size_t []){3, 3, 0},
(grpc_data_mode_t []){GRPC_STICKY, GRPC_END_LIST});

if(i==n)
grpc_data_init(&dhC,

(const char * []){"memory://karadoc.aist.go.jp", NULL},
(const char * []){"NFS://britannia.ens-lyon.fr/home/user/C.out", NULL},
GRPC_DOUBLE, (size_t []){3, 3, 0},

18

(grpc_data_mode_t []){GRPC_VOLATILE, GRPC_END_LIST});

grpc_call(handle1,dhA,dhC,&dhC);
}
grpc_data_free(&dhA);
grpc_data_free(&dhC);

Figure 4: GridRPC call with data management using persistence through the GRPC_STICKY mode.

In this example (see Figure 4), we show how to use the GridRPC data management functions when the
data needs to be stored inside the platform. In this example we consider the client needs to keep the data
on the same server. The GRPC_STICKY mode provides this behavior.

A.3.1 Input data

Data A will be used and will remain on server karadoc, we can use the GRPC_STICKY parameter to keep the
data on server karadoc. Data C is an input/output data. The first grpc_data_init for this data requires
only an input location and the GRPC_STICKY mode.

A.3.2 Output data

Output data C is generated on server karadoc but only the last result is useful for the client. Thus, to send
the final result to the client we update the output location just before the last grpc_call().

A.4 Example with prefetching

In this example we show how the user can deal with the GridRPC to manage the data and thus performs
the prefetching of data. Client wants to compute C = A × B on server karadoc and C = A + C on server
perceval.
grpc_function_handle_init(handle1,"karadoc.aist.go.jp","*");
grpc_function_handle_init(handle2,"perceval.rush.aero.org","+");

19

/* Data initialization */
grpc_data_init(&dhA,

(const char * []){"IBP://kaamelott.cs.utk.edu/1212#A.dat/ReadKey/READ", NULL},
(const char * []){"NFS://britannia.ens-lyon.fr/home/user/A.dat", NULL},
GRPC_DOUBLE, (size_t []){3, 3, 0},
(grpc_data_mode_t []){GRPC_VOLATILE, GRPC_END_LIST});

grpc_data_init(&dhB,
(const char * []){"SRB://carmelide.ens-lyon.fr/COLLECTION/Simulations/B.dat", NULL},
(const char * []){"IBP://kaamelott.cs.utk.edu/1213#B.dat/WriteKey/WRITE", NULL},
GRPC_DOUBLE, (size_t []){3, 3, 0},
(grpc_data_mode_t []){GRPC_VOLATILE, GRPC_END_LIST});

grpc_data_init(&dhC, NULL,
(const char * []){"NFS://perceval.rush.aero.org/home/user/C.out", NULL},
GRPC_DOUBLE, (size_t []){3, 3, 0},
(grpc_data_mode_t []){GRPC_PERSISTENT, GRPC_END_LIST});

grpc_data_init(&dhD,
(const char * []){"NFS://perceval.rush.aero.org/home/user/C.out", NULL},
(const char * []){"NFS://britannia/home/user/C.out", NULL},
GRPC_DOUBLE, (size_t []){3, 3, 0},
(grpc_data_mode_t []){GRPC_PERSISTENT, GRPC_END_LIST});

/* Write the data using dhA handle on a NFS server. */
grpc_data_transfer(&dhA,

NULL,
(const char * []){"NFS://perceval.rush.aero.org/home/user/A2.dat", NULL},
NULL,
(grpc_data_mode_t []){GRPC_STICKY, GRPC_END_LIST});

grpc_call(handle1,dhA,dhB,&dhC);

/* The data transfer of A has been asked previously */
grpc_call(handle2,dhA,dhC,&dhC);

/* Waiting for the end of the C data transfer proceeded after C computation. */
grpc_wait({dhC, NULL}, GRPC_WAIT_ALL);

/* The data is written on its output destination (NFS://britannia/home/user/C.out) */
grpc_data_transfer(&dhD, {NULL}, {NULL});

In this example (see Figure 5), we show how to use the GridRPC data management functions to prefetch
the data.

A.4.1 Input data

Data A is stored on the Kaamelot IBP server and will be used on karadoc to compute the first operation. This
data is also used as an entry to the second operation. Data B is located on the SRB server and will be used
as the second entry of the first operation only. The data prefetching is done by transferring A from the IBP
server to the perceval server in parallel of the first computation. The second operation will use the output
data C as input parameter with A that could be prefetched when the computation starts.

A.4.2 Output data

Data C is used as output for the two operations. It is first generated on karadoc and updated after the call on
perceval. It is not directly sent back to the client. To obtain it, the client proceed to an explicit data transfer
using the grpc_data_read() function.

20

Figure 5: GridRPC call with data prefetching using the API.

A.5 Example with data migration

In this example (see Figure 6), we show how to use the GridRPC data management functions when the
data needs to be stored inside the platform (or on a storage resources, this point depends on the middle-
ware implementation). In this example we consider that the persistence data is kept in memory. Three
grpc_call() are performed, two on server karadoc and one on server perceval working on the same data.
The goal of the code here is to compute C = A× (B + A×B), which is done by doing the steps C = A×B,
then C = B + C and finally C = A× C.

grpc_function_handle_init(handle1,"karadoc.aist.go.jp","*");
grpc_function_handle_init(handle2,"perceval.rush.aero.org","*");
grpc_function_handle_init(handle3,"karadoc.aist.go.jp","+");
grpc_data_init(&dhA,

(const char * []){"memory://britannia.ens-lyon.fr/A", NULL},
NULL,
GRPC_DOUBLE, (size_t []){3, 3, 0},
(grpc_data_mode_t []){GRPC_STICKY, GRPC_END_LIST});

grpc_data_init(&dhB,
(const char * []){"NFS://britannia.ens-lyon.fr/home/user/B.dat", NULL},
NULL,
GRPC_DOUBLE, (size_t []){3, 3, 0},
(grpc_data_mode_t []){GRPC_PERSISTENT, GRPC_END_LIST});

grpc_data_init(&dhC,
NULL,
(const char * []){"memory://karadoc.aist.go.jp/data/&C", NULL},
GRPC_DOUBLE, (size_t []){3, 3, 0},
(grpc_data_mode_t []){GRPC_PERSISTENT, GRPC_END_LIST});

grpc_call(handle1,dhA,dhB,&dhC);

grpc_data_init(&dhC,
(const char * []){"memory://karadoc.aist.go.jp/&C", NULL},

21

(const char * []){"memory://perceval.rush.aero.org", NULL},
GRPC_DOUBLE, (size_t []){3, 3, 0},
(grpc_data_mode_t []){GRPC_PERSISTENT, GRPC_END_LIST});

grpc_call(handle2,dhB,dhC,&dhC);
grpc_data_init(&dhC,

(const char * []){"memory://perceval.rush.aero.org/&C", NULL},
(const char * []){"NFS://britannia.ens-lyon.fr/home/user/C.out", NULL},
GRPC_DOUBLE, (size_t []){3, 3, 0},
(grpc_data_mode_t []){GRPC_PERSISTENT, GRPC_END_LIST});

grpc_call(handle3,dhA,dhC,&dhC);

Figure 6: Three RPC call with data management using persistence.

A.5.1 Input data

Data A will be used only on server karadoc, we can use the GRPC_STICKY parameter to keep the data on
server karadoc (see Section A.3). Thus A is already available when the third grpc_call() is performed.
The data B is used on two servers. With the GRPC_PERSISTENT mode the second grpc_call() implies
that the data moves (or is duplicated) from server karadoc to server perceval.

A.5.2 Output data

Output data C is created on server karadoc. C moves (or is duplicated) from server karadoc to server perceval.
C moves (or is duplicated) from server perceval to server karadoc and at the end, data C is sent back to the
client.

22

B Table of Functions

Category Function Name Section
lifecycle grpc_data_init 4.3.1

grpc_data_unbind 4.3.5
grpc_data_free 4.3.6

mapping grpc_data_memory_mapping_set 4.3.2
grpc_data_memory_mapping_get 4.3.2

container grpc_data_container_set 4.3.2
grpc_data_container_get 4.3.2

read/write grpc_data_transfer ??
load/save grpc_data_load 4.3.8

grpc_data_save 4.3.8
wait grpc_data_wait 4.3.4

reflection grpc_data_get_info 4.3.7

Table 11: Functions defined in this document.

23

C Table of Types

Category Type Name Possible values Section
data structure grpc_data_t structured type 4.1

grpc_data_type_t GRPC_INT ??
GRPC_DOUBLE
GRPC_COMPLEX
GRPC_STRING
GRPC_FILE
GRPC_CONTAINER

data management grpc_completion_mode_t GRPC_WAIT_ALL 4.1.2
GRPC_WAIT_ANY

grpc_data_mode_t GRPC_VOLATILE ??
GRPC_UNIQUE_VOLATILE
GRPC_PERSISTENT
GRPC_STICKY
GRPC_UNIQUE_STICKY
GRPC_END_LIST

grpc_data_info_type_t GRPC_HANDLE 4.1.2
GRPC_INPUT_URI
GRPC_OUTPUT_URI
GRPC_MANAGEMENT_MODE
GRPC_SIZE
GRPC_TYPE
GRPC_LOCATIONS_LIST
GRPC_STATUS
GRPC_COHERENT

error grpc_error_t GRPC_NO_ERROR
GRPC_INVALID_TYPE
GRPC_INVALID_MODE
GRPC_INVALID_DATA
GRPC_INVALID_RANK
GRPC_MALFORMED_URI
GRPC_OTHER_ERROR_CODE
GRPC_NOT_INITIALIZED

Table 12: Types defined in this document.

24

Author contact information

Yves Caniou
University of Lyon / CNRS / ENS Lyon / INRIA / UCBL
Yves.Caniou@ens-lyon.fr

Eddy Caron
University of Lyon / CNRS / ENS Lyon / INRIA / UCBL
Eddy.Caron@ens-lyon.fr

Hidemoto Nakada
National Institute of Advanced Industrial Science and Technology
hide-nakada@aist.go.jp

Intellectual property statement

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document
or the extent to which any license under such rights might or might not be available; neither does it rep-
resent that it has made any effort to identify any such rights. Copies of claims of rights made available
for publication and any assurances of licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such proprietary rights by implementers or users of
this specification can be obtained from the OGF Secretariat. The OGF invites any interested party to bring
to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover
technology that may be required to practice this recommendation. Please address the information to the
OGF Executive Director.

Full copyright notice

Copyright (C) Open Grid Forum (2007). All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that

comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice or references to the OGF or
other organizations, except as needed for the purpose of developing Grid Recommendations in which case
the procedures for copyrights defined in the OGF Document process must be followed, or as required to
translate it into languages other than English. The limited permissions granted above are perpetual and
will not be revoked by the OGF or its successors or assigns. This document and the information contained
herein is provided on an "AS IS" basis and THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

25

