
A Contract Re-negotiation Protocol

Michael Parkin1 Peer Hasselmeyer2 Bastian Koller3 Philipp Wieder4

1Barcelona Supercomputing Centre, Universitat Politècnica de Catalunya, Spain
2NEC Laboratories Europe, St. Augustin, Germany

3High Performance Computing Centre (HLRS), Stuttgart, Germany
4Technical University of Dortmund, Dortmund, Germany

Abstract

This document describes an abstract, domain-
independent protocol for the re-negotiation of con-
tracts. This protocol is based on the princi-
ples of contract law to make agreements with it
legally-compliant and allows for multi-round re-
negotiation in an environment where messages
may be lost, delayed and re-ordered.

1 Introduction

Contract formation between service-based
computational applications and their users is re-
quired to enable a vision of computing where,
for example, applications can be constructed
from individual pieces of software exposed as ser-
vices. These agreements can promote the flexi-
ble and dynamic re-use of interoperable, encap-
sulated functions in a Service Oriented Architec-
ture (SOA). The Grid Resource Allocation Agree-
ment Protocol Working Group (GRAAP-WG) of
the Open Grid Forum (OGF) has produced the
WS-Agreement [1] standard to create these agree-
ments. However, it is acknowledged to be limited
in scope to a basic accept/reject agreement proto-
col [2]. Thus, the debate within the GRAAP-WG
of OGF has moved to how re-negotiation of an
existing agreement can be carried out [3]. This
allows for either party in the agreement process
to adapt the current agreement with the explicit
consent of the other party as their circumstances
change.

1.1 What is re-negotiation?

Re-negotiation is the process of negotiating an
agreement again in order to change the originally
agreed terms1. A successful re-negotiation in-
validates an existing agreement and replaces it

1Source: Oxford American Dictionary.

with a new, superseding agreement. However,
many aspects of what is normally thought of as
‘re-negotiation’ are considered out-of-scope within
the GRAAP-WG’s discussion. For example, con-
sidering what happens when one of the parties re-
fuses to re-negotiate a new contract, who should
be allowed to initiate a re-negotiation and how to
provide multi-round re-negotiation are not cov-
ered by the GRAAP-WG discussion [3].

As a consequence of these limitations, this pa-
per presents an abstract, domain-independent re-
negotiation protocol to allow the re-negotiation
of contracts between a service provider and a cus-
tomer. The protocol presented here meets the re-
quirements of allowing both parties to initiate a
multi-round re-negotiation and either to refuse a
re-negotiation. Where it is possible to map this
new protocol to the WS-Agreement protocol this
is noted in the text in order that implementations
of WS-Agreement may be extended to allow this
behaviour.

1.2 Document Structure

The remainder of this document is structured
as follows: Section 2 describes our approach to
creating a protocol for the re-negotiation of con-
tracts and compares against other approaches;
Section 3 describes the requirements for the pro-
tocol; Section 4 describes the assumptions made
and the framework in which a re-negotiation oc-
curs; Section 5 describes the protocol; Section 6
provides a conclusion and discusses future work.

2 Approach

At the time of writing, work on standardising
open protocols for use in SOA environments is
being carried out by several standards bodies, in-
cluding the OASIS the W3C and OGF. For ex-
ample, the GRAAP-WG of the OGF has recently

1

F
o
r
d
i
s
t
r
i
b
u
t
i
o
n
t
o
G
R
A
A
P
-
W
G
:
F
e
b
r
u
a
r
y
1
5
,
2
0
0
8
-
-
P
a
g
e
1



produced the WS-Agreement standard which de-
scribes a standard protocol for agreement cre-
ation. However, we feel the approach to specifying
protocols by these standards bodies does not take
into account factors inherent in distributed com-
puting and we have therefore taken a different ap-
proach to specifying protocols to these standards
bodies. For example, we assume a networking en-
vironment between a service provider and their
customer where messages may be lost, delayed,
duplicated and/or re-ordered once sent. This is
because in distributed systems “failure happens
all the time” [4]. Assuming such a network when
designing a protocol makes the resulting protocol
more robust as it can cope with network failures or
malfunctions and it also promotes interoperabil-
ity as it de-couples the protocol implementation
from reliable-messaging middleware which man-
date a specific reliable messaging platform.

Another difference to existing work is how we
describe the protocol; we do not use UML se-
quence diagrams to describe the protocol as they
often do not capture the entire set of message ex-
changes possible in the network environment we
assume. To describe the behaviour of each re-
negotiation participant we provide a finite state
machine to describe the state of the contract, sim-
ilar to the WS-Agreement specification. However,
unlike in WS-Agreement, the state machine is not
shared between the negotiation participants. In-
stead each participant has their own ‘copy’ of the
state machine which they update as they send and
receive messages. Because messages may be lost,
duplicated and/or re-ordered whilst being sent
these state machines may be inconsistent at some
points in time. This ‘loose consistency’ is a conse-
quence of Brewer’s Conjecture [5] where, in a dis-
tributed system, “there are three properties that
are commonly desired: consistency, availability,
and partition tolerance. It is impossible to achieve
all three.” Therefore, in our scenario where the
customer and provider are partitioned by a net-
work and the resources, within the providers ad-
ministrative domain, should be available to ev-
eryone if they are not booked, we cannot ensure
that the customer’s and the provider’s copy of the
state machine (representing the contract) are in a
consistent state.

Loose consistency may seem like a problem, but
the protocol, as we will show in Section 5.3, can
be designed to guarantee that consistency will be
reached eventually through the ability to re-send
messages. As [6] discusses, by not attempting to
have “increased fidelity” (i.e. strong consistency),
we can also reduce the cost, both regarding time
and resources required, to implement the proto-

col.
The issue of consistency is the main difference

between the GRAAP-WGs approach to protocol
design and the one advocated here: the GRAAP-
WG attempts to maintain strong consistency of
state using transactional protocols using a two-
phase commit (2PC) approach. As a consequence
these protocols make the resources being nego-
tiated unavailable even if they have not been
booked as they enter a state between ‘not-booked’
and ‘booked’ (a ‘limbo’ state). It is for these
reasons that 2PC-style protocols have been de-
scribed as “anti-availability protocols” [7]. This,
as we describe in [8], is unacceptable for a resource
provider and the reason why we advocate loosen-
ing the consistency requirement.

As well as providing a finite state machine to
describe the protocol, we also explain the possi-
ble messaging events using a unique notation of
pre- and post-constraints (or conditions). These
describe each messaging event as an atomic ac-
tion and explain the messaging behaviour of each
re-negotiation participant.

3 Protocol Requirements

This section describes the requirements for
a re-negotiation protocol from the GRAAP-WG
Wiki page [9] and associated usage scenarios [10].

3.1 Non-Requirements

Before proceeding it should be noted that many
of the requirements given by the GRAAP-WG are
not actual requirements for the re-negotiation pro-
tocol. In this work a protocol is defined as the
semantics of the messages exchanged and the al-
lowed sequences of message exchange. This is re-
ferred to as services sharing schema and contract,
the schema being the allowed messages, whilst the
contract “describes message sequences allowed in
and out of the service” [11]2.

Thus, reviewing the requirements from the
GRAAP-WG Wiki [9], the re-negotiation require-
ments regarding re-negotiable and service descrip-
tion terms, clearer information about why parties
do not agree and how to re-negotiate the expiry
of an agreement, can all be seen as domain or
agreement-specific information which should be
contained in the messages exchanged. Two of
the three protocol usage scenarios also describe
requirements for the information (about reserv-
ing more resources and extending the agreement

2Note that this is not to be confused with the contract
being re-negotiated.

2

F
o
r
d
i
s
t
r
i
b
u
t
i
o
n
t
o
G
R
A
A
P
-
W
G
:
F
e
b
r
u
a
r
y
1
5
,
2
0
0
8
-
-
P
a
g
e
2



expiration time) exchanged by the protocol. This
information has little to do with the protocol used
for re-negotiation because, in order to keep the
protocol domain-independent, the content of mes-
sages should be orthogonal to the protocol itself
and the reasons why messages are exchanged (as
this is dependent on the strategy of each partici-
pant).

The final requirement for re-negotiation dis-
cussed by GRAAP-WG is how contracts are ver-
sioned, e.g. through the issuing of a new agree-
ment identifier to the superseding contract. This
topic is not covered in this paper as, again, this
process is orthogonal to the protocol used to re-
negotiate the contract.

3.2 Re-negotiation Requirements

The remaining requirements from the GRAAP-
WG Wiki fall into the category of who can initiate
re-negotiation and how re-negotiation is initiated.
For example, a protocol usage scenario requires
that the contract can be cancelled through “ask-
ing for releasing resources which had been agreed
upon”. We believe that both parties in the con-
tract should be allowed to carry out the initiation
of re-negotiation and that both parties should be
allowed to cancel an existing contract3. This is
what is allowed in the ‘real world’, after all. We
also believe that the initiation of re-negotiation
should be allowed through non-binding enquiries
to the other party so that an estimate as to how
much it would cost to change the contract can
be obtained before committing to a new contract.
These requirements are met in the final protocol
design.

3.3 Contract Law Requirements

When designing this protocol we also feel is it
necessary to take into account the legal require-
ments of contract formation. This is because, as
we describe in [8], taking this approach benefits
businesses and their customers; a re-negotiation
protocol meeting the requirements of contract law
means both parties can be confident that agree-
ments they make for providing and receiving Grid
services are robust and can be taken to litigation
if any dispute arises. Contracts form part of the
foundations of commerce and with the advent of
business-oriented Grids (e.g. BREIN [12]) aligning

3Because of space limitations the ability to cancel con-
tracts is not included in this protocol specification though
this protocol can be extended to provide this behaviour
with little extra effort.

standard protocols with common business prac-
tices and rules, we feel, can only increase their
uptake.

Thus, the requirements of contract law (as de-
scribed in [8]) have been included in the proto-
col design. Briefly, some of these requirements
are that offer messages are binding if accepted,
that all offers are acknowledged and, because of
the risk of ‘cheating’ by the customer, we invoke
contract law’s ‘mailbox rule’ where a contract is
formed when the accept message is sent by the
offeree (i.e. the resource provider) and not when
the accept is received by the offeror (i.e. the cus-
tomer).

4 Protocol Design

4.1 Protocol Roles

In order to begin deriving a protocol for re-
negotiating a contract, the roles that each par-
ticipant plays in the protocol must be clarified.
In this work we define two roles: the resource
provider and the customer4. In our opinion defin-
ing these roles, rather than abstract ‘agreement
initiator/responder’ roles, highlights the natural
asymmetry of resource provision from resource
consumption. As we will show in Section 5, by
explicitly considering the requirements of the ser-
vice provider, we can also remove the possibility
of a denial-of-service attack on them.

4.2 Protocol Framework & Contract State
Machine

Before defining the protocol we should note
that the re-negotiation takes place in the context
of an existing contract for the provision of ser-
vices or resources. This contract has some unique
identifier that is known to both parties. In an im-
plementation of WS-Agreement, for example, this
identifier is the EPR of a WS-Agreement.

Thus, before re-negotiation is initiated the con-
tract is in the contracted state5 to reflect this ex-
isting context. When re-negotiation is initiated
the contract enters the re-negotiating state, which
is a sub-state of contracted as the original con-
tract is still in force, irrespective of the on-going
re-negotiation. After successful re-negotiation the

4This can be mapped onto WS-Agreement’s concepts
of agreement initiator and responder with the customer
playing the role of agreement initiator and the resource
provider that of the agreement responder.

5This state is equivalent to WS-Agreement’s ‘observed’
state, but the word ‘contracted’ is used as it is felt that
this indicates more accurately what has occurred.

3

F
o
r
d
i
s
t
r
i
b
u
t
i
o
n
t
o
G
R
A
A
P
-
W
G
:
F
e
b
r
u
a
r
y
1
5
,
2
0
0
8
-
-
P
a
g
e
3



Figure 1. Re-negotiation State Machine

current contract is in the superseded state as a new
contract will have superseded this contract.

This behaviour is shown in Figure 1, which
shows the finite state machine for the contract.
Again, the re-negotiation takes place inside the
contracted state to reflect an existing contract is
being re-negotiated. Initially the contract enters
the contracted state through transition 16. When
re-negotiation is initiated, the contract makes
transition 2. If the re-negotiation is successful,
transition 3 to the superseded state occurs. If the
re-negotiation is unsuccessful, transition 4 back to
the contracted state occurs.

It may be that one of the parties cannot or does
not want to re-negotiate the contract. In this case
they may indicate to the other party that they
cannot re-negotiate (how they do this is described
in Section 5). If the contract is in the contracted
state, they remain in this state. However, if the
contract is being re-negotiated when either party
decides they cannot re-negotiate, transition 4 back
to the contracted state happens.

5 Protocol Definition

Taking inspiration from [11], the protocol def-
inition is split into two sections. The first de-
fines the protocol messages and their semantics,
whilst the second defines the allowed messaging
behaviours of the resource provider and customer.

5.1 Protocol Messages

The following is a list of the protocol mes-
sages derived from Section 3. Note that each
message, in addition to the domain-specific in-
formation being exchanged, has three identifiers:
one, the agreement identifier that provides a con-
text for messages to be correlated under; two, a
message identifier that is unique in the context of

6How this agreement formed is outside the scope of this
paper.

each agreement; and, three, a correlation identi-
fier which should be set to the message identifier
of the message (if any) this message has been sent
in reply to (thus a correlation identifier may be
null if it does not relate to any other messages in
the re-negotiation).

• RenegotiationQuoteRequest . This message is
only sent from the customer to the resource
provider to indicate that they are interested
in re-negotiating the current contract and to
ask for a quote for the re-negotiated contract.

• RenegotiationQuote is a message only sent
from the resource provider to the customer
and is a non-binding estimate of a new agree-
ment based on the old agreement and the new
requirements of the customer. This message
may be sent in response to a re-negotiation
quote, or it may be used by the service
provider to initiate re-negotiation unilater-
ally.

• RenegotiationOffer . This message is sent from
the customer to the provider as a binding re-
quest to form a new agreement. The cus-
tomer must be careful when sending this
message as, if it is accepted, a new super-
seding contract will be formed on the con-
tents of this message. Sending this mes-
sage can be seen as the equivalent of WS-
Agreement’s agreement initiator role invok-
ing the WSAG:CreateAgreement operation.

As we have discussed in a previous paper [8]
by specifying that only the customer makes
offers to the provider, we remove the possibil-
ity of denial-of-service attacks on the provider
(i.e. situations where the resource provider is
in a ‘limbo’ state, waiting on a message from
the customer to confirm the booking of re-
sources).

• RenegotiationOfferAck . This message is sent
from the provider to the customer to acknowl-

4

F
o
r
d
i
s
t
r
i
b
u
t
i
o
n
t
o
G
R
A
A
P
-
W
G
:
F
e
b
r
u
a
r
y
1
5
,
2
0
0
8
-
-
P
a
g
e
4



edge that an offer has been received and is
being considered by the provider. The inclu-
sion of this message satisfies the requirement
of the EU’s eCommerce directive described
in [8].

• RenegotiationAccept . This message is sent
from the provider to the customer to in-
dicate that a RenegotiationOffer has been
accepted and a new contract formed that
replaces the original contract7. Send-
ing this message is equivalent to WS-
Agreement’s agreement responder role invok-
ing the WSAG:AcceptAgreement operation.

• RenegotiationReject . Only sent from the re-
source provider to the customer, this mes-
sage indicates that a RenegotiationOffer was
not accepted and will no longer be considered
by the resource provider. Sending this mes-
sage is equivalent to a WS-Agreement fault
message being sent.

• RenegotiationNotPossible is a message that can
be sent by either party (when allowed) to in-
dicate that the re-negotiation of a contract is
not (or is no longer) possible. This may be
because, for example, the resources allocated
in the current contract (i.e. the contract be-
ing re-negotiated) have expired. This may be
mapped onto a type of WS-Agreement fault
message.

5.2 Protocol Behaviours

5.2.1 Safety Properties

As well as assuming that the provider and cus-
tomer communicate by sending messages asyn-
chronously, using a non-Byzantine model8 where
messages can take arbitrarily long to be delivered
and be duplicated or lost but not corrupted, we
also define what are called safety properties for
the protocol [13]. Safety properties are protocol
behaviours that cannot be broken. If the safety
properties are broken then one of the protocol par-
ticipants has exhibited a fault of some kind. The
safety properties for this protocol are that:

• Only an offer that has been made can be ac-
cepted.

7As we described in Section 3.3, the new agreement is
formed when the accept message is sent because we invoke
contract law’s ‘mailbox rule’.

8Byzantine behaviour is where a participant of the pro-
tocol not only does not follow the prescribed messaging
behaviour but also of fails to behave consistently when in-
teracting with other protocol participants.

• Only one offer can be accepted in an instance
of the re-negotiation protocol.

• The acceptance of an offer revokes (i.e. makes
invalid) all other outstanding offers within
the instance of the re-negotiation protocol.

• The receipt of a RenegotiationNotPossible
message by the customer means that all all
outstanding offers have been invalidated.

5.2.2 Customer Behaviour

• Send RenegotiationQuoteRequest .

– Pre-condition: The customer’s contract
must not be in the superseded state.

– Post-condition: The customer’s con-
tract remains in its current state.

• Receive RenegotiationQuote.

– Pre-condition: There is no pre-condition
to this event occurring as it can take
place at any time, including after the
customer’s contract has entered the su-
perseded state (as it may be a mes-
sage delayed from earlier in the re-
negotiation). A provider can initiate
re-negotiation by sending this message
without prior receipt of a Renegotiation-
QuoteRequest message.

– Post-condition: If the customer’s con-
tract is in the superseded state then it
must remain in this state and no mes-
sage should be sent in return. If the
customer is in any other state they may
choose to ignore this message and re-
main in their current state or they may
choose to reply with a Renegotiation-

QuoteRequest or RenegotiationOffer .

• Send RenegotiationOffer .

– Pre-condition: The customer’s contract
must not be in the superseded state9.

– Post-condition: The customer’s con-
tract is in the re-negotiating state.

9Note that within the protocol, there is the capabil-
ity for a customer to make multiple offers to the provider,
i.e. to send more than one. This situation can come about
if, for example, the customer sends an offer and then an-
other offer before it receives a response (either a Renegoti-
ationAccept or RenegotiationReject) from the provider.
The provider may then receive two offers from the customer
in close succession. This may seem like a problem, but the
safety properties of the protocol ensure that only one offer
can be accepted and all other offers become invalid when
it is accepted.

5

F
o
r
d
i
s
t
r
i
b
u
t
i
o
n
t
o
G
R
A
A
P
-
W
G
:
F
e
b
r
u
a
r
y
1
5
,
2
0
0
8
-
-
P
a
g
e
5



• Receive RenegotiationOfferAck .

– Pre-condition: The customer must have
sent a RenegotiationOffer matching the
correlation iddentifier in the Renegotia-

tionOfferAck .

– Post-condition: The customer should
remain in its current state.

• Receive RenegotiationAccept .

– Pre-condition: The customer must have
sent a RenegotiationOffer with a mes-
sage identifier identical to the correla-
tion identifier in the RenegotiationAccept

message. This message may be received
at any time after the RenegotiationOffer

was sent, including after the contract
has entered the superseded state as du-
plicates of messages may be received.

– Post-condition: The customer’s current
contract is in the superseded state. No
further messages should be sent in this
instance of the re-negotiation protocol.

• Receive RenegotiationReject .

– Pre-condition: The customer must have
sent a RenegotiationOffer with a message
identifier the same as the correlation
identifier in the RenegotiationReject mes-
sage.

– Post-condition: The customer’s con-
tract remains in the current state or, if
it is in the re-negotiating state and there
are no outstanding RenegotiationOffer

messages it can move to the contracted
state.

• Send RenegotiationNotPossible.

– Pre-condition: The customer’s contract
must be in the contracted state.

– Post-condition: The customer’s con-
tract must be in the contracted state.

• Receive RenegotiationNotPossible.

– Pre-condition: This event may take
place at any time, including after the
customer’s contract has entered the su-
perseded state as this may be a message
delayed or duplicated from earlier in the
re-negotiation.

– Post-condition: If the customer’s con-
tract is in the superseded state it should
remain in this state and no messages

sent in response. Otherwise, the cus-
tomer’s contract should move to the con-
tracted state.

5.2.3 Resource Provider Behaviour

• Receive RenegotiationQuoteRequest .

– Pre-condition: There is no pre-condition
to this event occurring as it can take
place at any time, including after the
contract has entered the superseded
state as this may be a message from the
customer delayed from earlier in the re-
negotiation.

– Post-condition: The provider’s contract
remains in its current state. If the
provider’s contract is in the superseded
state then the RenegotiationAccept mes-
sage sent to agree the superseded con-
tract must be resent to indicate the state
of the contract.

• Send RenegotiationQuote.

– Pre-condition: The provider’s contract
must not be in the superseded state.

– Post-condition: The provider’s contract
remains in its current state.

• Receive RenegotiationOffer .

– Pre-condition: There is no pre-condition
to this event occurring as it can take
place at any time, including after the
contract has entered the superseded
state as this may be a message from the
customer delayed from earlier in the re-
negotiation.

– Post-condition: If the provider’s con-
tract is in the superseded state a Renego-

tiationAccept message must be sent with
the correlation id matching the id of the
previously accepted RenegotiationOffer .
Otherwise a RenegotiationOfferAck must
be sent with the correlation id matching
the id of the RenegotiationOffer message
received. If a duplicate RenegotiationOf-

fer is received the same RenegotiationOf-

ferAck message must be resent. If the
duplicate offer had been rejected previ-
ously, the same RenegotiationReject mes-
sage must be resent as well.

• Send RenegotiationOfferAck .

– Pre-condition: The provider must have
received a RenegotiationOffer .

6

F
o
r
d
i
s
t
r
i
b
u
t
i
o
n
t
o
G
R
A
A
P
-
W
G
:
F
e
b
r
u
a
r
y
1
5
,
2
0
0
8
-
-
P
a
g
e
6



– Post-condition: The provider’s contract
is in the re-negotiating state.

• Send RenegotiationAccept .

– Pre-condition: The provider must have
sent a RenegotiationOfferAck . The corre-
lation id of the RenegotiationAccept mes-
sage being sent must be identical to the
correlation id of the RenegotiationOffer-

Ack that was sent.

– Post-condition: The provider’s current
contract is in the superseded state. The
newly established contract is in the con-
tracted state.

• Send RenegotiationReject .

– Pre-condition: The provider must have
sent a RenegotiationOfferAck . The corre-
lation id of the RenegotiationReject mes-
sage being sent must be identical to the
correlation id of the RenegotiationOffer-

Ack that was sent.

– Post-condition: The provider’s contract
moves to the contracted state unless
there are outstanding RenegotiationOffer

messages, in which case it remains in the
re-negotiating state.

• Send RenegotiationNotPossible.

– Pre-condition: The provider’s must be
in the contracted state.

– Post-condition: The provider’s contract
is in the contracted state.

• Receive RenegotiationNotPossible.

– Pre-condition: This event may take
place at any time, including after the
provider’s contract has entered the su-
perseded state as this may be a message
(possibly a duplicate) delayed from ear-
lier in the re-negotiation.

– Post-condition: If the provider’s con-
tract is in the superseded state it must
remain in this state and the original
RenegotiationAccept message must be re-
sent. Otherwise, the provider sends out
RenegotiationReject messages to all out-
standing offers and moves to the con-
tracted state.

5.3 Handling Inconsistencies

As described in Section 2, this protocol relaxes
the requirement for consistency of the contract
state across the customer and resource provider.
In doing so we gain the availability of resources for
booking as they are never in a state between ‘not-
booked’ and ‘booked’, unlike in a protocol based
on a transactional approach in which resources
need to be reserved until a transaction completes
or aborts. This section describes how inconsisten-
cies between the customer and provider are han-
dled through the protocol.

5.3.1 Example 1

With both the customer and resource provider in
the contracted state, the customer sends a Renego-

tiationOffer offer to the provider and moves to the
re-negotiating state. This message is lost, thus the
two parties have inconsistent states. Here, upon
not receiving a reply to their RenegotiationOffer ,
the customer may keep resending the same mes-
sage until they receive a response from the re-
source provider. Resending a RenegotiationOffer is
not a problem as it can only be accepted (or re-
jected) once. Thus, the customer can be confident
that they will not be contracted multiple times.

Following the receipt of the response from the
provider the customer will be in the same state
as the provider when the provider sent the mes-
sage10.

5.3.2 Example 2

The customer and provider are in the re-
negotiating state and the provider sends a Rene-

gotiationAccept in response to a RenegotiationOffer .
The accept message is lost and the customer and
resource provider are in inconsistent states. As in
Example 1, the customer may keep resending the
RenegotiationOffer until it receives a response.

6 Summary, Conclusions & Future
Work

This paper has described an application-
level protocol between a service customer and
a provider that meets the requirements of the
OGF’s GRAAP-WG for renegotiating existing
agreements.

10Note that we do not say that the customer and re-
source provider will be in the same state and the provider
may have changed state in the time between sending the
reply and the customer receiving it.

7

F
o
r
d
i
s
t
r
i
b
u
t
i
o
n
t
o
G
R
A
A
P
-
W
G
:
F
e
b
r
u
a
r
y
1
5
,
2
0
0
8
-
-
P
a
g
e
7



The protocol is based on the assumptions of an
imperfect message transmission layer and is de-
signed to behave correctly and reliably even in the
presence of network faults that lead to message
loss and duplication. The protocol is independent
of the contents of the contract the messages relate
to. It is therefore usable in various application do-
mains that need re-negotiation capabilities.

Whilst discussing this protocol with our peers
they have commented that this protocol is “too
complicated to implement”. To show that it is
not we have implemented this protocol (and fully
tested it). The heart of the protocol (the state
machine in Figure 1) was implemented in around
120 lines of Ruby. A description of the implemen-
tation is the subject of a companion paper.

7 Acknowledgements

Michael Parkin is pleased to acknowledge that
this work was carried out as part of an indus-
trial fellowship for the CoreGRID IST project
N◦004265, funded by the European Commission
and partly sponsored by ATOS Origin Research
and Innovation.

Peer Hasselmyer’s work has been supported by
the NextGRID project and has been partly funded
by the European Commission’s IST activity of the
6th Framework Programme under contract num-
ber 511563.

This paper expresses the opinions of the au-
thors and not necessarily those of the European
Commission. The European Commission is not
liable for any use that may be made of the infor-
mation contained in this paper.

References

[1] A. Andrieux et. al. Web Services Agree-
ment Specification (WS-Agreement). Pro-
posed Recommendation, Open Grid Forum,
September 2006. Grid Resource Alloca-
tion Agreement Protocol Working Group
(GRAAP-WG).

[2] H. Ludwig, T. Nakata, P. Wieder, and
O. Wäldrich. Reliable Orchestration of Re-
sources using WS-Agreement. CoreGRID
Technical Report Number TR-0050, October
2006.

[3] T. Nakata. Thoughts on Negotiation.
OGF 19 GRAAP-WG Session Presentation,
September 2006.

[4] Google, Inc. Introduction to Distributed Sys-
tem Design. Google Code for Educators Tu-
torial, October 2007.

[5] S. Gilbert and N. Lynch. Brewer’s Conjec-
ture and the Feasibility of Consistent, Avail-
able, Partition-tolerant Web Services. ACM
SIGACT News, 33(2):51–59, June 2002.

[6] P. Helland. Memories, Guesses, and Apolo-
gies. MSDN Blog Article, May 2007.

[7] P. Helland. SOA and Newton’s Universe.
MSDN Blog Article, May 2007.

[8] M. Parkin, D. Kuo, J.M. Brooke, and
A. MacCulloch. Challenges in EU Grid Con-
tracts. In P. Cunningham and M. Cunning-
ham, editors, Proceedings of the 4th eChal-
lenges Conference: Exploiting the Knowledge
Economy: Issues, Applications and Case
Studies, pages 67–75, October 2006.

[9] T. Nakata et. al. ReNegotiationWishlists.
OGF GridForge Wiki, September 2007.

[10] T. Nakata et. al. Usage Scenarios to be In-
cluded in the Specification. OGF GridForge
Wiki, September 2007.

[11] P. Helland. Data on the Outside Versus
Data on the Inside. In M. Stonebreaker,
G. Weikum, and D. DeWitt, editors, In Pro-
ceedings of the Second Biennial Conference
on Inovative Data Systems Research (CIDR
2005), pages 114–153, January 2005.

[12] Business Objective Driven Reliable and In-
telligent Grids for Real Business (BREIN).
EC FP6 Integrated Project. http://www.
eu-brein.com/.

[13] L. Lamport. Specifying Systems: The TLA+
Language and Tools for Hardware and Soft-
ware Engineers. Addison Wesley Profes-
sional, 2003.

8

F
o
r
d
i
s
t
r
i
b
u
t
i
o
n
t
o
G
R
A
A
P
-
W
G
:
F
e
b
r
u
a
r
y
1
5
,
2
0
0
8
-
-
P
a
g
e
8

http://www.eu-brein.com/
http://www.eu-brein.com/

	Introduction
	What is re-negotiation?
	Document Structure

	Approach
	Protocol Requirements
	Non-Requirements
	Re-negotiation Requirements
	Contract Law Requirements

	Protocol Design
	Protocol Roles
	Protocol Framework & Contract State Machine

	Protocol Definition
	Protocol Messages
	Protocol Behaviours
	Safety Properties
	Customer Behaviour
	Resource Provider Behaviour

	Handling Inconsistencies
	Example 1
	Example 2


	Summary, Conclusions & Future Work
	Acknowledgements

