GFD-R

Eddy Caron, ENS Lyon
Category: Recommendation
C. Lee, The Aerospace Corp.

GridRPC Working Group

H. Nakada, AIST

June 13, 2007

A GridRPC Model and API for

Advanced and Middleware Applications
Status of This Memo

This document provides a recommendation to the Grid community on a proposed model and API for a grid-enabled remote procedure call. Distribution is unlimited.

Copyright Notice

Copyright © Open Grid Forum (2007). All Rights Reserved.

Abstract
This document presents advanced features of a model and API for GridRPC, i.e., a remote procedure call (RPC) mechanism for grid environments. Specifically this document is targeted for applications by advanced users and middleware developers. This document cannot be fully understood in isolation; it must be considered in conjunction with A GridRPC Model and API for End-User Applications which documents the fundamental concepts for this GridRPC model. This document extends the End-User API in the following ways. (1) Variable length array arguments are defined to be used in middleware libraries based on GridRPC. (2) Call attribute introspection is supported where arguments and other GridRPC elements are first class objects that can be managed. (3) Support for persistent data and workflow management is provided that exposes just enough semantics in the API to be able to deal with underlying grid workflow engines.
Contents

1Abstract

21.
Introduction

22.
The Basic GridRPC Model

23.
Document Scope

23.1
In Scope

33.2
Out of Scope

34.
The GridRPC API

34.1
GridRPC Data Types

44.2
Initializing and Finalizing Functions

44.3
Remote Function Handle Management Functions

64.4
GridRPC Call Functions

74.5
Asynchronous GridRPC Control Functions

84.6
Synchronous GridRPC Wait Functions

104.7
Error codes and Error Reporting Functions

115.
Related Work

126.
Security Considerations

12Author Contact Information

12Intellectual Property Statement

13Full Copyright Notice

13References

1. Introduction
The goal of this document is to clearly and unambiguously extend the syntax and semantics of GridRPC, a remote procedure call (RPC) mechanism for grid environments, thereby providing support for advanced applications and middleware libraries based on GridRPC. This document cannot be fully understood in isolation; it must be read an understood in conjunction with {\em A GridRPC Model and API for End-User Applications} \cite{EU_API_04} which documents the fundamental concepts for this GridRPC model. A preliminary version of that document appeared as \cite{GridRPC_GCW02}. A longer version is available as \cite{GridRPC_APM02}.
This document extends the End-User API in the three following ways: (1) variable length array arguments, (2) call attribute introspection, and (3) support for persistent data and workflow management. These capabilities are defined in the next three sections.

2. Variable Length Array Arguments
2.1 Additional GridRPC Data Types

grpc_arg_array_t

this data type is used for argument array.

2.2 Argument Array Functions

grpc_error_t
grpc_arg_array_init(
grpc_arg_array_t
*array,
int

size)
This initializes a new argument array structure. The first argument gives the second argument gives the size of the array.
	Error Code Identifier
	Meaning

	GRPC_NO_ERROR
	Success

	GRPC_NOT_INITIALIZED
	GRPC client not initialized yet

	GRPC_OTHER_ERROR_CODE
	Internal error detected

grpc_error_t
grpc_arg_array_set(
grpc_arg_array_t
*array,
int

index,
void

* arg)
This sets the ‘arg’ to the specified position on the ‘array’ by ‘index’.
	Error Code Identifier
	Meaning

	GRPC_NO_ERROR
	Success

	GRPC_NOT_INITIALIZED
	GRPC client not initialized yet

	GRPC_ARRAY_NOT_INITIALIZED
	The argument array is not initialized yet

	GRPC_ARRAY_OUT_OF_INDEX
	The index was too small / large for the array

	GRPC_OTHER_ERROR_CODE
	Internal error detected

grpc_error_t
grpc_arg_array_get(
grpc_arg_array_t
*array,
int

index,
void

**argPtr)
This gets the argument content in ‘array’ at ‘index’ to ‘argPtr’
	Error Code Identifier
	Meaning

	GRPC_NO_ERROR
	Success

	GRPC_NOT_INITIALIZED
	GRPC client not initialized yet

	GRPC_ARRAY_NOT_INITIALIZED
	The argument array is not initialized yet

	GRPC_ARRAY_OUT_OF_INDEX
	The index was too small / large for the array

	GRPC_OTHER_ERROR_CODE
	Internal error detected

grpc_error_t
grpc_arg_array_copy(

grpc_arg_array_t
*src,

grpc_arg_array_t
*dst)

This makes a deep copy of the argument array ‘src’ and store it into ‘dst’. The ‘dst’ have to be initialized with the grpc_arg_array_init in advance. “Deep copy’ means that all the stored content has to be also copied, i.e., if there are 2-dimensional arrays of double, a memory area has to be allocated and the content has to be properly copied to the new area.
	Error Code Identifier
	Meaning

	GRPC_NO_ERROR
	Success

	GRPC_NOT_INITIALIZED
	GRPC client not initialized yet

	GRPC_ARRAY_NOT_INITIALIZED
	The argument array is not initialized yet

	GRPC_OTHER_ERROR_CODE
	Internal error detected

grpc_error_t
grpc_arg_array_destruct(

grpc_arg_array_t
*array)

This frees the structure. Note that the content stored in the stack will *not* be freed.
	Error Code Identifier
	Meaning

	GRPC_NO_ERROR
	Success

	GRPC_NOT_INITIALIZED
	GRPC client not initialized yet

	GRPC_ARRAY_NOT_INITIALIZED
	The argument array is not initialized yet

	GRPC_OTHER_ERROR_CODE
	Internal error detected

2.3 Array-based GridRPC Call Functions

Two GridRPC call functions are available for end-users. These two calls are similar but provide either blocking (synchronous) or non-blocking (asynchronous) behavior. In the non-blocking case, a session ID is returned that is subsequently used to test for completion.

grpc_error_t
grpc_call_array(
grpc_function_handle_t
*handle,
grpc_arg_array_t

* args)
This makes a blocking remote procedure call with a variable number of arguments specified with grpc_arg_array_t structure.

	Error Code Identifier
	Meaning

	GRPC_NO_ERROR
	Success

	GRPC_NOT_INITIALIZED
	GRPC client not initialized yet

	GRPC_SERVER_NOT_FOUND
	GRPC client cannot find the specified server

	GRPC_FUNCTION_NOT_FOUND
	GRPC client cannot find the function on the specified server

	GRPC_INVALID_FUNCTION_HANDLE
	Function handle pointed to by handle is not valid

	GRPC_RPC_REFUSED
	RPC invocation refused by the server, possibly because of a security issue

	GPRC_COMMUNICATION_FAILED
	Communication with the server failed somehow

	GRPC_OTHER_ERROR_CODE
	Internal error detected

grpc_error_t
grpc_call_array_async(

grpc_function_handle_t
*handle,

grpc_sessionid_t

*sessionID,

grpc_arg_array_t

*args)

This makes a non-blocking remote procedure call with a variable number of arguments. A session ID is returned that can be used to probe or wait for completion, cancel the call, and check for the error status of a call.

	Error Code Identifier
	Meaning

	GRPC_NO_ERROR
	Success

	GRPC_NOT_INITIALIZED
	GRPC client not initialized yet

	GRPC_SERVER_NOT_FOUND
	GRPC client cannot find the specified server

	GRPC_FUNCTION_NOT_FOUND
	GRPC client cannot find the function on the specified server

	GRPC_INVALID_FUNCTION_HANDLE
	Function handle pointed to by handle is not valid

	GRPC_RPC_REFUSED
	RPC invocation refused by the server, possibly because of a security issue

	GPRC_COMMUNICATION_FAILED
	Communication with the server failed somehow

	GRPC_OTHER_ERROR_CODE
	Internal error detected

The GridRPC Recommendation does not define which implementation-related operations may be assumed to be complete when an asynchronous call returns. However, all asynchronous GridRPC calls must return as soon as possible after it is safe for a user to modify any input argument buffers.

3. Persistent Data and Workflow Management
Comment, CAL: We have several ideas of how to manage persistent data and workflow using the concept of data handles. While we shouldn’t really do generalized workflow, we should expose just enough through the API such that an advanced GridRPC user can manage and interact with any number of grid workflow engines. Much work to do in this section.
4. Additional Error Codes

Since this API is designed as the addendum for the End-User API, this API shares The error code identifiers with the End-User API document. Table 1 gives the additional error code identifies related to argument array functions that can be used with variables of type grpc_error_t. These error codes are generated and used in the same way as error codes in the End-User document. These error codes satisfy:
0 = GRPC NO ERROR < GRPC ... < GRPC LAST ERROR CODE
Table 1. Additional Error Codes for argument array functions

	Error Code Identifier
	Meaning

	GRPC_ARRAY_NOT_INITIALIZED
	The argument array is not initialized yet

	GRPC_ARRAY_OUT_OF_INDEX
	The index was too small / large for the array

	GRPC_ARRAY_NOT_FILLED
	The argument array was initialized but not properly full filled with the argument value.

5. Related Work
Comment, CAL: This is just copied from the End-User doc. It really should be tailored to work that is related to

building middleware libraries, introspection, and workflow management.
The concept of Remote Procedure Call (RPC) has been widely used in distributed computing and distributed systems for many years [4]. It provides an elegant and simple abstraction that allows distributed components to communicate with well-defined semantics. RPC implementations face a number of difficult issues, including the definition of appropriate Application Programming Interfaces (APIs), wire protocols, and Interface Description Languages (IDLs). Corresponding implementation choices lead to trade-offs between flexibility, portability, and performance.

A number of previous works has focused on the development of high performance RPC mechanisms either for single processors or for tightly-coupled homogeneous parallel computers such as shared-memory multiprocessors [7, 3, 13, 2]. A contribution of those works is to achieve high performance by providing RPC mechanisms that map directly to low-level O/S and hardware functionalities (e.g. to move away from implementations that were built on top of existing message passing mechanisms as in [5]). By contrast, GridRPC targets heterogeneous and loosely-coupled systems over wide-are networks, raising a different set of concerns and goals.

This current work grew out of the Advanced Programming Models Research Group [10]. This group surveyed and evaluated many programming models [11, 12], including GridRPC. Some representative GridRPC systems are NetSolve [6, 20], and Ninf [14, 19]. Historically, both projects started about the same time, and in fact both systems facilitate similar sets of features. A number of related experimental systems exist, such as RCS [1] and Punch (http://punch.purdue.edu). Those systems seek to provide ways for Grid users to easily send requests to remote application servers from their desktop. GridRPC seeks to unify those efforts.

This work is also related to the XML-RPC (http://www.xml-rpc.com) and SOAP [18] efforts. Those systems use HTTP to pass XML fragments that describe input parameters and retrieve output results during RPC calls. In scientific computing, parameters to RPC calls are often large arrays of numerical data (e.g. double precision matrices). The work in [9] made it clear that using XML encoding has several caveats for those types of data (e.g. lack of floating-point precision, cost of encoding/decoding). Nonetheless, recent work [17] has shown that GridRPC could be effectively built upon future Grid software based on Web Services such as OGSA [8].

6. Security Considerations

Security issues of GridRPC are implementation-dependent and this document does not specifically address security in the API. For reference, security mechanisms of Ninf-G and NetSolve are described in this section. Security infrastructure of Ninf-G is based on GSI which is based on public key encryption, X.509 certificates, and the Secure Sockets Layer (SSL) communication protocol. This means that not only all the components are protected properly, but they can also utilize other Globus components, such as GridFTP servers, seamlessly and securely. NetSolve’s current security is based on the ability to generate access control lists that are used to grant and deny access to the NetSolve servers. NetSolve uses Kerberos V5 services for authentication. The Kerberos extensions of NetSolve provide it with trusted mechanisms by which to control access to computational resources. At this time, the Kerberized version of NetSolve performs no encryption of the data exchanged among NetSolve clients, servers, or agents, nor is there any integrity protection for the data stream.
Author Contact Information
Hidemoto Nakada
National Institute of Advanced Industrial Science and Technology

hide-nakada@aist.go.jp

Craig A. Lee

The Aerospace Corporation, M1-102

2350 E. El Segundo Blvd.

El Segundo, CA 90245

lee@aero.org

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this recommendation. Please address the information to the GGF Executive Director.

Full Copyright Notice

Copyright (C) Global Grid Forum (2005). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the GGF or other organizations, except as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the GGF Document process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

References

[1] P. Arbenz, W. Gander, and M. Oettli. The Remote Computation System. Parallel Computing, 23:1421-1428, 1997.
[2] I. Aumage, L. Boug, A. Denis, J.-F. Mhaut, G. Mercier, R. Namyst, and L. Prylli. Madeleine II: A Portable and Efficient Communication Library for High-Performance Cluster Computing. In Proceedings of the IEEE Intl Conference on Cluster Computing (Cluster 2000), pages 78-87, 2000.

[3] B. Bershad, T. Anderson, E. Lazowska, and H. Levy. Lightweight Remote Procedure Call. ACM Transactions on Computer Systems (TOCS), 8(1):37-55, 1990.

[4] A. Birrel and G. Nelson. Implementing Remote Procedure Calls. ACM Transactions on Computer Systems (TOCS), 2(1):39-59, 1984.

[5] L. Boug, J.-F. Mhaut, and R. Namyst. Efficient Communications in Multithreaded Runtime Systems. In Proceedings of the 3rd Workshop on Runtime Systems for Parallel Programming (RTSPP’99), volume 1568 of Lecture Notes in Computer Science, Springer Verlag, pages 468-484, 1999.

[6] H. Casanova and J. Dongarra. NetSolve: A Network Server for Solving Computational Science Problems. In Proceedings of Super Computing ’96, 1996.

[7] C.-C. Chang, G. Czajkowski, and T. von Eicken. MRPC: A High Performance RPC System for MPMD Parallel Computing. Software – Practice and Experience, 29(1):43-66, 1999.

[8] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration. http://www.globus.org/ogsa, January 2002.
[9] M. Govindaraju, A. Slominski, V. Choppella, R. Bramley, and D. Gannon. Requirements for and Evaluation of RMI Protocols for Scientific Computing. In Proceedings of SC’2000, Dallas, TX, 2000.

[10] Grid Forum Advanced Programming Models Working Group. Web site. https://forge.gridforum.org/projects/gridrpc-wg/

[11] C. Lee, S. Matsuoka, D. Talia, A. Sussman, M. Mueller, G. Allen, and J. Saltz. A Grid Programming Primer. http://www.eece.unm.edu/~apm/docs/APM_Primer_0801.pdf, August 2001.

[12] C. Lee and D. Talia. Grid programming models: Current tools, issues and directions. In Berman, Fox, and Hey, editors, Grid Computing: Making the Global Infrastructure a Reality, pages 555-578. Wiley, 2003.
[13] J. Liedtke. Improving IPC by Kernel Design. In Proceedings of the 14th ACM Symposium on Operating Systems Principles (SOSP), Asheville, NC, Dec. 1993.

[14] H. Nakada, M. Sato, and S. Sekiguchi. Design and Implementation of Ninf: towards a Global Computing Infrastructure. Future Generation Computing Systems, Metacomputing Issue, 15(5-6):649-658, 1999.
[15] K. Seymour et al. An Overview of GridRPC: A Remote Procedure Call API for Grid Computing. In Proceedings of the 3rd International Workshop on Grid Computing, volume 2536, pages 274-278. Springer-Verlag, Lecture Notes in Computer Science, November 2002.
[16] K. Seymour et al. GridRPC: A Remote Procedure Call API for Grid Computing. In Proceedings of the International Workshop on Grid 2002, pages 274-278, 2002.

[17] S. Shirasuna, H. Nakada, S. Matsuoka, and S. Sekiguchi. Evaluating Web Services Based Implementation of GridRPC. In Proceedings of HPDC11, pages 237-245, 2002.
[18] Simple Object Access Protocol (SOAP) 1.1. http://www.w3.org/TR/SOAP, May 2000, W3C Note.

[19] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka. Ninf-G: A Reference Implementation of RPC-based Programming Middleware for Grid Computing. Journal of Grid Computing, 1(1):41-51, 2003.

[20] D. Arnold, S. Browne, J. Dongarra, G. Fagg, and K. Moore. Secure Remote Access to Numerical Software and Computational Hardware. In Proceedings of the DoD HPC Users Group Conference (HPCUG) 2000, 2000.
[21] T. Suzumura, T. Nakagawa, S. Matsuoka, H. Nakada, and S. Sekiguchi, Are Global Computing Systems Useful? - Comparison of Client-Server Global Computing Systems Ninf, NetSolve versus CORBA, In Proceedings of International Parallel and Distributed Processing Symposium 2000, 2000.[image: image1.png]

gridrpc@ggf.org

1

