
GFD-R-P.xxx Authors:

Category: Recommendation Sergio Andreozzi, INFN
GLUE Working Group Stephen Burke, RAL
http://redmine.ogf.org/projects/glue-wg Felix Ehm, CERN
 Laurence Field, CERN
 Gerson Galang, ARCS
 Balazs Konya, Lund University
 Maarten Litmaath, CERN
 Shiraz Memon*, FZJ

 David Meredith, STFC
 Paul Millar, DESY
 JP Navarro*
 Florido Paganelli
 Warren Smith
 Adrian Taga, Oslo University

*co-chairs

 editor

Jan 06, 2013

GLUE v. 2.0 – Reference Realization to XML Schema

Status of This Document

This document provides information to the Grid community regarding the realization of the
GLUE information model (v.2.0) as XML Schema. Distribution is unlimited. This realization is
derived from the proposed recommendation of the specification document [glue-2].

Copyright Notice

Copyright © Open Grid Forum (2011). All Rights Reserved.

Abstract

The GLUE 2 specification is an information model for Grid entities described in natural
language enriched with a graphical representation using UML Class Diagrams. This
document presents a realization of this information model as XML Schema.

GWD-R-P Jan 06, 2013

glue-wg@ogf.org

Contents

1. About this Document .. 3

2. Notational Conventions ... 3

3. XML Schema Realization ... 3
3.1 Namespace .. 4
3.2 Document Root Element (Entities) ... 4

3.3 Entity Elements ... 6
3.4 Enumerations... 6
3.5 Associations .. 7

3.5.1 Associations Elements and ID Reference Elements ... 7
3.5.2 Document Style Choice - Flat vs. Nested ... 9
3.5.3 Traversing Associations and Document Validation ... 9

3.6 Inheritance ..10
3.6.1 Abstract Classes and Element Implementations .. 10
3.6.2 Abstract Element Base Type ... 10
3.6.3 BaseType Attribute ... 11
3.6.4 Substitution Group .. 11

3.7 Importing the GLUE 2 Schema to Define Extended Custom Sub Types13
3.8 Custom Associations ..13
3.9 Extensibility ..16
3.10 The Normative XML Schema Realization of GLUE 2.017

4. Security Considerations ... 17

5. Author Information .. 18

6. Contributors & Acknowledgements ... 19

7. Intellectual Property Statement .. 19

8. Disclaimer ... 19

9. Full Copyright Notice ... 19

10. References ... 21

GWD-P-R Jan 06, 2013

example@ggf.org 3

1. About this Document

The GLUE 2.0 Information model defined in [glue-2] is a conceptual model of Grid entities. In
order to be adopted by technology providers, a realization in terms of a concrete data model
is needed. This document provides the normative realization of the GLUE 2.0 conceptual
model in terms of an XML Schema (XSD). The document also elaborates on the design
choices adopted to map the entities and relationships of the conceptual model into the
concrete data model.

This document is maintained by OGF‟s GLUE Working Group, which signs responsible for
documenting errata and releasing revisions as defined by the OGF document process. Errors

and feedback in general should be directed to the GLUE WG mailing list, at <glue-

wg@ogf.org>.

2. Notational Conventions

The key words „MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,”
“SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” are to be interpreted as
described in [rfc-2119].

3. XML Schema Realization

There are many possible approaches to map the GLUE 2 conceptual model into an XML
schema. Depending on which aspects are important, different design choices are preferable.
The core design characteristics of this rendering include:

 A single Document Root element (Entities), which serves as a global element bag

(see Listing 1).

 Entities nests child elements as siblings in an established order. The nested child

elements represent the core GLUE 2 entity classes. The multiplicity of all the entity
elements is zero-to-many.

 Associations between sibling elements are modeled using element ID references rather
nesting elements into parent-child relationships. There are a number of functional
justifications for choosing a „flat‟ document style over a nested/hierarchical style
described in Section 3.5.

 To fully implement the GLUE 2 conceptual model, the XSD defines a number of abstract
elements that correspond to the GLUE 2 abstract entity classes. These abstract elements
allow different (concrete) element implementations to be derived and substituted into the

document. For example, Service, ComputingService and StorageService may

substitute for AbstractService. The element implementations that are valid according

to this schema are given in Listing 1. Abstract element inheritance is described in Section
3.6.

 Importantly, new element specializations may be profiled in future and may be nested

within Entities without requiring subsequent modification to this schema. The process

for importing this XSD and deriving custom element specializations is described in
Section 3.7

 All entity elements are defined globally within the XSD. In doing this, the GLUE 2 entity
elements can be imported and reused wherever is required within other XML documents

without having to conform to the constraints and ordering defined by Entities.

 Additional elements defined in other namespaces can be nested in pre-defined extension
points.

GWD-P-R Jan 06, 2013

example@ggf.org 4

3.1 Namespace

The Open Grid Forum published a document with guidelines for identifying names uniquely
and uniform in the GGF/OGF domain [ogf-ns]. Based on this document, we have adopted the
following namespace for the XML Schema realization of GLUE 2.0:

GLUE-XSD-NS ::= 'http://schemas.ogf.org/glue/' YYYY '/' MM '/spec_' M.N '_r' R

 YYYY: year of the normative document of the GLUE specification

 MM: month of the normative document of the GLUE specification

 M.N: M is the major version and N is the minor version of the GLUE conceptual

model

 R: component to be used to specify the revision number of the XSD realization; this

number SHOULD be incremented each time a new non-backwards compatible
version is published

As a non-normative example, the namespace for the first release of the XSD document for
the final GLUE 2.0 specification [glue-2] is:

To be updated on publishing:

http://schemas.ogf.org/glue/2009/03/spec_2.0_r1

3.2 Document Root Element (Entities)

 Entities is the only recognized Document Root element. For full interoperability,

instance documents MUST define Entities as the Document Root.

 Entity elements are nested as siblings in an order which is determined according to

the location of abstract elements defined within Entities.

 Different concrete elements MAY substitute for an abstract class in an unspecified

order. For example, when substituting for the abstract Domain class,

AdminDomain may appear before UserDomain and vice-versa.

 This imposes an element ordering which is more loosely defined compared to
ordering by concrete elements. However, in doing this new entities may be
conveniently substituted into predictable locations according to the placement of
abstract classes. This provides a more strict element ordering compared to

substituting new implementations in place of xsd:any extension points. Abstract

classes also allow newly derived entities to be equal siblings within Entities.

 Entity elements that have no abstract super-class are placed according to their

specific location within Entities.

 The multiplicity of all entity elements within Entities is zero-to-many.

GWD-P-R Jan 06, 2013

example@ggf.org 5

Listing 1. Simplified GLUE 2 XML document structure. Entities is the document

root. Entity elements are ordered according to the location of abstract elements

defined within Entities. The star character (*) signifies a zero-to-many multiplicity.

 <Entities>

 <!-- Locations and Contacts first: -->

 <Location/> *

 <Contact/> *

 <!—

 Abstract elements are defined in the XSD in the following order:

 <Domain/>

 <AbstractService/>

 <AbstractEndpoint/>

 <Share/>

 <Manager/>

 <Resource/>

 <AbstractActivity/>

 <Policy/>

 -->

 <!-- Elements that implement abstract <Domain/>

 (may substitute in any order): -->

 <AdminDomain/> *

 <UserDomain/> *

 <!-- Elements that implement abstract <AbstractService/>

 (may substitute in any order): -->

 <Service/> *

 <ComputingService/> *

 <StorageService/> *

 <!-- Elements that implement abstract <AbstractEndpoint/>

 (may substitute in any order): -->

 <Endpoint/> *

 <ComputingEndpoint/> *

 <!-- Elements that implement abstract <Share/>

 (may substitute in any order): -->

 <ComputingShare/> *

 <StorageShare/> *

 <!-- Elements that implement abstract <Manager/>

 (may substitute in any order): -->

 <ComputingManager/> *

 <StorageManager/> *

 <!-- Elements that implement abstract <Resource/>

 (may substitute in any order): -->

 <ExecutionEnvironment/> *

 <DataStore/> *

 <!-- Elements that implement abstract <AbstractActivity/>

 (may substitute in any order): -->

 <Activity/> *

 <ComputingActivity/> *

 <!-- Elements that implement abstract <Policy/>

 (may substitute in any order): -->

 <AccessPolicy/> *

 <MappingPolicy/> *

 <!-- Other concrete element references: -->

 <Benchmark/> *

 <ApplicationEnvironment/> *

 <ToComputingService/> *

 <ToStorageService/> *

 <StorageAccessProtocol/> *

 <StorageServiceCapacity/> *

 <StorageShareCapacity/> *

 <ApplicationHandle/> *

 <xsd:any/> *

 </Entities>

GWD-P-R Jan 06, 2013

example@ggf.org 6

3.3 Entity Elements

 Each UML class (or „Entity‟ in GLUE 2 nomenclature) of the conceptual model maps
into an XML element definition (an „entity element‟). These are given in Listing 1. For
a comprehensive description of the attributes and semantics of each entity, please
refer to the conceptual model [glue-2].

 In general, each attribute of a UML class in the conceptual model maps into an XML

element definition (this is a general rule and applies also to both ID and LocalID

attributes); an exception is made for the attributes CreationTime and Validity of

the Entity class. Since they can be considered as metadata about GLUE-based

description of entities, they are modeled as XML attributes.

 If a class or an attribute can be instantiated multiple times, then a separate XML
element for each instance MUST be created.

As additional information, it should be noted that:

 Attributes which type is a timestamp are typed using glue:DateTime which is a

restriction of the xsd:dateTime simple type to match the UTC Timezone: yyyy'-
'mm'-'dd'T'hh':'mm':'ssZ

 If an information producer cannot define a value for a mandatory attribute, then you
SHOULD use the placeholder values defined (see Annex A in [glue-2])

3.4 Enumerations

The GLUE 2 specification defines a set of attributes that form an enumeration. These
enumerations belong to two main categories:

 Closed enumeration: a restricted list of values where the value of the attribute MUST
belong to the set of defined values.

 Open enumeration: an unrestricted list of values where the value of the attribute MAY
belong to the set of defined values. An open enumeration offers a partial list of values
with defined semantics among which to choose. It also provides hints on how new
values may be defined.

Closed enumerations are modeled as restrictions on a base type. By using the element

<enumeration>, each allowed value can be defined. An element which type is a restricted

string type in terms of a set of values is valid if and only if the value matches one of those
defined. The following XSD fragment defines the enumeration for the

Endpoint.HealthState attribute:

Listing 2. Sample schema for a Closed Enumeration type with a limited value range

(Endpoint.HealthState attribute).

For open enumerations, the natural approach would be to use the union capability of XSD

[xsd-oe, xsd-ap]. Unfortunately, this is not well supported in current implementations of XML

software libraries; therefore we decided to model them by using the annotation element.

Each enumeration value is within an appinfo sub-element. Software validating an XML

document according to the defined XSD for GLUE 2 SHOULD be instrumented in order to

 <simpleType name="EndpointHealthState_t">

 <restriction base="string">

 <enumeration value="critical"/>

 <enumeration value="ok"/>

 <enumeration value="other"/>

 <enumeration value="unknown"/>

 <enumeration value="warning"/>

 </restriction>

 </simpleType>

GWD-P-R Jan 06, 2013

example@ggf.org 7

consider these values. The following XSD fragment presents the definition of the open

enumeration for the DataStore.Type attribute:

Listing 3. Sample schema for an Open Enumeration type (DataStore.Type attribute).

3.5 Associations

In the conceptual model, several associations are represented. They can be classified in
terms of the multiplicity (one-to-one, one-to-many, many-to-many), in terms of the navigability
(bi-directional, unidirectional) or in terms of the association type (binary, aggregation,
composition, association class).

3.5.1 Associations Elements and ID Reference Elements

Associations between entities are modeled using „ID reference elements.‟ Each of these
elements refers to the unique ID value of a related element. ID reference elements are named
after the referenced class with the suffix “ID”. They are grouped together under each entity‟s

Associations element. For instance, the ComputingShare can be linked to many

ComputingEndpointS, many ExecutionEnvironmentS and a single

ComputingService. The corresponding ID reference elements are therefore

ComputingEndpointID, ExecutionEnvironmentID and ComputingServiceID as

shown in Listing 4.

The Associations element is mandatory for every entity element and so MUST always be

rendered. If a given entity has no mandatory relationships, then Associations MAY be

empty provided the entity has no other optional relationships. An example of an empty

Associations element is shown in Listing 5 which defines an orphan Contact. By

mandating Associations, the entity‟s relationships are clearly defined. If Associations

itself was made optional, it would be possible to erroneously omit the Associations

element even if relationships existed. If an entity element has associations with other
elements, then the corresponding ID reference elements MUST be rendered within

Associations.

 <simpleType name="DataStoreType_t">

 <restriction base="string">

 <annotation>

 <appinfo>

 <enumeration value="disk"/>

 <enumeration value="optical"/>

 <enumeration value="tape"/>

 </appinfo>

 </annotation>

 </restriction>

 </simpleType>

GWD-P-R Jan 06, 2013

example@ggf.org 8

Listing 4. Associations between entity elements are modeled using ID reference

elements nested within the mandatory Associations element. ID reference elements

specify the Id of related elements (as defined in their corresponding <ID>).

Listing 5. The Associations element must always be rendered. If an entity element has

no mandatory relationships, then its Associations element MAY be empty if no other

optional associations exist.

 <Contact>

 <ID>urn:contact1</ID>

 <Detail>http://some.uri/embedding/contact/info</Detail>

 <Type>general</Type>

 <!-- This contact has no relationships,

 but Associations element must still be rendered as empty -->

 <Associations/>

 </Contact>

<Entities ...>

 ...

 <ComputingService BaseType="Service">

 <ID>urn:myservice1</ID> ...

 </ComputingService>

 <ComputingEndpoint BaseType="Endpoint">

 <ID>urn:myendpoint1</ID> ...

 </ComputingEndpoint>

 <ComputingEndpoint BaseType="Endpoint">

 <ID>urn:myendpoint2</ID> ...

 </ComputingEndpoint>

 <ComputingShare BaseType="Share">

 <ID>urn:mycomputingsshare1</ID>

 <ServingState>production</ServingState>

 <Associations>

 <ComputingEndpointID>urn:myendpoint1</ComputingEndpointID>

 <ComputingEndpointID>urn:myendpoint2</ComputingEndpointID>

 <ExecutionEnvironmentID>urn:myexenv1</ExecutionEnvironmentID>

 <ComputingServiceID>urn:myservice1</ComputingServiceID>

 </Associations>

 </ComputingShare>

 <ExecutionEnvironment BaseType="Resource">

 <ID>urn:myexenv1</ID> ...

 </ExecutionEnvironment>

...

</Entities>

GWD-P-R Jan 06, 2013

example@ggf.org 9

3.5.2 Document Style Choice - Flat vs. Nested
The „flat‟ document style was chosen over a nested (hierarchical) approach for the following
reasons.

 The GLUE 2 information model is not a pure tree structure. Elements with multiple
parents and many-to-many relationships cannot be modeled by nesting alone. In these
types of relationship, either element duplication or mixing both element ID references with
nesting is necessary. For example, if the class participating in the “many” side of the
relationship also participates in other associations, then only one of those associations
can be mapped into a nested parent-child relationship. The other relationships must be
modeled using element ID references. This style mixing adds considerable complexity.
Conversely, modeling associations using ID reference elements imposes no such
limitations and is consistent.

 Element nesting defines a strong parent-child relationship, where the life span of the child
is strongly linked to that of the parent (UML composition). However, the entity
relationships in GLUE 2 represent weaker UML aggregations where entities can exist in
isolation with their own independent life spans. This is better suited to ID referencing
approach.

 The flat style is more efficient when rendering the results of projection queries. Projection
queries „slice‟ the data and specify which information should be returned in the result set.
In SQL queries, columns are typically specified but in our case we select entities, for

example „select from Endpoint where Endpoint.Type = ‘X’). The efficiency

advantage provided by the flat approach is due to the loose coupling provided by ID

reference elements and the zero-to-many multiplicity of elements within Entities:

o ID reference elements are lightweight – they establish that an element has

immediate relationships with other elements without having to fully populate
and render those elements.

o Conversely, the nested approach must fully render its child and parent
elements in order to show that these relationships actually exist. Fully
populating those relations would be required for the sake of completeness; if
a related element was not fully populated the data would be incomplete and
subject to misinterpretation (elements MUST always be rendered in full
including their immediate relationships). Furthermore, the nested approach is
inherently recursive and so would require cascading to all decedents and
ancestors in an entity graph.

 Minimizing XML bloat is important, especially when considering potentially thousands of
entities listed by an information system in a large scale grid. Since the flat style is more
efficient, it is more suitable for use by information systems which are the intended primary
implementations of this schema.

 The loose coupling provided by element ID references means that query results can be

split across multiple documents. For example, one Entities document could provide a

list of service endpoints while another Entities document could provide contact

information. This allows potentially sensitive information to be split into different
documents. This would not be possible using nesting which defines strong parent-child
relationships (composition) where all relations need to be captured in a single document
for the sake of completeness (as described above).

3.5.3 Traversing Associations and Document Validation

ID referencing requires the associations are checked for correctness during document
validation and when un-marshalling from XML into objects. To do this, the element IDs

identified in the Associations element must be cross referenced to ensure they refer to

the expected element types. This extra validation step is not enforced by the XSD schema.

For example, it is necessary to check that a ComputingEndpointID element correctly

GWD-P-R Jan 06, 2013

example@ggf.org 10

references a ComputingEndpoint instance. If the referenced element is not of the required

type, then the implementation MUST return an error.

3.6 Inheritance

3.6.1 Abstract Classes and Element Implementations

The main entity classes described in the conceptual model are defined as abstract XSD
schema elements. These serve as global extension points and cannot be directly created in
an XML instance document. For each abstract element, one or more implementation
elements defined in the GLUE 2 namespace can be substituted in place of the abstract
element. The abstract elements and their corresponding GLUE 2 implementations are listed
in Table 1.

If the standard GLUE 2 element set does not adequately describe a Grid information model,
the abstract elements can be substituted for new custom sub-type element specializations.

 Alternative element implementations MUST be defined in a new namespace (see
Section 3.7). In doing this other standards, extending profiles and end users MAY
define new substitutable elements that better describe their Grid entities as required.
This follows the GLUE 2 conceptual model which was designed to facilitate extension
and specialization of the core entity classes within a particular rendering. Indeed, the
conceptual model states that for “Grid [entities] requiring a richer set of attributes,
specific models MAY be derived by specializing from the [entity] class and adding
new properties or relationships."

 Defining new sub-type element specializations allows new information models to be
constrained using strongly typed XSD documents rather than solely relying on the
loosely typed GLUE 2 extensibility mechanisms (e.g. string based key-value property
bags).

 If new sub-type element specializations are defined, XML instance documents will
need to be validated against both the base GLUE 2 XSD and the extending XSD
schema(s).

 Since new sub-types must be defined under a new namespace, XML instance
documents will NOT be GLUE 2 compliant unless those new types are profiled and
subsequently incorporated into the GLUE specification at a later date.

3.6.2 Abstract Element Base Type

All substituting elements MUST either be the same as, or be derived from the same base type
as the abstract element. This is enforced by the W3C XML Schema rule set. A substituting
element MUST therefore implement;

a) The mandatory elements and attributes defined by the abstract element‟s base type.
b) The mandatory elements and attributes added by the extending sub-type (if any).
c) Selected optional elements and attributes added by the extending sub-type (if any).

Listing 6. The AbstractService element defines Service_t as its (base) type. This is

specified in the GLUE 2 schema with the following excerpt:

<!-- An abstract service base type that is designed to be implemented/extended by

concrete service implementations. Service implementations must use

substitutionGroup="glue:AbstractService" -->

<element name="AbstractService" type="glue:ServiceBase_t" abstract="true"/>

GWD-P-R Jan 06, 2013

example@ggf.org 11

Table 1: Abstract elements and their corresponding implementations. Each abstract
element also defines a fixed BaseType attribute value to identify the base type.

Abstract Element BaseType
Attribute Value

GLUE 2 Implementation Elements

Domain Domain AdminDomain
UserDomain

AbstractService Service Service
ComputingService
StorageService

AbstractEndpoint Endpoint Endpoint
ComputingEndpoint
StorageEndpoint

Share Share ComputingShare
StorageShare

Manager Manager ComputingManager
StorageManager

Resource Resource ExecutionEnvironment
DataStore

AbstractActivity Activity Activity
ComputingActivity

Policy Policy AccessPolicy
MappingPolicy

3.6.3 BaseType Attribute

We also consider the possibility of querying all sub-types of a specific abstract super-class. In

order to simplify this type of query, we introduce an XML attribute called BaseType whose

value is fixed and corresponds to the name of the abstract super-class. This attribute is
defined for all the entities and are listed in Table 2. Sample XPath queries are given below for
querying for all types of Endpoint, Service and Domain.

Listing 8. Sample XPath queries with the BaseType attribute.

3.6.4 Substitution Group

In an XML instance document, the GLUE 2 abstract elements can be substituted for any

element that defines a corresponding xsd:substitutionGroup (and which derives from

the same base type as the abstract element). For example, in the GLUE 2 XSD, the

AbstractService element can be substituted for the elements that define the

AbstractService substitution group. When validating an XML instance document against

the GLUE 2 schema, the allowed substitutable elements include; Service,

ComputingService or StorageService. This is specified in the GLUE 2 schema by the

following excerpt. Notice that all of the substitutable elements also extend the

ServiceBase_t complex type as this is the base type of AbstractService.

/Entities/*[@BaseType=‘Endpoint‘]

/Entities/*[@BaseType=‘Service‘]

/Entities/*[@BaseType=‘Domain‘]

GWD-P-R Jan 06, 2013

example@ggf.org 12

Listing 7. Elements that can substitute for an abstract element must extend the
relevant base type and specify the appropriate substitution group. In this example,

Service, ComputingService and StorageService all derive from ServiceBase_t

type which is the base type of AbstractService.

<element name="AbstractService" type="glue:ServiceBase_t" abstract="true"/>

<!-- Concrete Service implementations that substitute AbstractService

 must be the same as, or be derived from, a ServiceBase_t type. -->
<element name="Service" type="glue:Service_t"

substitutionGroup="glue:AbstractService"/>

<element name="ComputingService" type="glue:ComputingService_t"

substitutionGroup="glue:AbstractService"/>

<element name="StorageService" type="glue:StorageService_t"

substitutionGroup="glue:AbstractService"/>

...

<complexType name="Service_t">

 <complexContent>

 <extension base="glue:ServiceBase_t">
 <sequence>

 ...elided...

 </sequence>
 </extension>

 </complexContent>
</complexType>

<complexType name="ComputingService_t">
 <complexContent>

 <extension base="glue:ServiceBase_t">
 <sequence>

 ...elided...

 </sequence>
 </extension>

 </complexContent>
</complexType>

<complexType name="StorageService_t">
 <complexContent>

 <extension base="glue:ServiceBase_t">
 <sequence>

 ...elided...

 </sequence>

 </extension>

 </complexContent>
</complexType>

GWD-P-R Jan 06, 2013

example@ggf.org 13

3.7 Importing the GLUE 2 Schema to Define Extended Custom Sub Types

In order to derive custom elements that MAY substitute for the GLUE 2 abstract elements, the

GLUE 2 XSD schema must be imported into a third party schema using an xsd:import.

New elements can then be defined under the new target namespace of the extending
schema.

As described above, new element implementations MUST;

 Be the same as, OR be derived from the same type as the abstract super class.

 Specify the name of the extended abstract element using an

xsd:substitutionGroup.

An example XSD schema that imports the GLUE 2 schema to derive new sub-types is given

in Listing 9. This schema defines the custom MonitoredXService type which provides

supplementary monitoring information. Notice that the custom MonitoredXService

specifies the GLUE 2 AbstractService element in its substitutionGroup and also

extends from the GLUE 2 ServiceBase_t complex type.

A corresponding XML instance document is given in 10. Notice that the document references
both the GLUE 2 XML schema and the extending schema within its document root definition.

Also notice that the extending elements are qualified with the „ext‟ namespace prefix that

identifies the namespace of the extension schema;

„http://www.extensions.ac.uk/sample‟. A similar approach can be taken for sub-

typing all the other abstract elements whenever necessary.

3.8 Custom Associations

The example in Listings 9 and 10 demonstrates an important design feature; an entity‟s

Associations element is not inherited from its super class. This is intentional and allows

the sub-type to define an alternative strategy for modeling relationships. For the purpose of

illustration, the MonitoredXService defines its MonitoredXEndpoint as a nested child

element (rather than using an ID reference element). Indeed, this could be exploited in future
to define an alternative set of GLUE 2 entity elements that use element nesting rather than ID
references.

GWD-P-R Jan 06, 2013

example@ggf.org 14

Listing 9 Sample XSD schema that imports the GLUE 2 schema and extends both the

AbstractService and AbstractEndpoint elements with custom sub-types. A

corresponding sample XML instance document is given in Listing 10.

<?xml version="1.0"?>

<xs:schema version="1.0"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:glue="http://schemas.ogf.org/glue/2009/03/spec_2.0_r1"

 xmlns:ext="http://www.gocdbextensions.ac.uk/sample"

 xmlns="http://www.gocdbextensions.ac.uk/sample"

 targetNamespace="http://www.gocdbextensions.ac.uk/sample">

 <!-- This XSD imports the base glue2 XSD and extends AbstractService and

 AbstractEndpoint in order to derive custom Service and Endpoint types. -->

 <xs:import namespace="http://schemas.ogf.org/glue/2009/03/spec_2.0_r1"

 schemaLocation="glue2_2.xsd"/>

 <!-- For demonstration purposes, the MonitoredXEndpoint is defined as a

 child of the service so that the lifetime of the endpoint is strictly tied to

 its parent service.-->

 <xs:element name="MonitoredXService" substitutionGroup="glue:AbstractService">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="glue:ServiceBase_t">

 <xs:sequence>

 <xs:element ref="ext:Monitored" minOccurs="1" maxOccurs="1"/>

 <xs:element ref="ext:Beta" minOccurs="1" maxOccurs="1"/>

 <xs:element ref="ext:MonitoredXEndpoint" minOccurs="1" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="Monitored" type="glue:ExtendedBoolean_t" />

 <xs:element name="Beta" type="glue:ExtendedBoolean_t" />

 <!-- MonitoredXEndpoint must be the same as, or be derived from AbstractEndpoint.

 It adds supplementary monitoring information. -->

 <xs:element name="MonitoredXEndpoint" substitutionGroup="glue:AbstractEndpoint">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="glue:EndpointBase_t">

 <xs:sequence>

 <xs:element ref="ext:DowntimeClassification" minOccurs="1" maxOccurs="1"/>

 <xs:element ref="ext:DowntimeSeverity" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="DowntimeClassification" type="ext:DowntimeClassification_t"/>

 <xs:element name="DowntimeSeverity" type="ext:DowntimeSeverity_t"/>

 <xs:simpleType name="DowntimeSeverity_t">

 <xs:restriction base="xs:string">

 <xs:enumeration value="OUTAGE"/>

 <xs:enumeration value="WARNING"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="DowntimeClassification_t">

 <xs:restriction base="xs:string">

 <xs:enumeration value="SCHEDULED"/>

 <xs:enumeration value="UNSCHEDULED"/>

 </xs:restriction>

 </xs:simpleType>

</xs:schema>

GWD-P-R Jan 06, 2013

example@ggf.org 15

Listing 10. Sample document that imports the both the GLUE 2 XSD and the sample

XSD in Listing 9 in order to nest custom MonitoredXService and

MonitoredXEndpoint types within Entities.

<?xml version="1.0" encoding="UTF-8"?>

<!--

The custom elements can be nested in the glue Entities element. This requires

no modification to the glue 2 xsd, but this doc must be validated against both

the base glue2 xsd and the extending xsd. -->

<Entities

 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'

 xmlns:ext='http://www.gocdbextensions.ac.uk/sample'

 xmlns='http://schemas.ogf.org/glue/2009/03/spec_2.0_r1'

 xsi:schemaLocation='

 http://www.gocdbextensions.ac.uk/sample sampleGlue2_2Extension.xsd

 http://schemas.ogf.org/glue/2009/03/spec_2.0_r1 glue2_2.xsd'>

 <AdminDomain BaseType="Domain">

 <ID>124</ID>

 <Associations>

 <ServiceID>urn:mymonitoredXservice</ServiceID>

 <ServiceID>urn:mystandardService</ServiceID>

 </Associations>

 </AdminDomain>

 <Service BaseType="Service">

 <ID>urn:mystandardService</ID>

 <Type>NormalService</Type>

 <QualityLevel>production</QualityLevel>

 <Associations>

 <EndpointID>123</EndpointID>

 </Associations>

 </Service>

 <!--

 Our custom service type is substitutable for the AbstractService.

 We can therefore nest this type of service within Entities.

 This allows future glue profiles to define new services/endpoints without

 needing to modify the base GLUE 2 schema.

 -->

 <ext:MonitoredXService BaseType="Service">

 <ID>urn:mymonitoredXservice</ID>

 <Type>ServiceX</Type>

 <QualityLevel>production</QualityLevel>

 <ext:Monitored>true</ext:Monitored>

 <ext:Beta>true</ext:Beta>

 <ext:MonitoredXEndpoint BaseType="Endpoint">

 <ID>12</ID>

 <URL>adf</URL>

 <InterfaceName>adf</InterfaceName>

 <QualityLevel>development</QualityLevel>

 <HealthState>ok</HealthState>

 <ServingState>production</ServingState>

 <ext:DowntimeClassification>SCHEDULED</ext:DowntimeClassification>

 <ext:DowntimeSeverity>OUTAGE</ext:DowntimeSeverity>

 </ext:MonitoredXEndpoint>

 </ext:MonitoredXService>

 <Endpoint BaseType="Endpoint">

 <ID>123</ID>

 <URL>uri://some.url.ac.uk/service</URL>

 <InterfaceName></InterfaceName>

 <QualityLevel>development</QualityLevel>

 <HealthState>ok</HealthState>

 <ServingState>production</ServingState>

 <Associations>

 <ServiceID>urn:mystandardService</ServiceID>

 </Associations>

 </Endpoint>

</Entities>

GWD-P-R Jan 06, 2013

example@ggf.org 16

3.9 Extensibility

In the conceptual model, two main “hooks” are provided for extensions: the Extension class

and the OtherInfo attribute (see Section 5.1 [glue-2]). In the XML Schema mapping, the

Extension class is mapped as a child of the Extensions element. The OtherInfo

attribute is mapped as an OtherInfo element. They are both available in all entity elements

for the purposes of extension.

The XML Schema also adds additional extension points using the xsd:any element at

specific locations within the document. Elements and attributes belonging to other

namespaces may be substituted in place of the xsd:any element (we use the lax value for

the processContent attribute of the xsd:any element and ##other for the namespace

attribute). The xsd:any element is provided in the Extensions, Extension and Entity

elements. In the following example, we present a fragment showing how the extensibility
options can be used:

Listing 11. Options for extension include the OtherInfo, Extensions.Extension

elements and the xsd:any extension element.

<Entities...>

 ...

 <ExecutionEnvironment BaseType="Resource">

 <ID>executionEnvironment1</ID>

 <!-- Zero to many OtherInfo elements -->

 <OtherInfo>This is a powerful GPU system</OtherInfo>

 <OtherInfo>So is this one</OtherInfo>

 <!-- Extensions nests zero to many Extension elements -->

 <Extensions>

 <Extension>

 <LocalID>GeForge</LocalID>

 <Key>GeForge</Key>

 <Value>GeForge 7</Value>

 </Extension>

 <Extension>

 <LocalID>CoreLib</LocalID>

 <Key>CoreLib</Key>

 <Value>glibc:3.4.9</Value>

 <!-- xsd:any within Extension allows elements from other namespaces-->

 <typ:TextInfo xmlns:typ="http://unigrids.org/2006/04/types">

 <typ:Name>StagingInPath</typ:Name>

 <typ:Value>/user-home/in</typ:Value>

 </typ:TextInfo>

 </Extension>

 <!-- xsd:any within Extensions allows elements from other namespaces-->

 <typ:TextInfo xmlns:typ="http://unigrids.org/2006/04/types">

 <typ:Name>StagingInPath</typ:Name>

 <typ:Value>/user-home/in</typ:Value>

 </typ:TextInfo>

 <typ:TextInfo xmlns:typ="http://unigrids.org/2006/04/types">

 <typ:Name>StagingOutPath</typ:Name>

 <typ:Value>/user-home/out</typ:Value>

 </typ:TextInfo>

 </Extensions>

 ...

 </ExecutionEnvironment>

 ...

 <!-- xsd:any as last element within Entity allows elements from other namespaces-->

 <typ:TextInfo xmlns:typ="http://unigrids.org/2006/04/types">

 <typ:Name>StagingOutPath</typ:Name>

 <typ:Value>/user-home/out</typ:Value>

 </typ:TextInfo>

</Entities>

GWD-P-R Jan 06, 2013

example@ggf.org 17

3.10 The Normative XML Schema Realization of GLUE 2.0

https://github.com/OGF-GLUE/XSD/blob/master/schema/GLUE2.xsd

 To be imported into git after refining/updating:
 http://redmine.ogf.org/dmsf/glue-wg?folder_id=31

4. Security Considerations

Security considerations related to the GLUE information model are discussed in section 9 of
the GLUE specification [glue-2]. Additional considerations apply to the use of XML – for
those, see [rfc-3470].

https://github.com/OGF-GLUE/XSD/blob/master/schema/GLUE2.xsd
http://redmine.ogf.org/dmsf/glue-wg?folder_id=31

GWD-P-R Jan 06, 2013

example@ggf.org 18

5. Author Information

Sergio Andreozzi
EGI.eu
Science Park 105
1098 XG Amsterdam
the Netherlands
sergio.andreozzi@egi.eu

Stephen Burke
Science and Technology Facilities Council
Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Chilton, Didcot, Oxfordshire, OX11 0QX (UK)
E-mail: s.burke@rl.ac.uk

Felix Nikolaus Ehm
CERN
Route de Meyrin 385
CH-1211 Geneva 23 (Switzerland)
E-mail: Felix.Ehm@cern.ch

Laurence Field
CERN
Route de Meyrin 385
CH-1211 Geneva 23 (Switzerland)
E-mail: Laurence.Field@cern.ch

Gerson Galang,
Australian Research Collaboration Service (ARCS)
Carlton South, Victoria (Australia)
E-mail: gerson.sapac@gmail.com

Balazs Konya,
Department of Physics, Lund University,
Professorsgatan 1, Box 118,
SE-221 00 Lund (Sweden)
E-mail: balazs.konya@hep.lu.se

Maarten Litmaath
CERN
Route de Meyrin 385
CH-1211 Geneva 23 (Switzerland)
E-mail: Maarten.Litmaath@cern.ch

Shiraz Memon
Jülich Supercomputing Centre (JSC)
Wilhelm-Johnen-Straße
52425 Jülich, Germany
Email: a.memon@fz-juelich.de

Paul Millar,
Deutsches Elektronen-Synchrotron (DESY),
Notkestraße 85,
22607 Hamburg (Germany)
E-mail: paul.millar@desy.de

GWD-P-R Jan 06, 2013

example@ggf.org 19

John-Paul Navarro
University of Chicago/Argonne National Laboratory
Mathematics & Computer Science Division, Building 221
9700 S. Cass Avenue
Argonne, IL 60439 (USA)
E-mail: navarro@mcs.anl.gov

David Meredith
Scientific Computing Department
Science and Technology Facilities Council
Daresbury Laboratory
Warrington
Cheshire, WA4 4AD
E-mail: david.meredith@stfc.ac.uk

Adrian Taga
Warren Smith
Add address

6. Contributors & Acknowledgements

We gratefully acknowledge the contributions made to this document (in no particular order) by

7. Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology
described in this document or the extent to which any license under such rights might or
might not be available; neither does it represent that it has made any effort to identify any
such rights. Copies of claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to obtain a general license or
permission for the use of such proprietary rights by implementers or users of this specification
can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the OGF Executive
Director.

8. Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the
OGF disclaims all warranties, express or implied, including but not limited to any warranty that
the use of the information herein will not infringe any rights or any implied warranties of
merchantability or fitness for a particular purpose.

9. Full Copyright Notice

Copyright (C) Open Grid Forum (2011). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be
prepared, copied, published and distributed, in whole or in part, without restriction of any kind,
provided that the above copyright notice and this paragraph are included on all such copies
and derivative works. However, this document itself may not be modified in any way, such as
by removing the copyright notice or references to the OGF or other organizations, except as
needed for the purpose of developing Grid Recommendations in which case the procedures
for copyrights defined in the OGF Document process must be followed, or as required to
translate it into languages other than English.

mailto:navarro@mcs.anl.gov
mailto:david.meredith@stfc.ac.uk

GWD-P-R Jan 06, 2013

example@ggf.org 20

The limited permissions granted above are perpetual and will not be revoked by the OGF or
its successors or assignees.

GWD-P-R Jan 06, 2013

example@ggf.org 21

10. References

[glue-wg] The GLUE Working Group of OGF,

 https://forge.gridforum.org/sf/projects/glue-wg

[glue-uc] GLUE 2.0 Use Cases (early draft),

 https://forge.gridforum.org/sf/go/doc14621

[glue-2] GLUE Specification v. 2.0, OGF GFD.147, 3 Mar 2009,

 http://www.ogf.org/documents/GFD.147

[ogf-ns] Standardised Namespaces for XML infosets in OGF.

 http://www.ogf.org/documents/GFD.84.pdf

[rfc-2119] Key words for use in RFCs to Indicate Requirement Levels,
 http://www.ietf.org/rfc/rfc2119.txt

 [rfc-3470] Guidelines for the Use of Extensible Markup Language (XML)
 within IETF Protocols,
 http:/www.ietf.org/rfc/rfc3470.txt

[xsd-oe] XForms 1.0. Open Enumeration,

http://www.w3.org/TR/2002/WD-xforms-20020118/slice6.html
#model-using-openenum

[xsd-ap] Advanced XML Schema Patterns for Databinding Version 1.0,

 http://www.w3.org/TR/xmlschema-patterns-advanced/#group-Unions

https://forge.gridforum.org/sf/projects/glue-wg
https://forge.gridforum.org/sf/go/doc14621
http://www.ogf.org/documents/GFD.147
http://www.ogf.org/documents/GFD.84.pdf
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc3470.txt
http://www.w3.org/TR/2002/WD-xforms-20020118/slice6.html#model-using-openenum
http://www.w3.org/TR/2002/WD-xforms-20020118/slice6.html#model-using-openenum
http://www.w3.org/TR/xmlschema-patterns-advanced/%23group-Unions

GWD-P-R Jan 06, 2013

example@ggf.org 22

Is this now required ?

Association End 1 Multiplicity Association End 2

UserDomain (1)(*) UserDomain

AdminDomain (1)(*) Service

AdminDomain (1)(*) AdminDomain

AdminDomain (1)(*) Location

AdminDomain (1)(*) Contact

Service (1)(*) Service

Service (1)(*) Endpoint

Endpoint (1)(*) Activity

Endpoint (1)(*) AccessPolicy

Activity (1)(1) UserDomain

Activity (1)(*) Activity

ComputingEndpoint (*)(*) ComputingShare

ComputingEndpoint (1)(*) AccessPolicy

ComputingShare (1)(*) MappingPolicy

ExecutionEnvironment (*)(*) ComputingShare

ComputingActivity (*)(1) ComputingShare

ComputingActivity (*)(1) ComputingEndpoint

ComputingActivity (*)(1) ExecutionEnvironment

ComputingActivity (1)(1) UserDomain

ComputingActivity (1)(*) Activity

ComputingService (1)(*) ComputingEndpoint

ComputingService (1)(*) ComputingShare

ComputingService (1)(*) ComputingManager

ComputingService (1)(*) Service

ComputingService (1)(1) ToStorageService

ToStorageService (1)(*) StorageService

ExecutionEnvironment (*)(*) ApplicationEnvironment

ApplicationEnvironment (1)(*) ApplicationHandle

ComputingManager (1)(*) ExecutionEnvironment

ComputingManager (1)(*) ApplicationEnvironment

ComputingManager (1)(*) Benchmark

ExecutionEnvironment (1)(*) Benchmark

StorageService (1)(*) StorageEndpoint

StorageService (1)(*) StorageShare

StorageService (1)(*) StorageManager

StorageService (1)(*) StorageAccessProtocol

StorageService (1)(*) StorageServiceCapacity

StorageService (1)(*) ToComputingService

StorageAccessProtocol (1)(*) ToComputingService

StorageManager (1)(*) DataStore

StorageEndpoint (*)(*) StorageShare

StorageShare (*)(*) DataStore

StorageShare (1)(*) StorageShareCapacity

StorageService (1)(*) Service

