
GWD-I July 17, 2006

gridrpc-wg@gridforum.org 1

Interoperability Testing for The GridRPC API Specification

Status of This Memo

This memo provides information regarding the testing of interoperability for implementations of the
GridRPC API specification. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2006). All Rights Reserved.

Abstract

This document proposes a process of interoperability testing of the GridRPC API specification,
which is submitted to the Global Grid Forum (GGF) recommendation track. Three independent
implementations from different code bases, Ninf-G, GridSolve and DIET, are used for showing
sufficient successful operational experiences. A strong belief that the specification is mature and
will be useful is indicated through the test cases.

Contents

Abstract ...1
1. Introduction..2

1.1 Ninf-G...2
1.2 GridSolve ...2
1.3 DIET ...2

2. Proposed Process ..3
3. Testing ...3

3.1 Initializing and Finalizing Functions ...3
3.2 Remote Function Handle Management Functions ..3
3.3 GridRPC Call Functions ...4
3.4 Wait Functions ...5
3.5 Probe Functions ..6
3.6 Cancel Functions ..6
3.7 Error Reporting Functions ..7

4. Security Considerations ...7
5. Conclusion...8
Author Information..8
Intellectual Property Statement...9
Full Copyright Notice..9
References ..10
Appendix A: Undefined behaviors ...11

A.1 Lifetime of the session ID ...11
A.2 Destruction of the function handle...11
A.3 Initialization of the function handle ..12

Appendix B: Test code..12

GWD-I July 17, 2006

gridrpc-wg@gridforum.org 2

1. Introduction

The initial GridRPC API specifications of the GridRPC Working Group have been submitted to the
GGF Recommendation process [GFD-R.52]. This document describes a process by which it is
proposed to test the specifications for interoperability, as required in [GFD.1]. In this document, the
interoperable API means to be functionally equivalent on each implementation that provides the API.
In the case of the GridRPC API, the client program code should be shared between each
implementation, and should behave the same.

The document is specific to the GridRPC API specifications in two respects:

1. The nature of the interoperability required. Implementations of the specifications do not call
themselves or each other. As such, the requirement is only to test client interoperability: that
multiple implementations of a specification provide consistent results to a suite of tests.

2. The challenges identified for designers of a comprehensive test regime, which follow from
certain features of the specifications.

The GridRPC API specifications are implemented in three different code-based systems, Ninf-G
[Ninf-G], GridSolve [GridSolve] and DIET [DIET], which are applied to the interoperability test.

1.1 Ninf-G
Ninf-G (http://ninf.apgrid.org/) provides the GridRPC API on top of the Globus Toolkit [Globus]. The
Globus toolkit provides a reference implementation of standard (or subject to proposed
standardization) protocols and APIs for Grid computing. Globus serves as a solid and common
platform for implementing higher-level middleware and programming tools, etc., ensuring
interoperability amongst such high level components, one of which is Ninf-G. Ninf-G is maintained
by the Ninf project, which consists of National Institute of Advanced Industrial Science and
Technology (AIST), and several universities in Japan.

1.2 GridSolve
GridSolve (http://icl.cs.utk.edu/gridsolve/) is a client-server system which provides remote access to
computational resource, both hardware and software. It is built upon standard Internet protocols,
like TCP/IP sockets. GridSolve provides the GridRPC API as C interface, and another API as
Matlab interface. GridSolve is maintained by University of Tennessee in the United States.

1.3 DIET
DIET (http://graal.ens -lyon.fr/DIET) is a toolbox to develop a set of tools to build computational
servers and clients. Based on client-server system which provides remote access to computational
resource, both hardware and softw are as GridSolve. It is built upon CORBA communication
protocols. DIET provides the GridRPC API as C interface. DIET is maintained by the GRAAL INRIA
project in École Normale Supérieure Lyon in France.

GWD-I July 17, 2006

gridrpc-wg@gridforum.org 3

2. Proposed Process

The aim of the process is to test for client interoperability. A set of test programs which use the
GridRPC APIs is tried to be compiled with each GridRPC library, and executed on each GridRPC
system.

1. Define test cases that can be used as the basis of interoperability testing. These cases will
include checks of the API function and its error code, in non-error and error situation.

2. Implement the test cases.
3. Compile the test programs, checking the program in client-side linked with each GridRPC

library without any modification.
4. Execute the test programs, checking the test passed in each cases.
5. Document the test cases and the results.

An implementation that passes all test cases is possibly recognized as “GridRPC compliant.” It is
important that test cases check interoperability between implementations, but this does not
guarantee that the implementation is GridRPC compliant.

3. Testing

The Ninf-G version 4.1.0 that was released on April 10, 2006, and the GridSolve version 0.15 that
was released on May 8, 2006, and DIET version 2.1 (public version coming soon in September
2006) were used for this interoperability test.

3.1 Initializing and Finalizing Functions
The following functions for initialization and finalization of the GridRPC system are tested.

grpc_error_t grpc_initialize(char *config_file_name)
grpc_error_t grpc_finalize(void)

3.1.1 Notes for Results
The configuration file is independent from the GridRPC API specification. The error codes,
GRPC_CONFIGFILE_NOT_FOUND and GRPC_CONFIGFILE_ERROR, are optional. Ninf-G and
DIET require a configuration file but GridSolve does not it.

3.1.2 Test Cases

1. Call grpc_initialize() with a correct configuration file, checking GRPC_NO_ERROR returned.
2. Call grpc_initialize() with a correct configuration file twice, checking

GRPC_ALREADY_INITIALIZED returned.
3. Call grpc_finalize() in right way, checking GRPC_NO_ERROR returned.
4. Call grpc_finalize() before calling gprc_initialize(), checking GRPC_NOT_INITIALIZED

returned.

3.2 Remote Function Handle Management Functions
The following functions for creating and destructing the function handle are tested.

 grpc_error_t grpc_function_handle_default(
 grpc_function_handle_t *handle,
 char *func_name)

GWD-I July 17, 2006

gridrpc-wg@gridforum.org 4

 grpc_error_t grpc_function_handle_init(
 grpc_function_handle_t *handle,
 char *server_name,
 char *func_name)
 grpc_error_t grpc_function_handle_destruct(grpc_function_handle_t *handle)
 grpc_error_t grpc_get_handle(
 grpc_function_handle_t **handle,
 grpc_sessionid_t sessionID)

3.2.1 Notes for Results
The error codes, GRPC_FUNCTION_NOT_FOUND and GRPC_SERVER_NOT_FO UND, are
optional. Ninf-G and DIET return those error codes in the remote function handle management
functions, and GridSolve returns them in the GridRPC call functions.

3.2.2 Test Cases

1. Call grpc_function_handle_default() with an available function name, checking
GRPC_NO_ERROR returned with a pointer of the initialized function handle.

2. Call grpc_function_handle_default() before calling grpc_initialize(), checking
GRPC_NOT_INITIALIZED returned.

3. Call grpc_function_handle_init() with an available set of the function name and the server
name, checking GRPC_NO_ERROR returned with a pointer of the initialized function handle.

4. Call grpc_function_handle_init() before calling grpc_initialize(), checking
GRPC_NOT_INITIALIZED returned.

5. Call grpc_function_handle_destruct() in right way, checking GRPC_NO_ERROR returned.
6. Call grpc_function_handle_destruct() before calling grpc_initialize(), checking

GRPC_NOT_INITIALIZED returned.
7. Call grpc_get_handle() with a valid session ID, checking GRPC_NO_ERROR returned with a

pointer of the function handle specified by ID.
8. Call grpc_get_handle() with an invalid session ID, checking GRPC_INVALID_SESSION_ID

returned.
9. Call grpc_get_handle() before calling grpc_initialize(), checking GRPC_NOT_INITIALIZED

returned.

3.3 GridRPC Call Functions
The following functions for invoking the RPC are tested.

 grpc_error_t grpc_call(

grpc_function_handle_t *handle,
<varargs>)

 grpc_error_t grpc_call_async(
 grpc_function_handle_t *handle,
 grpc_sessionid_t *sessionID,
 <varargs>)

3.3.1 Notes for Results
The error codes, GRPC_FUNCTION_NOT_FOUND and GRPC_SERVER_NOT_FOUND, are
optional. Ninf-G and DIET return those error codes in the remote function handle management
functions, and GridSolve returns them in the GridRPC call functions. Moreover, it’s not usual but if

GWD-I July 17, 2006

gridrpc-wg@gridforum.org 5

the service disappears between the remote function handle and the GridRPC call functions, DIET
returns a GRPC_FUNCTION_NOT_FOUND from the call function too.

3.3.2 Test Cases

1. Call grpc_call() with an initialized handle and valid arguments, checking GRPC_NO_ERROR
returned with correct output arguments.

2. Call grpc_call() before calling grpc_initialize(), checking GRPC_NOT_INITIALIZED returned.
3. Call grpc_call_async() with an initialized handle and valid arguments, checking

GRPC_NO_ERROR returned with a valid session ID.
4. Call grpc_call_async() before calling grpc_initialize(), checking GRPC_NOT_INITIALIZED

returned.

3.4 Wait Functions
The following function for waiting for previously submitted non-blocking requests.

 grpc_error_t grpc_wait(grpc_sessionid_t sessionID)
 grpc_error_t grpc_wait_and(

grpc_sessionid_t *idArray,
size_t length)

 grpc_error_t grpc_wait_or(
 grpc_sessionid_t *idArray,
 size_t length,
 grpc_sessionid_t *idPtr)
 grpc_error_t grpc_wait_all(void)
 grpc_error_t grpc_wait_any(grpc_sessionid_t *idPtr)

3.4.1 Notes for Results
There is no difference for the test results among each GridRPC implementation.

3.4.2 Test Cases

1. Call grpc_wait() with a valid session ID to be synchronized, checking GRPC_NO_ERROR
returned.

2. Call grpc_wait() with an invalid session ID, checking GRPC_INVALID_SESSION_ID returned.
3. Call grpc_wait() before calling grpc_initialize(), checking GRPC_NOT_INITIALIZED retuned.
4. Call grpc_wait_and() with an array of the valid session IDs, checking GRPC_NO_ERROR

returned.
5. Call grpc_wait_and() with a session ID array which contains at least one invalid ID, checking

GRPC_INVALID_SESSION_ID returned.
6. Call grpc_wait_and() before calling grpc_initialize(), checking GRPC_NOT_INITIALIZED

retuned.
7. Call grpc_wait_or() with a valid session ID array, checking GRPC_NO_ERROR returned with

a pointer of the completed session ID.
8. Call grpc_wait_or() with a session ID array which contains at least one invalid ID, checking

GRPC_INVALID_SESSION_ID returned.
9. Call grpc_wait_or() before calling grpc_wait_or(), checking GRPC_NOT_INITIALIZED

returned.
10. Call grpc_wait_all() in right way, checking GRPC_NO_ERROR returned.
11. Call grpc_wait_all() before calling grpc_initialize(), checking GRPC_NOT_INITIALIZED

returned.

GWD-I July 17, 2006

gridrpc-wg@gridforum.org 6

12. Call grpc_wait_any() in right way, checking GRPC_NO_ERROR retuned with an ID pointer of
the session which is completed.

13. Call grpc_wait_any() before calling grpc_initialize(), checking GRPC_NOT_INITIALIZED
returned.

3.5 Probe Functions
The following functions for checking whether previously submitted non-blocking requests are
completed are tested.

 grpc_error_t grpc_probe(grpc_sessionid_t sessionID)
 grpc_error_t grpc_probe_or(
 grpc_sessionid_t *idArray,
 size_t length,
 grpc_sessionid_t *idPtr)

3.5.1 Notes for Results
There is no difference for the test results among each GridRPC implementation.

3.5.2 Test Cases

1. Call grpc_probe() with a session ID which is completed, checking GRPC_NO_ERROR
returned.

2. Call grpc_probe() with a session ID which is not completed, checking
GRPC_NOT_COMPLETED returned.

3. Call grpc_probe() with an invalid session ID, checking GRPC_INVALID_SESSION_ID
returned.

4. Call grpc_probe() before calling grpc_initialize(), checking GRPC_NOT_INITIALIZED
returned.

5. Call grpc_probe_or() with a session ID array which contains at least one completed session,
checking GRPC_NO_ERROR returned with a pointer of the probed session ID.

6. Call grpc_probe_or() with a session ID array which does not contain any of completed
sessions, checking GRPC_NONE_COMPLETED returned with an invalid session ID.

7. Call grpc_probe_or() with a session ID array which contains an invalid session ID, checking
GRPC_INVALID_SESSION_ID returned.

8. Call grpc_probe_or() before calling grpc_initialize(), checking GRPC_NOT_INITIALIZED
returned.

3.6 Cancel Functions
The following functions for canceling previously submitted non-blocking requests are tested.

 grpc_error_t grpc_cancel(grpc_sessionid_t sessionID)
 grpc_error_t grpc_cancel_all(void)

3.6.1 Notes for Results
There is no difference for the test results among each GridRPC implementation.

3.6.2 Test Cases

1. Call grpc_cancel() with a valid session ID, checking GRPC_NO_ERROR returned after the
specified session is canceled.

GWD-I July 17, 2006

gridrpc-wg@gridforum.org 7

2. Call grpc_cancel() with an invalid session ID, checking GRPC_INVALID_SESSION_ID
returned.

3. Call grpc_cancel() before calling grpc_initialize(), checking GRPC_NOT_INITIALIZED
returned.

4. Call grpc_cancel_all() in right way, checking GRPC_NO_ERROR returned after all of the
executing sessions are canceled.

5. Call grpc_cancel_all() before calling grpc_initialize(), checking GRPC_NOT_INITIALIZED
returned.

3.7 Error Reporting Functions
The following functions for reporting an error are tested.

 char* grpc_error_string(grpc_error_t error_code)
 grpc_error_t grpc_get_error(grpc_sessionid_t sessionID)
 grpc_error_t grpc_get_failed_sessionid(grpc_sessionid_t *idPtr)

3.7.1 Notes for Results
The error code, GRPC _NOT_INITIALIZED, is not defined in the error reporting functions. When the
functions are called before grpc_initialize() is called, however, some GridRPC implementations
might return GRPC_NOT_INITIALIZED.

3.7.2 Test Cases

1. Call grpc_error_string() with a defined error code, checking the corresponded error string
returned.

2. Call grpc_error_string() with a non-defined error code, checking the string which means
“GRPC_UNKNOWN_ERROR CODE” returned.

3. Call grpc_get_error() with a valid session ID, checking the error code associated with the
given session returned.

4. Call grpc_get_error() with an invalid session ID, checking GRPC_INVALID_SESSION_ID
returned.

5. Call grpc_get_failed_sessionid() when ther e is no failed session, checking
GRPC_NO_ERROR returned.

6. Call grpc_get_failed_sessionid() when there is one failed session, checking a pointer of that
session ID returned as idPtr.

7. Call grpc_get_failed_sessionid() repeatedly when there are more than two failed sessions,
checking a pointer of that session ID returned one by one, until all of them are popped out.

4. Security Considerations

There is no notion on security consideration in the specification. Each implementation has a
different security model underneath the GridRPC API. For instance, security infrastructure of Ninf-
G is based on GSI which is based on public key encryption, X.509 certificates, and the Secure
Sockets Layer (SSL) communication protocol. This means that not only all the components are
protected properly, but they can also utilize other Globus components, such as GridFTP servers,
seamlessly and securely.

No security mec hanism is implemented in the GridSolve version 0.15. There is a pre-existing
system of GridSolve, which is called NetSolve. The security of the NetSolve version 2.0 is based
on the ability to generate access control lists that are used to grant and deny access to the
NetSolve servers. NetSolve uses Kerberos V5 services for authentication. The Kerberos

GWD-I July 17, 2006

gridrpc-wg@gridforum.org 8

extensions of NetSolve provide it with trusted mechanisms by which to control access to
computational resources. At this time, the Kerberized version of NetSolve performs no encryption
of the data exchanged among NetSolve clients, servers, or agents, nor is there any integrity
protection for the data stream.

No security mechanism is implemented in DIET 2.x at this time. In the past, users using DIET and
who require security have used a network solution (VPN). Another solution can be built on security
policies available into CORBA ORB implementation. When the security designed in CORBA
specification will be available in omniORB (CORBA ORB) then DIET will use this security.

5. Conclusion

There are several minor differences among Ninf-G, GridSolve and DIET. The differences come
from the basic design of each implementation. When users start to use one of implementation or
move from another implementation to the other, they usually learn features of each GridRPC
system. The differences are not beyond of this kind of learning but understandable. On the other
hand, three behaviors are not defined in the specifications. The detailed information is described in
Appendix A. Except those differences, all test cases passed in Ninf-G, GridSolve and DIET, which
means the interoperability of the client code was confirmed. Therefore, the GridRPC API
specification (GFD-52) will be useful for people, who would like to write their program on the
GridRPC framework or develop another GridRPC system.

Author Information

Yusuke Tanimura,
National Institute of Advanced Industrial Science and Technology (AIST),
1-1-1 Umezono, Tsukuba Central 2,
Tsukuba, Ibaraki,
Japan.

Keith Seymour,
University of Tennessee,
1122 Volunteer Blvd, Suite 413 Claxton,
Knoxville, Tennessee,
USA.

Eddy Caron
ENS-Lyon / LIP / INRIA
46 allée d'Italie
69364 Lyon
France

Abdelkader Amar
ENS-Lyon / LIP / INRIA
46 allée d'Italie
69364 Lyon
France

Hidemoto Nakada,
National Institute of Advanced Industrial Science and Technology (AIST),

GWD-I July 17, 2006

gridrpc-wg@gridforum.org 9

1-1-1 Umezono, Tsukuba Central 2,
Tsukuba, Ibaraki,
Japan.

Yoshio Tanaka,
National Institute of Advanced Industrial Science and Technology (AIST),
1-1-1 Umezono, Tsukuba Central 2,
Tsukuba, Ibaraki,
Japan.

Frédéric Desprez
ENS-Lyon / LIP / INRIA
46 allée d'Italie
69364 Lyon
France

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other rights
that might be claimed to pertain to the implementation or use of the technology described in this
document or the extent to which any license under such rights might or might not be available;
neither does it represent that it has made any effort to identify any such rights. Copies of claims of
rights made available for publication and any assurances of licenses to be made available, or the
result of an attempt made to obtain a general license or permission for the use of such proprietary
rights by implementers or users of this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director.

Full Copyright Notice

Copyright (C) Global Grid Forum (2006). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the above
copyright notice and this paragraph are included on all such copies and derivative works. However,
this document itself may not be modified in any way, such as by removing the copyright notice or
references to the GGF or other organizations, except as needed for the purpose of developing Grid
Recommendations in which case the procedures for copyrights defined in the GGF Document
process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL

GWD-I July 17, 2006

gridrpc-wg@gridforum.org 10

NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WAR RANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE."

References

[GFD.1]
C. Catlett, GGF Document Series, Global Grid Forum Document GFD.1
(http://www.gridforum.org/documents/GFD.1.pdf).

[GFD-R.52]

H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee, and H. Casanova, A GridRPC Model
and API for End-User Applications, Global Grid Forum Document GFD-R.52.

[GridRPC]

Keith Seymour, H.Nakada, S. Matsuoka, Jack Dongarra, Craig Lee, Henri Casanova, "Overview
of GridRPC: A Remote Procedure Call API for Grid Computing", (GRID COMPUTING - GRID
2002, LNCS 2536), pp274-278, November, 2002.

[Ninf-G]

Y.Tanaka, H.Takemiya, H.Nakada, S.Sekiguchi, "Design, Implementation and Performance
Evaluation of GridRPC Programming Middleware for a Large-scale Computational Grid",
International Workshop on Grid Computing, November, 2004.

[GridSolve]

S. Agrawal, J. Dongarra, K. Sagi, K. Seymour, A. YarKhan, “Users’ Guide to GridSolve
Version 0.14”, ICL, University of Tennessee, March, 2006.

[DIET]

E. Caron and F. Desprez, “DIET: A Scalable Toolbox to Build Network Enabled Servers on the
Grid”, International Journal of High Performance Computing Applications, 2006.

[Globus]

I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit”, International
Journal of Supercomputer Applications, 1997.

GWD-I July 17, 2006

gridrpc-wg@gridforum.org 11

Appendix A: Undefined behaviors

This section mentions about undefined behaviors though they are not concerned in the
interoperability test and not requirements for being GridRPC compliant. This information would be
helpful for users because they might see these differences in their development with each GridRPC
implementation.

A.1 Lifetime of the session ID

Lifetime of the session ID is not strictly defined in the specification. The related description in the
specification document is below.

“Session IDs are also allocated by the user but their lifetime is determined automatically. A
session ID is initialized when a non-blocking GridRPC call is made. It is invalidated, or destroyed,
when (1) all return arguments have been received, and (2) a wait function has returned a “call
complete” status to the application. If an invalid session ID is passed to any GridRPC call, an
error will result.”

As a result, the lifetime is handled differently between Ninf-G and GridSolve. In Ninf-G, the session
ID is valid for a certain period. The session ID is rotated by the save_sessionInfo parameter. The
probe functions and the error reporting functions will return the session information after the session
is completed or canceled. The wait functions will return the specific error code after the session is
canceled.

In GridSolve, the session ID becomes invalid immediately after the session is completed at the wait
functions or canceled at the cancel functions. The probe functions, the error reporting functions and
the wait functions will just return GRPC_INVALID_SESSION_ID after the session is completed or
canceled.

In DIET, the session ID becomes invalid immediately after the session is canceled at the cancel
functions or after the grpc_finalize() function. The probe functions, the error reporting functions and
the wait functions will just return GRPC_INVALID_SESSION_ID after the session is canceled.

A.2 Destruction of the function handle

Destruction procedure of the function handle that has a running session is not strictly defined in the
specification. The related description in the specification document is below.

“This releases all information and resources associated with the specified function handle. It also
cancels a running session bound to the handle, if exists, before releasing the handle itself.”

The undefined behavior is whether the GridRPC implementation needs to confirm cleanup on the
server side is completed or not. The Ninf-G users can specify the job_stopTimeout variable in the
client configuration file. If the value is positive, the timeout will occur after the given seconds. In
addition, Ninf-G will show a warning message if the function handle to be destructed has a running
session. GridSolve and DIET do not confirm completeness of cleanup on the server side and no
warning message is shown to users.

GWD-I July 17, 2006

gridrpc-wg@gridforum.org 12

There is a similar issue in grpc_finalize(). In Ninf-G and DIET, grpc_finalize() invokes a cancellation
request to the server but it returns immediately without waiting for completeness of any cancellation.
In GridSolve, grpc_finalize() does not send a cancellation request to the server explicitly.

A.3 Initialization of the function handle

When an invalid hostname is specified in the argument of grpc_function_handle_init(), differe nt
error codes will be returned. In Ninf-G, the error code is always GRPC_OTHER_ERROR_CODE.
In GridSolve, GRPC_OTHER_ERROR_CODE will be returned if the hostname is not resolved. If
the hostname is resolved, the error code will be GRPC_NO_ERROR and another error such as
GRPC_RPC_REFUSED will be returned at the GridRPC call functions. In DIET the hostname is
fake information, because the aim of the DIET scheduler is to find the best server and this server is
linked to the GridRPC hostname.

Appendix B: Test code

This interoperability test code is available online at
https://forge.gridforum.org/sf/docman/do/downloadDocument/projects.gridrpc -
wg/docman.root.interoperabilitytest/doc8591/1.

