GFD-R-P.xxx Authors:
Category: Recommendation Sergio Andreozzi*(, INFN
GLUE Working Group
 Stephen Burke, RAL
http://forge.ogf.org/sf/projects/glue-wg Felix Ehm, CERN

 Laurence Field*, CERN

 Gerson Galang, ARCS

 Balazs Konya*, Lund University

 Maarten Litmaath, CERN

 Shiraz Memon, FZJ

 Paul Millar, DESY

 JP Navarro, ANL
 Adrian Taga, Oslo University

*co-chairs

 (editor

May 25, 2012
GWD-R-P

May 25, 2012

GLUE v. 2.0 – Reference Realization to XML Schema
Status of This Document

This document provides information to the Grid community regarding the realization of the GLUE information model (v.2.0) as XML Schema. Distribution is unlimited. This realization is derived from the proposed recommendation of the specification document [glue-2].
Copyright Notice

Copyright © Open Grid Forum (2011). All Rights Reserved.

Abstract
The GLUE specification is an information model for Grid entities described in natural language enriched with a graphical representation using UML Class Diagrams. This document presents a realization of this information model as XML Schema.
Contents

31.
About this Document

2.
Notational Conventions
3
3.
XML Schema Realization
3
3.1
Elements vs. Attributes
3
3.2
Namespace
4
3.3
Enumerations
4
3.4
Associations
5
3.5
Grouping
8
3.6
Document Roots
8
3.7
Inheritance
9
3.7.1
Importing the GLUE schema to define custom specializations
12
3.8
Extensibility
13
3.9
The Normative XML Schema Realization of GLUE 2.0
14
4.
Appendix
14
4.1
Appendix 1
15
4.2
Appendix 2
16
5.
Security Considerations
17
6.
Author Information
18
7.
Contributors & Acknowledgements
19
8.
Intellectual Property Statement
19
9.
Disclaimer
19
10.
Full Copyright Notice
19
11.
References
20

1. About this Document
The GLUE 2.0 Information model defined in [glue-2] is a conceptual model of Grid entities. In order to be adopted by technology providers, a realization in terms of a concrete data model is needed. This document provides the normative realization of the GLUE 2.0 conceptual model in terms of an XML Schema (XSD). The document also elaborates on the design choices adopted to map the entities and relationships of the conceptual model into the concrete data model.

This document is maintained by OGF’s GLUE Working Group, which signs responsible for documenting errata and releasing revisions as defined by the OGF document process. Errors and feedback in general should be directed to the GLUE WG mailing list, at <glue-wg@ogf.org>.
2. Notational Conventions

The key words ‘MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” are to be interpreted as described in [rfc-2119].
3. XML Schema Realization
There are many possible approaches to map the GLUE conceptual model into an XML Schema. Depending on which aspects are important, different design choices are preferable. When defining the proposed solution, we considered a number of best practices; we have attempted to maximize component reuse for entities that are cohesive and coupled. We also tried to exploit the hierarchical nature of an XML document, to reflect “part-of” relationships to avoid the creation of extra linking elements and improve the writing of XPath/XQuery statements. In addition, we make use of abstract XSD elements and substitution groups to provide global extension points with corresponding GLUE element renderings.
3.1 Elements vs. Attributes

When defining data types in an XML Schema, two main options are available. A data can be described in terms of an XML Element or an XML Attribute. For the GLUE conceptual model, we have adopted the following strategy:
· Each UML class (or Entity in GLUE 2 nomenclature) of the conceptual model maps into an XML Element definition.

· In general, each attribute of a UML class in the conceptual model maps into an XML Element definition (this is a general rule and applies also to both ID and LocalID attributes); an exception is made for the attributes CreationTime and Validity of the Entity class. Since they can be considered as metadata about GLUE-based description of entities, they are modeled as XML attributes.

· If a class or an attribute can be instantiated multiple times, then a separate XML Element for each instance MUST be created.

As additional information, it should be noted that:
· Attributes which type is a timestamp are typed using glue:DateTime which is a restriction of the xsd:dateTime simple type to match the UTC Timezone: yyyy'-'mm'-'dd'T'hh':'mm':'ssZ
· If an information producer cannot define a value for a mandatory attribute, then you SHOULD use the placeholder values defined (see Annex A in [glue-2])
3.2 Namespace
The Open Grid Forum published a document with guidelines for identifying names uniquely and uniform in the GGF/OGF domain [ogf-ns]. Based on this document, we have adopted the following namespace for the XML Schema realization of GLUE 2.0:
GLUE-XSD-NS ::= 'http://schemas.ogf.org/glue/' YYYY '/' MM '/spec_' M.N '_r' R
· YYYY: year of the normative document of the GLUE specification

· MM: month of the normative document of the GLUE specification

· M.N: M is the major version and N is the minor version of the GLUE conceptual model

· R: component to be used to specify the revision number of the XSD realization; this number SHOULD be incremented each time a new non-backwards compatible version is published

As a non-normative example, the namespace for the first release of the XSD document for the final GLUE 2.0 specification [glue-2] is:
http://schemas.ogf.org/glue/2009/03/spec_2.0_r1
3.3 Enumerations

The GLUE specification defines a set of attributes that form an enumeration. These enumerations belong to two main categories:
· Closed enumeration: a list of values is defined; the value of the attribute MUST belong to the set of defined values.

· Open enumeration: a list of values is defined; the value of the attribute MAY belong to the set of defined values. An open enumeration offers a partial list of values with defined semantics among which to choose. It also provides hints on how new values may be defined.

Closed enumerations are modeled as restrictions on a base type. By using the element <enumeration>, each allowed value can be defined. An element which type is a restricted string type in terms of a set of values is valid if and only if the value matches one of those defined. The following XSD fragment presents a definition of the enumeration for the Endpoint.HealthState attribute:

[image: image1]
For open enumerations, the natural approach would be to use the union capability of XSD [xsd-oe, xsd-ap]. Unfortunately, this is not well supported in current implementations of XML software libraries; therefore we decide to model them by using the annotation element. Each enumeration value is within an appinfo sub-element. A software validating an XML document according to the defined XSD for GLUE 2 SHOULD be instrumented in order to consider these values. The following XSD fragment presents the definition of the open enumeration for the DataStore.Type attribute:

[image: image2]
3.4 Associations

In the conceptual model, several associations are represented. They can be classified in terms of the multiplicity (one-to-one, one-to-many, many-to-many), in terms of the navigability (directed, undirected
) or in terms of the association type (binary, aggregation, composition, association class).

When mapping the associations from the conceptual model to the XSD, we adopt the following rules:

· One-to-one: modeled using a nested parent-child relationship between XML elements
· E.g.: an AdminDomain class has a directed
association to a Location class; this is represented as an outer AdminDomain element nesting a single child Location element
· One-to-many: modeled using a nested parent-child relationship; the “one” is the parent, while the “many” are the children
· E.g.: a Service class has a one-to-many association to an Endpoint class; this is represented as a Service element having zero or more child Endpoint elements

· If the class participating in the “many” side of the relationship also participates in other associations, then only one of those associations can be mapped into a nested parent-child relationship

· E.g., the ComputingActivity class participates in three associations on the “many” side; the design choice was to use the parent-child nesting option to map the ComputingEndpoint–ComputingActivity while relying on the many-to-many approach described below to describe the other associations; the association modeled as parent-child is not represented in the Associations element (see below)
· Many-to-many: XML schema does not provide a natural support to represent this kind of relationship; therefore we need to add dedicated elements to carry this information. These elements are called by the name of the referenced class with the suffix “ID” and are grouped together under the Associations element. For instance, the ComputingShare has a many-to-many association to the ComputingEndpoint and a many-to-many association to the ExecutioEnvironment. In this XSD rendering, this is represented as follows:

For each entity participating in a many-to-many relationship, we could add a reference element. However, we chose to represent the reference only in one side of the relationship to reduce inconsistencies and data to carry.
An exception to the above rules is made for the association UserDomain-Policy. This association is not represented in the XSD realization because the Policy entity implicitly encodes it through the Rule attribute. No exception is made for the associations AccessPolicy-Endpoint and MappingPolicy-Share; they follow the one-to-many relationship approach.
Table 1 lists which elements own the association reference for the many-to-many relationships and for the one-to-many relationships that are not represented as parent-child.
Table 1:
Relationships and Representation as Association Element (AE)

or Parent-Child (PC)
	Association End 1
	Multiplicity
	Association End 2
	How
	Owner/Parent

	UserDomain
	(1)(((*)
	UserDomain
	PC
	UserDomain

	AdminDomain
	(1)(((*)
	Service
	PC
	AdminDomain

	AdminDomain
	(1)(((*)
	AdminDomain
	PC
	AdminDomain

	AdminDomain
	(1)(((*)
	Location
	PC
	AdminDomain

	AdminDomain
	(1)(((*)
	Contact
	PC
	AdminDomain

	Service
	(1)(((*)
	Service
	AE
	Service

	Service
	(1)(((*)
	Endpoint
	PC
	Service

	Endpoint
	(1)(((*)
	Activity
	PC
	Endpoint

	Endpoint
	(1)(((*)
	AccessPolicy
	PC
	Endpoint

	Activity
	(1)(((1)
	UserDomain
	AE
	Activity

	Activity
	(1)(((*)
	Activity
	AE
	Activity

	ComputingEndpoint
	(*)(((*)
	ComputingShare
	AE
	ComputingShare

	ComputingEndpoint
	(1)(((*)
	AccessPolicy
	PC
	ComputingEndpoint

	ComputingShare
	(1)(((*)
	MappingPolicy
	PC
	ComputingShare

	ExecutionEnvironment
	(*)(((*)
	ComputingShare
	AE
	ComputingShare

	ComputingActivity
	(*)(((1)
	ComputingShare
	AE
	ComputingActivity

	ComputingActivity
	(*)(((1)
	ComputingEndpoint
	PC
	ComputingEndpoint

	ComputingActivity
	(*)(((1)
	ExecutionEnvironment
	AE
	ComputingActivity

	ComputingActivity
	(1)(((1)
	UserDomain
	AE
	ComputingActivity

	ComputingActivity
	(1)(((*)
	Activity
	AE
	ComputingActivity

	ComputingService
	(1)(((*)
	ComputingEndpoint
	PC
	ComputingService

	ComputingService
	(1)(((*)
	ComputingShare
	PC
	ComputingService

	ComputingService
	(1)(((*)
	ComputingManager
	PC
	ComputingService

	ComputingService
	(1)(((*)
	Service
	AE
	ComputingService

	ComputingService
	(1)(((1)
	ToStorageService
	PC
	ComputingService

	ToStorageService
	(1)(((*)
	StorageService
	AE
	ToStorageService

	ExecutionEnvironment
	(*)(((*)
	ApplicationEnvironment
	AE
	ApplicationEnvironment

	ApplicationEnvironment
	(1)(((*)
	ApplicationHandle
	PC
	ApplicationEnvironment

	ComputingManager
	(1)(((*)
	ExecutionEnvironment
	PC
	ComputingManager

	ComputingManager
	(1)(((*)
	ApplicationEnvironment
	PC
	ComputingManager

	ComputingManager
	(1)(((*)
	Benchmark
	PC
	ComputingManager

	ExecutionEnvironment
	(1)(((*)
	Benchmark
	PC
	ExecutionEnvironment

	StorageService
	(1)(((*)
	StorageEndpoint
	PC
	StorageService

	StorageService
	(1)(((*)
	StorageShare
	PC
	StorageService

	StorageService
	(1)(((*)
	StorageManager
	PC
	StorageService

	StorageService
	(1)(((*)
	StorageAccessProtocol
	PC
	StorageService

	StorageService
	(1)(((*)
	StorageServiceCapacity
	PC
	StorageService

	StorageService
	(1)(((*)
	ToComputingService
	PC
	StorageService

	StorageAccessProtocol
	(1)(((*)
	ToComputingService
	AE
	StorageAccessProtocol

	StorageManager
	(1)(((*)
	DataStore
	PC
	StorageManager

	StorageEndpoint
	(*)(((*)
	StorageShare
	AE
	StorageShare

	StorageShare
	(*)(((*)
	DataStore
	AE
	StorageShare

	StorageShare
	(1)(((*)
	StorageShareCapacity
	AE
	StorageShare

	StorageService
	(1)(((*)
	Service
	AE
	StorageService

[image: image3.png]GLUE 2.0 XSD]

(: XML Element

—— > Parent-Child

» Association End

—_—

AdminDomain

ComputingService

ComputingShare

ToStorageService

TA
Service

StorageService

I AccessPolicy l l ComputingActivity l

\

\

1
'
3

/

I Location l l Contact l

l StorageEndpoint l

\
\
\
\
\
\
\
\
\
\
\
\

StorageAccess StorageService
l Protocol l StorageShare l Capacity l StorageManager
/
\ /
\ Bl 4
UserDomain

ToComputing
Service

ApplicationEnvironment

l StorageShareCapacity l

DataStore

l ApplicationHandle l

Figure 1 "Parent-Child" and "Association End" relationships modeled in the GLUE XSD
3.5 Grouping

Elements having siblings of the same type in the order of O(10)
are grouped via grouping elements. For instance, a ComputingEndpoint may contain thousands ComputingActivity elements; these are grouped via an intermediate ComputingActivities element. The following grouping elements are defined:
· Domains

· Activities

· ComputingActivities

· ExecutionEnvironments

· ApplicationEnvironments

· Extensions

· Associations
3.6 Document Roots
XML documents are hierarchical with a single root element; therefore there must be a decision on what is the root element. In the GLUE conceptual model, AdminDomain and UserDomain cannot be grouped under a common entity. All other elements are publishable as descendent of AdminDomain or UserDomain. Therefore, we define an abstract container XML Element called Domains to be the primary root element. The Domains root element MUST contain only valid instances of AbstractDomain which includes AdminDomain and UserDomain. The following XML fragment provides an example:

Other root elements are allowed in addition to Domains. This is to cater for use cases that must generate valid XML documents for only part of the full model. For example, an information producer may need to generate a description of only the ComputingActivity instance. This information producer needs to validate the document without having to create containing elements. Furthermore, adopters of the GLUE XSD rendering may need to reuse XML element definitions to embed GLUE information in other proprietary documents.

We thus allow the following elements to be valid root in a GLUE-compliant XML document:

· Domains (already defined above)
· AdminDomain
· UserDomain
· Location
· Contact
· Service
· ComputingService
· StorageService
· ToComputingService

· StorageManager

· ComputingActivity
· ComputingActivities
· ExecutionEnvironment
· ApplicationEnvironment
The choice of the root element should be agreed between the information provider and the information consumer (an example of this is the documentation in the WSDL). If you are unable to define an agreement between all the information consumers and the information provider, then you SHOULD use Domains as root element.

3.7 Inheritance

The main entity classes described in the conceptual model are defined as abstract XML schema elements. These serve as global extension points and cannot be directly created in an XML instance document. For each abstract element, one or more implementation elements defined in the GLUE namespace can be substituted in place of the abstract element. The abstract elements and their corresponding GLUE implementations are listed in Table 2.
If the standard GLUE element set does not adequately describe a Grid information model, the abstract elements can be substituted for new custom sub-type element specializations using XSD substitution groups. These elements MUST be defined in a new namespace. In doing this other standards, extending profiles and end users MAY define new substitutable elements that better describe their Grid entities if necessary. This follows the GLUE conceptual model which was designed to facilitate extension and specialization of the core entity classes within a particular rendering. Indeed, the conceptual model states that for “Grid [entities] requiring a richer set of attributes, specific models MAY be derived by specializing from the [entity] class and adding new properties or relationships." Defining new sub-type element specializations allows new information models to be constrained using strongly typed XSD documents, rather than solely relying on the loosely typed GLUE extensibility mechanisms (e.g. String based key-value property bags). If new sub-type element specializations are defined, XML instance documents will need to be validated against both the base GLUE XSD schema and the extending XSD schema(s). Since new sub-types MUST be defined under a new namespace, XML instance documents will not be strictly GLUE compliant.
We also consider the possibility of querying ‘all services’ of a specific base type regardless of the sub-type specialization. In order to simplify this type of query, we introduce an XML attribute called BaseType whose value is fixed and corresponds to the name of the abstract super-class. This attribute is defined for all the entities and is also given in Table 2.

Table 2: Abstract GLUE schema elements and their corresponding implementation elements. Each abstract element also defines a fixed BaseType attribute value.
	Abstract Element
	BaseType
Attribute Value
	GLUE Entity

	AbstractDomain
	Domain
	AdminDomain

UserDomain

	AbstractService
	Service
	Service

ComputingService
StorageService

	AbstractEndpoint
	Endpoint
	Endpoint
ComputingEndpoint
StorageEndpoint

	AbstractShare
	Share
	Share

ComputingShare

StorageShare

	AbstractManager
	Manager
	Manager
ComputingManager
StorageManager

	AbstractResource
	Resource
	Resource

ExecutionEnvironment

DataStore

	AbstractActivity
	Activity
	Activity
ComputingActivity

	AbstractPolicy
	Policy
	Policy
AccessPolicy
MappingPolicy

All substituting elements MUST either be the same as, or be derived from the same base type as the abstract element. This is enforced by the W3C XML Schema rule set. A substituting element MUST therefore implement; a) the mandatory elements and attributes defined by the abstract element’s base type, b) the mandatory elements and attributes added by the extending sub-type (if any), and optionally c) selected optional elements and attributes added by the extending sub-type (if any). As an example, the AbstractService element defines ServiceBase_t as its (base) type. This is specified in the GLUE schema with the following excerpt:

[image: image5]
In a corresponding XML instance document, the AbstractService element can be substituted for any element that defines the AbstractService substitution group. When validating an XML instance document against just the GLUE schema, the allowed substitutable elements include; Service, ComputingService or StorageService. This is specified in the GLUE schema by the following excerpt. Notice that all of the substitutable elements also extend the ServiceBase_t complex type as this is the base type of AbstractService:

[image: image6]
Importing the GLUE schema to define custom specializations
In order to define custom elements that MAY substitute for GLUE abstract elements, the GLUE schema must first be imported into a third party schema. New elements can then be defined under the target namespace of the extending schema. All substituting elements MUST; a) either be the same as, or be derived from the same type as the target abstract element, and b) MUST specify the name of the target abstract element using an XSD substitutionGroup. An example is given below. The sample schema defines the custom MonitoredXService service type which provides supplementary monitoring information. Notice that the custom MonitoredXService specifies the AbstractService element in its substitution group and also extends from the ServiceBase_t complex type:

[image: image7]
A resulting XML instance document must reference both the GLUE XML schema and the extending schema within its document root element. This is shown in the example below. Notice that the extending elements are qualified with the ‘ext’ namespace prefix that identifies the namespace of the extension schema; ‘http://www.extensions.ac.uk/sample’. A full example of a third party XML schema that imports the GLUE schema and extends both AbstractService and AbstractEndpoint is provided in Appendix 1. A full example of a resulting XML instance document is given in Appendix 2. A similar approach can be taken for all the other abstract elements whenever necessary.

[image: image8]
3.8 Extensibility

At the conceptual level, the GLUE model defines two main “hooks” for extensions: the Extension class and the OtherInfo attribute (see Section 5.1 [glue-2]). In the XML Schema mapping, the Extension class is mapped as an Extension XML element in a parent-child relationship with the related class. The OtherInfo attribute is mapped as an OtherInfo XML Element. They are both available in all XML Elements for extensions.
The above extension hooks are defined in the conceptual model. The XML Schema enables to add hooks for extensibility based on a flexible mechanism. Content models can be extended by any elements and attributes belonging to specified namespaces (i.e., we refer to the lax value for the processContent attribute of an xsd:any element definition). This option is adopted only for the Extensions element. In the following example, we present a fragment showing how the three extensibility options can be used:

[image: image9]
3.9 The Normative XML Schema Realization of GLUE 2.0

https://github.com/OGF-GLUE/XSD/blob/master/schema/GLUE2.xsd

Appendix
Appendix 1

Sample XML Schema that imports the GLUE Schema and extends both the AbstractService and AbstractEndpoint elements with custom sub-types (MonitoredXService and MonitoredXEndpoint). Appendix 2 provides an example of a resulting XML instance document.

[image: image10]
Appendix 2

Sample XML instance document with custom Service and Endpoint elements (see the XML schema in Appendix X). Notice how the AdminDomain can be composed of both the standard GLUE service and endpoint implementations and the custom elements (MonitoredXService and MonitoredXEndpoint).

[image: image11]
4. Security Considerations

Security considerations related to the GLUE information model are discussed in section 9 of the GLUE specification [glue-2]. Additional considerations apply to the use of XML – for those, see [rfc-3470].
5. Author Information

Sergio Andreozzi

EGI.eu
Science Park 105
1098 XG Amsterdam

the Netherlands
sergio.andreozzi@egi.eu
Stephen Burke

Science and Technology Facilities Council

Rutherford Appleton Laboratory

Harwell Science and Innovation Campus

Chilton, Didcot, Oxfordshire, OX11 0QX (UK)
E-mail: s.burke@rl.ac.uk
Felix Nikolaus Ehm

CERN

Route de Meyrin 385

CH-1211 Geneva 23 (Switzerland)
E-mail: Felix.Ehm@cern.ch

Laurence Field

CERN

Route de Meyrin 385

CH-1211 Geneva 23 (Switzerland)

E-mail: Laurence.Field@cern.ch

Gerson Galang,

Australian Research Collaboration Service (ARCS)

Carlton South, Victoria (Australia)
E-mail: gerson.sapac@gmail.com

Balazs Konya,

Department of Physics, Lund University,

Professorsgatan 1, Box 118,

SE-221 00 Lund (Sweden)

E-mail: balazs.konya@hep.lu.se
Maarten Litmaath

CERN

Route de Meyrin 385

CH-1211 Geneva 23 (Switzerland)

E-mail: Maarten.Litmaath@cern.ch

Shiraz Memon

Jülich Supercomputing Centre (JSC)

Wilhelm-Johnen-Straße

52425 Jülich, Germany

Email: a.memon@fz-juelich.de
Paul Millar,

Deutsches Elektronen-Synchrotron (DESY),

Notkestraße 85,

22607 Hamburg (Germany)

E-mail: paul.millar@desy.de

John-Paul Navarro
University of Chicago/Argonne National Laboratory
Mathematics & Computer Science Division, Building 221
9700 S. Cass Avenue
Argonne, IL 60439 (USA)
E-mail: navarro@mcs.anl.gov
Adrian Taga
Add address
6. Contributors & Acknowledgements

We gratefully acknowledge the contributions made to this document (in no particular order) by
7. Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this recommendation. Please address the information to the OGF Executive Director.

8. Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the OGF disclaims all warranties, express or implied, including but not limited to any warranty that the use of the information herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular purpose.

9. Full Copyright Notice

Copyright (C) Open Grid Forum (2011). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the OGF or other organizations, except as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the OGF Document process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors or assignees.
10. References
[glue-wg]
The GLUE Working Group of OGF,

https://forge.gridforum.org/sf/projects/glue-wg
[glue-uc]
GLUE 2.0 Use Cases (early draft),

https://forge.gridforum.org/sf/go/doc14621
[glue-2]
GLUE Specification v. 2.0, OGF GFD.147, 3 Mar 2009,

http://www.ogf.org/documents/GFD.147
[ogf-ns]
Standardised Namespaces for XML infosets in OGF.

http://www.ogf.org/documents/GFD.84.pdf
[rfc-2119]
Key words for use in RFCs to Indicate Requirement Levels,

http://www.ietf.org/rfc/rfc2119.txt
 [rfc-3470]
Guidelines for the Use of Extensible Markup Language (XML)

within IETF Protocols,

http:/www.ietf.org/rfc/rfc3470.txt
[xsd-oe]
XForms 1.0. Open Enumeration,
http://www.w3.org/TR/2002/WD-xforms-20020118/slice6.html #model-using-openenum
[xsd-ap]
Advanced XML Schema Patterns for Databinding Version 1.0,

http://www.w3.org/TR/xmlschema-patterns-advanced/#group-Unions[image: image12.png]

<simpleType name="EndpointHealthState_t">

	<restriction base="string">

		<enumeration value="ok"/>

		<enumeration value="warning"/>

		<enumeration value="critical"/>

		<enumeration value="unknown"/>

		<enumeration value="other"/>

	</restriction>

</simpleType>

<simpleType name="DataStoreType_t">

 <restriction base="string">

 <annotation>

 <appinfo>

 <enumeration value="disk"/>

 <enumeration value="optical"/>

 <enumeration value="tape"/>

 </appinfo>

 </annotation>

 </restriction>

 </simpleType>

<ComputingShare>

	<ID>urn:share_id1</ID>

	<Associations>

	 	<ComputingEndpointID>urn:myendpoint1</ComputingEndpointID>

 	<ComputingEndpointID>urn:myendpoint2</ComputingEndpointID>

 	<ExecutionEnvironment>urn:execenv1</ExecutionEnvironment>

	</Associations>

</ComputingShare>

<Domains>

 <AdminDomain>

 <Service> …</Service>

 <ComputingService> …</ComputingService>

 </AdminDomain>

 <AdminDomain>

<StorageService> …</StorageService>

 </AdminDomain>

 <UserDomain> … </UserDomain>

 <UserDomain> … </UserDomain>

</Domains>

<ExecutionEnvironment BaseType=”Resource”>

 <ID>urn:myexecenv1</ID>

		…

 <OtherInfo>This is a powerful GPU system</OtherInfo>

 <Extensions>

 	<Extension>

 <LocalID>GeForge</LocalID>

 <Key>GeForge</Key>

 <Value>GeForge 7</Extension>

 </Extension>

	<Extension>

 <LocalID>CoreLib</LocalID>

 <Key>CoreLib</Key>

 <Value>glibc:3.4.9</Value>

 </Extension>

 <typ:TextInfo xmlns:typ="">http://unigrids.org/2006/04/types">

 <typ:Name>StagingInPath</typ:Name>

 <typ:Value>/user-home/in</typ:Value>

 </typ:TextInfo>

 <typ:TextInfo xmlns:typ="">http://unigrids.org/2006/04/types">

 <typ:Name>StagingOutPath</typ:Name>

 <typ:Value>/user-home/out</typ:Value>

 </typ:TextInfo>

 </Extensions>

</ExecutionEnvironment>

<!-- A generic Service base type that is designed to be implemented/extended by concrete service specialisations. Service implementations must use substitutionGroup="glue:AbstractService" -->

<element name="AbstractService" type="glue:ServiceBase_t" abstract="true"/>

<!-- Concrete Service implementations that substitute AbstractService

 must be the same as, or be derived from, a ServiceBase_t type. -->

<element name="Service" type="glue:Service_t"

 substitutionGroup="glue:AbstractService"/>

<element name="ComputingService" type="glue:ComputingService_t"

 substitutionGroup="glue:AbstractService"/>

<element name="StorageService" type="glue:StorageService_t"

 substitutionGroup="glue:AbstractService"/>

...

<complexType name="Service_t">

 <complexContent>

 <extension base="glue:ServiceBase_t">

 <sequence>

 ...body not show...

 </sequence>

 </extension>

 </complexContent>

</complexType>

<complexType name="ComputingService_t">

 <complexContent>

 <extension base="glue:ServiceBase_t">

 <sequence>

 ...body not show...

 </sequence>

 </extension>

 </complexContent>

</complexType>

<complexType name="ToStorageService_t">

 <complexContent>

 <extension base="glue:Entity_t">

 <sequence>

 ...body not show...

 </sequence>

 </extension>

 </complexContent>

</complexType>

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:glue="http://schemas.ogf.org/glue/2009/03/spec_2.0_r1"

 xmlns:ext="http://www.extension.ac.uk/sample"

 xmlns="http://www.extension.ac.uk/sample"

 targetNamespace="http://www.extension.ac.uk/sample">

 <xs:import namespace="http://schemas.ogf.org/glue/2009/03/spec_2.0_r1"

 schemaLocation="glue2.xsd"/>

 <xs:element name="MonitoredXService" substitutionGroup="glue:AbstractService">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="glue:ServiceBase_t">

 <xs:sequence>

 <xs:element ref="ext:Monitored" minOccurs="1" maxOccurs="1"/>

 <xs:element ref="ext:Beta" minOccurs="1" maxOccurs="1"/>

 <xs:element ref="ext:MonitoredXEndpoint" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

...

</schema>

<?xml version="1.0" encoding="UTF-8"?>

<AdminDomain

 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'

 xmlns:ext='http://www.extensions.ac.uk/sample'

 xmlns='http://schemas.ogf.org/glue/2009/03/spec_2.0_r1'

 xsi:schemaLocation='http://www.extensions.ac.uk/sample

 glue2ExtensionSchema.xsd

 http://schemas.ogf.org/glue/2009/03/spec_2.0_r1 glue2.xsd'

 BaseType="Domain">

 <ID>99876</ID>

 <WWW>http://ngs.ac.uk</WWW>

 <ext:MonitoredXService BaseType="Service">

 <ID>8284</ID>

 <Type>org.srb.SRB3</Type>

 <QualityLevel>production</QualityLevel>

 <ext:Monitored>true</ext:Monitored>

 <ext:Beta>true</ext:Beta>

 <ext:MonitoredXEndpoint BaseType="Endpoint">

 <ID>893</ID>

 <URL>http://some.endpoint.dl.ac.uk/ldap/whatever</URL>

 <InterfaceName>RIS2</InterfaceName>

 <QualityLevel>production</QualityLevel>

 <HealthState>ok</HealthState>

 <ServingState>production</ServingState>

 <DowntimeAnnounce>2012-03-29T00:00:00Z</DowntimeAnnounce>

 <DowntimeStart>2012-03-29T00:02:00Z</DowntimeStart>

 <DowntimeEnd>2012-03-29T00:03:00Z</DowntimeEnd>

 <DowntimeInfo>We have had a power outage !</DowntimeInfo>

 <ext:DowntimeClassification>UNSCHEDULED</ext:DowntimeClassification>

 <ext:DowntimeSeverity>OUTAGE</ext:DowntimeSeverity>

 </ext:MonitoredXEndpoint>

 </ext:MonitoredXService>

</AdminDomain>

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:glue="http://schemas.ogf.org/glue/2009/03/spec_2.0_r1"

 xmlns:ext="http://www.extensions.ac.uk/sample"

 xmlns="http://www.extensions.ac.uk/sample"

 targetNamespace="http://www.extensions.ac.uk/sample">

 <xs:import namespace="http://schemas.ogf.org/glue/2009/03/spec_2.0_r1"

 schemaLocation="glue2.xsd"/>

 <!-- MonitoredXService must be the same as, or be derived from AbstractService.

 In this example we extend AbstractService to provide supplementary monitoring

 information and a custom Endpoint implementation. -->

 <xs:element name="MonitoredXService" substitutionGroup="glue:AbstractService">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="glue:ServiceBase_t">

 <xs:sequence>

 <xs:element ref="ext:Monitored" minOccurs="1" maxOccurs="1"/>

 <xs:element ref="ext:Beta" minOccurs="1" maxOccurs="1"/>

 <xs:element ref="ext:MonitoredXEndpoint" minOccurs="0"

 maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="Monitored" type="glue:ExtendedBoolean_t" />

 <xs:element name="Beta" type="glue:ExtendedBoolean_t" />

 <!-- MonitoredXEndpoint must be the same as, or be derived from AbstractEndpoint.

 It adds supplementary monitoring information. -->

 <xs:element name="MonitoredXEndpoint" substitutionGroup="glue:AbstractEndpoint">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="glue:EndpointBase_t">

 <xs:sequence>

 <xs:element ref="ext:DowntimeClassification" minOccurs="1"

 maxOccurs="1"/>

 <xs:element ref="ext:DowntimeSeverity" minOccurs="1"

 maxOccurs="1"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <!-- Our Downtimes require a classification, either SCHEDULED or UNSCHEDULED -->

 <xs:element name="DowntimeClassification" type="ext:DowntimeClassification_t"/>

 <!-- Our Downtimes require a Severity, either OUTAGE or WARNING -->

 <xs:element name="DowntimeSeverity" type="ext:DowntimeSeverity_t"/>

 <xs:simpleType name="DowntimeSeverity_t">

 <xs:restriction base="xs:string">

 <xs:enumeration value="OUTAGE"/>

 <xs:enumeration value="WARNING"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="DowntimeClassification_t">

 <xs:restriction base="xs:string">

 <xs:enumeration value="SCHEDULED"/>

 <xs:enumeration value="UNSCHEDULED"/>

 </xs:restriction>

 </xs:simpleType>

</xs:schema>

<?xml version="1.0" encoding="UTF-8"?>

<!-- Sample document that imports the glue2ExtensionSchema.xsd in order

to define custom MonitoredXService and MonitoredXEndpoint specialisations.

These custom elements can be defined in conjunction with the glue2 types.-->

<Domains

 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'

 xmlns:ext='http://www.extensions.ac.uk/sample'

 xmlns='http://schemas.ogf.org/glue/2009/03/spec_2.0_r1'

 xsi:schemaLocation='http://www.extensions.ac.uk/sample

 glue2ExtensionSchema.xsd

 http://schemas.ogf.org/glue/2009/03/spec_2.0_r1 glue2.xsd'>

 <UserDomain BaseType="Domain">

 <ID>99871</ID>

 <WWW>http://users.ngs.ac.uk</WWW>

 </UserDomain>

 <AdminDomain BaseType="Domain">

 <ID>99876</ID>

 <WWW>http://ngs.ac.uk</WWW>

 <Service BaseType="Service">

 <ID>2342</ID>

 <Type>org.srb.SRB3</Type>

 <QualityLevel>production</QualityLevel>

 <Endpoint BaseType="Endpoint">

 <ID>2342</ID>

 <URL>http://some.endpoint.dl.ac.uk/service</URL>

 <InterfaceName>srb.api</InterfaceName>

 <QualityLevel>production</QualityLevel>

 <HealthState>ok</HealthState>

 <ServingState>production</ServingState>

 <DowntimeAnnounce>2012-03-29T00:00:00Z</DowntimeAnnounce>

 <DowntimeStart>2012-03-29T00:02:00Z</DowntimeStart>

 <DowntimeEnd>2012-03-29T00:03:00Z</DowntimeEnd>

 <DowntimeInfo>We had a power outage !</DowntimeInfo>

 </Endpoint>

 </Service>

 <ext:MonitoredXService BaseType="Service">

 <ID>8284</ID>

 <Type>org.srb.SRB3</Type>

 <QualityLevel>production</QualityLevel>

 <ext:Monitored>true</ext:Monitored>

 <ext:Beta>true</ext:Beta>

 <ext:MonitoredXEndpoint BaseType="Endpoint">

 <ID>893</ID>

 <URL>http://some.endpoint.dl.ac.uk/ldap/whatever</URL>

 <InterfaceName>RIS2</InterfaceName>

 <QualityLevel>production</QualityLevel>

 <HealthState>ok</HealthState>

 <ServingState>production</ServingState>

 <DowntimeAnnounce>2012-03-29T00:00:00Z</DowntimeAnnounce>

 <DowntimeStart>2012-03-29T00:02:00Z</DowntimeStart>

 <DowntimeEnd>2012-03-29T00:03:00Z</DowntimeEnd>

 <DowntimeInfo>We have had a power outage !</DowntimeInfo>

 <ext:DowntimeClassification>UNSCHEDULED

 </ext:DowntimeClassification>

 <ext:DowntimeSeverity>OUTAGE</ext:DowntimeSeverity>

 </ext:MonitoredXEndpoint>

 </ext:MonitoredXService>

 </AdminDomain>

</Domains>

�Only on breaking changes? How are versions with different (i.e. additional) features distinguished?

�Should this be 'bi-directional' and uni-directional'

�Bi-directional ?

�Is this correct?

� I am not sure I can parse that XML snippet correctly – the ‘typ:TextInfo’ elements are children of Extensions? If so, they have wrong indentation, and I have not been mentioned in text. If not, where do they belong to?

� I am not sure I can parse that XML snippet correctly – the ‘typ:TextInfo’ elements are children of Extensions? If so, they have wrong indentation, and I have not been mentioned in text. If not, where do they belong to?

�The schema should be verbatim included in this specification document, possibly in an appendix. I don’t think it is good enough to refer to some volatile github URL…

�You are citing an early draft – is there a final version somewhere? Also, that reference is not used in the document.

glue-wg@ogf.org

