
GLUE2 XML Renderings

David Meredith

GLUE2: XSD Style, Flat or Nested

• Flat:
– Entities are equal siblings listed in a global element bag.
– <Associations> modelled using 1 method:

• Element ID references (all associations defined as children of
<Associations> elements).

• Nested:
– Defines multiple Document Root elements.
– <Associations> modelled using 2 methods:

• Nesting (defines strong parent-child relationships)
• Element ID references (a single entity can have many parents which

cannot be modelled by nesting alone – GLUE2 is not a pure tree
structure).

• Flat voted as preferred style at OGF 35 but...
• Not a complete consensus, some prefer nested.
• Hope to derive a style consensus/solution soon...

• Render results from Projection queries

– Projection queries simply specify the entities you
need to render when building a SELECT query (for
SQL, you would normally specify fields/cols).

• GOCDB provides 18 projection style methods:
– get_service_endpoint

– get_ngi

– get_site

– get_contact

– get_downtime

– get_site_contacts ...

GLUE2: GOCDB Requirements

1) https://goc.egi.eu/gocdbpi/private/?method=get_roc_contacts&roc=NGI_UK
2) https://goc.egi.eu/gocdbpi/public/?method=get_downtime&topentity=GOCDB

2. 1.

~ Consider 1000’s of
records = can produce
large XML documents.

GLUE2: GOCDB Requirements

https://goc.egi.eu/gocdbpi/private/?method=get_roc_contacts&roc=NGI_UK
https://goc.egi.eu/gocdbpi/public/?method=get_downtime&topentity=GOCDB

Nested

1. Associations: uses both nesting + ID
references (nesting can’t do many parents).

2. XSD enforces nested relationships.
3. Easy doc traversal for many associations (i.e.

XPath to select nested children rather than
cross referencing)

4. Can’t project/select only the required entities
without using multiple Doc roots.

5. Redundant parent + sibling elements =

bloated docs (consider 1000s of records).
• Could exclude optional siblings and

optional parents which are redundant, but
this is misleading (entities MUST always
be rendered in full).

(... detail elided)

<Entities> is Document Root:
(element bag that lists GLUE
entities as siblings in a defined
order).

Elements declared globally and
referenced from within
<Entities>.

GLUE elements can be
imported into standalone in 3rd
party XSD.

Flat XSD

1. Single Doc Root element (<Entities>).
2. Relationships modelled using one method; (ID

references which caters for many-to-many parents –
GLUE2 is not a pure tree structure!).

3. Weaker association; relationship is not enforced by XSD.
• Con: extra coding effort to validate that a

reference points to correct element.
• Pro: a grid can be represented as multiple XML

docs rather requiring a single doc.
4. Traversing associations requires sub-queries (cross

referencing element IDs)
5. Supports Bi and Uni directional associations.
6. Efficient = project just the required entities (e.g. select

all contacts, select all endpoints etc).

(elements are collapsed)

Flat

Sample Flat Rendering
(projecting services and endpoints)

• Can select/render (project)
just the required entities
under the same Doc root.

• Efficient: No redundant data
(consider 1000s of records).

• When selecting multiple

entities (e.g. ‘select * services,
endpoints, Contacts for
NGI_X’) its harder to traverse
the associations in the results
(lots of ID lookups).

Flat XSD
All
associations
are element
ID references

Sample XML

ID References
to endpoints

Nested
XSD

Sample XML

All
associations
are directly
nested

Inner
(nested)
endpoint s

Q. Should we consider a combined approach that enables a
choice of nesting and/or element ID referencing according to
the rendering requirements?

Q. Alternatively, define two separate XSDs (one flat and one
nested)? - an equally valid approach, but requires 2 XSDs

Combined
Approach
(Nested
+Refs)

Associations
can be directly
nested and/or
referenced

Sample XML
2 Referenced
 +
1 Nested
endpoints

Note, a nested
‘<Service>’ association
is not suitable here
(thus only provide
<ServiceID> option)

Combined Approach
• Single XSD for both styles
• <Entities> as single + consistent Doc Root element.

– <Child_Entity_Elements> can then nest their associated elements, or reference
other entity elements to suit use cases, i.e.

• Use Element refs to render projection queries
• Use Nesting for other (eg XPath friendly) renderings

• Combined approach is not new (its quite common); e.g. Spring framework
caters for both Inner Beans + Bean references in ‘spring-beans.xml’ in exact
same way.

• Explicit Validation Rule:
– MUST fail if a duplicate <Element> exists with same ID in doc.

• But, is this too flexible/complex?

– Would need to be selective where we offer a choice of nested/idref ; in some
associations, a choice is not necessary (see previous slide). Note, it is possible to
refine the combined approach e.g. using <xsd:choice> if necessary.

– Need logic to figure out what approach is being taken in a particular document
– Implementations would need to be clear if they require/support a particular style

(a profiling requirement ?).

Flat XSD:
Grouping Elements and/or

BaseType Attribute

Flat XSD: Grouping Elements and/or
BaseType Attribute

• At least one (or both) of these approaches is required
to simplify XPath querying of a Flat XML document.

• For the fully flat XSD, then the BaseType attribute is
required to simplify XPath queries.

• (note, BaseType attribute was carried over from
original nested XSD).

• Grouping elements adds slight complexity as not all
entities are siblings, but does allow easy
collapsing/expanding of elements belonging to the
same substitution group (but is this really a Pro?).

• Grouping elements are just a ‘nice to have’

Flat with Grouping Elements Flat with no Grouping Elements

<Services>
groups different
Service impls

<Endpoints>
groups different
Endpoint impls

<Managers> groups
different Manager
impls

No grouping elements needed for
concrete elements (they have no
substitutable alternatives)

Sample XPath to select all services,
endpoints with Grouping elements:

/Entities/Services/*
/Entities/Endpoints/*

Grey boxes =
Collapsed
elements

Flat with no Grouping Elements Requires the BaseType Attribute to simplify Xpath

Sample XPath to select all services and
endpoints without Grouping elements
but with the BaseType Attributes:

/Entities/*[@BaseType=‘Endpoint‘]
/Entities/*[@BaseType=‘Service‘]

@BaseType=‘Endpoint’

