
GWD-R
DRMAA-WG
drmaa-wg@ogf.org

Peter Tröger, Hasso-Plattner-Institute
(Corresponding Author)

Roger Brobst, Cadence Design Systems
Daniel Gruber, Univa

Mariusz Mamoński, PSNC
Daniel Templeton, Cloudera

June 2011

1

Distributed Resource Management Application API Version 22

(DRMAA) - Draft 53

Status of This Document4

Group Working Draft Recommendation (GWD-R)5

(See footnote)
1

6

Obsoletes7

This document obsoletes GFD-R.022 [7], GFD-R-P.130 [9], and GWD-R.133 [8].8

Copyright Notice9

Copyright c© Open Grid Forum (2005-2011). Some Rights Reserved. Distribution is unlimited.10

Trademark11

All company, product or service names referenced in this document are used for identification purposes only12

and may be trademarks of their respective owners.13

Abstract14

This document describes the Distributed Resource Management Application API Version 2 (DRMAA), which15

provides a generalized API to Distributed Resource Management (DRM) systems in order to facilitate the16

development of portable application programs and high-level libraries for such systems. DRMAA defines17

interfaces for a tightly coupled, but still portable access by abstracting the fundamental functions available18

in the majority of DRM systems. The scope is limited to job submission, job control, and retrieval of job19

and machine monitoring information.20

This document acts as root specification for the abstract API concepts and the behavioral rules that must be21

fulfilled by a DRMAA-compliant implementation. The programming language representation of the abstract22

API concepts must be formulated by a separate language binding specification derived from this document.23

The intended audience for this specification are DRMAA language binding designers, DRM system vendors,24

high-level API designers and meta-scheduler architects. End users are expected to rely on product-specific25

documentation for the DRMAA API implementation in their particular programming language.26

1 This is the non-normative annotated version of the specification with line numbers. It includes historical information
concerning the content and why features were included or discarded by the working group. It also emphasizes the consequences
of some aspects that may not be immediately apparent. This document in only intended for internal working group discussions.

drmaa-wg@ogf.org 1

mailto:drmaa-wg@ogf.org
http://www.drmaa.org/
http://www.drmaa.org/
mailto:drmaa-wg@ogf.org

GWD-R June 2011

Contents27

1 Introduction . 428

1.1 Notational Conventions . 429

1.2 Language Bindings . 530

1.3 Slots and Queues . 631

1.4 Multithreading . 632

2 Namespace . 633

3 Common Type Definitions . 634

4 Enumerations . 735

4.1 OperatingSystem enumeration . 836

4.2 CpuArchitecture enumeration . 937

4.3 ResourceLimitType enumeration . 1038

4.4 JobTemplatePlaceholder enumeration . 1139

4.5 DrmaaCapability . 1140

5 Extensible Data Structures . 1241

5.1 Queue structure . 1342

5.2 Version structure . 1343

5.3 Machine structure . 1444

5.4 JobInfo structure . 1545

5.5 ReservationInfo structure . 1946

5.6 JobTemplate structure . 2047

5.7 ReservationTemplate structure . 2948

5.8 DrmaaReflective Interface . 3249

6 Common Exceptions . 3350

7 The DRMAA Session Concept . 3551

7.1 SessionManager Interface . 3552

8 Working with Jobs . 3753

8.1 The DRMAA State Model . 3854

8.2 JobSession Interface . 4055

8.3 DrmaaCallback Interface . 4356

8.4 Job Interface . 4457

8.5 JobArray Interface . 4658

8.6 The DRMAAINDEX environment variable . 4859

9 Working with Advance Reservation . 4860

9.1 ReservationSession Interface . 4861

9.2 Reservation Interface . 4962

10 Monitoring the DRM System . 5063

10.1 MonitoringSession Interface . 5164

11 Annex A: Complete DRMAA IDL Specification . 5265

12 Security Considerations . 5866

13 Contributors . 5967

14 Intellectual Property Statement . 5968

15 Disclaimer . 6069

16 Full Copyright Notice . 6070

drmaa-wg@ogf.org 2

mailto:drmaa-wg@ogf.org

GWD-R June 2011

17 References . 6071

drmaa-wg@ogf.org 3

mailto:drmaa-wg@ogf.org

GWD-R June 2011

1 Introduction72

This document describes the Distributed Resource Management Application API Version 2 (DRMAA) in-73

terface semantics in a generalized way by using the OMG Interface Definition Language (IDL) [4] syntax for74

a language-agnostic description. Based on this abstract specification, language binding standards have to75

be designed that map the described concepts into a library interface for a particular programming language76

(e.g. C, Java, Python). While this document has the responsibility to ensure consistent API semantics over77

all possible DRMAA implementations, the language binding has the responsibility to ensure source-code78

portability for DRMAA applications on different DRM systems.79

An effort has been made to choose an API layout that is not unique to a particular language. However, in80

some cases, various languages disagree over some points. In those cases, the most meritous approach was81

taken, irrespective of language.82

There are other relevant OGF standards in the area of job submission and monitoring. An in-depth compar-83

ison and positioning of the obsoleted first version of the DRMAA [8] specification was provided by another84

publication [10].85

The DRMAA specification is based on the following stakeholders:86

• Distributed resource management system / DRM system / DRMS : Any system that supports the con-87

cept of distributing computational jobs on execution resources through the help of a central scheduling88

entity. Examples are multi-processor systems controlled by a operating system scheduler, cluster sys-89

tems with multiple machines controlled by a central scheduler software, grid systems, or cloud systems90

with a job concept.91

• DRMAA implementation, DRMAA library : The implementation of a DRMAA language binding spec-92

ification with the functional semantics described in this document. The resulting artifact is expected93

to be a library that is deployed together with the DRM system that is wrapped by the particular94

implementation.95

• (DRMAA-based) application: Software that utilizes the DRMAA implementation for gaining access to96

one or multiple DRM systems in a standardized way.97

• Submission host : An execution resource in the DRM system that runs the DRMAA-based application.98

A submission host MAY also be able to act as execution host.99

• Execution host : An execution resource in the DRM system that can run a job submitted through the100

DRMAA implementation.101

• Process: A running or suspended instance of a job on a execution host. A bulk job or a parallel job102

typically lead to multiple processes on one ore more execution hosts.103

1.1 Notational Conventions104

In this document, IDL language elements and definitions are represented in a fixed-width font.105

The key words “MUST” “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD106

NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described in RFC 2119 [1].107

Memory quantities are expressed in kilobyte (KB). 1 kilobyte equals 1024 bytes.108

drmaa-wg@ogf.org 4

mailto:drmaa-wg@ogf.org

GWD-R June 2011

Parts of the specification which are normative for derived language binding specifications only are graphically
marked as shaded box.

(See footnote)
2 .109

1.2 Language Bindings110

A language binding specification derived from this document MUST define a mapping between the IDL
constructs and programming language constructs, with focus on source code portability for the resulting
DRMAA-based applications.

A language binding SHOULD NOT rely completely on the OMG language mapping standards available for
many programming languages, since they have a huge overhead of irrelevant CORBA-related mapping rules.
Therefore, language binding authors must carefully decide if a binding decision reflects a natural and simple
mapping of the intended purpose for the DRMAA interfaces. The binding SHOULD reuse OMG value type
mappings (e.g. IDL long long to Java long), and SHOULD define custom mappings for the other types.
The language binding MUST use the described concept mapping in a consistent manner for its overal API
layout.

Due to the usage of IDL, all method groups for a particular purpose (e.g. job control) are described in terms
of interfaces, and not classes. The mapping to a class concept depends on the specific language-mapping
rules.

It may be the case that IDL constructs do not map directly to any language construct. In this case it MUST
be ensured that the chosen mapping retains the intended semantic of the DRMAA interface definition.

Access to scalar attributes (string, boolean, long) MUST operate in a pass-by-value mode. A language
binding must ensure that this behavior is always fulfilled. For non-scalar attributes, the language binding
MUST specify a consistent access strategy for all these attributes – either pass-by-value or pass-by-reference
– according to the use cases of language binding implementations.

This specification tries to consider the possibility of a Remote Procedure Call (RPC) scenario in a DRMAA-
conformant language mapping. It SHOULD therefore be ensured that the programming language type for
an IDL struct definition supports the serialization and comparison of instances. These capabilities should
be accomplished through whatever mechanism is most natural for the programming language.

A language binding MUST define a way to declare an invalid value (UNSET). In case, a definition per data
type needs to be provided. Evaluating an UNSET boolean value MUST result in a negative result, e.g. for
JobTemplate::emailOnStarted.

(See footnote)
3

111

2The usage of kikibyte as memory quantity unit, as well as the usage of bytes as in JSDL, was rejected by the group (conf
call Apr. 13th 2011)

3 The concept of a UNSET value was decided on a conf call (Aug 25th 2010). Boolean in C can use custom enumeration
(TRUE, FALSE, INVALID) or pointer to static values. A numerical UNSET in C should use a magic number, since all long
attributes are unsigned, it could be MIN INT. With Python, just use None. For Java, Dan has an idea.

drmaa-wg@ogf.org 5

mailto:drmaa-wg@ogf.org

GWD-R June 2011

1.3 Slots and Queues112

DRMAA supports the notion of slots and queues as resources of a DRM system. A DRMAA application113

can request them in advance reservation and job submission. However, slots and queues SHALL be opaque114

concepts from the viewpoint of a DRMAA implementation, meaning that the requirements given by the115

application are just passed through to the DRM system. This is reasoned by the large variation in interpreting116

that concepts in the different DRM systems, which makes it impossible to define a common understanding117

on the level of the DRMAA API.118

(See footnote)
4

119

1.4 Multithreading120

High-level APIs such as SAGA [3] are expected to utilize DRMAA for asynchronous operations, based on the121

assumption that re-entrancy is supported by DRMAA implementations. For this reason, implementations122

SHOULD ensure the proper functioning of the library in case of re-entrant library calls. A DRMAA library123

SHOULD allow a multithreaded application to use DRMAA interfaces without any explicit synchronization124

among the application threads. DRMAA implementers should document their work as thread safe if they125

meet the above criteria. Providers of non-thread-safe DRMAA implementations should document all the126

interfaces that are thread unsafe and provide a list of interfaces and their dependencies on external thread127

unsafe routines.128

2 Namespace129

The DRMAA interfaces and structures are encapsulated by a naming scope, which avoids conflicts with130

other APIs used in the same application.131

module DRMAA2 {132

Language binding authors MUST map the IDL module encapsulation to an according package or namespace
concept and MAY change the module name according to programming language conventions.

(See footnote)
5

133

3 Common Type Definitions134

The DRMAA specification defines some custom types to express special value semantics not expressible in135

IDL.136

typedef sequence <string > OrderedStringList;137

typedef sequence <string > StringList;138

typedef sequence <Job > JobList;139

typedef sequence <JobArray > JobArrayList;140

typedef sequence <Queue > QueueList;141

4 As one example, queues can be either treated as representation of execution hosts (Sun Grid Engine) or as central waiting
line located at the scheduler (LSF).

5 Comparison to DRMAA v1.0: The IDL module name was change to DRMAA2, in order to intentionally break backward
compatibility of the interface.

drmaa-wg@ogf.org 6

mailto:drmaa-wg@ogf.org

GWD-R June 2011

typedef sequence <Machine > MachineList;142

typedef sequence <Reservation > ReservationList;143

typedef sequence < sequence <string ,2> > Dictionary;144

typedef string AbsoluteTime;145

typedef long long TimeAmount;146

native ZERO_TIME;147

native INFINITE_TIME;148

native NOW;149

OrderedStringList: An unbounded list of strings, which supports element insertion, element deletion, and150

iteration over elements while keeping an element order.151

StringList: An unbounded list of strings, without any demand on element order.152

JobList: An unbounded list of Job instances, without any demand on element order.153

MachineList: An unbounded list of Machine instances, without any demand on element order.154

QueueList: An unbounded list of Queue instances, without any demand on element order.155

ReservationList: An unbounded list of Reservation instances, without any demand on element order.156

Dictionary: An unbounded dictionary type for storing key-value pairs, without any demand on element157

order.158

AbsoluteTime: Expression of a point in time, with a resolution at least to seconds.159

TimeAmount: Expression of an amount of time, with a resolution at least to seconds.160

ZERO TIME: A constant value of type TimeAmount that expresses a zero amount of time.161

INFINITE TIME: A constant value of type TimeAmount that expresses an infinite amount of time.162

NOW: A constant value of type AbsoluteTime that expresses the time of variable evaluation for the system.163

A language binding MUST replace these type definitions with semantically equal reference or value types in
the according language. This may include the creation of new complex language types for one or more of the
above concepts. The language binding MUST define a consistent mapping on module level, and a mechanism
for obtaining the RFC822 string representation from a given AbsoluteTime or TimeAmount instance.

(See footnote)
6

164

4 Enumerations165

Language bindings SHOULD define numerical values for all DRMAA constants and enumeration members,
in order to foster binary portability of DRMAA-based applications.

6 The PartialTimestamp functionality from DRMAA 1.0 was completely removed. Absolute date and time values are now
expressed as RFC822 conformant data items with stringification support (conf. call Mar 31st 2009). String list for job identifiers
are replaced by Job object lists (F2F meeting July 2009)

drmaa-wg@ogf.org 7

mailto:drmaa-wg@ogf.org

GWD-R June 2011

4.1 OperatingSystem enumeration166

DRMAA supports the identification of an operating system installation on execution resources in the DRM167

system. The OperatingSystem enumeration is used as data type both in the advance reservation and the168

DRM system monitoring functionalities. It defines a set of standardized identifiers for operating system169

types. The list is a shortened version of the according CIM Schema [6]. It includes only operating systems170

that are supported by the majority of DRM systems available at the time of writing:171

enum OperatingSystem {172

HPUX , LINUX , IRIX , TRUE64 , MACOS , SUNOS , WIN , WINNT , AIX , UNIXWARE ,173

BSD , OTHER_OS };174

AIX: AIX Unix by IBM.175

BSD: All operating system distributions based on the BSD kernel.176

LINUX: All operating system distributions based on the Linux kernel.177

HPUX: HP-UX Unix by Hewlett-Packard.178

IRIX: The IRIX operating system by SGI.179

MACOS: The MAC OS X operating system by Apple.180

SUNOS: SunOS or Solaris operating system by Sun / Oracle.181

TRUE64: True64 Unix by Hewlett-Packard, or DEC Digital Unix, or DEC OSF/1 AXP.182

UNIXWARE: UnixWare system by SCO group.183

WIN: Windows 95, Windows 98, Windows ME.184

WINNT: Microsoft Windows operating systems based on the NT kernel185

OTHER OS: An operating system type not specified in this list.186

Implementations SHOULD NOT add new operating system identifiers to this enumeration, even if they are187

supported by the underlying DRM system.188

The operating system information is only useful in conjunction with version information (see Section 10.1),189

which is also the reporting approach taken in most DRM systems. Examples:190

• The Apple MacOS X operating system commonly denoted as “Snow Leopard” would be reported as191

“MACOS” with the version structure [“10”,“6”]192

• The Microsoft Windows 7 operating system would be reported as “WINNT” with the version infor-193

mation [“6”,“1”], which is the internal version number reported by the Windows API.194

• All Linux distributions would be reported as operating system type “LINUX” with the major revision195

of the kernel, such as [“2”,“6”].196

• The Solaris operating system is reported as “SUNOS”, together with the internal version number, e.g.197

[“5”,“10”] for Solaris 10.198

The DRMAA OperatingSystem enumeration can be mapped to other high-level APIs. Table 1 gives a199

non-normative set of examples.200

drmaa-wg@ogf.org 8

mailto:drmaa-wg@ogf.org

GWD-R June 2011

DRMAA OperatingSystem value JSDL jsdl:OperatingSystemTypeEnumeration value
HPUX HPUX
LINUX LINUX
IRIX IRIX

TRUE64 Tru64 UNIX, OSF
MACOS MACOS
SUNOS SunOS, SOLARIS

WIN WIN95, WIN98, Windows R Me
WINNT WINNT, Windows 2000, Windows XP

AIX AIX
UNIXWARE SCO UnixWare, SCO OpenServer

BSD BSDUNIX, FreeBSD, NetBSD, OpenBSD
OTHER OS Other

Table 1: Mapping example for the DRMAA OperatingSystem enumeration

4.2 CpuArchitecture enumeration201

DRMAA supports identifying the processor instruction set architecture on execution resources in the DRM202

system. The CpuArchitecture enumeration is used as data type both in the advance reservation and the203

DRM system monitoring functionalities. It defines a set of standardized identifiers for processor architecture204

families. The list is a shortened version of the according CIM Schema [6], It includes only processor families205

that are supported by the majority of DRM systems available at the time of writing:206

enum CpuArchitecture {207

ALPHA , ARM , CELL , PARISC , X86 , X64 , IA64 , MIPS , PPC , PPC64 ,208

SPARC , SPARC64 , OTHER_CPU };209

ALPHA: The DEC Alpha / Alpha AXP processor architecture.210

ARM: The ARM processor architecture.211

CELL: The Cell processor architecture.212

PA-RISC: The PA-RISC processor architecture.213

X86: The IA-32 line of the X86 processor architecture family, with 32bit support only.214

X64: The X86-64 line of the X86 processor architecture family, with 64bit support.215

IA-64: The Itanium processor architecture.216

MIPS: The MIPS processor architecture.217

PPC: The PowerPC processor architecture, all models with 32bit support only.218

PPC64: The PowerPC processor architecture, all models with 64bit support.219

SPARC: The SPARC processor architecture, all models with 32bit support only.220

SPARC64: The SPARC processor architecture, all models with 64bit support.221

OTHER CPU: A processor architecture not specified in this list.222

drmaa-wg@ogf.org 9

mailto:drmaa-wg@ogf.org

GWD-R June 2011

The DRMAA CpuArchitecture enumeration can be mapped to other high-level APIs. Table 2 gives a223

non-normative set of examples.224

The reporting and job configuration for processor architectures SHOULD operate on a “as-is” base, if sup-225

ported by the DRM system. This means that the reported architecture should reflect the current operation226

mode of the processor with the running operating system. For example, X64 processors executing a 32-bit227

operating system typically report themself as X86 processor.228

DRMAA CpuArchitecture value JSDL jsdl:ProcessorArchitectureEnumeration value
ALPHA other

ARM arm
CELL other

PA-RISC parisc
X86 x86 32
X64 x86 64

IA-64 ia64
MIPS mips
PPC powerpc

PPC64 powerpc
SPARC sparc

SPARC64 sparc
OTHER other

Table 2: Mapping example for DRMAA CpuArchitecture enumeration

4.3 ResourceLimitType enumeration229

Modern DRM systems expose resource constraint capabilities from the operating system for jobs on the230

execution host. The ResourceLimitType enumeration represents the typical ulimit(3) parameters [5] in231

different DRM systems. All parameters relate to the operating system process representing some job on the232

execution host.233

enum ResourceLimitType {234

CORE_FILE_SIZE , CPU_TIME , DATA_SEG_SIZE , FILE_SIZE , OPEN_FILES ,235

STACK_SIZE , VIRTUAL_MEMORY , WALLCLOCK_TIME };236

CORE FILE SIZE: The maximum size of the core dump file created on fatal errors of the process, in237

kilobyte. Setting this value to zero SHOULD disable the creation of core dump files on the execution238

host.239

CPU TIME: The maximum accumulated time in seconds the process is allowed to perform computa-240

tions on all processors in the execution host. This value includes only time the job is spending in241

JobState::RUNNING (see Section 8.1). If the job consists of multiple processes, the result SHOULD242

be the accumulated CPU time of all processes.243

DATA SEG SIZE: The maximum amount of memory the process can allocate on the heap e.g. for object244

creation, in kilobyte.245

FILE SIZE: The maximum file size the process can generate, in kilobyte.246

drmaa-wg@ogf.org 10

mailto:drmaa-wg@ogf.org

GWD-R June 2011

OPEN FILES: The maximum number of file descriptors the process is allowed to have open at the same247

time.248

STACK SIZE: The maximum amount of memory the process can allocate on the stack, e.g. for local249

variables, in kilobyte.250

VIRTUAL MEMORY: The maximum amount of memory the process is allowed to allocate, in kilobyte.251

WALLCLOCK TIME: The maximum wall clock time in seconds the job is allowed to exist. The time252

amount MUST include the time spent in RUNNING state, and MAY also include the time spent in253

SUSPENDED state (see Section 8.1). If the job consists of multiple processes, the result SHOULD be254

the accumulated wall clock time of all processes.255

If not stated explicitely, the semantics of these values for jobs with multiple processes are implementation-256

specific.257

(See footnote)
7

258

4.4 JobTemplatePlaceholder enumeration259

The JobTemplatePlaceholder enumeration defines constant macros to be used in string attributes of a260

JobTemplate instance.261

enum JobTemplatePlaceholder {262

HOME_DIRECTORY ,WORKING_DIRECTORY ,PARAMETRIC_INDEX };263

A HOME_DIRECTORY placeholder SHOULD be only allowed at the beginning of a JobTemplate attribute value.264

It denotes the remaining portion as a directory / file path resolved relative to the job users home directory265

at the execution host.266

A WORKING_DIRECTORY placeholder SHOULD be only allowed at the beginning of a JobTemplate attribute267

value. It denotes the remaining portion as a directory / file path resolved relative to the jobs working268

directory at the execution host.269

The PARAMETRIC_INDEX placeholder SHOULD be usable at any position within an attribute value that270

supports place holders. It SHALL be substituted by the parametric job index in a JobSession::runBulkJobs271

call (see Section 8.2.7). If the job template is used for a JobSession:runJob call, PARAMETRIC_INDEX272

SHOULD be substituted with a constant implementation-specific value.273

(See footnote)
8

274

4.5 DrmaaCapability275

The DrmaaCapability enumeration expresses DRMAA features and data attributes that may or may not276

be supported by a particular implementation. Applications are expected to check the availability of optional277

capabilities through the SessionManager::supports method (see Section 7.1).278

7 “Pipe size” was not added, since there is no use case in DRM systems with a job concept. “Max user processes” was
omitted because it operates on the notion of users, which is not an explicit concept in DRMAA.

The understanding of wall clock time was decided in the Apr 6th and 13th 2011 conf call. Condor and Grid Engine also add
the SUSPEND time, but LSF does not.

8 Placeholders for other job template attributes were rejected, in order to avoid circular dependencies (Conf. call Oct 20th
2010). Any extended semantic of placeholders in comparison to DRMAA1 was rejected, since the support in the DRM system
didn’t change. (conf call Apr. 20th 2011)

drmaa-wg@ogf.org 11

mailto:drmaa-wg@ogf.org

GWD-R June 2011

enum DrmaaCapability {279

ADVANCE_RESERVATION , RESERVE_SLOTS , CALLBACK , BULK_JOBS_LIMIT ,280

RI_RESERVEDMACHINES , JT_EMAIL , JT_STAGING , JT_DEADLINE , JT_MAXSLOTS ,281

JT_ACCOUNTINGID , RT_DURATION , RT_MACHINEOS , RT_MACHINEARCH282

};283

ADVANCE RESERVATION: Indicates that the advance reservation interfaces (ReservationSession,284

Reservation) are functional in this implementation.285

RESERVE SLOTS: Indicates that the advance reservation support is targeting slots. If this capability is286

not given, the advance reservation is targeting whole machines as granularity level.287

CALLBACK: Indicates that the implementation supports event notification through a DrmaaCallback288

interface in the application.289

RI RESERVEDMACHINES: Indicates that the optional ReservationInfo::reservedMachines at-290

tribute is supported by the implementation.291

JT EMAIL: Indicates that the optional JobTemplate::email, JobTemplate::emailOnStarted, and JobTemplate::emailonTerminated292

attributes are supported by the implementation.293

JT STAGING: Indicates that the optional JobTemplate::stageInFiles and JobTemplate::stageOutFiles294

attributes are supported by the implementation.295

JT DEADLINE: Indicates that the optional JobTemplate::deadlineTime attribute is supported by the296

implementation.297

JT MAXSLOTS: Indicates that the optional JobTemplate::maxSlots attribute is supported by the298

implementation.299

JT ACCOUNTINGID: Indicates that the optional JobTemplate::accountingId attribute is supported300

by the implementation.301

RT STARTNOW: Indicates that the ReservationTemplate::startTime attribute accepts the NOW value.302

RT DURATION: Indicates that the optional ReservationTemplate::duration attribute is supported303

by the implementation.304

RT MACHINEOS: Indicates that the optional ReservationTemplate::machineOS attribute is supported305

by the implementation.306

RT MACHINEARCH: Indicates that the optional ReservationTemplate::machineArch attribute is307

supported by the implementation.308

5 Extensible Data Structures309

DRMAA defines a set of data structures commonly used by different interfaces to express information310

for and from the DRM system. A DRMAA implementation is allowed to extend these structures with311

implementation-specific attributes in all cases. Behavioral aspects of such extended attributes are out of312

scope for DRMAA. The interpretation is implementation-specific, implementations MAY even ignore such313

attribute values.314

Implementations SHALL only extend data structures in the way specified by the language binding. The315

introspection about supported implementation-specific attributes is supported by the DrmaaReflective316

drmaa-wg@ogf.org 12

mailto:drmaa-wg@ogf.org

GWD-R June 2011

interface (see Section 5.8). Implementations SHOULD also support native introspection functionalities if317

defined by the language binding.318

A language binding MUST define a consistent mechanism to realize implementation-specific structure ex-
tension, without breaking the portability of DRMAA-based applications that relies on the original version
of the structure. Object oriented languages MAY use inheritance mechanisms for this purpose. Instances
of these structures SHALL be treated in a “call-by-value” fashion, meaning that the collection of struct
member values is handed over as one to the called interface method.

Language bindings MAY define how native introspection capabilities of the language or it’s runtime envi-
ronment can also be used to work with implementation-specific attributes. These mechanisms MUST work
in parallel to the DrmaaReflective interface.

(See footnote)
9

319

5.1 Queue structure320

Queue is an opaque concept from the perspective of the DRMAA application (see Section 1.3). The Queue321

struct contains read-only information.322

struct Queue {323

string name;324

};325

5.1.1 name326

This attribute contains the name of the queue as reported by the DRM system. The format of the queue327

name is implementation-specific. The naming scheme SHOULD be consistent for all strings returned.328

5.2 Version structure329

The Version structure denotes versioning information for an operating system, DRM system, or DRMAA330

implementation.331

struct Version {332

string major;333

string minor;334

};335

Both the major and the minor part are expressed as strings, in order to allow extensions with character336

combinations such as “rev”. Original version strings containing a dot, e.g. Linux “2.6”, SHOULD be337

interpreted as having the major part before the dot, and the minor part after the dot. The dot character338

SHOULD NOT be added to the Version attributes.339

9 Comparison to DRMAA 1.0: The binding of job template attribute names and exception names to strings was removed.
Language bindings have to define their own mapping, if needed.

One example for native language introspection support could be attributes.
There was a discussion to remove the attribute ignorance possibility for implementations, in order to have a defined error

when unknown attributes are used. This was rejected on the Apr. 13th conf call, since applications do not need the error as
indication for missing attribute support. Instead, they should use the given introspection capabilities.

drmaa-wg@ogf.org 13

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.3 Machine structure340

The Machine structure describes the properties of a particular execution host in the DRM system. It contains341

read-only information. An implementation or its DRM system MAY restrict jobs in their resource utilization342

even below the limits described in the Machine structure. The limits given here MAY be imposed by the343

hardware configuration, or MAY be be imposed by DRM system policies.344

struct Machine {345

string name;346

boolean available;347

long sockets;348

long coresPerSocket;349

long threadsPerCore;350

double load;351

long physMemory;352

long virtMemory;353

OperatingSystem machineOS;354

Version machineOSVersion;355

CpuArchitecture machineArch;356

};357

5.3.1 name358

This attribute describes the name of the machine as reported by the DRM system. The format of the359

machine name is implementation-specific, but MAY be a DNS host name. The naming scheme SHOULD be360

consistent among all machine struct instances.361

subsubsectionavailable362

This attribute expresses the usability of the machine for job execution at the time of querying. The value363

of this attribute SHALL NOT influence the validity of job template instances containing a candidateHosts364

setting, since the availability of machines is expected to change at any point in time. DRM systems may allow365

to submit jobs for unavailable machines, where these jobs are queued until the machine becomes available366

again.367

5.3.2 sockets368

This attribute describes the number of processor sockets (CPUs) usable for jobs on the machine from oper-369

ating system perspective. The attribute value MUST be greater than 0. In the case where the correct value370

is unknown to the implementation, the value MUST be set to 1.371

5.3.3 coresPerSocket372

This attribute describes the number of cores per socket usable for jobs on the machine from operating system373

perspective. The attribute value MUST be greater than 0. In case where the correct value is unknown to374

the implementation, the value MUST be set to 1.375

drmaa-wg@ogf.org 14

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.3.4 threadsPerCore376

This attribute describes the number of threads that can be executed in parallel by a job’s process on one core377

in the machine. The attribute value MUST be greater than 0. In case where the correct value is unknown378

to the implementation, the value MUST be set to 1.379

5.3.5 load380

This attributes describes the 1-minute average load on the given machine, similar to the Unix uptime com-381

mand. The value has only informative character, and should not be utilized by end user applications for job382

scheduling purposes. An implementation MAY provide delayed or averaged data here, if necessary due to383

implementation issues. The implementation strategy on non-Unix systems is undefined.384

5.3.6 physMemory385

This attribute describes the amount of physical memory in kilobyte available on the machine.386

5.3.7 virtMemory387

This attribute describes the amount of virtual memory in kilobyte available for a job executing on this388

machine. The virtual memory amount is defined as the sum of physical memory installed plus the configured389

swap space for the operating system. The value is expected to be used as indicator whether or not an390

application is able to get its memory allocation needs fulfilled on a particular machine. Implementations391

SHOULD derive this value directly from operating system information, without further consideration of392

additional memory allocation restrictions such as address space range or already running processes.393

5.3.8 machineOS394

This attribute describes the operating system installed on the described machine, with semantics as specified395

in Section 4.1.396

5.3.9 machineOSVersion397

This attribute describes the operating system version of the machine, with semantics as specified in Section398

4.1.399

5.3.10 machineArch400

This attribute describes the instruction set architecture of the machine, with semantics as specified in Section401

4.2.402

5.4 JobInfo structure403

The JobInfo structure describes job information that is available for the DRMAA-based application.404

struct JobInfo {405

string jobId;406

long exitStatus;407

string terminatingSignal;408

string annotation;409

drmaa-wg@ogf.org 15

mailto:drmaa-wg@ogf.org

GWD-R June 2011

JobState jobState;410

any jobSubState;411

OrderedStringList allocatedMachines;412

string submissionMachine;413

string jobOwner;414

long slots;415

string queueName;416

TimeAmount wallclockTime;417

long cpuTime;418

AbsoluteTime submissionTime;419

AbsoluteTime dispatchTime;420

AbsoluteTime finishTime;421

};422

The structure is used in two occasions - first for the expression of information about a single job, and second423

as filter expression when retrieving a list of jobs from the DRMAA implementation.424

In both usage scenarios, the structure information has to be understood as snapshot of the live DRM system.425

Multiple values being set in one structure instance should be interpreted as “occurring at the same time”.426

In real implementations, some granularity limits must be assumed - for example, the wallclockTime and427

the cpuTime attributes might hold values that were measured with a very small delay one after each other.428

DRMAA makes no assumption on the JobInfo availability for jobs in a a “Terminated” state (see Section429

8.1). Implementations SHOULD allow to fetch information about such jobs, complete or incomplete, for430

a reasonable amount of time. For such terminated jobs, implementations MAY also decide to return only431

partially filled JobInfo instances due to performance restrictions in the communication with the DRM432

system.433

For additional DRMS-specific information, the JobInfo structure MAY be extended by the DRMAA imple-434

mentation (see Section 5).435

(See footnote)
10

436

5.4.1 jobId437

For monitoring: Returns the stringified job identifier assigned to the job by the DRM system.438

For filtering: Returns the job with the chosen job identifier.439

10 In comparison to DRMAA 1.0, the JobInfo value type was heavily extended for providing more information (solves issue
#2827). JobInfo::hasCoreDump is no longer supported, since the information is useless without according core file staging
support, which is not implementable in a portable way. (conf. call Jun 9th 2010) resourceUsage is no longer supported, since
this should be modelled with implementation-specific attributes (conf call Apr 13th 2011).

Some DRM systems (SGE / Condor at least) support the automated modification of job template attributes after submission,
and therefore allow to fetch the true job template attributes at run-time from the job. The monitoring for such data was
intentionally not included in DRMAA (mailing list July 2010).

A comment attribute was rejected (conf call May 11th).
Several conf. calls in 2011 ended up in the conclusion that data reaping cannot be clarified by DRMAA. There are too many

completely different use cases in local and distributed systems.

drmaa-wg@ogf.org 16

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.4.2 exitStatus440

For monitoring: The process exit status of the job, as reported by the operating system. If the job is not in441

one of the terminated states, the value should be UNSET.442

For filtering: Return the jobs with the given exitStatus value. Jobs without exit status information should443

be filtered out by asking for the appropriate states.444

5.4.3 terminatingSignal445

For monitoring: This attribute specifies the UNIX signal that reasoned the end of the job. Implementations446

should document the extent to which they can gather such information in the particular DRM system (e.g.447

with Windows hosts).448

For filtering: Returns the jobs with the given terminatingSignal value.449

5.4.4 annotation450

For monitoring: Gives a human-readable annotation describing why the job is in its current state or sub-state.451

Implementations MAY decide to offer such description only in specific cases.452

For filtering: This attribute is ignored for filtering.453

5.4.5 jobState454

For monitoring: This attribute specifies the jobs current state according to the DRMAA job state model455

(see Section 8.1).456

For filtering: Returns all jobs in the specified state. If the given state is simulated by the implementation457

(see Section 8.1), the implementation SHOULD raise an InvalidArgumentException explaining that this458

filter can never match.459

5.4.6 jobSubState460

For monitoring: This attribute specifies the jobs current DRMAA implementation specific sub-state (see461

Section 8.1).462

For filtering: Returns all jobs in the specified sub-state. If the given sub-state is not supported by the imple-463

mentation (see Section 8.1), the implementation SHOULD raise an InvalidArgumentException explaining464

that this filter can never match.465

5.4.7 allocatedMachines466

This attribute expresses the set of machines that are utilized for job execution. Implementations MAY467

decide to give the ordering of machine names a particular meaning, for example putting the master node in468

a parallel job at first position. This decision should be documented for the user. For performance reasons,469

only the machine names are returned, and SHOULD be equal to the according Machine::name attribute in470

monitoring data.471

For monitoring: This attribute lists the set of names of the machines to which this job has been assigned.472

For filtering: Returns the list of jobs which have a set of assigned machines that is a superset of the given473

set of machines.474

drmaa-wg@ogf.org 17

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.4.8 submissionMachine475

This attribute provides the machine name of the submission host for this job. For performance reasons,476

only the machine name is returned, and SHOULD be equal to the according Machine::name attribute in477

monitoring data.478

For monitoring: This attribute specifies the machine from which this job was submitted.479

For filtering: Returns the set of jobs that were submitted from the specified machine.480

5.4.9 jobOwner481

For monitoring: This attribute specifies the job owner as reported by the DRM system.482

For filtering: Returns all jobs owned by the specified user.483

5.4.10 slots484

For monitoring: This attribute reports the number slots that were allocated for the job. The value MAY be485

greater than JobTemplate::maxSlots, but SHOULD NOT be smaller than JobTemplate::minSlots.486

For filtering: Return all jobs with the specified number of reserved slots.487

(See footnote)
11

488

5.4.11 queueName489

For monitoring: This attribute specifies the queue in which the job was queued or started (see Section 1.3).490

For filtering: Returns all jobs that were queued or started in the specified queue.491

5.4.12 wallclockTime492

For monitoring: The accumulated wall clock time, with the semantics as defined in Section 4.3.493

For filtering: Returns all jobs that have consumed at least the specified amount of wall clock time.494

5.4.13 cpuTime495

For monitoring: The accumulated CPU time, with the semantics as defined in Section 4.3.496

For filtering: Returns all jobs that have consumed at least the specified amount of CPU time.497

5.4.14 submissionTime498

For monitoring: This attribute specifies the time at which the job was submitted. Implementations SHOULD499

use the submission time recorded by the DRM system, if available.500

For filtering: Returns all jobs that were submitted at or after the specified submission time.501

11The special rule for slots exceeding maxSlots was add for Grid Engine (conf call Apr. 13th 2011)

drmaa-wg@ogf.org 18

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.4.15 dispatchTime502

For monitoring: The time the job first entered a “Started” state (see Section 8.1). On job restart or re-503

scheduling, this value does not change.504

For filtering: Returns all jobs that entered a “Started” state at, or after the specified dispatch time.505

5.4.16 finishTime506

For monitoring: The time the job first entered a “Terminated” state (see Section 8.1).507

For filtering: Returns all jobs that entered a “Terminated” state at or after the specified finish time.508

5.5 ReservationInfo structure509

The ReservationInfo structure describes reservation information information that is available for the510

DRMAA-based application.511

struct ReservationInfo {512

string reservationId;513

string reservationName;514

AbsoluteTime reservedStartTime;515

AbsoluteTime reservedEndTime;516

StringList usersACL;517

long reservedSlots;518

OrderedStringList reservedMachines;519

boolean inErrorState;520

};521

The structure is used for the expression of information about a single advance reservation. Information pro-522

vided in this structure, despite ReservationInfo::inErrorState, SHOULD NOT change over the reserva-523

tion lifetime from activities with the DRMAA implementation. However, implementations MAY reflect the524

altering of advance reservations outside of DRMAA sessions.525

For additional DRMS-specific information, the ReservationInfo structure MAY be extended by the DR-526

MAA implementation (see Section 5).527

5.5.1 reservationId528

Returns the stringified job identifier assigned to the advance reservation by the DRM system.529

5.5.2 reservationName530

This attribute describes the reservation name that was stored by the implementation or DRM system, derived531

from the original reservationName attribute given in the ReservationTemplate.532

5.5.3 reservedStartTime533

This attribute describes the start time for the reservation. If the value is UNSET, it expresses an unrestricted534

start time (i.e. “minus infinity”) for this reservation.535

drmaa-wg@ogf.org 19

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.5.4 reservedEndTime536

This attribute describes the end time for the reservation. If the value is UNSET, the behavior is implementation-537

specific.538

(See footnote)
12

539

5.5.5 usersACL540

The list of the users that are permitted to submit jobs to the reservation.541

5.5.6 reservedSlots542

This attribute describes the number of slots that was reserved by the DRM system, based on the original543

minSlots and maxSlots arguments in the ReservationTemplate.544

Same maxS-
lots depen-
dency as with
JobInfo::slots
??

545

(See footnote)
13

546

5.5.7 reservedMachines547

This attribute describes the set of machines which was reserved under the conditions described in the548

according reservation template. Every machine name in the list should be repeated as many times as the549

number of slots reserved on this machine.550

The support for this attribute is optional, expressed by the DrmaaCapability::RI_RESERVEDMACHINES flag.551

Slot reporting
needs group
approval.
Info struc-
tures are not
supposed to
have optional
parts.

552

5.5.8 inErrorState553

This attribute helps to detect error conditions realted with the reservation (e.g. one of the reserved nodes554

went down). If the value is True, this indicate that the reservation is not fully usable, however such reservation555

MAY still be a valid input for the job submission. The opposite does not hold, i.e. if the value is False, it556

does not have to mean that the reservation is fully usable. An error state may be a transient situation.

NEW, not
so crucial.
Needs group
approvement

557

(See footnote)
14

558

5.6 JobTemplate structure559

In order to define the attributes associated with a job, a DRMAA application uses the JobTemplate struc-560

ture. It specifies any required job parameters and is passed to the DRMAA JobSession instance when job561

execution is requested.562

struct JobTemplate {563

string remoteCommand;564

OrderedStringList args;565

boolean submitAsHold;566

12Mai 18th 2011 conf call rejected to treat UNSET as unrestricted end time (i.e. “plus infinity”) here.
13Similar to JobInfo:slots, the result is expected to never be a range.
14In DRMAA 2.0 we do not have an explcit state model for advance reservations as the reservation state can be easily

deducted by comparing current time with reservation start and time.

drmaa-wg@ogf.org 20

mailto:drmaa-wg@ogf.org

GWD-R June 2011

boolean rerunnable;567

Dictionary jobEnvironment;568

string workingDirectory;569

string jobCategory;570

StringList email;571

boolean emailOnStarted;572

boolean emailOnTerminated;573

string jobName;574

string inputPath;575

string outputPath;576

string errorPath;577

boolean joinFiles;578

string reservationId;579

string queueName;580

long minSlots;581

long maxSlots;582

long priority;583

OrderedStringList candidateMachines;584

long minPhysMemory;585

OperatingSystem machineOS;586

CpuArchitecture machineArch;587

AbsoluteTime startTime;588

AbsoluteTime deadlineTime;589

Dictionary stageInFiles;590

Dictionary stageOutFiles;591

Dictionary hardResourceLimits;592

string accountingId;593

};594

The DRMAA job template concept makes a distinction between mandatory and optional attributes. Manda-595

tory attributes MUST be supported by the implementation in the sense that they are evaluated on job596

submission. Optional attributes MAY be evaluated on job submission, but MUST be provided as part of the597

JobTemplate structure in the implementation. If an unsupported optional attribute has a value different to598

UNSET, the job submission MUST fail with a UnsupportedAttributeException. DRMAA applications are599

expected to check for the availability of optional attributes before using them (see Section 4.5).600

Implementations MUST set all attribute values to UNSET on struct allocation. This ensures that both the601

DRMAA application and the library implementation can determine untouched attribute members. If not602

described differently in the following sections, all attributes SHOULD be allowed to have the UNSET value603

on job submission.604

An implementation MAY support JobTemplatePlaceholder macros in more occasions than defined in this605

specification.606

A language binding specification SHOULD define how a JobTemplate instance is convertible to a string

drmaa-wg@ogf.org 21

mailto:drmaa-wg@ogf.org

GWD-R June 2011

for printing, through whatever mechanism is most natural for the implementation language. The resulting
string MUST contain the values of all set properties.

The initialization to UNSET SHOULD be realized without additional methods in the DRMAA interface, if
possible. The according approach MUST be specified by the language binding.

(See footnote)
15

607

5.6.1 remoteCommand608

This attribute describes the command to be executed on the remote host. In case this parameter contains609

path information, it MUST be seen as relative to the execution host file system and is therefore evaluated610

there. The implementation SHOULD NOT relate the value of this attribute to binary file management or611

file staging activities. The behavior with an UNSET value is implementation-specific.612

The support for this attribute is mandatory.613

5.6.2 args614

This attribute contains the list of command-line arguments for the job(s) to be executed.615

The support for this attribute is mandatory.616

5.6.3 submitAsHold617

This attribute defines if the job(s) should be submitted as QUEUED or QUEUED_HELD (see Section 8.1). Since618

the boolean UNSET value defaults to False, jobs are submitted as non-held if this attribute is not set.619

The support for this attribute is mandatory.620

5.6.4 rerunnable621

This flag indicates if the submitted job(s) can safely be restarted by the DRM system, for example on a622

node failure or some other re-scheduling event. Since the boolean UNSET value defaults to False, jobs are623

submitted as not rerunnable if this attribute is not set. This attribute SHOULD NOT be used by the624

implementation to let the application denote the checkpointability of a job.625

The support for this attribute is mandatory.626

(See footnote)
16

627

15 Comparison to DRMAA 1.0: JobTemplate is now a value type, meaning that it maps to a struct in C. This removes the
need for DRMAA-defined methods for construction and destruction of job templates. An eventual RPC scenario for DRMAA
gets easier with this approach, since it is closer to the JSDL concept of a job description document.

Supported string placeholders for job template attributes are now listed in the JobTemplatePlaceholder enumeration, and
must be filled with values by the language binding. Invalid job template settings are now only detected on job submission, not
when the attribute is set.

DRMAA1 supported the utilization of new DRM features through an old DRMAA implementation, based on the
nativeSpecification field. A conf call (Jul 14th 2010) voted for dropping this intentionally. Implementations should use
according implementation-specific attributes for this.

16 The differentiation between rerunnable and checkpointable was decided on a conf call (Aug 25th 2010). Checkpointability
indication was intentionally left out, since there is no common understanding in the DRM systems (conf call Apr. 27th, 2011).

drmaa-wg@ogf.org 22

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.6.5 jobEnvironment628

This attribute holds the environment variable key-value pairs for the execution machine(s). The values629

SHOULD override the execution host environment values if there is a collision.630

The support for this attribute is mandatory.631

5.6.6 workingDirectory632

This attribute specifies the directory where the job or the bulk jobs are executed. If the attribute value633

is UNSET, the behavior is implementation dependent. Otherwise, the attribute value MUST be evaluated634

relative to the file system on the execution host. The attribute value MUST be allowed to contain either the635

JobTemplatePlaceholder::HOME_DIRECTORY or the JobTemplatePlaceholder::PARAMETRIC_INDEX place-636

holder (see Section 4.4).637

The workingDirectory attribute should be specified by the application in a syntax that is common at the638

host where the job is executed. Implementations MAY perform according validity checks on job submission.639

If the attribute is set and no placeholder is used, an absolute directory specification is expected. If the640

attribute is set and the job was submitted successfully and the directory does not exist on the execution641

host, the job MUST enter the state JobState::FAILED.642

The support for this attribute is mandatory.643

5.6.7 jobCategory644

DRMAA facilitates writing DRM-enabled applications even though the deployment properties, in particular645

the configuration of the DRMS, cannot be known in advance.646

Through the jobCategory string attribute, a DRMAA application can specify additional needs of the job(s)647

that are to be mapped by the implementation or DRM system itself to DRMS-specific options. It is intended648

as non-programmatic extension of DRMAA job submission features. The mapping is performed during the649

process of job submission. Each category expresses a particular type of job execution that demands site-650

specific configuration, for example path settings, environment variables, or application starters such as651

MPIRUN.652

A valid input SHOULD be one of the returned strings in MonitoringSession::drmsJobCategoryNames (see653

Section 10.1), otherwise an InvalidArgumentException SHOULD be raised.654

A non-normative recommendation of category names is maintained at:655

http://www.drmaa.org/jobcategories/656

In case the name is not taken from the DRMAA working group recommendations, it should be self-657

explanatory for the user to understand the implications on job execution. Implementations are recommended658

to provide a library configuration facility, which allows site administrators to link job category names with659

specific product- and site-specific configuration options, such as submission wrapper shell scripts.660

The interpretation of the supported jobCategory values is implementation-specific. The order of precedence661

for the jobCategory attribute value or other attribute values is implementation-specific. It is RECOM-662

MENDED to overrule job template settings with a conflicting jobCategory setting.663

The support for this attribute is mandatory.664

drmaa-wg@ogf.org 23

http://www.drmaa.org/jobcategories/
mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.6.8 email665

This attribute holds a list of email addresses that should be used to report DRM information. Content and666

formatting of the emails are defined by the implementation or the DRM system. If the attribute value is667

UNSET, no emails SHOULD be sent to the user running the job(s), even if the DRM system default behavior668

is to send emails on some event.669

The support for this attribute is optional, expressed by the DrmaaCapability::JT_EMAIL flag. If an imple-670

mentation cannot configure the email notification functionality of the DRM system, or if the DRM system671

has no such functionality, the attribute SHOULD NOT be supported in the implementation.672

(See footnote)
17

673

5.6.9 emailOnStarted / emailOnTerminated674

The emailOnStarted flag indicates if the given email address(es) SHOULD get a notification when the job675

(or any of the bulk jobs) entered one of the “Started” states. emailOnTerminated fulfills the same purpose676

for the ”Terminated” states. Since the boolean UNSET value defaults to False, the notification about state677

changes SHOULD NOT be sent if the attribute is not set.678

The support for these attributes is optional, expressed by the expressed by the DrmaaCapability::JT_EMAIL679

flag.680

5.6.10 jobName681

The job name attributes allows the specification of an additional non-unique string identifier for the job(s).682

The implementation MAY truncate any client-provided job name to an implementation-defined length.683

The support for this attribute is mandatory.684

5.6.11 inputPath / outputPath / errorPath685

This attribute specifies standard input / output / error stream of the job as a path to a file. If the attribute686

value is UNSET, the behavior is implementation dependent. Otherwise, the attribute value MUST be evaluated687

relative to the file system of the execution host in a syntax that is common at the host. Implementations688

MAY perform according validity checks on job submission. The attribute value MUST be allowed to contain689

any of the JobTemplatePlaceholder placeholders (see Section 4.4). If the attribute is set and no placeholder690

is used, an absolute file path specification is expected.691

If the outputPath or errorPath file does not exist at the time the job is about to be executed, the file692

SHALL first be created. An existing outputPath or errorPath file SHALL be opened in append mode.693

If the attribute is set and the job was submitted successfully and the file cannot be created / read / written694

on the execution host, the job MUST enter the state JobState::FAILED.695

The support for this attribute is mandatory.696

17 The blockEmail attribute in the JobTemplate was replaced by the UNSET semantic for the email adresses. (conf. call
July 28th 2010). This became an optional attribute, since we mandate the ’switch off’ semantic in case of UNSET.

drmaa-wg@ogf.org 24

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.6.12 joinFiles697

Specifies whether the error stream should be intermixed with the output stream. Since the boolean UNSET698

value defaults to False, intermixing SHALL NOT happen if the attribute is not set.699

If this attribute is set to True, the implementation SHALL ignore the value of the errorPath attribute and700

intermix the standard error stream with the standard output stream as specified by the outputPath.701

The support for this attribute is mandatory.702

5.6.13 stageInFiles / stageOutFiles703

Specifies what files should be transfered (staged) as part of the job execution. The data staging operation704

MUST be a copy operation between the submission host and the execution host(s) (see also Section 1 for705

host types). File transfers between execution hosts are not covered by DRMAA.706

The attribute value is formulated as dictionary. For each key-value pair in the dictionary, the key defines707

the source path of one file or directory, and the value defines the destination path of one file or directory708

for the copy operation. For stageInFiles, the submission host acts as source, and the execution host(s)709

act as destination. For stageOutFiles, the execution host(s) acts as source, and the submission host act as710

destination.711

All values MUST be evaluated relative to the file system on the host in a syntax that is common at that712

host. Implementations MAY perform according validity checks on job submission. Paths on the execution713

host(s) MUST be allowed to contain any of the JobTemplatePlaceholder placeholders. Paths on the sub-714

mission host MUST be allowed to contain the JobTemplatePlaceholder::PARAMETRIC_INDEX placeholder715

(see Section 4.4). If no placeholder is used in the values, an absolute path specification on the particular716

host SHOULD be assumed by the implementation.717

Relative path specifications for the submission host should be interpreted starting from the current working718

directory of the DRMAA application at the time of job submission. The behavior for relative path specifica-719

tions on the execution is implementation-specific. Implementations MAY use JobTemplate::workingDirectory720

as starting point on the execution host in this case, if given by the application.721

Jobs SHOULD NOT enter JobState::DONE unless all staging operations are finished. The behavior in722

case of missing files is implementation-specific. The support for wildcard operators in path specifications is723

implementation-specific. Any kind of recursive or non-recursive copying behavior is implementation-specific.724

If the job category (see Section 5.6.7) implies a parallel job (e.g. MPI), the copy operation SHOULD target725

the parallel job master host as destination. It MAY also distribute the files to the other hosts participating726

in the parallel job execution.727

The support for this attribute is optional, expressed by the DrmaaCapability::JT_STAGING flag.728

(See footnote)
18

729

18 Comparsion to DRMAA 1.0: New job template attributes for file transfers were introduced. They allow to express a set
of file staging activities, similar to the approach in LSF and SAGA. They replace the old transferFiles attribute, the according
FileTransferMode data structure and the special host definition syntax in inputPath / outputPath / errorPath (different conf.
calls, SAGA F2F meeting, solves issue #5876)

drmaa-wg@ogf.org 25

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.6.14 reservationId730

Specifies the identifier of the advance reservation associated with the job(s). The application is expected731

to create an advance reservation through the ReservationSession interface, the resulting reservationId732

(see Section 9.2) then acts as valid input for this job template attribute. Implementations MAY support an733

reservation identifier from non-DRMAA information sources as valid input.734

The support for this attribute is mandatory.735

5.6.15 queueName736

This attribute specifies the name of the queue the job(s) should be submitted to. In case this attribute737

value is UNSET, and MonitoringSession::getAllQueues returns a list with a minimum length of 1, the738

implementation SHOULD use the DRM systems default queue.739

The MonitoringSession::getAllQueues method (see 10.1) supports the determination of valid queue740

names. Implementations SHOULD allow these queue names to be used in the queueName attribute. Imple-741

mentations MAY also support queue names from other non-DRMAA information sources as valid input. If742

no default queue is defined or if the given queue name is not valid, the job submission MUST lead to an743

InvalidArgumentException.744

If MonitoringSession::getAllQueues returns an empty list, this attribute MUST be only accepted with745

the value UNSET.746

Since the meaning of “queues” is implementation-specific, there is no implication on the effects in the DRM747

system when using this attribute. As one example, requesting a number of slots for a job in one queue has no748

implication on the number of utilized machines at run-time. Implementations therefore SHOULD document749

the effects of this attribute accordingly.750

The support for this attribute is mandatory.751

5.6.16 minSlots752

This attribute expresses the minimum number of slots requested per job (see also Section 1.3). If the value753

of minSlots is UNSET, it SHOULD default to 1.754

Implementations MAY interprete the slot count as number of concurrent processes being allowed on one755

machine. If this interpretation is taken, and minSlots is greater than 1, than the jobCategory SHOULD756

also be demanded on job submission, in order to express the nature of the intended parallel job execution.757

The support for this attribute is mandatory.758

5.6.17 maxSlots759

This attribute expresses the maximum number of slots requested per job (see also Section 1.3). If the value760

of maxSlots is UNSET, it SHOULD default to the value of minSlots.761

Implementations MAY interprete the slot count as number of concurrent processes being allowed on one762

machine. If this interpretation is taken, and maxSlots is greater than 1, than the jobCategory SHOULD763

also be demanded on job submission, in order to express the nature of the intended parallel job execution.764

The support for this attribute is optional, as indicated by the DrmaaCapability::JT_MAXSLOTS flag.765

drmaa-wg@ogf.org 26

mailto:drmaa-wg@ogf.org

GWD-R June 2011

(See footnote)
19 .766

5.6.18 priority767

This attribute specifies the scheduling priority for the job. The intepretation of the given value incl. an768

UNSET value is implementation-specific.769

The support for this attribute is mandatory.770

5.6.19 candidateMachines771

Requests that the job(s) should run on any subset (with minimum size of 1), or all of the given machines.772

If the attribute value is UNSET, it should default to the result of the MonitoringSession::getAllMachines773

method. If this resource demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised774

on job submission time. If the problem can only be detected after job submission, the job should enter775

JobState::FAILED.776

The support for this attribute is mandatory.777

5.6.20 minPhysMemory778

This attribute denotes the minimum amount of physical memory in kilobyte expected on the / all execution779

host(s). If this resource demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised780

at job submission time. If the problem can only be detected after job submission, the job SHOULD enter781

JobState::FAILED accordingly.782

The support for this attribute is mandatory.783

5.6.21 machineOS784

This attribute denotes the expected operating system type on the / all execution host(s). If this resource de-785

mand cannot be fulfilled, an InvalidArgumentException SHOULD be raised on job submission time. If the786

problem can only be detected after job submission, the job SHOULD enter JobState::FAILED accordingly.787

The support for this attribute is mandatory.788

(See footnote)
20

789

5.6.22 machineArch790

This attribute denotes the expected machine architecture on the / all execution host(s). If this resource791

demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised on job submission time. If792

the problem can only be detected after job submission, the job should enter JobState::FAILED.793

The support for this attribute is mandatory.794

19Torque does not support maxSlots on job submission, conf call on May 11th decided to keep it as optional feature. Expected
use cases are billing limitations and parallel job scalability considerations

20 Requesting a specific operating system version beyond the type is not supported by the majority of DRM systems (conf
call Jul 28th 2010)

drmaa-wg@ogf.org 27

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.6.23 startTime795

This attribute specifies the earliest time when the job may be eligible to be run.796

The support for this attribute is mandatory.797

5.6.24 deadlineTime798

Specifies a deadline after which the implementation or the DRM system SHOULD change the job state to799

any of the “Terminated” states (see Section 8.1).800

The support for this attribute is optional, as expressed by the DrmaaCapability::JT_DEADLINE.801

5.6.25 hardResourceLimits802

This attribute specifies the limits on resource utilization of the job(s) on the execution host(s). The valid803

dictionary keys and their value semantics are defined in Section 4.3. An implementation MAY map the804

settings to an setrlimit call in the operating system, if available. If a resource limit is reached, the system805

SHOULD according to the behavior described in Table 3.806

ResourceLimitType violated Job changes to FAILED state
CORE_FILE_SIZE No

CPU_TIME Yes
DATA_SEG_SIZE No
FILE_SIZE Yes
OPEN_FILES No
STACK_SIZE Yes

VIRTUAL_MEMORY Yes
WALLCLOCK_TIME Yes

Table 3: Reaction on violation of defined hard resource limits for jobs.

The support for this attribute is mandatory. If only a subset of the attributes from ResourceLimitType807

is supported by the implementation, and some of the unsupported attributes are used, the job submission808

SHOULD raise an InvalidArgumentException expressing the fact that resource limits are supported in809

general.810

Conflicts of these attribute values with any other job template attribute or with referenced advance reser-811

vations are handled in an implementation-specific manner. Implementations SHOULD try to delegate the812

decision about parameter combination validity to the DRM system, in order to ensure similar semantics in813

different DRMAA implementations for this system.814

(See footnote)
21

815

21 In comparison to DRMAA 1.0, resource usage limitations can now be expressed by two dictionaries and an according
standardized set of valid dictionary keys (LimitType). The idea is to allow a direct mapping to ulimit(3) semantics, which are
supported by the majority of DRM system today. A separate run duration limit is no longer needed, since this is covered by
the new CPU TIME limit parameter. (conf. call Jun 9th 2010).

This distinguishing between different reactions on limit violation was restricted to the job entering, or not entering, the
FAILED state. All further effects (e.g. no more open() calls possible) are out of scope for DRMAA, since they relate to
operating system behavior on execution host (conf call May 4th 2011).

The attribute is mandatory, since the missing general support for resource limits can be simply expressed by raising Invali-
dArgumentException for aall types.

drmaa-wg@ogf.org 28

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.6.26 accountingId816

This attribute denotes a string that can be used by the DRM system for job accounting purposes. Im-817

plementations SHOULD NOT utilize this information as authentication token, but only as identification818

information in addition to the implementation-specific authentication (see Section 12).819

The support for this attribute is optional, as described by the DrmaaCapability::JT_ACCOUNTINGID flag.820

5.7 ReservationTemplate structure821

In order to define the attributes associated with an advance reservation, the DRMAA application creates822

an ReservationTemplate instance and requests the fulfilment through the ReservationSession methods823

in the DRM system.824

struct ReservationTemplate {825

string reservationName;826

AbsoluteTime startTime;827

AbsoluteTime endTime;828

TimeAmount duration;829

long minSlots;830

long maxSlots;831

StringList usersACL;832

OrderedStringList candidateMachines;833

long minPhysMemory;834

OperatingSystem machineOS;835

CpuArchitecture machineArch;836

};837

Similar to the JobTemplate concept (see Section 5.6), there is a distinction between mandatory and op-838

tional attributes. Mandatory attributes MUST be supported by the implementation in the sense that they839

are evaluated in a ReservationSession::requestReservation call. Optional attributes MAY NOT be840

evaluated by the particular implementation, but MUST be provided as part of the ReservationTemplate841

structure in the implementation. If an optional attribute is not evaluated by the particular implementation,842

but has a value different to UNSET, the call to ReservationSession::requestReservation MUST fail with843

a UnsupportedAttributeException.844

Implementations MUST set all attribute values to UNSET on struct allocation. This ensures that both the845

DRMAA application and the library implementation can determine untouched attribute members.846

A language binding specification SHOULD model the ReservationTemplate representation the same way as
the JobTemplate interface (see Section 5.6), and therefore MUST define the realization of implementation-
specific attributes, printing, and and the initialization of attribute values.

5.7.1 reservationName847

A human-readable reservation name. If this attribute is omitted then the name of the reservation SHALL be848

automatically defined by the implementation. The implementation MAY truncate or alter any application-849

provided job name in order to adjust it to the DRMS specific constraints.850

The support for this attribute is mandatory.851

drmaa-wg@ogf.org 29

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.7.2 startTime / endTime / duration852

The time frame in which resources should be reserved. Table 4 explains the different possible parameter853

combinations and their semantic.854

startTime endTime duration Description
UNSET UNSET UNSET Invalid, SHALL leave to a InvalidArgumentException on the reser-

vation attempt.
Set UNSET UNSET Invalid, SHALL leave to a InvalidArgumentException on the reser-

vation attempt.
UNSET Set UNSET Invalid, SHALL leave to a InvalidArgumentException on the reser-

vation attempt.
Set Set UNSET Perform reservation attempt to get resources in the specified time

frame.
UNSET UNSET Set Perform reservation attempt the get resources at least for the time

amount given in duration.
Set UNSET Set Implies endTime = startTime + duration

UNSET Set Set Implies startTime = endTime - duration

Set Set Set If endTime - startTime is larger than duration, perform a reser-
vation attempt where the demanded duration is fulfilled at the ear-
liest point in time after startTime, and without extending endTime.
If endTime - startTime is smaller than duration, the reserva-
tion attempt SHALL leave to a InvalidArgumentException. If
endTime - startTime and duration are equal, duration SHALL
be ignored.

Table 4: Parameter combinations for the advance reservation time frame. If duration is not supported, it
should be treated as UNSET.

The support for startTime and endTime is mandatory. The support for duration is optional, as described855

by the DrmaaCapability::RT_DURATION flag. Implementations that do not support the described ”sliding856

window” approach for the SET / SET / SET case SHOULD express this by NOT supporting the duration857

attribute.858

Implementations MAY supportstartTime to have the constant value NOW (see Section 3), which expresses859

that the reservation should start at the time of reservation template approval in the DRM system. The860

support for this feature is declared by the DrmaaCapability::RT_STARTNOW flag.861

5.7.3 minSlots862

The minimum number of requested slots (see also Section 1.3). If the attribute value is UNSET, it should863

default to 1.864

The support for this attribute is mandatory.865

5.7.4 maxSlots866

The maximum number of requested slots (see also Section 1.3). If the attribute value is UNSET, it should867

default to the value of minSlots.868

drmaa-wg@ogf.org 30

mailto:drmaa-wg@ogf.org

GWD-R June 2011

The support for this attribute is mandatory.869

5.7.5 usersACL870

The list of the users that would be permitted to submit jobs to the created reservation.If the attribute value871

is UNSET, it should default to the user running the application.872

The support for this attribute is mandatory.873

5.7.6 candidateMachines874

Requests that the reservation SHALL be created for exactly the given set of machines. Implementations875

and their DRM systems MAY decide to reserve only a subset of the given machines.If this attribute is not876

specified, it should default to the result of MonitoringSession::getAllMachines (see Section 10.1).877

The support for this attribute is mandatory.878

(See footnote)
22

879

5.7.7 minPhysMemory880

Requests that the reservation SHALL be created with machines that have at least the given amount of881

physical memory in kilobyte. Implementations MAY interpret this attribute value as filter for candidate882

machines, or as memory reservation demand on a shared execution resource.883

The support for this attribute is mandatory.884

(See footnote)
23

885

5.7.8 machineOS886

Requests that the reservation must be created with machines that have the given type of operating system,887

regardless of its version, with semantics as specified in Section 4.1.888

The support for this attribute is optional, as described by the DrmaaCapability::RT_MACHINEOS flag.889

(See footnote)
24

890

5.7.9 machineArch891

Requests that the reservation must be created with machines that have the given instruction set architecture,892

with semantics as specified in Section 4.2.893

The support for this attribute is optional, as described by the DrmaaCapability::RT_MACHINEARCH flag.894

(See footnote)
25

895

22May 18th 2011 conf call identified the subset reservation feature to be only available in some of the systems, so it is no
promise here.

23May 18th 2011 conf call identified the different understandings of memory reservation.
24May 18th 2011 conf call identified support in DRM systems to be mainly given by additional configuration only.
25May 18th 2011 conf call identified support in DRM systems to be mainly given by additional configuration only.

drmaa-wg@ogf.org 31

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.8 DrmaaReflective Interface896

Generic DRMAA-based applications such as portals might need to determine, get, and set supported non-897

mandatory attributes at runtime. The DrmaaReflective interface is intended to standardize the access898

to such optional and implementation-specific attributes, especially in programming languages that do not899

support introspection. Applications are expected to determine the supported optional attributes through900

the SessionManager::supports method (see Section 7.1).901

interface DrmaaReflective {902

readonly attribute StringList jobTemplateImpl;903

readonly attribute StringList jobInfoImpl;904

readonly attribute StringList reservationTemplateImpl;905

readonly attribute StringList reservationInfoImpl;906

readonly attribute StringList queueImpl;907

readonly attribute StringList machineImpl;908

readonly attribute StringList notificationImpl;909

910

string getAttr(any instance , in string name);911

void setAttr(any instance , in string name , in string value);912

string describeAttr(any instance , in string name);913

};914

5.8.1 jobTemplateImpl915

This attribute provides the list of supported implementation-specific JobTemplate attributes.916

5.8.2 jobInfoImpl917

This attribute provides the list of supported implementation-specific JobInfo attributes.918

5.8.3 reservationTemplateImpl919

This attribute provides the list of supported implementation-specific ReservationTemplate attributes.920

5.8.4 reservationInfoImpl921

This attribute provides the list of supported implementation-specific ReservationInfo attributes.922

5.8.5 queueImpl923

This attribute provides the list of supported implementation-specific Queue attributes.924

5.8.6 machineImpl925

This attribute provides the list of supported implementation-specific Machine attributes.926

5.8.7 notificationImpl927

This attribute provides the list of supported implementation-specific DrmaaNotification attributes.928

drmaa-wg@ogf.org 32

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.8.8 getAttr929

This method allows to retrieve the attribute value for name from the structure or interface instance given in930

the instance parameter. The return value is the stringified variant of the current attribute value.931

5.8.9 setAttr932

This method allows to set the attribute name to value in the structure or interface instance given in the933

instance parameter.934

What to do
on type cast
errors when
converting
from string to
native type ?

935

5.8.10 describeAttr936

This method returns a human-readable description of the attribute described by name in the structure937

or interface instance given in the instance parameter. The content and language of the return value is938

implementation-specific, but should consider the intended use case of portal applications.939

6 Common Exceptions940

The exception model specifies error information that can be returned by a DRMAA implementation on941

method calls.942

exception DeniedByDrmsException {string message ;};943

exception DrmCommunicationException {string message ;};944

exception TryLaterException {string message ;};945

exception SessionManagementException {string message ;};946

exception TimeoutException {string message ;};947

exception InternalException {string message ;};948

exception InvalidArgumentException {string message ;};949

exception InvalidSessionException {string message ;};950

exception InvalidStateException {string message ;};951

exception OutOfMemoryException {string message ;};952

exception UnsupportedAttributeException {string message ;};953

exception UnsupportedOperationException {string message ;};954

exception NotEnoughSlotsException {string message ;};955

exception InvalidReservationException: {string message ;};956

If not defined otherwise, the exceptions have the following meaning:957

DeniedByDrmsException: The DRM system rejected the operation due to security issues.958

DrmCommunicationException: The DRMAA implementation could not contact the DRM system. The959

problem source is unknown to the implementation, so it is unknown if the problem is transient or not.960

TryLaterException: The DRMAA implementation detected a transient problem with performing the961

operation, for example due to excessive load. The application is recommended to retry the call.962

SessionManagementException: A problem was encountered while trying to create / open / close /963

destroy a session.

Should we
have Dupli-
catedSession-
NameExcep-
tion instead
? Could this
be completely
removed ?

964

drmaa-wg@ogf.org 33

mailto:drmaa-wg@ogf.org

GWD-R June 2011

TimeoutException: The timeout given in one the waiting functions was reached without successfully965

finishing the waiting attempt.966

InternalException: An unexpected or internal error occurred in the DRMAA library, for example a system967

call failure. It is unknown if the problem is transient or not.968

InvalidArgumentException: From the viewpoint of the DRMAA library, a function parameter is invalid969

or inappropriate for the particular function call.970

InvalidSessionException: The session used for the function is not valid, for example since it was closed971

before.972

InvalidStateException: The function call is not allowed in the current state of the job.973

OutOfMemoryException: This exception can be thrown by any method at any time when the DRMAA974

implementation has run out of free memory, or when an application-provided buffer is too small for975

the data to be added by the implementation.976

UnsupportedAttributeException: The optional attribute is not supported by the DRMAA implemen-977

tation.978

UnsupportedOperationException: The function is not supported by the DRMAA implementation. One979

example is the registration of an event callback function.980

NotEnoughSlotsException: The advance reservation request could not be fullfiled due to unavailibity of981

resources in the requested time window.982

InvalidReservationException: The reservation do not exist in the DRM system.

Two new
exceptions.
Group
approval
needed.

983

. We might
want to
introduce
InvalidTemplateException
for separating
input
parameter
issues

984

The DRMAA specification assumes that programming languages targeted by language bindings typically
support the concept of exceptions. If a destination language does not support them (like ANSI C), the
language binding specification SHOULD map error conditions to an appropriate consistent concept. A
language binding MAY chose to model exceptions as numeric error code return values, and return values as
additional output parameters of the operation. In this case, the language binding specification SHOULD
specify numeric values for all DRMAA error constants.

The representation of exceptions in the language binding MUST support a possibility to express an exception
cause as textual description. Implementations MAY use this text to express DRMS-specific error conditions
that are outside of the DRMAA scope.

Object-oriented language bindings MAY decide to derive all exceptions from one or multiple exception base
classes, in order to support generic catch clauses. Whenever it is appropriate, language bindings SHOULD
replace DRMAA exceptions by their semantically equivalent native exception from the application runtime
environment.

Language bindings MAY decide to introduce a hierarchical ordering of the DRMAA exceptions through class
derivation. In this case, any new exceptions added for aggregation purposes SHOULD be prevented from
being thrown, for example by marking them as abstract.

The UnsupportedAttributeException may either be raised by the setter function for the attribute or by
the job submission function. A consistent decision for either one or the other approach MUST be made by
the language binding specification.

drmaa-wg@ogf.org 34

mailto:drmaa-wg@ogf.org

GWD-R June 2011

(See footnote)
26

985

7 The DRMAA Session Concept986

DRMAA relies on an overall session concept, which supports the persistency of job and advance reservation987

information over multiple application runs. This supports short-lived applications that need to work with988

DRM system state spanning multiple application runs. Typical examples are job submission portals or989

command-line tools. The session concept is also intended to allow implementations to perform DRM system990

attach / detach operations at dedicated points in the application control flow.991

7.1 SessionManager Interface992

interface SessionManager{993

readonly attribute string drmsName;994

readonly attribute Version drmaaVersion;995

boolean supports(in DrmaaCapability capability);996

JobSession createJobSession(in string sessionName ,997

in string contactString);998

ReservationSession createReservationSession(in string sessionName ,999

in string contactString);1000

MonitoringSession createMonitoringSession (in string contactString);1001

JobSession openJobSession(in string sessionName);1002

ReservationSession openReservationSession(in string sessionName);1003

void closeJobSession(in JobSession s);1004

void closeReservationSession(in ReservationSession s);1005

void closeMonitoringSession(in MonitoringSession s);1006

void destroyJobSession(in string sessionName);1007

void destroyReservationSession(in string sessionName);1008

StringList getJobSessions ();1009

StringList getReservationSessions ();1010

};1011

The SessionManager interface is the main interface for establishing communication with a given DRM sys-1012

tem. By the help of this interface, sessions for job management, monitoring, and/or reservation management1013

can be maintained.1014

Job and reservation sessions maintain persistent state information (about jobs and reservations created)1015

between application runs. State data SHOULD be persisted by the library implementation or the DRMS1016

itself (if supported) after closing the session through the according method in the SessionManager interface.1017

The re-opening of a session MUST be possible on the machine where the session was originally created.1018

Implementations MAY also offer to re-open the session on another machine.1019

The state information SHOULD be kept until the job or reservation session is explicitly reaped by the1020

according destroy method in the SessionManager interface. If an implementation runs out of resources for1021

26 Comparsion to DRMAA 1.0: The InconsistentStateException was removed, since it is semantically equal to the In-
validStateException (conf. call Jan 7th 2010) The former HoldInconsistentStateException, ReleaseInconsistentStateException,
ResumeInconsistentStateException, and SuspendInconsistentStateException from DRMAA v1.0 are now expressed as single
InvalidStateException with different meaning per raising method. (F2F meeting July 2009)

drmaa-wg@ogf.org 35

mailto:drmaa-wg@ogf.org

GWD-R June 2011

storing the session information, the closing function SHOULD throw a SessionManagementException. If1022

an application ends without closing the session properly, the behavior of the DRMAA implementation is1023

undefined.1024

An implementation MUST allow the application to have multiple sessions of the same or different types1025

instantiated at the same time. This includes the proper coordination of parallel calls to session methods1026

that share state information.1027

(See footnote)
27

1028

7.1.1 drmsName1029

A system identifier denoting a specific type of DRM system, e.g. “LSF” or “GridWay”. It is intended1030

to support conditional code blocks in the DRMAA application that rely on DRMS-specific details of the1031

DRMAA implementation. Implementations SHOULD NOT make versioning information of the particular1032

DRM system a part of this attribute value.1033

7.1.2 drmaaVersion1034

A combination of minor / major version number information for the DRMAA implementation. The major1035

version number MUST be the constant value “2”, the minor version number SHOULD be used by the1036

DRMAA implementation for expressing its own versioning information.1037

7.1.3 createJobSession / createReservationSession / createMonitoringSession1038

The method creates a new session instance of the particular type for the application. On successful completion1039

of this method, the necessary initalization for making the session usable MUST be completed. Examples are1040

the connection establishment from the DRMAA library to the DRM system, or the prefetching of information1041

from non-thread-safe operating system calls, such as getHostByName.1042

The contactString parameter is an implementation-dependent string that SHALL allow the application to1043

specify which DRM system instance to use. A contact string represents a specific installation of a specific1044

DRM system, e.g. a Condor central manager machine at a given IP address, or a Grid Engine ‘root’ and1045

‘cell’. Contact strings are always implementation dependent and therefore opaque to the application. If1046

contactString has the value UNSET, a default DRM system SHOULD be contacted. The manual configu-1047

ration or automated detection of a default contact is implementation-specific.1048

The sessionName parameter denotes a unique name to be used for the new session. If a session with such1049

a name was created before, the method MUST throw an InvalidArgumentException. In all other cases,1050

including if the provided name has the value UNSET, a new session MUST be created with a unique name1051

generated by the implementation. A MonitoringSession instance has no persistent state, and therefore1052

does not support the name concept.1053

If the DRM system does not support advance reservation, than createReservationSession SHALL throw1054

an UnsupportedOperationException.1055

27 Comparison to DRMAA 1.0: The concept of a factory from GFD.130 was removed (solves issue #6276). Version 2.0 of
DRMAA supports restartable sessions by the newly introduced SessionManager interface. It allows creating multiple concurrent
sessions for job submission (solves issue #2821), which can be restarted by their generated session name (solves issue #2820).
Session.init() and Session.exit() functionalities are moved to the according session creation and closing routines. The descriptions
were fixed accordingly (solves issue #2822). The AlreadyActiveSession error was removed. (F2F meeting July 2009) The
drmaaImplementation attribute from DRMAA 1.0 was removed, since it was redundant to the drmsInfo attribute. This one is
now available in the new SessionManager interface. (F2F meeting July 2009).

drmaa-wg@ogf.org 36

mailto:drmaa-wg@ogf.org

GWD-R June 2011

7.1.4 openJobSession / openReservationSession1056

The method is used to open a persisted JobSession or ReservationSession instance that has previously1057

been created under the given sessionName. The implementation MUST support the case that the session1058

have been created by the same application or by a different application running on the same machine. The1059

implementation MAY support the case that the session was created or updated on a different machine. If1060

no session with the given sessionName exists, an InvalidArgumentException MUST be raised.1061

If the session described by sessionName was already opened before, implementations MAY return the same1062

job or reservation session instance.1063

If the DRM system does not support advance reservation, openReservationSession SHALL throw an1064

UnsupportedOperationException.1065

7.1.5 closeJobSession / closeReservationSession / closeMonitoringSession1066

The method MUST do whatever work is required to disengage from the DRM system. It SHOULD be callable1067

only once, by only one of the application threads. This SHOULD be ensured by the library implementation.1068

Additional calls beyond the first SHOULD lead to a NoActiveSessionException error notification.1069

For JobSession or ReservationSession instances, the according state information MUST be saved to some1070

stable storage before the method returns. This method SHALL NOT affect any jobs or reservations in the1071

session (e.g., queued and running jobs remain queued and running).1072

If the DRM system does not support advance reservation, closeReservationSession SHALL throw an1073

UnsupportedOperationException.1074

7.1.6 destroyJobSession / destroyReservationSession1075

The method MUST do whatever work is required to reap persistent session state and cached job state1076

information for the given session name. If session instances for the given name exist, they MUST become1077

invalid after this method was finished sucessfully. Invalid sessions MUST throw InvalidSessionException1078

on every attempt of utilization. This method SHALL NOT affect any jobs or reservations in the session in1079

their operation, e.g. queued and running jobs remain queued and running.1080

If the DRM system does not support advance reservation, destroyReservationSession SHALL throw an1081

UnsupportedOperationException.1082

7.1.7 getJobSessions / getReservationSessions1083

This method returns a list of JobSession or ReservationSession names that are valid input for a openJobSession1084

or openReservationSession call.1085

If the DRM system does not support advance reservation, getReservationSessions SHALL throw an1086

UnsupportedOperationException.1087

8 Working with Jobs1088

A DRMAA job represents a single computational activity that is executed by the DRM system on a execution1089

host, typically as operating system process. The JobSession interface represents all control and monitoring1090

functions commonly available in DRM systems for such jobs as a whole, while the Job interface represents the1091

drmaa-wg@ogf.org 37

mailto:drmaa-wg@ogf.org

GWD-R June 2011

common functionality for single jobs. Sets of jobs resulting from a bulk submission are separately represented1092

by the JobArray interface. JobTemplate instances allow to formulate conditions and requirements for the1093

job execution by the DRM system.1094

8.1 The DRMAA State Model1095

DRMAA defines the following job states:1096

enum JobState {1097

UNDETERMINED , QUEUED , QUEUED_HELD , RUNNING , SUSPENDED , REQUEUED ,1098

REQUEUED_HELD , DONE , FAILED };1099

UNDETERMINED: The job status cannot be determined. This is a permanent issue, not being solvable1100

by querying again for the job state.1101

QUEUED: The job is queued for being scheduled and executed.1102

QUEUED HELD: The job has been placed on hold by the system, the administrator, or the submitting1103

user.1104

RUNNING: The job is running on a execution host.1105

SUSPENDED: The job has been suspended by the user, the system or the administrator.1106

REQUEUED: The job was re-queued by the DRM system, and is eligible to run.1107

REQUEUED HELD: The job was re-queued by the DRM system, and is currently placed on hold.1108

DONE: The job finished without an error.1109

FAILED: The job exited abnormally before finishing.1110

If a DRMAA job state has no representation in the underlying DRMS, the DRMAA implementation MAY1111

never report that job state value. However, all DRMAA implementations MUST provide the JobState1112

enumeration as given here. An implementation SHOULD NOT return any job state value other than those1113

defined in the JobState enumeration.1114

The status values relate to the DRMAA job state transition model, as shown in Figure 1.1115

The transition diagram in Figure 1 expresses the clasification of possible job states into “Queued”, “Started”,1116

and “Terminated”. This is relevant for the job waiting functions (see Section 8.2 and Section 8.4), which1117

operate on job state classes only. The “Terminated” class of states is final, meaning that further state1118

transition is not allowed.1119

Implementations SHALL NOT introduce other job transitions (e.g. from RUNNING to QUEUED) beside the ones1120

stated in Figure 1, even if they might happen in the underlying DRM system. In this case, implementations1121

MAY emulate the neccessary intermediate steps for the DRMAA-based application.1122

When an application requests job state information, the implementation SHOULD also provide the subState1123

value to explain DRM-specific information about the job state. The possible values of this attribute are1124

implementation-specific, but should be documented properly. Examples are extra states for staging phases1125

or details on the hold reason. Implementations SHOULD define a DRMS-specific data structure for the1126

sub-state information that can be converted to / from the data type defined by the language binding.1127

drmaa-wg@ogf.org 38

mailto:drmaa-wg@ogf.org

GWD-R June 2011

TerminatedStartedQueued

QUEUED

QUEUED_HELD

RUNNING

SUSPENDED

DONE

FAILED

UNDETERMINED

REQUEUED

REQUEUED_HELD

runJob()
runBulkJobs()

Figure 1: DRMAA Job State Transition Model

The IDL definition declares the sub state attributes as type any, expressing the fact that the language
binding MUST map the data type to a generic language type (e.g. void*, Object) that maintains source code
portability across DRMAA implementations and still accepts an UNSET value.

The DRMAA job state model can be mapped to other high-level API state models. Table 5 gives a non-1128

normative set of examples.1129

(See footnote)
28

1130

28 Comparison to DRMAA 1.0:
The differentiation between the system hold, user hold, and system / user hold job states was removed (conf. call Jan

20th 2009). There is only one hold state now. A job can now change its state from one of the SUSPENDED states to the
QUEUED ACTIVE state (conf. call Jan 20th 2009, solves issue #2788). The job state UNDETERMINED is now clearer
defined. It expressed a permanent issue, meaning that the job state will not change by just waiting. Temporary problems in
the detection of the job state are now expressed by the TryLaterException (conf. call Feb 5th 2009, solves issue #2783). The
description of the FAILED state was extended to support a more specific differentiation between different job failure reasons.
The new subState feature allows the DRMAA implementation to provide better information, if available. There was no portable
way of standardizing extended failure information in a better way. (conf. call May 12th 2009, solves issue #5875) The different
suspend job states from DRMAA1 (user suspended, system suspended, user / system suspended) are now combined into one
suspend state. DRM systems with the need to express the different suspend reasons can use the new sub-state feature (conf.
call Mar 5th 2010).

REQUEUED and REQUEUED HELD maps to RUNNING in BES, since BES does not allow a transition between Running
and Pending (mailing list, APr. 2011)

drmaa-wg@ogf.org 39

mailto:drmaa-wg@ogf.org

GWD-R June 2011

DRMAA JobState SAGA JobState [3] OGSA-BES Job State [2]
UNDETERMINED N/A N/A
QUEUED Running Pending (Queued)
QUEUED HELD Running Pending (Queued)
RUNNING Running Running (Executing)
SUSPENDED Suspended Running (Suspended)
REQUEUED Running Running (Queued)
REQUEUED HELD Running Running (Queued)
DONE Done Finished
FAILED Cancelled, Failed Cancelled, Failed

Table 5: Example Mapping of DRMAA Job States

8.2 JobSession Interface1131

A job session instance acts as container for job instances controlled through the DRMAA API. The session1132

methods support the submission of new jobs, the monitoring and the control of existing jobs. The relationship1133

between jobs and their session MUST be persisted, as described in Section 7.1.1134

interface JobSession {1135

readonly attribute string contact;1136

readonly attribute string sessionName;1137

readonly attribute StringList jobCategories;1138

JobList getJobs(in JobInfo filter);1139

JobArray getJobArray(in string jobArrayId);1140

Job runJob(in JobTemplate jobTemplate);1141

JobArray runBulkJobs(1142

in JobTemplate jobTemplate ,1143

in long beginIndex ,1144

in long endIndex ,1145

in long step ,1146

in long maxParallel);1147

Job waitAnyStarted(in JobList jobs , in TimeAmount timeout);1148

Job waitAnyTerminated(in JobList jobs , in TimeAmount timeout);1149

void registerEventNotification(in DrmaaCallback callback);1150

};1151

drmaa-wg@ogf.org 40

mailto:drmaa-wg@ogf.org

GWD-R June 2011

(See footnote)
29

1152

8.2.1 contact1153

This attribute contains the contact value that was used in the SessionManager::createJobSession call1154

for this instance (see Section 7.1). If no value was originally provided, the default contact string from the1155

implementation MUST be returned. This attribute is read-only.1156

8.2.2 sessionName1157

This attribute contains the sessionName value that was used in the SessionManager::createJobSession1158

or SessionManager::openJobSession call for this instance (see Section 7.1). This attribute is read-only.1159

8.2.3 jobCategories1160

This method provides the list of of valid job category names which can be used for the jobCategory attribute1161

in a JobTemplate instance. The semantics are described in Section 5.6.7.1162

8.2.4 getJobs1163

This method returns a sequence of jobs that belong to the job session. The filter parameter allows one1164

to choose a subset of the session jobs as return value. The attribute semantics for the filter argument are1165

explained in Section 5.4. If no job matches or the session has no jobs attached, the method MUST return1166

an empty sequence instance. If filter is UNSET, all session jobs MUST be returned.1167

Time-dependent effects of this method, such as jobs no longer matching to filter criteria on evaluation time,1168

are implementation-specific. The purpose of the filter parameter is to keep scalability with a large number1169

of jobs per session. Applications therefore must consider the possibly changed state of jobs during their1170

evaluation of the method result.1171

8.2.5 getJobArray1172

Add descrip-
tion

1173

I did not add
getJobAr-
rays, since
this would
demand to
define filter-
ing semantics
on some new
JobArrayInfo
thing. Needs
discussion.

1174

29 Comparison to DRMAA 1.0: The original separation between synchronize() and wait() was replaced by a complete new
synchronization semantic in the API. DRMAA2 has now two methods, waitStarted() and waitTerminated(). The first waits
for any state that expresses that the job was started, the second for any terminal status. Both methods are available on
session level (wait for any of the given jobs to start / end) or on single job level (solves issue #5880 and #2838). The function
returns always a Job object, in order to allow chaining, e.g. job.wait(JobStatus.RUNNING).hold(). The session-level functions
implement the old DRMAA wait(SESSION ANY). The old synchronize() semantics are no longer directly supported - instead,
the DRMAA application should use a looped Job.wait... / JobSession.waitAny... call. The result is a more condensed and
responsive API, were the application can decide to keep the user informed during synchronization on a set of jobs. DRMAA
library implementations should also become easier to design, since the danger of multithreading side effects inside the DRMAA
API is reduced by this change. As a side effect, JOB IDS SESSION ANY and JOB IDS SESSION ALL are no longer needed.
The special consideration of a partial failures during SESSION ALL wait activities is also no longer necessary (F2F meeting
July 2009). The JobSession now allows to fetch also information about jobs that were not submitted through DRMAA (conf.
call June 23th 2010).

drmaa-wg@ogf.org 41

mailto:drmaa-wg@ogf.org

GWD-R June 2011

8.2.6 runJob1175

The runJob method submits a job with the attributes defined in the job template parameter. It returns a1176

Job object that represents the job in the underlying DRM system. Depending on the job template settings,1177

submission attempts may be rejected with an InvalidArgumentException. The error details SHOULD1178

provide further information about the attribute(s) responsible for the rejection.1179

When this method returns a valid Job instance, the following conditions SHOULD be fulfilled:1180

• The job is part of the persistent state of the job session.1181

• All non-DRMAA and DRMAA interfaces to the DRM system report the job as being submitted to1182

the DRM system.1183

• The job has one of the DRMAA job states.1184

8.2.7 runBulkJobs1185

The runBulkJobs method creates a set of parametric jobs, each with attributes defined in the given1186

job template. Each job in the set is identical, except for the job template attributes that include the1187

JobTemplatePlaceholder::PARAMETRIC_INDEX macro (see Section 5.6).1188

If any of the resulting parametric job templates is not accepted by the DRM system, the method call MUST1189

raise an InvalidArgumentException. No job from the set SHOULD be submitted in this case.1190

The first job in the set has an index equal to the beginIndex parameter of the method call. The smallest valid1191

value for beginIndex is 1. The next job has an index equal to beginIndex + step, and so on. The last job1192

has an index equal to beginIndex + n * step, where n is equal to(endIndex - beginIndex) / step. The1193

index of the last job may not be equal to endIndex if the difference between beginIndex and endIndex is not1194

evenly divisible by step. The beginIndex value must be less than or equal to the endIndex value, and only1195

positive index numbers are allowed, otherwise the method SHOULD raise an InvalidArgumentException.1196

Jobs can determine the index number at run time with the mechanism described in Section 8.6.1197

The maxParallel parameter allows to specify a hint about how many of the bulk job’s processes are allowed1198

to run in parallel on the utilized resources. Implementations MAY consider this value if the DRM system1199

supports such functionalit, otherwise the parameter MUST be silently ignored. If the parameter value is1200

UNSET, no limit SHOULD be applied on the bulk job.1201

The runBulkJobs method returns a JobArray (see Section 8.5) instance that represents the set of Job objects1202

created by the method call under a common array identifier. For each of the jobs in the array, the same1203

conditions as for the result of runJob SHOULD apply.1204

The largest (syntactically) allowed value for endIndex MUST be defined by the language binding.

Further restrictions on the maximum endIndex MAY be implied by the implementation.1205

(See footnote)
30

1206

30 There was a discussion (mailing list Jan 2011) about having specialized job templates for bulk submission, with support
for the start / end index and a slots limit. We rejected that, since job templates are intended for re-usage.

The May 4th 2011 conf call identified Grid Engine, Torque and LSF as the only systems having support for maxParallel. The
feature was determined as critical enough for still adding it, therefore the ignorance rule and the MAY semantics are applied.

drmaa-wg@ogf.org 42

mailto:drmaa-wg@ogf.org

GWD-R June 2011

8.2.8 waitAnyStarted / waitAnyTerminated1207

The waitAnyStarted method blocks until any of the jobs referenced in the jobs parameter entered one of1208

the “Started” states. The waitAnyTerminated method blocks until any of the jobs referenced in the jobs1209

parameter entered one of the “Terminated” states (see Section 8.1). If the input list contains jobs that are1210

not part of the session, waitAnyStarted SHALL fail with an InvalidArgumentException.1211

The timeout argument specifies the desired behavior when a result is not immediately available. The con-1212

stant value INFINITE_TIME may be specified to wait indefinitely for a result. The constant value ZERO_TIME1213

may be specified to return immediately. Alternatively, a number of seconds may be specified to indicate1214

how long to wait for a result to become available. If the invocation exits on timeout, an TimeoutException1215

SHALL be raised.1216

In a multi-threaded environment with multiple JobSession::waitAny... calls, only one of the active thread1217

SHOULD get the status change notification for a particular job, while the other threads SHOULD continue1218

waiting. If there are no more queryable jobs left in the session, all remaining waiting threads SHOULD fail1219

with an InvalidStateException. If thread A is waiting for a specific job with Job::wait..., and another1220

thread, thread B, waiting for that same job or with JobSession::waitAny..., than B SHOULD receive the1221

notification that the job has finished, thread A SHOULD fail with an InvalidStateException. Waiting for1222

a job state is a read-only operation.1223

An application waiting for some condition to happen in all jobs of a set is expected to perform looped calls1224

of these waiting functions.1225

(See footnote)
31

1226

8.2.9 registerEventNotification1227

This method is used to register a DrmaaCallback interface (see Section 8.3) implemented by the DRMAA-1228

based application. If the callback functionality is not supported by the DRMAA implementation, the method1229

SHALL raise an UnsupportedOperationException, and the capability DrmaaCapability::CALLBACK MUST1230

NOT be indicated (see Section 4.5). Implementations with callback support MAY allow the registration of1231

multiple methods.1232

A language binding specification MUST define how the reference to an interface-compliant method can be
given as argument to this method.

8.3 DrmaaCallback Interface1233

The DrmaaCallback interface allows the DRMAA library or the DRM system to inform the application1234

about relevant events from the DRM system in a asynchronous fashion. One expected use case is loseless1235

monitoring of job state transitions. The support for such callback functionality is optional, indicated by1236

DrmaaCallback::CALLBACK, but all implementations MUST define the DrmaaCallback interface type as1237

given in the language binding.1238

interface DrmaaCallback {1239

void notify(in DrmaaNotification notification);1240

31 People typically ask for the waitAll..() counterparts of these functions. Since they are so easy to implement in the
application itself, we could not see any benefit in adding them. Due to there intended long-blocking operation, the DRM
system would no be able to offer any better (meaning much faster) implementation to be wrapped by DRMAA.

drmaa-wg@ogf.org 43

mailto:drmaa-wg@ogf.org

GWD-R June 2011

};1241

struct DrmaaNotification {1242

DrmaaEvent event;1243

Job job;1244

JobState jobState;1245

};1246

enum DrmaaEvent {1247

NEW_STATE , MIGRATED , ATTRIBUTE_CHANGE1248

};1249

The application callback interface is registered through the JobSession::registerEventNotification1250

method (see Section 8.2). The DrmaaNotification structure represents the notification information from1251

the DRM system. Implementations MAY extend this structure for further information (see Section 5). All1252

given information SHOULD be valid at least at the time of notification generation.1253

The DrmaaEvent enumeration defines standard event types for notification:1254

NEW STATE The job entered a new state, which is described in the jobState attribute of the notification1255

structure.1256

MIGRATED The job was migrated to another execution host, and is now in the given state.1257

ATTRIBUTE CHANGE A monitoring attribute of the job, such as the memory consumption, changed1258

to a new value. The jobState attribute MAY have the value UNSET on this event.1259

DRMAA implementations SHOULD protect themself from unexpected behavior of the called application.1260

This includes indefinite delays or unexpected exceptions from the callee. An implementation SHOULD1261

also disallow any library calls while the callback function is running, to avoid recursion scenarios. It is1262

RECOMMENDED to raise TryLaterException in this case.1263

The recur-
sion restric-
tion renders
the given
Job object
useless.

1264

Scalability issues of the notification facility are out of scope for this specification. Implementations MAY1265

decide to support non-standardized throttling configuration options.1266

(See footnote)
32

1267

8.4 Job Interface1268

Every job in the JobSession is expressed by an own instance of the Job interface. It allows one to instruct1269

the DRM system for a job status change, and to query the status attributes of the job in the DRM system.1270

interface Job {1271

readonly attribute string jobId;1272

readonly attribute JobSession session;1273

readonly attribute JobTemplate jobTemplate;1274

void suspend ();1275

void resume ();1276

32 We intentionally did not add subState to the notification information, since this would make callback interface implemen-
tations specific for the DRM system, without any chance for creating a portable DRMAA application.

drmaa-wg@ogf.org 44

mailto:drmaa-wg@ogf.org

GWD-R June 2011

void hold ();1277

void release ();1278

void terminate ();1279

JobState getState(out any jobSubState);1280

JobInfo getInfo ();1281

Job waitStarted(in TimeAmount timeout);1282

Job waitTerminated(in TimeAmount timeout);1283

};1284

(See footnote)
33

1285

8.4.1 jobId1286

This attribute provides the string job identifier assigned to the job by the DRM system. It is intended as1287

performant alternative for fetching a complete JobInfo instance for this information.1288

8.4.2 session1289

This attribute offers a reference to the JobSession instance that represents the session used for the job1290

submission creating this Job instance.1291

8.4.3 jobTemplate1292

This attribute provides a reference to a JobTemplate instance that has equal values to the one that was1293

used for the job submission creating this Job instance.

We must
clarify if this
attribute
should be
UNSET for
non-session
jobs

1294

8.4.4 suspend / resume / hold / release / terminate1295

The job control functions allow modifying the status of the single job in the DRM system, according to the1296

state model presented in Section 8.1.1297

The suspend method triggers a transition from RUNNING to SUSPENDED state. The resume method triggers1298

a transition from SUSPENDED to RUNNING state. The hold method triggers a transition from QUEUED to1299

QUEUED_HELD, or from REQUEUED to REQUEUED_HELD state. The release method triggers a transition from1300

QUEUED_HELD to QUEUED, or from REQUEUED_HELD to REQUEUED state. The terminate method triggers a1301

transition from any of the “Started” states to one of the “Terminated” states. If the job is in an inappropriate1302

state for the particular method, the method MUST raise an InvalidStateException.1303

The methods SHOULD return after the action has been acknowledged by the DRM system, but MAY1304

return before the action has been completed. Some DRMAA implementations MAY allow this method1305

to be used to control jobs submitted externally to the DRMAA session, such as jobs submitted by other1306

33 In comparison to DRMAA v1.0, DRMAA2 replaces the identification of jobs by strings with Job objects. This enables a
tighter integration of job meta-data and identity, for the price of reduced performance in (so far not existing) DRMAA RPC
scenarios. The former DRMAA control() with the JobControlAction structure is now split up into dedicated functions (such
as hold() and release()) on the Job object.

Even though the DRMAAv2 surveys showed interest in interactive job support, this feature was intentionally left out. Reasons
are the missing support in some major DRM systems, and the lack of a relevant DRMAA-related use case (conf. call Jan 7th
2010)

Issue #5877 (support for direct job signaling) was rejected, even though there was an according request from the SAGA WG.
Issue #2782 (change attributes of submitted, but pending jobs) was rejected based on group decision.

drmaa-wg@ogf.org 45

mailto:drmaa-wg@ogf.org

GWD-R June 2011

DRMAA sessions in other DRMAA implementations or jobs submitted via native utilities. This behavior is1307

implementation-specific.1308

8.4.5 getState1309

This method allows one to gather the current status of the job according to the DRMAA state model,1310

together with an implementation specific sub state (see Section 8.1). It is intended as performant alternative1311

for fetching a complete JobInfo instance for state checks. The timing conditions are described in Section1312

5.4.1313

(See footnote)
34

1314

8.4.6 getInfo1315

This method returns a JobInfo instance for the particular job under the conditions described in Section 5.4.1316

8.4.7 waitStarted / waitTerminated1317

The waitStarted method blocks until the job entered one of the “Started” states. The waitTerminated1318

method blocks until the job entered one of the “Terminated” states (see Section 8.1). The timeout argument1319

specifies the desired behavior when a result is not immediately available. The constant value INFINITE_TIME1320

may be specified to wait indefinitely for a result. The constant value ZERO_TIME may be specified to return1321

immediately. Alternatively, a number of seconds may be specified to indicate how long to wait for a result to1322

become available. If the invocation exits on timeout, an TimeoutException SHALL be raised. If the job is1323

in an inappropriate state for the particular method, the method MUST raise an InvalidStateException.1324

8.5 JobArray Interface1325

The following section explains the methods and attributes defined in the JobArray interface. An instance1326

of this interface represent a job array, a common concept in many DRM systems for a set of jobs created by1327

one operation. In DRMAA, JobArray instances are only created by the runBulkJobs operation (see Section1328

8.2). JobArray instances differ from the JobList data structure due to their potential for representing1329

a DRM system concept, while JobList is a DRMAA-only concept realized by language binding support.1330

Implementations SHOULD realize the JobArray functionality as wrapper for DRM system job arrays, if1331

possible. If the DRM system has only single job support or incomplete job array support with respect to the1332

DRMAA-provided functionality, implementations MUST realize the JobArray functionality on their own,1333

for example based on looped operations with a list of jobs.1334

interface JobArray {1335

readonly attribute string jobArrayId;1336

readonly attribute JobList jobs;1337

readonly attribute JobSession session;1338

readonly attribute JobTemplate jobTemplate;1339

void suspend ();1340

void resume ();1341

void hold ();1342

void release ();1343

34 The getState() function now also returns job subState information. This is intended as additional information for the given
DRMAA job state, and can be used for expressing the hold state differentiation from DRMAA 1.0 (conf. call Mar 31st 2009).

drmaa-wg@ogf.org 46

mailto:drmaa-wg@ogf.org

GWD-R June 2011

void terminate ();1344

};1345

(See footnote)
35

1346

8.5.1 jobArrayId1347

This attribute provides the string job identifier assigned to the job array by the DRM system. If the DRM1348

system has no job array support, the implementation MUST generate a system-wide unique identifier for1349

the result of the successful runBulkJobs operation.1350

8.5.2 jobs1351

This attribute provides the static list of jobs that are part of the job array.1352

(See footnote)
36

1353

8.5.3 session1354

This attribute offers a reference to a JobSession instance that represents the session which was used for the1355

job submission creating this JobArray instance.1356

8.5.4 jobTemplate1357

This attribute provides a reference to a JobTemplate instance that has equal values to the one that was1358

used for the job submission creating this JobArray instance.1359

(See footnote)
37

1360

8.5.5 suspend / resume / hold / release / terminate1361

The job control functions allow modifying the status of the job array in the DRM system, with the same1362

semantic as with the counterparts in the Job interface (see Section 8.4). If one of the jobs in the array is in1363

an inappropriate state for the particular method, the method MUST raise an InvalidStateException.1364

The methods SHOULD return after the action has been acknowledged by the DRM system for all jobs in1365

the array, but MAY return before the action has been completed. Some DRMAA implementations MAY1366

allow this method to be used to control job arrays created externally to the DRMAA session, such as job1367

arrays submitted by other DRMAA sessions in other DRMAA implementations or job arrays submitted via1368

native utilities. This behavior is implementation-specific.1369

35 We are aware of the fact that some systems (e.g. LSF at the time of writing) do not support all DRMAA control operations
offered for job arrays. Since we intended to avoid optional DRMAA operations wherever we could, the text here mandates the
implementation to simulate the array support on its own. For example, looping over all jobs in the array and calling “suspend”
for each one is trivial to implement and fulfills the same purpose.

36 We were asked for offering a filter support similar to JobSession here. This was rejected by discussion on the list (Jan
2011), since the number of jobs returned here is normally comparatively short. In this case, the DRM system cannot provide
any benefit over the looped check in the application itself.

37 The use case from SAGA perspective is that the user can easily resubmit the same job - just changing for example some
command line parameter, but leaving the remainder fixed (mail by Andre Merzky, July 29th 2010).

drmaa-wg@ogf.org 47

mailto:drmaa-wg@ogf.org

GWD-R June 2011

8.6 The DRMAAINDEX environment variable1370

DRMAA implementations SHOULD configure a environment variable on each execution host with the name1371

DRMAAINDEX. This environment variable MUST contain the name of the environment variable provided1372

by the DRM system that holds the parametric job index. By using an indirect fetching of the environment1373

variable value, jobs are enabled to get their own parametric index regardless of the DRM system type. For1374

non-bulk jobs, the variable SHOULD still be set. For DRM systems that do not set such a environment1375

variable, DRMAAINDEX SHOULD have an empty value.1376

An expected implementation strategy would be the transparent addition an environment variable spec-1377

ification on job submission. However, this definition SHOULD NOT be visible for the application in the1378

JobTemplate instances. If the application defines its own DRMAAINDEX environment variable, it SHOULD1379

override the implementation-defined value.1380

Completely
new, needs
group ap-
proval

1381

9 Working with Advance Reservation1382

Advance reservation is a DRM system concept that allows the reservation of execution resources for jobs1383

to be submitted. DRMAA encapsulates such functionality of a DRM system with the interfaces and data1384

structures described in this chapter.1385

DRMAA implementations for DRM systems that do not support advance reservation still MUST imple-1386

mented the described interfaces, in order to keep source code portability for DRMAA-based applications.1387

Support for advance reservation is expressed by the DrmaaCapability::ADVANCE_RESERVATION flag (see Sec-1388

tion 4.5). If no support is given by the implementation, all methods related to advance reservation MUST1389

raise an UnsupportedOperationExeption if being used.1390

9.1 ReservationSession Interface1391

Every ReservationSession instance represents a set of advance reservations in the DRM system. Every1392

Reservation instance SHALL belong only to one ReservationSession instance.1393

interface ReservationSession {1394

readonly attribute string contact;1395

readonly attribute string sessionName;1396

Reservation getReservation(in string reservationId);1397

Reservation requestReservation(in ReservationTemplate reservationTemplate);1398

ReservationList getReservations ();1399

};1400

9.1.1 contact1401

This attribute contains the contact value that was used in the createReservationSession call for this1402

instance (see Section 7.1). If no value was originally provided, the default contact string from the implemen-1403

tation MUST be returned. This attribute is read-only.1404

drmaa-wg@ogf.org 48

mailto:drmaa-wg@ogf.org

GWD-R June 2011

9.1.2 sessionName1405

This attribute contains the name of the session that was used for creating or opening this Reservation1406

instance (see Section 7.1). This attribute is read-only.1407

9.1.3 getReservation1408

This method returns a Reservation instance that has the given reservationId. Implementations MAY1409

support the access to reservations created outside of a DRMAA session scope, under the same regulari-1410

ties as for the MonitoringSession::getAllReservations method (see Section 10.1.2). If no reservation1411

matches, the method SHALL raise an InvalidArgumentException. Time-dependent effects of this method1412

are implementation-specific.1413

9.1.4 requestReservation1414

The requestReservation method SHALL request an advance reservation in the DRM system with at-1415

tributes defined in the provided ReservationTemplate. On a successful reservation, the method returns a1416

Reservation instance that represents the advance reservation in the underlying DRM system.1417

The method SHALL raise:1418

• DeniedByDrmsException if the current user is not authorized to create reservations,1419

• NotEnoughSlotsException if there is not enough resources in the requested time window,1420

• InvalidArgumentException if the reservation cannot be performed by the DRM system due to invalid1421

format/value of one of the ReservationTemplate attributes (e.g. the start time is in the past).1422

It SHOULD further provide detailed information about the rejection cause in the extended error1423

information (see Section 6).1424

In case some of the conditions are not fulfilled after the reservation was succesfully created, for example due1425

to execution host outages, the reservation itself SHOULD remain valid, as long is it wasn’t cancelled either1426

through or outside of DRMAA.
refer the
JobInfo::inErrorState

1427

9.1.5 getReservations1428

This method returns the list of reservations successfully created so far in this session, regardless of their start1429

and end time. The list of Reservation instances is only cleared in conjunction with the destruction of the1430

actual session instance through SessionManager::destroyReservationSession (see also Section 7.1).1431

9.2 Reservation Interface1432

The Reservation interface represents attributes and methods available for an advance reservation success-1433

fully created in the DRM system.1434

interface Reservation {1435

readonly attribute string reservationId;1436

readonly attribute ReservationSession session;1437

readonly attribute ReservationTemplate reservationTemplate;1438

ReservationInfo getInfo ();1439

void terminate ();1440

};1441

drmaa-wg@ogf.org 49

mailto:drmaa-wg@ogf.org

GWD-R June 2011

9.2.1 reservationId1442

The reservationId is an opaque string identifier for the advance reservation. If the DRM system has1443

identifiers for advance reservations, this attribute SHOULD provide the according stringified value. If not,1444

the DRMAA implementation MUST generate value this is unique in time and extend of the DRM system.1445

9.2.2 session1446

This attribute references the ReservationSession which was used to create the advance reservation instance.1447

9.2.3 reservationTemplate1448

This attribute provides a reference to a ReservationTemplate instance that has equal values to the one1449

that was used for the advance reservation creating this Reservation instance. This attribute value MUST1450

be UNSET if the referenced reservation was created outside of a DRMAA session.1451

9.2.4 getInfo1452

This method returns a ReservationInfo instance for the particular job under the conditions described in1453

Section 5.5. This method SHOULD throw InvalidReservationException if the reservation expired (i.e.1454

its end time passed) or was termined.1455

9.2.5 terminate1456

This method terminates the advance reservation represented by this Reservation instance. All jobs submit-1457

ted with a reference to this reservation SHOULD be terminated by the DRM system or the implementation,1458

regardless of their current state.1459

10 Monitoring the DRM System1460

The DRMAA monitoring facility supports four basic units of monitoring:1461

• Properties of the DRM system as a whole (e.g. DRM system version number) that are independent1462

from the particular session and contact string,1463

• Properties of the DRM system that depend on the current contact string (e.g. list of machines in the1464

currently accessed Grid Engine cell)1465

• Properties of individual queues known from a getAllQueues call1466

• Properties of individual machines available with the current contact string (e.g. amount of physical1467

memory in a chosen machine)1468

The MonitoringSession interface in DRMAA supports the monitoring of execution resources in the DRM1469

system. This is distinct from the monitoring of jobs running in the DRM system, which is covered by the1470

JobSession and the Job interface.1471

drmaa-wg@ogf.org 50

mailto:drmaa-wg@ogf.org

GWD-R June 2011

10.1 MonitoringSession Interface1472

The MonitoringSession interface represents a set of stateless methods for fetching information about the1473

DRM system and the DRMAA implementation itself. It MAY be used to implement DRM system monitoring1474

tools like qstat.1475

interface MonitoringSession {1476

readonly attribute Version drmsVersion;1477

ReservationList getAllReservations ();1478

JobList getAllJobs(in JobInfo filter);1479

QueueList getAllQueues(in StringList names);1480

MachineList getAllMachines(in StringList names);1481

};1482

All returned data SHOULD be related to the current user running the DRMAA-based application. For1483

example, the getAllQueues function MAY be reduced to only denote queues that are usable or generally1484

accessible for the DRMAA application and user performing the query.1485

Because no guarantee can be made as to future accessibility, and because of cases where list reduction may1486

demand excessive overhead in the DRMAA implementation, an unreduced or partially reduced result MAY1487

be returned on all methods returning lists. The behavior of the DRMAA implementation in this regard1488

should be clearly documented. In all cases, the list items MUST all be valid input for job submission or1489

advance reservation through the DRMAA API.1490

10.1.1 drmsVersion1491

This attribute provides the DRM-system specific version information. While the DRM system type is avail-1492

able from the SessionManager::drmsName attribute (see Section 7.1), this attribute provides the according1493

version of the product. Applications are expected to use the information about the general DRM system type1494

for accessing product-specific features. Applications are not expected to make decisions based on versioning1495

information from this attribute - instead, the value should only be utilized for informative output to the end1496

user.1497

(See footnote)
38

1498

10.1.2 getAllReservations1499

This method returns the list of all DRMS advance reservations accessible for the user running the DRMAA-1500

based application. In contrast to a ReservationSession::getReservations call, this method SHOULD1501

also return reservations that were created outside of DRMAA (e.g. through command-line tools) by this user.1502

The returned list MAY also contain reservations that were created by other users if the security policies of1503

the DRM system allow such global visibility. The DRM system or the DRMAA implementation is at liberty,1504

however, to restrict the set of returned reservations based on site or system policies, such as security settings1505

or scheduler load restrictions.1506

This method SHALL raise an UnsupportedOperationException if advance reservation is not supported by1507

the implementation.1508

38This is intentionally not part of the SessionManager interface, in order to make it harder to use it

drmaa-wg@ogf.org 51

mailto:drmaa-wg@ogf.org

GWD-R June 2011

10.1.3 getAllJobs1509

This method returns the list of all DRMS jobs visible to the user running the DRMAA-based application. In1510

contrast to a JobSession::getJobs call, this method SHOULD also return jobs that were submitted outside1511

of DRMAA (e.g. through command-line tools) by this user. The returned list MAY also contain jobs that1512

were submitted by other users if the security policies of the DRM system allow such global visibility. The1513

DRM system or the DRMAA implementation is at liberty, however, to restrict the set of returned jobs based1514

on site or system policies, such as security settings or scheduler load restrictions.1515

Querying the DRM system for all jobs might result in returning an excessive number of Job objects. Impli-1516

cations to the library implementation are out of scope for this specification.1517

The method supports a filter argument for fetching only a subset of the job information available. Both1518

the return value semantics and the filter semantics SHOULD be similar to the ones described for the1519

JobSession::getJobs method (see Section 8.2).1520

Language bindings SHOULD NOT try to solve the scalability issues by replacing the sequence type of
the return value with some iterator-like solution. This approach would break the basic snapshot semantic
intended for this method.

(See footnote)
39

1521

10.1.4 getAllQueues1522

This method returns a list of queues available for job submission in the DRM system. All Queue instances1523

in this list SHOULD be (based on their name attribute) a valid input for the JobTemplate::queueName1524

attribute (see Section 5.6). The result can be an empty list or might be incomplete, based on queue, host,1525

or system policies. It might also contain queues that are not accessible for the user (because of queue1526

configuration limits) at job submission time.1527

The names parameter supports restricting the result to Queue instances that have one of the names given in1528

the argument. If the names parameter value is UNSET, all Queue instances should be returned.1529

10.1.5 getAllMachines1530

This method returns the list of machines available in the DRM system as execution host. The returned list1531

might be empty or incomplete based on machine or system policies. The returned list might also contain1532

machines that are not accessible by the user, e.g. because of host configuration limits.1533

The names parameter supports restricting the result to Machine instances that have one of the names given1534

in the argument. If the names parameter value is UNSET, all Machine instances should be returned.1535

11 Annex A: Complete DRMAA IDL Specification1536

The following text shows the complete IDL specification for the DRMAAv2 application programming inter-1537

face. The ordering of IDL constructs here has no normative meaning, but ensures the correct compilation1538

with a standard CORBA IDL compiler for syntactical correctness checks. This demands only some additional1539

forward declarations to resolve circular dependencies.1540

39 The non-argumentation about the scalability problem was the final result of a clarification attempt. We hand this one
over to the implementors. (conf call Jul 14th 2010)

drmaa-wg@ogf.org 52

mailto:drmaa-wg@ogf.org

GWD-R June 2011

module DRMAA2 {1541

enum JobState {1542

UNDETERMINED , QUEUED , QUEUED_HELD , RUNNING , SUSPENDED , REQUEUED ,1543

REQUEUED_HELD , DONE , FAILED };1544

enum OperatingSystem {1545

HPUX , LINUX , IRIX , TRUE64 , MACOS , SUNOS , WIN , WINNT , AIX , UNIXWARE ,1546

BSD , OTHER_OS };1547

enum CpuArchitecture {1548

ALPHA , ARM , CELL , PARISC , X86 , X64 , IA64 , MIPS , PPC , PPC64 ,1549

SPARC , SPARC64 , OTHER_CPU };1550

enum ResourceLimitType {1551

CORE_FILE_SIZE , CPU_TIME , DATA_SEG_SIZE , FILE_SIZE , OPEN_FILES ,1552

STACK_SIZE , VIRTUAL_MEMORY , WALLCLOCK_TIME };1553

enum JobTemplatePlaceholder {1554

HOME_DIRECTORY ,WORKING_DIRECTORY ,PARAMETRIC_INDEX };1555

enum DrmaaEvent {1556

NEW_STATE , MIGRATED , ATTRIBUTE_CHANGE1557

};1558

typedef sequence <string > OrderedStringList;1559

typedef sequence <string > StringList;1560

typedef sequence <Job > JobList;1561

typedef sequence <JobArray > JobArrayList;1562

typedef sequence <Queue > QueueList;1563

typedef sequence <Machine > MachineList;1564

typedef sequence <Reservation > ReservationList;1565

typedef sequence < sequence <string ,2> > Dictionary;1566

typedef string AbsoluteTime;1567

typedef long long TimeAmount;1568

native ZERO_TIME;1569

native INFINITE_TIME;1570

native NOW;1571

struct JobInfo {1572

string jobId;1573

long exitStatus;1574

string terminatingSignal;1575

string annotation;1576

JobState jobState;1577

any jobSubState;1578

OrderedStringList allocatedMachines;1579

string submissionMachine;1580

drmaa-wg@ogf.org 53

mailto:drmaa-wg@ogf.org

GWD-R June 2011

string jobOwner;1581

long slots;1582

string queueName;1583

TimeAmount wallclockTime;1584

long cpuTime;1585

AbsoluteTime submissionTime;1586

AbsoluteTime dispatchTime;1587

AbsoluteTime finishTime;1588

};1589

struct ReservationInfo {1590

string reservationId;1591

string reservationName;1592

AbsoluteTime reservedStartTime;1593

AbsoluteTime reservedEndTime;1594

StringList usersACL;1595

long reservedSlots;1596

OrderedStringList reservedMachines;1597

boolean inErrorState;1598

};1599

struct JobTemplate {1600

string remoteCommand;1601

OrderedStringList args;1602

boolean submitAsHold;1603

boolean rerunnable;1604

Dictionary jobEnvironment;1605

string workingDirectory;1606

string jobCategory;1607

StringList email;1608

boolean emailOnStarted;1609

boolean emailOnTerminated;1610

string jobName;1611

string inputPath;1612

string outputPath;1613

string errorPath;1614

boolean joinFiles;1615

string reservationId;1616

string queueName;1617

long minSlots;1618

long maxSlots;1619

long priority;1620

OrderedStringList candidateMachines;1621

long minPhysMemory;1622

OperatingSystem machineOS;1623

CpuArchitecture machineArch;1624

AbsoluteTime startTime;1625

AbsoluteTime deadlineTime;1626

drmaa-wg@ogf.org 54

mailto:drmaa-wg@ogf.org

GWD-R June 2011

Dictionary stageInFiles;1627

Dictionary stageOutFiles;1628

Dictionary hardResourceLimits;1629

string accountingId;1630

};1631

struct ReservationTemplate {1632

string reservationName;1633

AbsoluteTime startTime;1634

AbsoluteTime endTime;1635

TimeAmount duration;1636

long minSlots;1637

long maxSlots;1638

StringList usersACL;1639

OrderedStringList candidateMachines;1640

long minPhysMemory;1641

OperatingSystem machineOS;1642

CpuArchitecture machineArch;1643

};1644

struct DrmaaNotification {1645

DrmaaEvent event;1646

Job job;1647

JobState jobState;1648

};1649

struct Queue {1650

string name;1651

};1652

struct Version {1653

string major;1654

string minor;1655

};1656

struct Machine {1657

string name;1658

boolean available;1659

long sockets;1660

long coresPerSocket;1661

long threadsPerCore;1662

double load;1663

long physMemory;1664

long virtMemory;1665

OperatingSystem machineOS;1666

Version machineOSVersion;1667

CpuArchitecture machineArch;1668

};1669

drmaa-wg@ogf.org 55

mailto:drmaa-wg@ogf.org

GWD-R June 2011

exception DeniedByDrmsException {string message ;};1670

exception DrmCommunicationException {string message ;};1671

exception TryLaterException {string message ;};1672

exception SessionManagementException {string message ;};1673

exception TimeoutException {string message ;};1674

exception InternalException {string message ;};1675

exception InvalidArgumentException {string message ;};1676

exception InvalidSessionException {string message ;};1677

exception InvalidStateException {string message ;};1678

exception OutOfMemoryException {string message ;};1679

exception UnsupportedAttributeException {string message ;};1680

exception UnsupportedOperationException {string message ;};1681

exception NotEnoughSlotsException {string message ;};1682

exception InvalidReservationException: {string message ;};1683

interface DrmaaReflective {1684

readonly attribute StringList jobTemplateImpl;1685

readonly attribute StringList jobInfoImpl;1686

readonly attribute StringList reservationTemplateImpl;1687

readonly attribute StringList reservationInfoImpl;1688

readonly attribute StringList queueImpl;1689

readonly attribute StringList machineImpl;1690

readonly attribute StringList notificationImpl;1691

1692

string getAttr(any instance , in string name);1693

void setAttr(any instance , in string name , in string value);1694

string describeAttr(any instance , in string name);1695

};1696

interface DrmaaCallback {1697

void notify(in DrmaaNotification notification);1698

};1699

interface ReservationSession {1700

readonly attribute string contact;1701

readonly attribute string sessionName;1702

Reservation getReservation(in string reservationId);1703

Reservation requestReservation(in ReservationTemplate reservationTemplate);1704

ReservationList getReservations ();1705

};1706

interface Reservation {1707

readonly attribute string reservationId;1708

readonly attribute ReservationSession session;1709

readonly attribute ReservationTemplate reservationTemplate;1710

ReservationInfo getInfo ();1711

void terminate ();1712

};1713

drmaa-wg@ogf.org 56

mailto:drmaa-wg@ogf.org

GWD-R June 2011

interface JobArray {1714

readonly attribute string jobArrayId;1715

readonly attribute JobList jobs;1716

readonly attribute JobSession session;1717

readonly attribute JobTemplate jobTemplate;1718

void suspend ();1719

void resume ();1720

void hold ();1721

void release ();1722

void terminate ();1723

};1724

interface JobSession {1725

readonly attribute string contact;1726

readonly attribute string sessionName;1727

readonly attribute StringList jobCategories;1728

JobList getJobs(in JobInfo filter);1729

JobArray getJobArray(in string jobArrayId);1730

Job runJob(in JobTemplate jobTemplate);1731

JobArray runBulkJobs(1732

in JobTemplate jobTemplate ,1733

in long beginIndex ,1734

in long endIndex ,1735

in long step ,1736

in long maxParallel);1737

Job waitAnyStarted(in JobList jobs , in TimeAmount timeout);1738

Job waitAnyTerminated(in JobList jobs , in TimeAmount timeout);1739

void registerEventNotification(in DrmaaCallback callback);1740

};1741

interface Job {1742

readonly attribute string jobId;1743

readonly attribute JobSession session;1744

readonly attribute JobTemplate jobTemplate;1745

void suspend ();1746

void resume ();1747

void hold ();1748

void release ();1749

void terminate ();1750

JobState getState(out any jobSubState);1751

JobInfo getInfo ();1752

Job waitStarted(in TimeAmount timeout);1753

Job waitTerminated(in TimeAmount timeout);1754

};1755

interface MonitoringSession {1756

readonly attribute Version drmsVersion;1757

ReservationList getAllReservations ();1758

drmaa-wg@ogf.org 57

mailto:drmaa-wg@ogf.org

GWD-R June 2011

JobList getAllJobs(in JobInfo filter);1759

QueueList getAllQueues(in StringList names);1760

MachineList getAllMachines(in StringList names);1761

};1762

interface SessionManager{1763

readonly attribute string drmsName;1764

readonly attribute Version drmaaVersion;1765

boolean supports(in DrmaaCapability capability);1766

JobSession createJobSession(in string sessionName ,1767

in string contactString);1768

ReservationSession createReservationSession(in string sessionName ,1769

in string contactString);1770

MonitoringSession createMonitoringSession (in string contactString);1771

JobSession openJobSession(in string sessionName);1772

ReservationSession openReservationSession(in string sessionName);1773

void closeJobSession(in JobSession s);1774

void closeReservationSession(in ReservationSession s);1775

void closeMonitoringSession(in MonitoringSession s);1776

void destroyJobSession(in string sessionName);1777

void destroyReservationSession(in string sessionName);1778

StringList getJobSessions ();1779

StringList getReservationSessions ();1780

};1781

};1782

12 Security Considerations1783

The DRMAA API does not specifically assume the existence of a particular security infrastructure in the1784

DRM system. The scheduling scenario described herein presumes that security is handled at the point of job1785

authorization/execution on a particular resource. It is assumed that credentials owned by the application1786

using the API are in effect for the DRMAA implementation too.1787

It is conceivable an authorized but malicious user could use a DRMAA implementation or a DRMAA enabled1788

application to saturate a DRM system with a flood of requests. Unfortunately for the DRM system this1789

case is not distinguishable from the case of an authorized good-natured user who has many jobs to be1790

processed. For temporary load defense, implementations SHOULD utilize the TryLaterException. In case1791

of permanent issues, the implementation SHOULD raise the DeniedByDrmsException.1792

DRMAA implementers should guard against buffer overflows that could be exploited through DRMAA1793

enabled interactive applications or web portals. Implementations of the DRMAA API will most likely1794

require a network to coordinate subordinate DRMS; however the API makes no assumptions about the1795

security posture provided the networking environment. Therefore, application developers should further1796

consider the security implications of “on-the-wire” communications.1797

For environments that allow remote or protocol based DRMAA clients, the implementation SHOULD offer1798

support for secure transport layers to prevent man in the middle attacks.1799

drmaa-wg@ogf.org 58

mailto:drmaa-wg@ogf.org

GWD-R June 2011

13 Contributors1800

Roger Brobst1801

Cadence Design Systems, Inc.1802

555 River Oaks Parkway1803

San Jose, CA 951341804

Email: rbrobst@cadence.com1805

1806

Daniel Gruber1807

Univa1808

1809

Mariusz Mamoński1810

Poznań Supercomputing and Networking Center1811

ul. Noskowskiego 101812

61-704 Poznań, Poland1813

Email: mamonski@man.poznan1814

1815

Daniel Templeton (Corresponding Author)1816

Cloudera1817

1818

Peter Tröger (Corresponding Author)1819

Hasso-Plattner-Institute at University of Potsdam1820

Prof.-Dr.-Helmert-Str. 2-31821

14482 Potsdam, Germany1822

Email: peter@troeger.eu1823

1824 Add miss-
ing contact
details

1825

We are grateful to numerous colleagues for support and discussions on the topics covered in this document,1826

in particular (in alphabetical order, with apologies to anybody we have missed):1827

Guillaume Alleon, Ali Anjomshoaa, Ed Baskerville, Harald Böhme, Nadav Brandes, Matthieu Cargnelli,1828

Karl Czajkowski, Piotr Domagalski, Fritz Ferstl, Paul Foley, Nicholas Geib, Becky Gietzel, Alleon Guillaume,1829

Daniel S. Katz, Andreas Haas, Tim Harsch, Greg Hewgill, Rayson Ho, Eduardo Huedo, Dieter Kranzmüller,1830

Krzysztof Kurowski, Peter G. Lane, Miron Livny, Ignacio M. Llorente, Martin v. Löwis, Andre Merzky,1831

Ruben S. Montero, Greg Newby, Steven Newhouse, Michael Primeaux, Greg Quinn, Hrabri L. Rajic, Martin1832

Sarachu, Jennifer Schopf, Enrico Sirola, Chris Smith, Ancor Gonzalez Sosa, Douglas Thain, John Tollefsrud,1833

Jose R. Valverde, and Peter Zhu.1834

14 Intellectual Property Statement1835

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that1836

might be claimed to pertain to the implementation or use of the technology described in this document or the1837

extent to which any license under such rights might or might not be available; neither does it represent that1838

it has made any effort to identify any such rights. Copies of claims of rights made available for publication1839

drmaa-wg@ogf.org 59

mailto:drmaa-wg@ogf.org

GWD-R June 2011

and any assurances of licenses to be made available, or the result of an attempt made to obtain a general1840

license or permission for the use of such proprietary rights by implementers or users of this specification can1841

be obtained from the OGF Secretariat.1842

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications,1843

or other proprietary rights which may cover technology that may be required to practice this recommendation.1844

Please address the information to the OGF Executive Director.1845

15 Disclaimer1846

This document and the information contained herein is provided on an “as-is” basis and the OGF disclaims1847

all warranties, express or implied, including but not limited to any warranty that the use of the information1848

herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular1849

purpose.1850

16 Full Copyright Notice1851

Copyright c© Open Grid Forum (2005-2011). Some Rights Reserved.1852

This document and translations of it may be copied and furnished to others, and derivative works that1853

comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and1854

distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice1855

and this paragraph are included on all such copies and derivative works. However, this document itself1856

may not be modified in any way, such as by removing the copyright notice or references to the OGF or1857

other organizations, except as needed for the purpose of developing Grid Recommendations in which case1858

the procedures for copyrights defined in the OGF Document process must be followed, or as required to1859

translate it into languages other than English.1860

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors1861

or assignees.1862

17 References18631864

[1] Scott Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119 (Best Current1865

Practice), March 1997. URL http://tools.ietf.org/html/rfc2119.1866

[2] I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pickles, D. Pulsipher, C. Smith,1867

and M. Theimer. OGSA Basic Execution Service v1.0 (GFD-R.108), nov 2008.1868

[3] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Kleijer, Andre Merzky, John1869

Shalf, and Christopher Smith. A Simple API for Grid Applications (SAGA) Version 1.1 (GFD-R-P.90),1870

jan 2008.1871

[4] Object Management Group. Common Object Request Broker Architecture (CORBA) Specification,1872

Version 3.1. http://www.omg.org/spec/CORBA/3.1/Interfaces/PDF, jan 2008.1873

[5] The IEEE and The Open Group. The Open Group Base Specifications Issue 6 IEEE Std 1003.1.1874

http://www.opengroup.org/onlinepubs/000095399/utilities/ulimit.html.1875

drmaa-wg@ogf.org 60

http://tools.ietf.org/html/rfc2119
mailto:drmaa-wg@ogf.org

GWD-R June 2011

[6] Distributed Management Task Force (DMTF) Inc. CIM System Model White Paper CIM Version 2.7,1876

jun 2003.1877

[7] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas Haas, Bill Nitzberg,1878

Daniel Templeton, John Tollefsrud, and Peter Tröger. Distributed Resource Management Application1879

API Specification 1.0 (GFD-R.022), aug 2007.1880

[8] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas Haas, Bill Nitzberg,1881

Daniel Templeton, John Tollefsrud, and Peter Tröger. Distributed Resource Management Application1882

API Specification 1.0 (GWD-R.133), jun 2008.1883

[9] Peter Tröger, Daniel Templeton, Roger Brobst, Andreas Haas, and Hrabri Rajic. Distributed Resource1884

Management Application API 1.0 - IDL Specification (GFD-R-P.130), apr 2008.1885

[10] Peter Tröger, Hrabri Rajic, Andreas Haas, and Piotr Domagalski. Standardised job submission and1886

control in cluster and grid environments. International Journal of Grid and Utility Computing, 1:1887

134–145, dec 2009. doi: {http://dx.doi.org/10.1504/IJGUC.2009.022029}.1888

drmaa-wg@ogf.org 61

mailto:drmaa-wg@ogf.org

	Introduction
	Notational Conventions
	Language Bindings
	Slots and Queues
	Multithreading

	Namespace
	Common Type Definitions
	Enumerations
	OperatingSystem enumeration
	CpuArchitecture enumeration
	ResourceLimitType enumeration
	JobTemplatePlaceholder enumeration
	DrmaaCapability

	Extensible Data Structures
	Queue structure
	Version structure
	Machine structure
	JobInfo structure
	ReservationInfo structure
	JobTemplate structure
	ReservationTemplate structure
	DrmaaReflective Interface

	Common Exceptions
	The DRMAA Session Concept
	SessionManager Interface

	Working with Jobs
	The DRMAA State Model
	JobSession Interface
	DrmaaCallback Interface
	Job Interface
	JobArray Interface
	The DRMAAINDEX environment variable

	Working with Advance Reservation
	ReservationSession Interface
	Reservation Interface

	Monitoring the DRM System
	MonitoringSession Interface

	Annex A: Complete DRMAA IDL Specification
	Security Considerations
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice
	References

