Distributed Resource Management
Application APl (DRMAA)
Working Group

Peter Tréger, Humboldt University (editor)
Daniel Templeton, Sun Microsystems
Hrabri Rajic, Intel Americas Inc.

Roger Brobst, Cadence Design Systems

Distributed Resource Management Application API 2.0|

Status of This Document

This document provides information to the Grid community. Distribution is unlimited.
Copyright Notice

Copyright © Open Grid Forum (2008). All Rights Reserved.

Abstract

This document describes the common base for the Distributed Resource Management
Application API v2.0 (DRMAA) bindings for procedural and object-oriented languages.

Table of Contents
... (LEFT OUT FOR EASIER CHANGE TRACKING) ...

1 Introduction

This document gives an IDL description for the DRMAA interface. The specification provided by
this document is completely language-independent, even though some of the examples are
given in Java. Adopters of this specification are expected to derive a language-binding
specification (as described in Section 2.2), which can then be centrally published by the
DRMAA working group. This ensures portability for DRMAA applications in one programming
language, and ensures consistent APl semantics over all possible DRMAA language bindings.

1.1 Notational Conventions

In this document, the following conventions are used:

. IDL language elements and definitions are represented in a fixed-width font.
. References to IDL language elements and definitions are represented in italics.

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,”
“SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” are to be interpreted as
described in RFC-2119 [RFC 2119].

The document describes the DRMAA interface semantics with the help of OMG IDL [OMG IDL].
It includes a set of overall rules for the creation of specific language bindings for the given

drmaa-wg@ogf.org 1

Peter Troger 3.9.08 13:59

Kommentar:

“TODO” marks open issues, “RAT” a
rationale for changes. TODO items arose
from experience reports, the survey

results, and tracker items.

Peter Troger 3.9.08 11:18

Kommentar: According to the survey,
most people can live with non-backward

compatible changes

Peter er 3.9.08 13:59

Kommentar: TODO: According to
survey, DRMAAZ2 should be aligned to

OGSA-BES, SAGA, and Windows HPC

Peter Troger 3.9.08 13:59

Kommentar: TODO: #6275 — Define all
default values.

Peter Troger 3.9.08 14:04

Kommentar: TODO: Describe relation to
GFD.130/133

specification. Specific examples are given for the Java language. These examples are not
normative.

1.2 Related Work

There are other relevant OGF standards in the area of job submission and monitoring. An in-
depth comparison and positioning of DRMAA v1.0 is provided by a conference publication
[lJGUCO08].

2 General Concepts

2.1 Design Decisions

An effort has been made to choose design patterns that are not unique to a specific language.
However, in some cases, various languages disagree over some points. In those cases, the
most meritous approach was taken, irrespective of language.

The following text bases on the terminology of OMG IDL. For this reason, all operational
semantics are described in terms of interfaces and not of classes. This concept ensures the
possibility to map the described operational semantics to a variety of object-oriented, and even
procedural, languages. The usage of a class concept depends on the specific language-
mapping rules. The DRMAA specification assumes that destination languages for a binding
typically support the concepts of exceptions.

If a destination language does not support the notion of exceptions (like ANSI C), the language
binding SHOULD map error conditions to an appropriate consistent concept. A language
binding MAY chose to model exceptions as numeric error code return values, and return values
as additional output parameters of the operation.

Job identifiers in the DRMAA specification are represented as Strings, instead of introducing an
own Job object. Even though this could enable a tighter relation of job meta-data and identity, it
mainly increases complexity for persistent sessions and introduces unnecessary round trips in a
possible DRMAA RPC mapping (such as a WSDL binding). The representation of jobs as string
directly reflects the DRM system semantic, and therefore supports the intentional tight binding
of DRMAA application and execution environment.

2.2 IDL language mapping

Language binding documents based on this specification MUST define a mapping between the
IDL constructs used in this specification and their specific language constructs. A language
binding SHOULD NOT rely itself completely on the OMG language mapping documents
available for many programming languages. It must be considered that the OMG mappings
bring a huge overhead of irrelevant CORBA-related mapping rules into the specification.
Therefore it must be carefully decided whether a binding decision reflects a natural and simple
mapping of the intended purpose for the DRMAA interfaces. In most situations it SHOULD be
enough to reuse value type mappings only and to define custom mappings for the reference

types.

The language binding MUST use the described concept mapping in a consistent manner for the
overall specification.

It may be the case that IDL constructs do not map directly to an according language construct.
In this case it MUST be ensured that the according construct in the particular language retains
the intended semantic of the DRMAA interface definition.

Languages without an explicit notion of enumerations MAY map the IDL enumeration values to
constant class members, enabled by the distinct naming of all enumeration values in the
specification. |

drmaa-wg@ogf.org 2

Peter Troger 3.9.08 13:58

Kommentar: TODO: #6277 — Relax this
formulation to ease up the Python binding.

Some attributes and operation parameters are scoped (“DRMAA:"), in order to avoid naming
clashes in case-insensitive programming languages. Language bindings for case-sensitive
languages SHOULD omit this explicit scoping.

This specification tries to consider the possibility of a Remote Procedure Call scenario in a
DRMAA-conformant language mapping. It SHOULD therefore be ensured that the programming
language type for an IDL valuetype definition supports the serialization and comparison of
valuetype instances. These capabilites SHOULD be accomplished through whatever
mechanism is most natural for the specific programming language.

Java binding example:

IDL Java language

module definition package keyword

interface definition public abstract interface definition

Enumeration members become Java int
constants in the surrounding interface definition

enum definition with enumeration members

string type java.lang.String

long type

int

long long type

long

const type

public static final

boolean type

[readonly] attribute type

boolean

Gette_r [and setter] methods in JavaBeans”
style, boolean readonly attribute names are
prefixed with “get”.

M

exception type

Class definition, derived from

java.lang.Exception

raises clause

throws clause

valuetype definition

public class definition, may additionally
implement the Cloneable, Serializable, and
Compareable interfaces

The DRMAA specification defines specialized custom types as new value types, in order to

express their intended semantics:

// unbounded native ordered string list
valuetype OrderedStringList sequence<string>;

// unbounded native string list

valuetype Stringlist sequence<string>;
// dictionary type, for unbounded key-value pair storage
valuetype Dictionary sequence< sequence<string,2> >;

drmaa-wg@ogf.org 3

// amount of time, at least with a resolution to seconds
valuetype TimeAmount long long;

The language-binding author SHOULD replace these type definitions directly with semantically
equal references or value types from the according language. This MAY include the creation of
new complex language types for one or more of the above concepts, depending on the context.

Java binding example:

IDL Java
StringList java.util.Set
OrderedStringList java.util.List
TimeAmount long
Dictionary java.util.Map

3 Changes in comparison to GFD.130 (DRMAA 1.0)

¢ The differentiation between the system hold, user hold, and system / user hold job states
was removed (conf. call Jan 20" 2009). There is only one hold state now.

e A job can now change its state from one of the SUSPENDED states to the
QUEUED_ACTIVE state (conf. call Jan 20™ 2009, solves issue #2788).

e The job state UNDETERMINED is now clearer defined. It expressed a permanent issue,
meaning that the job state will not change by just waiting. Temporary problems in the
detection of the job state are now expressed by the TrylaterException (conf. call Feb
5" 2009, solves issue #2783).

¢ The concept of a factory in GFD.130 was removed (solves issue #6276).

e The jobState() function now also returns job subState information. This is intended as
additional information for the given DRMAA job state, and can be used for expressing
the hold state differentiation from DRMAA 1.0 (conf. call Mar 31% 2009).

e The PartialTimestamp functionality was completely removed. Absolute date and time
values are now expressed as REC822 conformant string (conf. call Mar 31%' 2009).

* Beside the FAILED state from DRMAA 1.0, there is now also the TERMINATED state for
jobs that did not finish execution successfully (conf. call XXXX — ist schon geédndert,
muss aber noch bestatigt werden). Due to the more specific differentiation, all runtime
job template errors (such as an incorrect working directory) now lead to TERMINATED
instead of FAILED state. JobInfo:terminatingSignal now only provides useful information
in case of the FAILED state.

e The Jobinfo structure was extended to contain also the job state at the time of querying.
This is needed to interpret exit code and signal information correctly with the new
differentiation between TERMINATED and FAILED state (conf. call Mar 31%' 2009).

4 The DRMAA2 API Module

The DRMAA interfaces and structures are encapsulated by a naming scope, which avoids
conflicts with other API's used in the same application.

Peter Troger 3.9.08 09:36

Kommentar: RAT: This intentionally
breaks backward compatibility for existing
} apps.

| module DRMAAZ (|

drmaa-wg@ogf.org 4

Language binding authors MUST map the IDL module encapsulation to an according package
or namespace concept and MAY change the module name according to programming language
conventions.

Java binding example:

IDL Java

module DRMAAZ package org.drmaa2

5 Data Types

5.1 JobControlAction enumeration

The JobControlAction enumeration is used as a input parameter type by the control() method in
the Session interface. The meanings of the enumeration values are specified in the description
of the method in section 9.8.

enum JobControlAction {
SUSPEND,
RESUME,
HOLD,
RELEASE,
TERMINATE
}i

5.2 JobState enumeration Peter Troger 3.9.08 13:29

Y Y . . Kommentar: TODO: #5875 —
The JobState enumeration is used as return value type for the jobStatus() method in the PS_FAILED is too unspecific, contains

Session interface. The meanings of the enumeration values are specified in the description of both job failure and user-requested
the method in section 9.11. A DRMAA language binding implementation is not required to be termination

able to return all of the job state values in the JobState enumeration. If a given job state has no
representation in the underlying DRMS, the DRMAA implementation MAY ignore that job state
value. All DRMAA implementations MUST, however, define the JobState enumeration, and the
definition MUST include all job state values, including those for unused job states. An
implementation SHOULD NOT return any job state value other than those defined in the
JobState enumeration.

enum JobState {

UNDETERMINED,
QUEUED ACTIVE,
‘ HOLD,
RUNNING, Peter Troger 31.1.09 01:06
SYSTEM_SUSPENDED, Geldscht: sYSTEM ON

USER_SUSPENDED, o _
USER SYSTEM SUSPENDED, Peter Troger 31.1.09 01:06
DONE, B Geléscht: USER_ON_HOLD, .
FAILED,
TERMINATED

. USER_SYSTEM ON HOLD, .

}i

‘ The status values relate to the DRMAA job state transition model:

drmaa-wg@ogf.org 5

Valuator -> Queued_Active

Valuator -> Hold

Valuator -> Rejected

Queued_Active <-> Hold
Queued_Active -> Running
Queued_Active -> Terminated

Hold -> Terminated

Running <-> System Suspended
Running <-> User Suspended
Running <-> User-System_Suspended
Running -> Failed

Running -> Terminated
System_Suspended -> Failed
System_Suspended -> Terminated
User_Suspended -> Failed

User Suspended -> Terminated
User-System_Suspended -> Failed
User-System_Suspended -> Terminated
System_Suspended -> Queued_Active
User_Suspended -> Queued Active
User-System Suspended -> Queued_Active
Running -> Done

Undetermined

Figure 1: DRMAA Job State Transition Diagram

5.3 JobSubmissionState enumeration

The JobSubmissionState enumeration is used as the type of the
JobTemplate::jobSubmissionState interface attribute. In the context of the job template, the
enumeration values have the following meaning:

* HOLD_STATE: The job may be queued, but it is not eligible to run.
* ACTIVE_STATE: The job is eligible to run.

enum JobSubmissionState {
HOLD_ STATE,
ACTIVE STATE

}i

5.4 FileTransferMode value type

The FileTransferMode value-type is used by a JobTemplate instance to indicate the value for
the transferFiles attribute. The type contains three attributes, which determine the streams that
will be staged in or out.

valuetype FileTransferMode ({
attribute boolean transferInputStream;
attribute boolean transferOutputStream;
attribute boolean transferErrorStream;

bi

5.4.1 transferlnputStream

drmaa-wg@ogf.org 6

This attribute defines whether to transfer an input stream file. If this attribute contains true, the
transferinputStream attribute of the corresponding job template SHALL be treated as the source
from which the input file should be copied.

5.4.2 transferOutputStream

This attribute defines whether to transfer an output stream file. If this attribute contains true, the
transferOutputStream attribute of the corresponding job template SHALL be treated as the
destination to which the output file should be copied.

5.4.3 transferErrorStream

This attribute defines whether to transfer an error stream file. If this attribute contains true, the
transferErrorStream attribute of the corresponding job template SHALL be treated as the
destination to which the error file should be copied.

5.5 Version value type

The Version value type is a holding structure for the major and minor version numbers of the
DRMAA |anguage binding implementation as contained in the version attribute of the Session
interface. The string representation (see section 2.2) of a Version instance MUST be of the form
“<major>.<minor>".

valuetype Version {
readonly attribute long major;
readonly attribute long minor;
Vi

5.5.1 major

This attribute SHALL contain the major version number.

5.5.2 minor

This attribute SHALL contain the minor version number.

6 Exceptions

All exceptions in specific bindings MUST contain a possibility to store and read a textual
description of the exception cause for the exception instance.

Language bindings MAY decide to derive all exceptions from given environmental exception
base class(es). Language bindings SHOULD replace exceptions with a semantically equivalent
native runtime environment exception whenever this is appropriate.

exception AlreadyActiveSessionException {string message;};
exception AuthorizationException {string message;};

exception ConflictingAttributeValuesException {string message;};
exception DefaultContactStringException {string message;};
exception DeniedByDrmException {string message;};

exception DrmCommunicationException {string message;};

exception DrmsExitException {string message;};

exception DrmsInitException {string message;};

exception ExitTimeoutException {string message;};

drmaa-wg@ogf.org 7

exception HoldInconsistentStateException {string message;};
exception IllegalStateException {string message;};

exception InternalException {string message;};

exception InvalidArgumentException {string message;};
exception InvalidAttributeFormatException {string message;};
exception InvalidAttributeValueException {string message;};
exception InvalidContactStringException {string message;};
exception InvalidJobException {string message;};

exception InvalidJobTemplateException {string message;};
exception NoActiveSessionException {string message;};
exception NoDefaultContactStringSelectedException {string message;};
exception OutOfMemoryException {string message;};

exception ReleaselInconsistentStateException {string message;};
exception ResumelInconsistentStateException {string message;};
exception SuspendInconsistentStateException {string message;};
exception TryLaterException {string message;};

exception UnsupportedAttributeException {string message;};

Language bindings MAY decide to introduce a hierarchical ordering of the DRMAA exceptions
through class derivation. In this case it MAY also happen that new exceptions are introduced for
behavior aggregation. In this case, those exceptions SHALL be marked as abstract, to prevent
them from being thrown.

If the language supports the distinction between static (‘checked’) and runtime (‘unchecked’)
exceptions (like Java), all but the following exceptions must be represented as checked
exception:

. InternalException
. OutOfMemoryException
N InvalidArgumentException

If a destination language does not support the notion of exceptions (like ANSI C), the language
binding SHOULD map error conditions to an appropriate consistent concept. A language
binding MAY chose to model exceptions as numeric error code return values, and return values
as additional output parameter of the operation. The mapping of exceptions to error codes is
presented in Section . Such a language binding SHOULD specify numeric values for all
DRMAA error constants.

6.1 AlreadyActiveSessionException

Initialization failed due to existing DRMAA session.

6.2 AuthorizationException

The user is not authorized to perform the given operation.

6.3 ConflictingAttributeValuesException

The value of this attribute conflicts with one or more previously set properties.

6.4 DefaultContactStringException

The DRMAA implementation could not use the default contact string to connect to DRM system.

drmaa-wg@ogf.org 8

6.5 DeniedByDrmException

The DRM system rejected the job. The job will never be accepted due to DRM configuration or
job template settings.

6.6 DrmCommunicationException

Could not contact DRM system.

6.7 DrmsExitException

A problem was encountered while trying to exit the session.

6.8 DrmsinitException

A problem was encountered while trying to initialize the session.

6.9 ExitTimeoutException

The wait() or synchronize() method call on the Session interface returned before all selected
jobs entered the DONE, or state.

6.10 HoldInconsistentStateException

The job cannot be moved to a HOLD state.

6.11 InternalException

An unexpected or internal DRMAA error occurred, for example a system call failure.

6.12 InvalidArgumentException

A parameter value is fundamentally invalid, such as being of the wrong type or being null.

6.13 InvalidAttributeFormatException

The value for the job template property is improperly formatted, such as a badly formatted time
stamp.

6.14 InvalidAttributeValueException

The value for the job template property is invalid.

6.15 InvalidContactStringException

The given contact string is not valid.
6.16 InvalidJobException

The job specified by the given job id does not exist, or was already reaped by a call to
Session::synchronize() with dispose==TRUE.

drmaa-wg@ogf.org 9

Geloscht: FAILED

6.17 InvalidJobTemplateException

The job template is not valid. It was either created incorrectly, i.e. not via
Session::createJobTemplate(), or it has already been deleted via Session::deleteJobTemplate()
method.

6.18 NoActiveSessionException

The method call failed because there is no active session.

6.19 NoDefaultContactStringSelectedException

No default contact string was provided or selected. DRMAA requires the default contact string
to be selected when there is more than one possible contact string due to multiple DRMAA
implementations being present and available (see also 9.2).

6.20 OutOfMemoryException

This exception can be thrown by any method at any time when the DRMAA implementation has
run out of free memory.

6.21 ReleaselnconsistentStateException

The job is not in a HOLD state, and hence cannot be released.

6.22 ResumelnconsistentStateException

The job is not in a suspended state (i.e. * SUSPENDED), and hence cannot be resumed.

6.23 SuspendinconsistentStateException

The job is not in a state from which it can be suspended.

6.24 TryLaterException

The DRMS rejected the operation, possibly due to excessive load. A retry attempt may
succeed, however.

6.25 UnsupportedAttributeException

The given job template attribute is not supported by the current DRMAA implementation.

6.26 lllegalStateException

The Jobinfo instance is not in the correct state for this kind of operation.

7 Joblnfo interface

The information regarding a job's execution history is encapsulated by object instances that
implement the Joblinfo interface. Using the Joblnfo interface, a DRMAA application can discover
information about the resource usage and exit status of a job. The structure of the Jobinfo
interface is as follows:

drmaa-wg@ogf.org 10

Peter Troger 3.9.08 13:27

Kommentar: TODO: #5874 — replace
POSIX-style status check by something
with one-call semantics; proposals in
tracker history and GFD.117

interface JobInfo ({
readonly attribute string jobId;
readonly attribute Dictionary resourceUsage;
readonly attribute boolean hasExited;
readonly attribute long exitStatus;
readonly attribute boolean hasSignaled;
readonly attribute string terminatingSignal;
readonly attribute boolean hasCoreDump;
readonly attribute boolean wasAborted;
readonly attribute JobState jobState;

bi
In languages which do not support the notion of interfaces and objects, the Jobinfo interface
SHOULD be modeled as a series of routines which utilize an opaque job object returned from
the wait() routine.
The following sections explain the meanings of the Job/nfo member attributes.

7.1 jobld

This attribute provides the identifier of the completed job.

7.2 resourceUsage

This attribute SHALL contain the completed job's resource usage data. If the job did not
produce resource usage data, this attribute SHALL be null.

The user MAY reap this data only once. The implementation is free to "garbage collect" the
reaped data at a convenient time. Only the data from the current session's job Id MUST be
available. Reaping data from other session job Id's MAY be supported in a DRMAA
implementation.

7.3 |hasExited

Peter Troger 3.9.08 13:52

Kommentar: TODO: #5878 —
Standardize attribute names. We need to
check RUS / JSDL for this.

This attribute SHALL contain frue if the job terminated normally. A value of false MAY indicate
that although the job has terminated normally, an exit status is not available, or that it is not
known whether the job terminated normally. In both cases the exitStatus attribute SHALL NOT
contain exit status information. A value of true indicates more detailed diagnosis can be
retrieved from the exitStatus attribute.

7.4 exitStatus

If exited is true, this attribute SHALL contain the operating system exit code of the job. If exited
is false, the getter function for this attribute MUST raise an lllegalStateException.

7.5 hasSignaled

This attribute SHALL contain true if the job in FAILED state terminated due to the receipt of a
signal. A value of false MAY also indicate that although the job has terminated due to the
receipt of a signal, the signal is not available, or that it is not known whether the job terminated
due to the receipt of a signal, or that the job is not in FAILED state. In all these cases
terminatingSignal SHALL NOT provide signal information.

drmaa-wg@ogf.org 11

Peter Troger 3.9.08 13:57

Kommentar: TODO: #6280 — Align
description to GFD.133

7.6 fterminatingSignal

If hasSignaled is true and the job state is FAILED, this attribute SHALL contain a representation
of the signal that caused the termination of the job’s operation system process. For signals
declared by POSIX, the symbolic names SHALL be returned (e.g., SIGABRT, SIGALRM). For
signals not declared by POSIX, a DRM-dependent string SHALL be returned.

If hasSignaled is false, the getter function for this attribute MUST raise an lllegalStateException.

7.7 hasCoreDump

If hasSignaled is true, this attribute SHALL contain true if a core image of the terminated job
was created.
If hasSignaled is false, the getter function for this attribute MUST raise an lllegalStateException.

7.8 wasAborted

This attribute SHALL contain true if the job ended before entering the running state.

7.9 jobState

This attribute SHALL contain the actual job state from the time were the Jobinfo information was
collected.

8 JobTemplate interface

In order to define the attributes associated with a job, a DRMAA application uses the
JobTemplate interface. Instances of such templates are created via the active Session
implementation. A DRMAA application gets a JobTemplate from the active Session instance,
specifies in the template any required job parameters, and then passes the template back to the
DRMAA Session instance when requesting that a job be executed. When finished, the DRMAA
application SHOULD call the Session::deleteJobTemplate() method to allow the underlying
implementation to free any resources bound to the JobTemplate instance. Please refer also to
[GFD133] section 3.1.4 to 3.1.6 for more information regarding precedence rules, site-specific
requirements and job evaluation.

8.1 Interface overview

A language binding specification MUST model the JobTemplate interface in the following way:

interface JobTemplate({

const string HOME DIRECTORY = "S$drmaa hd ph$";
const string WORKING DIRECTORY = "Sdrmaa wd ph$";
const string PARAMETRIC_ INDEX = "$drmaa_ incr_ ph$";

attribute string remoteCommand;
attribute OrderedStringList args;
attribute DRMAA::JobSubmissionState jobSubmissionState;
attribute Dictionary jobEnvironment;
attribute string workingDirectory;
attribute string jobCategory;
attribute string nativeSpecification;
attribute StringList email;

attribute boolean blockEmail;
attribute string startTime;

attribute string jobName;

attribute string inputPath;

drmaa-wg@ogf.org 12

Peter Troger 3.9.08 10:59

Kommentar: TODO: #2817 — Windows
has no concept of signals.

Peter Troger 31.1.09 00:23

Kommentar: Daniel Gruber pointed out
that this information might be useless
| without the location of the core file.

Peter Troger 3.9.08 14:07

Kommentar: TODO: #2836 — DRMAA
should provide more information why the
job was aborted

Peter Troger 3.9.08 14:08

Kommentar: TODO: Survey showed
serious amount of interest for JSDL
support in DRMAA. See survey results for

options.

Kommentar: TODO: #5881 — more
optional JT attributes to support resource
requirement formulation. Mostly solved by
JSDL. Important question according to
survey. Dan proposed a
“resourceRequest” attribute of type
“Dictionary”, treated as mandatory, or
maybe a “hardResourceRequest” vs.
“softResourceRequest”

attribute string outputPath;

attribute string errorPath;

attribute boolean joinFiles;

attribute FileTransferMode transferFiles;
attribute deadlineTime;

attribute TimeAmount hardWallclockTimeLimit;
attribute TimeAmount softWallClockTimeLimit;
attribute TimeAmount hardRunDurationLimit;
attribute TimeAmount softRunDurationLimit;
readonly attribute StringlList attributeNames;

[language-specific operations for implementation-specific attributes]

In languages that do not support the notion of interfaces or objects, the job template attributes
SHOULD be modeled as constant parameters to generic getter and setter routines. These
routines SHOULD treat all attribute names and values as strings. In the case of such a
language, the attributeNames attribute SHOULD be modeled as a getAttributeNames() routine
that returns the names of the available attributes as a list of strings which can be used with the
generic getter and setter routines. See section below.

The JobTemplate implementation MUST support the following exceptions for the setter
operations in case there is a concept of exceptions in the programming language:

« InvalidAttribute ValueException — The value is invalid for the job template property, e.g. a
startTime that is in the past.

« ConflictingAttribute ValuesException — the attribute value conflicts with a previously set
attribute value.

For both getter and setter operations, the following exceptions MUST be supported in case
exceptions are part of the programming language:

. NoActive SessionException

. DrmCommunicationException
. AuthorizationException

. OutOfMemoryException

. InternalException

In most cases, a DRMAA implementation will require that job templates be created through the
Session::createJobTemplate() method. In those cases, passing a template created other than
via this method to the Session::deleteJobTemplate(), Session::rundob(), or
Session::runBulkJobs() methods MUST result in an InvalidJob TemplateException being thrown
or a corresponding error code being returned if exceptions are not supported.

A JobTemplate instance SHOULD be convertible to a string for printing. This SHOULD be
accomplished through whatever mechanism is most natural for the implementation language.
The resulting string MUST contain the values of all set properties.

Access to scalar attributes (string, Boolean, long) MUST operate in a pass-by-value
mode. An according language binding must ensure that this behavior is always fulfilled. For
non-scalar attributes, the language binding MUST specify a consistent access strategy for all
these attributes — either pass-by-value or pass-by-reference — according to the use cases of
language binding implementations.

In the DRMAA job template concept, there is a distinction between mandatory, optional and
implementation-specific attributes. A language binding implementation MUST include all

drmaa-wg@ogf.org 13

DRMAA attributes described here, both required and optional. The setter and getter
implementations for optional attributes MUST in case throw UnsupportedAttributeException.
The service provider implementation SHOULD then override the setters and getters for
supported optional attributes with methods that operate normally. In the case of a destination
language that does not support the notion of interfaces or objects, the generic getter and setter
routines should throw UnsupportedAttributeException when called with the name of an unknown
or unsupported attribute.

8.1.1 Generic getter / setter routines

In the case of a destination language that does not support the notion of interfaces or objects,
the JobTemplate interface SHOULD be modeled by a set of generic setter and getter routines.
These generic routines are as follows:

string getAttribute (string name)
raises (DrmCommunicationException,
AuthorizationException,
NoActiveSessionException,
OutOfMemoryException,
InternalException,
UnsupportedAttributeException) ;
}i

This method SHALL return the string value of the specified attribute. The language binding
specification SHOULD consistently specify the string representation for non-string data types.
Valid input values are the strings returned by the getAttributeNames() operation. An invalid
attribute name leads to an UnsupportedAttribute Exception.

stringlist getVectorAttribute (string name)
raises (DrmCommunicationException,

AuthorizationException,
NoActiveSessionException,
OutOfMemoryException,
InternalException,
UnsupportedAttributeException) ;

}i

This method SHALL return the list of string values of the specified vector attribute. A vector
attribute is one which is prefixed with “v_" in the table in section . The language binding
specification SHOULD consistently specify the string representation for non-string vector
elements. Valid input values are the strings returned by the getAttributeNames() operation. An
invalid attribute name leads to an UnsupportedAttributeException.

void setAttribute (string name, string value)
raises (DrmCommunicationException,

UnsupportedAttributeException,
InvalidAttributeValueException,
AuthorizationException,
NoActiveSessionException,
OutOfMemoryException,
InternalException) ;

}i

This method SHALL change the value of the specified attribute to the given value. Valid input

values for the name parameter are the strings returned by the getAttributeNames() operation.
An invalid attribute name leads to an UnsupportedAttributeException. An invalid value for a

drmaa-wg@ogf.org 14

particular attribute leads to an InvalidAttributeValueException. The language binding
specification SHOULD consistently specify the string representation for non-string data types.

void setVectorAttribute (string name, stringlist wvalue)
raises (DrmCommunicationException,

UnsupportedAttributeException,
InvalidAttributeValueException,
AuthorizationException,
NoActiveSessionException,
OutOfMemoryException,
InternalException) ;

}i

This method SHALL replace the list of values of the specified vector attribute to the given list of
values. A vector attribute is one which is prefixed with “v_" in the table in section . Valid
input values for the name parameter are the strings returned by the getAttributeNames()
operation. An invalid attribute name leads to an UnsupportedAttributeException. An invalid
value for a particular attribute leads to an InvalidAttributeValueException. The language binding
specification SHOULD consistently specify the string representation for non-string vector
elements.

If a language binding uses this generic getter / setter approach, then it MUST enforce the usage
of the attribute names specification from section for all implementations, and all attributes
listed in section MUST be implemented.

8.2 Accessing implementation-specific attributes

A language binding MUST provide a means for accessing implementation-specific attributes, as
the getters and setters for such attributes are not defined by the JobTemplate interface. This
access method MUST be consistent for all attributes and SHOULD be clearly described in the
language binding specification. Some destination languages MAY enable more than one
access mechanism.

Some common approaches are:

8.2.1 Introspection approach

In order to access the getters and setters for implementation-specific attributes, the developer
must use the destination language's introspection mechanisms to locate and then call the
attributes' getters and setters at run time. In such a case, the list of attribute names given by
the attributeNames attribute MUST be names that are meaningful to the destination language's
introspection mechanism.

This approach makes it possible to write applications which are completely portable across
binding implementations, including previously unknown binding implementations assuming that
the naming of implementation-specific attributes is consistent and/or predictable. A significant
disadvantage to this approach is the complexity of writing fully dynamic, introspection-based
application logic.

8.2.2 Dynamic Loader Approach

In languages that support dynamic class loading, access to implementation-specific attributes
can be encapsulated in classes dedicated to accessing the job template attributes of a specific
binding implementation. After determining the binding implementation in use, an application in
such a language could dynamically load a class that is capable of setting the implementation-
specific attributes of the job template.

drmaa-wg@ogf.org 15

An advantage of this approach is that within the scope of the dynamically loaded class, the job
template may be safely cast to the implementation type without creating a run-time dependency
on the implementation class. Within the class access to the job template attributes is done
directly using the job template implementation's declared getters and setters. A disadvantage is
that such a class is needed for each binding implementation to be supported, and each such
class is limited to operating only on that specific binding implementation. Another disadvantage
is that it creates a compile-time dependency on all supported binding implementations, i.e. all
supported binding implementations must be available at the time the application is compiled.

8.2.3 Discouraged approaches

The direct casting of a job template to the job template implementation class without the use of
dynamic class loading SHOULD NOT be used. Such casting, while enabling direct access to all
job template attribute getters and setters, creates a compile-time and run-time dependency on
all supported binding implementations, i.e. such an application must be bundled with all binding
implementations, even if it will only be run on one of them.

The combination of job template attribute getters and setters with generic getters and setters,
where either set of accessors provides access to only a subset of the job template
implementations attributes, SHOULD NOT be used. A DRMAA binding MUST provide
consistent attribute access, with support for all attribute types (required, optional and
implementation-specific) in only one language-specific method.

8.3 [Constants

The JobTemplate interface defines a set of constants that are used in the context of some of the
attributes:

const string HOME DIRECTORY = "S$drmaa_ hd ph$";
const string WORKING DIRECTORY = "$drmaa wd ph$";
const string PARAMETRIC INDEX = "$drmaa incr ph$";

The HOME_DIRECTORY constant is a placeholder used to represent the user's home directory
when building paths for the workingDirectory, inputPath, outputPath, and errorPath attributes.

The WORKING_DIRECTORY constant is a placeholder used to represent the current working
directory when building paths for the inputPath, outputPath, and errorPath attributes.

The PARAMETRIC_INDEX constant is a placeholder used to represent the id of the current
parametric job subtask when building paths for the workingDirectory, inputPath, outputPath, and
errorPath attributes.

8.4 remoteCommand

This attribute describes the command to be executed on the remote host. In case this
parameter contains path information, it MUST be seen as relative to the execution host file
system and is therefore evaluated there. The attribute value SHOULD NOT relate to binary file
management or file staging activities.

8.5 args

This attribute contains the list of command-line arguments for the job to be executed.

drmaa-wg@ogf.org 16

Peter Troger 3.9.08 10:40
Kommentar: TODO: #2837 — more
placeholders. Was favored by most survey
participants. Needs research about
common placeholders in today’s DRM

systems.

Peter Troger 3.9.08 14:09

Kommentar: TODO: #5873 — support for
the placeholders in more of the JT
attributes. Needs research about DRM
support. Some parts might be
implementable in the DRMAA library only.

8.6 jobSubmissionState

Defines the state of the job at submission time. For more information see section 5.3.

8.7 jobEnvironment

This attribute holds the environment variable values for the execution machine. The values
SHOULD override the remote environment values if there is a collision. If this is not possible,
the behavior is implementation dependent.

8.8 workingDirectory

This attribute specifies the directory where the job is executed. If the attribute is not set, the
behavior is implementation dependent. The attribute value MUST be evaluated relative to the
execution host's file system. The attribute value MAY contain the HOME_DIRECTORY or
PARAMETRIC_INDEX constant values as placeholders. A HOME_DIRECTORY placeholder at
the begin denotes the remaining portion of the attribute value as a relative directory path
resolved relative to the job users home directory at the execution host. The
PARAMETRIC_INDEX placeholder MAY be used at any position within the attribute value in the
case of parametric job templates and SHALL be substituted by the underlying DRM system with
the parametric jobs' index.

The workingDirectory MUST be specified in a syntax that is common at the host where the job
is executed. If the attribute is set and no placeholder is used, an absolute directory specification
is expected. If the attribute is set and the job was submitted successfully and the directory does
not exist, the job MUST enter the state JobState. TERMINATED.,

8.9 jobCategory

This attribute allows an implementation-defined string specifying how to resolve site-specific
resources and/or policies. Site administrators MAY create a job category suitable for an
application to be dispatched by the DRMS; the associated category name SHALL be specified
as a job submission attribute. The DRMAA implementation MAY then use the category name to
manage site-specific resource and functional requirements of jobs in the category. Such
requirements need to be configurable by the site operating a DRMS and deploying an
application on top of it.

More information can be found in section 2.4.1 of the DRMAA 1.0 specification document|

8.10 nativeSpecification

This attribute enables an implementation-defined string that is passed by the end user to
DRMAA to specify site-specific resources and/or policies.

As far as the DRMAA interface specification is concerned, the native specification is an
implementation-defined string and is interpreted by each DRMAA library. One MAY use the job
category and the native specification with the same job submission for policy specification. In
this case, the DRMAA library is assumed to be capable of merging the outcome of the two
policy sources in a reasonable way.

The native specification MAY be used without the requirement to maintain job categories, and
submit options MAY be specified directly.

More information can be found in section 2.4.2 of the DRMAA 1.0 specification document|

8.11 email

This attribute holds a list of email addresses that is used to report the job completion and status.

drmaa-wg@ogf.org 17

Peter Troger 1.4.09 10:38

| Geléscht: FAILED

Peter Troger 3.9.08 14:10

Kommentar: TODO: #5853 —
Standardize category names. Otherwise
check if this attribute was ever
implemented.

Peter Troger 3.9.08 13:24

Kommentar: TODO: Make document
self-contained.

Peter Troger 3.9.08 13:25

Kommentar: TODO: make document
self-contained.

8.12 blockEmail

This Boolean parameter decides whether the sending of email is blocked by default or not,
regardless of the DRMS setting. If the parameter is TRUE, the sending of email SHALL be
blocked regardless of the DRMS setting. If the value is FALSE, the sending of email SHALL be
determined by the DRMS setting.

8.13 startTime

This attribute specifies the earliest time when the job MAY be eligible to be run.

8.14 jobName

A job name SHALL be comprised of alphanumeric and ' ' characters. The DRMAA
implementation MAY truncate any client-provided job name to an implementation-defined length
that is at least 31 characters.

8.15 inputPath

Specifies the job's standard input as a path to a file. If this property is not explicitly set in the job
template, the job is started with an empty input stream, unless the job category, native
specification, or a DRMS setting causes a source for the input stream to be set. If this attribute
is set, it specifies the network path for the job's input stream file in the form:

[hostname] :file path

If the transferFiles job template attribute is supported and has a value where the
FileTransferMode::inputStream attribute set to true, the input file SHOULD be fetched by the
underlying DRM system from the specified host, or from the submit host if no hostname was
specified.

If the transferFiles job template attribute is not supported or its value's
File TransferMode::inputStream is set to false, then the input file is always expected at the host
where the job is executed, irrespective of whether a hostname was specified.

The PARAMETRIC_INDEX placeholder can be used at any position for parametric job
templates and SHALL be substituted by the underlying DRM system with the parametric job's
index.

A HOME_DIRECTORY placeholder at the beginning of the attribute value denotes the
remaining portion as a relative file specification resolved relative to the job's user's home
directory at the host where the file is located.

A WORKING_DIRECTORY placeholder at the beginning of the attribute value denotes the
remaining portion as a relative file specification resolved relative to the job's working directory at
the host where the file is located.

The inputPath MUST be specified in a syntax that is common at the host where the file is
located.

If set, and the job were successfully submitted, and the file can't be read, the job enters the
state, JobState.

8.16 outputPath

Specifies how to direct the job's standard output to a file. If this attribute is not explicitly set in
the job template, the destination of the job's output stream is not defined, unless the job
category, native specification, or a DRMS setting causes a destination for the output stream to
be set. If this attribute is set, it specifies the network path of the job's output stream in the form:

drmaa-wg@ogf.org 18

Geloscht: FATLED

[hostname] :file path

If the transferFiles job template attribute is supported and its value's
File TransferMode::outputStream attribute is set to true, the output file SHALL be transferred by
the underlying DRM system to the specified host or to the submit host if no hostname is
specified.

If the transferFiles job template attribute is not supported or its value's
File TransferMode::outputStream attribute is set to false, the output file SHALL be kept at the
host where the job is executed, irrespective of whether a hostname was specified.

All output sent to the job's standard output stream SHALL be appended to that file. If the file
does not exist at the time the job is executed, the file SHALL first be created.

The PARAMETRIC_INDEX placeholder can be used at any position with parametric job
templates and SHALL be substituted by the underlying DRM system with the parametric job's
index.

A HOME_DIRECTORY placeholder at the beginning denotes the remaining portion as a relative
file specification resolved relative to the job users home directory at the host where the file is
located.

A WORKING_DIRECTORY placeholder at the beginning denotes the remaining portion as a
relative file specification resolved relative to the jobs working directory at the host where the file
is located.

The outputPath MUST be specified in a syntax that is common at the host where the file is
located. If set and the job were successfully submitted and the file can't be written before
execution the job MUST enter the state JobState.

8.17 errorPath

Specifies how to direct the jobs’ standard error to a file.

If not explicitly set in the job template, the destination of the job's error stream is not defined
unless the job category, native specification, or a DRMS setting causes a destination for the
error stream to be set. If this attribute is set, it specifies the network path of the jobs error
stream file in the form:

[hostname] :file path

If the ftransferFiles job template attribute is supported and it's value's
File TransferMode::errorStream attribute is set to true, the error file SHALL be transferred by
the underlying DRM system to the specified host or to the submit host if no hostname is
specified.

If the transferFiles job template attribute is not supported or it's value's
File TransferMode::errorStream is set to false, the error file is always kept at the host where the
job is executed irrespective of whether a hostname was specified.

All output sent to the job's standard error stream SHALL be appended to that file. If the file
does not exist at the time the job is executed, the file SHALL first be created.

The PARAMETRIC_INDEX placeholder can be used at any position for parametric job
templates and SHALL be substituted by the underlying DRM system with the parametric jobs'
index.

A HOME_DIRECTORY placeholder at the beginning denotes the remaining portion as a relative
file specification, resolved relative to the job users home directory at the host where the file is
located.

A WORKING_DIRECTORY placeholder at the beginning denotes the remaining portion as a
relative file specification resolved relative to the jobs working directory at the host where the file
is located.

drmaa-wg@ogf.org 19

Geloscht: FATLED

The errorPath MUST be specified in a syntax that is common at the host where the file is

located.

If set and the job were successfully submitted and the file can't be written before execution, the
| job enters the state JobsState.

8.18 joinFiles Gel6scht: FATLED

Specifies whether the error stream should be intermixed with the output stream. If not explicitly
set in the job template, this attribute defaults to false. If this attribute is set to true, the underlying
DRM system SHALL ignore the value of the errorPath attribute and intermix the standard error
stream with the standard output stream as specified by the outputPath.

8.19 transferFiles

Specifies how to transfer files between hosts.

If this attribute is not explicitly set in the job template, the effect is the same as setting the
property to a File TransferMode instance with all members set to false.

This attribute works in conjunction with the inputPath, outputPath and errorPath attributes.

This attribute is optional. An implementation MUST throw an UnsupportedAttributeException if
this attribute is not supported.

8.20 deadlineTime

Specifies a deadline after which the DRMS will abort or terminate the job.

This attribute is optional. An implementation MUST throw an UnsupportedAttributeException if
this attribute is not supported.

8.21 hardWallclockTimeLimit

This attribute specifies when the job's wall clock time limit has been exceeded. An
implementation SHALL terminate a job that has exceeded its wall clock time limit. Suspended
time SHALL also be counted towards this limit.

This attribute is optional. In case an implementaton MUST throw an
UnsupportedAttributeException if this attribute is not supported.

8.22 softWallClockTimeLimit

This attribute specifies an estimate as to how much wall clock time the job will need to
complete. Note that the suspended time is also counted towards this estimate. This attribute is
intended to assist the scheduler. If the time specified is insufficient, the implementation MAY
impose a scheduling penalty.

This attribute is optional. In case an implementaton MUST throw an
UnsupportedAttributeException if this attribute is not supported.

8.23 hardRunDurationLimit

This attribute specifies how long the job MAY be in a running state before its limit has been
exceeded, and therefore is terminated by the DRMS.

drmaa-wg@ogf.org 20

This attribute is optional. In case an implementaton MUST throw an

UnsupportedAttributeException if this attribute is not supported.

8.24 softRunDurationLimit

This attribute specifies an estimate as to how long the job will need to remain in a running state
to complete. This attribute is intended to assist the scheduler. If the time specified is insufficient,
the implementation MAY impose a scheduling penalty.

MUST

This attribute is optional. In case an implementation throw an

UnsupportedAttributeException if this attribute is not supported.

8.25 attributeNames

This read-only attribute specifies the list of supported attribute names. This list includes
supported DRMAA reserved attribute names (both required and optional) and implementation-
specific attribute names. The listed attribute name MUST be of a format that is meaningful to
the destination language for use in introspection, if supported, or with the getAttribute() and
setAttribute() methods if introspection is not supported. See section 10.3 for a given names of
the job template attributes.

9 [Session interface |

The following chapter explains the set of constants, methods and attributes defined in the 1’

Session interface.

An application process SHALL open only one DRMAA session at a time. Another session can
be opened only after the current one is closed. Nesting of sessions SHOULD NOT be possible.
Job Id’s SHALL remain valid from one session to another. |

An implementation MAY persist job ID’s of submitted jobs for the next session, in order to
support a restartable application (e.g. Java servlets). The behavior of those jobs in the
subsequent session is undefined. Job control routines MAY work correctly if a job ID was
generated in a previous DRMAA session provided the current DRMAA session knows how to
resolve this job ID. The burden is on the user to match previous job Id’s with appropriate
DRMAA sessions (i.e., DRMAA implementations)|

Without session persistency, it is RECOMMENDED that the DRMAA library free all the session
resources, although this is not guaranteed, so that old session resources cannot be used later.

The Session interface has explicit methods for starting and ending the session, as well as for
creating and destroying job template objects. Even though some object oriented programming
languages might prefer implicit object destruction mechanism instead of explicit cleanup calls,
this interface design reflects the close coupling of DRMAA to the underlying DRM system. It
also supports the implementation of object oriented DRMAA libraries based on a DRMAA C
library.

interface Session{

9.1 Constants

The Session interface defines a set of constant values, which are used in the context of several
interface functions.

const long long TIMEOUT WAIT FOREVER = -1;

drmaa-wg@ogf.org 21

Peter Troger 31.1.09 00:59

Kommentar: TODO: Survey showed
many requests for:

- Monitoring of DRM resources (list of
hosts etc.)

- Fetching the job list of a session

-Job workflows (but only as add-on)

- Monitoring of jobs in the DRM system not
submitted by the DRMAA session (has an
security aspect)

Kommentar: TODO: #2827 — improved
monitoring of single jobs (queue name,
execution host (!), ...) Implies new ability
to monitor not only running jobs. Could be
realized by filling some Joblnfo structure in

wait()

Peter Troger 3.9.08 11:07
Kommentar: TODO: #2782 — change

attributes of submitted, but pending jobs.

Demands feature check in DRM systems.

Peter Troger 3.9.08 13:31

Kommentar: TODO: Survey showed
some interest in being able to submit jobs

to specific resources

Peter Troger 3.9.08 13:31

Kommentar: TODO: #5876 — Extend
DRMAA by file transfer capabilities

Peter Troger 3.9.08 14:11

Kommentar: TODO: #5877 — add
support for job signaling

Peter Troger 3.9.08 13:53

Kommentar: TODO: #5880 — Add better

support for job status change monitoring

Peter Troger 3.9.08 14:11
Kommentar: TODO: #2821 — Support for
multiple concurrent sessions. Survey
showed great interest in that. Mandatory

or optional ?

Peter Troger 3.9.08 14:12

Kommentar: TODO: #2820 — Support for
persistent sessions. Survey showed great
interest. Should be made mandatory
somehow.

const long long TIMEOUT_NO_WAIT = 0;
const string JOB_IDS_SESSION_ANY = "DRMAA JOB_IDS_SESSION_ANY";
const string JOB_IDS_SESSION_ALL = "DRMAA JOB_IDS_SESSION_ALL";

The TIMEOUT_WAIT_FOREVER constant is used with the wait() and synchronize() methods to
indicate that a method call should not return until the given job or jobs have entered the DONE,
TERMINATED or FAILED state.

The TIMEOUT_NO_WAIT constant is used with the wait() and synchronize() methods to
indicate that a method call should return immediately if the given job or jobs have not yet
entered the DONE, TERMINATED or FAILED state.

The JOB_IDS_SESSION_ANY constant is used with the wait() method to indicate that a
method call may operate on any job currently in the RUNNING state in the session.

The JOB_IDS_SESSION_ALL constant is used with the control() and synchronize() methods to
indicate that a method call should operate on all jobs in the session at submission time, minus
any jobs that go out of scope during the run time of the operation. For example: If a job was in
the session at the time of calling synchronize(JOB_IDS_SESSION_ALL), and it's gets reaped
during the operation, the overall call will not fail. A call with JOB_IDS_SESSION_ALL to an
empty session SHALL result in a successful call. In case that a «call with
JOB_IDS_SESSION_ALL fails for a partial set of the jobs in the session, the implementation
SHALL throw an InternalException. The error text of the exception should explain the problem in
detail and may give an idea of the current status of the session.

9.2 init

The init() method MUST do whatever work is required to initialize a DRMAA session for use.
The contactString parameter is an implementation-dependent string that may be used to specify
which DRM system to use. This method must be called before any other DRMAA calls, except
for the getter functions of the contact, drmsinfo, and drmaalmplementation attributes defined in
the Session interface.

If contact is null or emtpy, the default DRM system SHOULD be used, provided there is only
one DRMS available. If contact is null or empty, and more than one DRMAA implementation is
available, init() SHALL throw a NoDefaultContactStringSelectedException or return a
corresponding error code if exceptions aren't supported.

init() SHOULD be called only once, by only one of the threads. The main thread is
recommended. A call to init() by another thread or additional calls to init() by the same thread
SHOULD throw an AlreadyActiveSessionException or return a corresponding error code if
exceptions are not supported.

In the case that a DRMAA library implementation needs to perform non-thread-safe operations
(like getHostByName() C library call), it SHOULD perform them in the implementation of the
init() operation, in order to ensure thread-safe operations for all other DRMAA methods.

void init(in string contactString)
raises (DrmsInitException,

InvalidContactStringException,
AlreadyActiveSessionException,
DefaultContactStringException,
NoDefaultContactStringSelectedException,
OutOfMemoryException,
DrmCommunicationException,
AuthorizationException,
InvalidArgumentException,
InternalException) ;

drmaa-wg@ogf.org 22

Peter Troger 3.9.08 13:38
Kommentar: TODO: #2822 — improve

description of contact string parameter

Peter Troger 3.9.08 14:13

Kommentar: TODO: Python people hate
that — this is what parameterized
constructors are good for.

Parameters

contactString - implementation-dependent string that may be used to specify which DRM
system to use. If null or empty, the DRMAA implementation will select the default DRM
system if there is only one DRMS available.

Exceptions

DrmslInitException — failed while initializing the session.

InvalidContactStringException — the contact parameter is invalid.

AlreadyActiveSessionException — the session has already been initialized.

DefaultContactStringException — the contact parameter is null or empty and the

default contact string could not be used to connect to the DRMS.

* NoDefaultContactStringSelectedException — the contact parameter is null or empty
and more than one DRMS is available.

e OutOfMemoryException — the DRMAA implementation does not have enough free

memory to perform the operation.

DrmCommunicationException — the DRMS could not be contacted for this request.

AuthorizationException — the user does not have permission to perform this action.

InvalidArgumentException — an argument value is invalid.

InternalException — an error has occurred in the DRMAA implementation.

9.3 lexit

The exit() method MUST do whatever work is required to disengage from the DRM system and
allow the DRMAA implementation to perform any necessary internal cleanup. This method ends
the current DRMAA session SHALL NOT affect any jobs (e.g., queued and running jobs remain
queued and running). Any job template instances which have not yet been deleted become
invalid after exit() is called, even after a subsequent call to init(). exit() SHOULD be called only
once, by only one of the threads. Additional calls to exit() beyond the first SHALL throw a
NoActiveSessionException or return a corresponding error code if exceptions aren't supported.

void exit ()

raises (DrmsExitException,
NoActiveSessionException,
DrmCommunicationException,
AuthorizationException,
OutOfMemoryException,
InternalException) ;

Exceptions

» DrmsEXxitException — failed while exiting the session.

* NoActiveSessionException — the session has not been initialized or exit() has already
been called

» DrmCommunicationException — the DRMS could not be contacted for this request.

« AuthorizationException — the user does not have permission to perform this action.

* OutOfMemoryException — the DRMAA implementation does not have enough free
memory to perform the operation.

« InternalException — an error has occurred in the DRMAA implementation.

drmaa-wg@ogf.org 23

Peter Troger 3.9.08 14:14

Kommentar: TODO: Python people hate
that — this is what finalizers are good for.

9.4 createJobTemplate

The createJobTemplate() method SHALL return a new JobTemplate instance. The job template
is used to set the defining characteristics for jobs to be submitted. Once the job template has
been created, it should also be deleted (via deleteJobTemplate()) when no longer needed.
Failure to do so may result in a memory leak.

JobTemplate createJobTemplate ()

raises (DrmCommunicationException,
NoActiveSessionException,
OutOfMemoryException,
AuthorizationException,
InternalException);

Returns

The createJobTemplate() method SHALL return a blank JobTemplate instance.

Exceptions

» DrmCommunicationException — unable to communicate with the DRMS

» NoActiveSessionException — the session has not been initialized or exit() has already
been called

» OutOfMemoryException — the DRMAA implementation does not have enough free
memory to perform the operation.

« AuthorizationException — the user does not have permission to perform this action.

« InternalException — an error has occurred in the DRMAA implementation.

9.5 deleteJobTemplate

The deleteJobTemplate() method is used to deallocate a job template, and SHALL perform all
necessary steps required to free all memory associated with the given JobTemplate instance.

In languages where memory is not freed explicitly, e.g. languages that use garbage collectors,
this method SHALL perform all necessary steps required to prepare this job template to be
freed. In languages where finalizers are supported, the implementation of this method MAY be
empty.

This method SHALL have no effect on running jobs. This method MUST only work on
JobTemplate instances that were created with the createJobTemplate() method and have not
previously been deleted with the deleteJobTemplate() method and MUST otherwise throw an
InvalidJob Template Exception.

void deleteJobTemplate (in DRMAA: :JobTemplate JjobTemplate)
raises (DrmCommunicationException,
NoActiveSessionException,
OutOfMemoryException,
AuthorizationException,
InvalidArgumentException,
InvalidJobTemplateException,
InternalException) ;

Parameters

jobTemplate - the JobTemplate instance to delete.

Exceptions

* DrmCommunicationException — unable to communicate with the DRMS.

drmaa-wg@ogf.org 24

* NoActiveSessionException — the session has not been initialized or exit() has already
been called.

» OutOfMemoryException — the DRMAA implementation does not have enough free
memory to perform the operation.

« AuthorizationException — the user does not have permission to perform this action.

* InvalidArgumentException — the argument value is invalid.

* InvalidJobTemplateException — the given job template was not created with
createJobTemplate() or has already been deleted .

* InternalException — an error has occurred in the DRMAA implementation.

9.6 [runJob

The rundob() method SHALL submit a job with attributes defined in the job template given as a
parameter. The returned job identifier SHOULD be a string identical to that returned from the
underlying DRM system. This method MUST only work on JobTemplate instances that were
created with the createJobTemplate() method and have not previously been deleted with the
deleteJobTemplate() method and MUST otherwise throw an InvalidJobTemplateException.

string rundJob (in DRMAA::JobTemplate JjobTemplate)

raises (TrylLaterException,
DeniedByDrmException,
DrmCommunicationException,
AuthorizationException,
InvalidJobTemplateException,
NoActiveSessionException,
OutOfMemoryException,
InvalidArgumentException,
InternalException) ;

Parameters

jobTemplate - the job template to be used to create the job.

Returns

The rundob() method SHOULD return a job identifier string identical to that returned from the
underlying DRM system.

Exceptions

« TryLaterException — the request could not be processed due to excessive system load.

* DeniedByDrmException — the DRMS rejected the job. The job will never be accepted
due to job template or DRMS configuration settings.

» DrmCommunicationException — unable to communicate with the DRMS.

« InvalidJobTemplateException — the given job template was not created with
createJobTemplate() or has already been deleted.

* AuthorizationException — the user does not have permission to submit jobs.

* NoActiveSessionException — the session has not been initialized or exit() has already
been called.

* OutOfMemoryException — the DRMAA implementation does not have enough free
memory to perform the operation.

* InvalidArgumentException — the argument value is invalid.

* InternalException — an error has occurred in the DRMAA implementation.

drmaa-wg@ogf.org 25

Peter Troger 3.9.08 13:21

Kommentar: TODO: #5884 — apply
solution from GFD.133 here

9.7 runBulkJobs

The runBulkJobs() method SHALL submit a set of parametric jobs, dependent on the implied
loop index, each with attributes defined in the given job template. Each job in the set is identical
except for its index. The first parametric job has an index equal to beginindex. The next job has
an index equal to beginindex + step, and so on. The last job has an index equal to beginindex
+ n * step, where n is equal to (endindex — beginindex) / step. Note that the value of the last
job's index may not be equal to endindex if the difference between beginindex and endindex is
not evenly divisible by step. The smallest valid value for beginindex is 1. The largest valid
value for endindex is language dependent. The beginindex value must be less than or equal to
the endindex value, and only positive index numbers are allowed. The index number can be
determined by the job in an implementation-specific fashion. The returned job identifiers
SHOULD be Strings identical to those returned from the underlying DRM system.

The JobTemplate interface defines a PARAMETRIC INDEX placeholder for use in specifying
paths. This placeholder is used to represent the individual identifiers of the tasks submitted
through this method.

This method MUST only work on JobTemplate instances that were created by the
createJobTemplate() method and have not previously been deleted by the deleteJobTemplate()
or exit() method and MUST otherwise throw an InvalidJobTemplateException.

StringList runBulkJobs(in DRMAA::JobTemplate jobTemplate,
in long beginIndex,
in long endIndex,
in long step)
raises (TrylLaterException,
DeniedByDrmException,
DrmCommunicationException,
AuthorizationException,
InvalidJobTemplateException,
NoActiveSessionException,
OutOfMemoryException,
InvalidArgumentException,
InternalException) ;

Parameters

jobTemplate - the job template to be used to create the job.
beginIndex - the starting value for the loop index.

endIndex - the terminating value for the loop index.

step - the value by which to increment the loop index each iteration.

Returns

The runBulkJobs() method SHOULD return a list of job identifier Strings identical to that
returned by the underlying DRM system

Exceptions

» TryLaterException — the request could not be processed due to excessive system load.

» DeniedByDrmException — the DRMS rejected the job. The job will never be accepted
due to job template or DRMS configuration settings.

* DrmCommunicationException — unable to communicate with the DRMS.

« InvalidJobTemplateException — the given job template was not created with
createJobTemplate() or has already been deleted.

* AuthorizationException — the user does not have permission to submit jobs.

drmaa-wg@ogf.org 26

Peter Troger 3.9.08 13:22

Kommentar: TODO: #5884 — apply
solution from GFD.133 here

* NoActiveSessionException — the session has not been initialized or exit() has already
been called.

» OutOfMemoryException — the DRMAA implementation does not have enough free
memory to perform the operation.

* InvalidArgumentException — an argument value is invalid.

« InternalException — an error has occurred in the DRMAA implementation.

9.8 control

The control() method SHALL hold, release, suspend, resume, or kill the job identified by
JjobName respective to the operation parameter. The jobName parameter can be
JOB_IDS_SESSION_ALL (see 9.1) to act on all jobs in the session.

To avoid thread races in multi-threaded applications, the DRMAA implementation user should
explicitly synchronize this call with any other job submission calls or control calls that may
change the number of remote jobs.

The legal values for operation and their meanings SHALL be:

* JobControlAction: : SUSPEND: stop the job,

e JobControlAction: :RESUME: (re)start the job,

* JobControlAction: : HOLD: put the job on-hold,

* JobControlAction: :RELEASE: release the hold on the job, and
* JobControlAction: : TERMINATE: kill the job.

This method SHALL return once the action has been acknowledged by the DRM system, but
MAY return before the action has been completed.

Some DRMAA implementations MAY allow this method to be used to control jobs submitted
externally to the DRMAA session, such as jobs submitted by other DRMAA sessions in other
DRMAA implementations or jobs submitted via native utilities.

void control(in string JjobName,
in JobControlAction operation)

raises (DrmCommunicationException,
AuthorizationException,
ResumelInconsistentStateException,
SuspendInconsistentStateException,
HoldInconsistentStateException,
ReleaseInconsistentStateException,
InvalidJobException,
NoActiveSessionException,
OutOfMemoryException,
InvalidArgumentException,
InternalException) ;

Parameters
jobName - The string id of the job to control.

operation - the control action to be taken.

Exceptions

* DrmCommunicationException — unable to communicate with the DRMS.

« AuthorizationException — the user does not have permission to modify jobs.

» ResumelnconsistentStateException — the job is not in a state from which is can be
resumed.

drmaa-wg@ogf.org 27

» SuspendlinconsistentStateException — the job is not in a state from which is can be
suspended.

» HoldInconsistentStateException — the job is not in a state from which is can be held.

» ReleaselnconsistentStateException — the job is not in a state from which is can be
released.

* InvalidJobException — the job id does not represent a valid job.

» NoActiveSessionException — the session has not been initialized or exit() has already
been called.

* OutOfMemoryException — the DRMAA implementation does not have enough free
memory to perform the operation.

* InvalidArgumentException — an argument value is invalid.

* InternalException — an error has occurred in the DRMAA implementation.

9.9 synchronize

This method SHALL wait until all jobs specified by jobList have finished execution. The jobList
parameter can be JOB_IDS_SESSION_ALL (see section 9.1) to act on all jobs in the session.

To avoid thread race conditions in multi-threaded applications, the DRMAA implementation user
should explicitly synchronize this call with any other job submission or control calls that may
change the number of remote jobs.

To prevent blocking indefinitely in this call, the caller may use a timeout specifying how many
seconds to block in this call. The constant value TIMEOUT WAIT FOREVER may be specified
to wait indefinitely for a result. The constant value TIMEOUT NO WAIT may be specified to
return immediately. If the call exits before the timeout has elapsed, all the jobs have been
waited on or there was an interrupt. If the invocation exits on timeout, an ExitTimeoutException
SHALL be thrown or a corresponding error code returned if exceptions aren't supported. The
caller should check system time before and after this call in order to be sure of how much time
has passed.

If at any time during the call to synchronize() no jobs are active in the session, the call to
synchronize() will return immediately.

The dispose parameter specifies how to treat the reaping of the remote job's internal data
record, which includes a record of the job's consumption of system resources during its
execution and other statistical information. If the parameter is set to true, the DRM SHALL
dispose of the job's data record. If set to false, the data record SHALL be left for future access
via the wait() method. Because a DRMAA implementation is not required to retain information
about jobs that have been reaped, the routine is not required to, but MAY distinguish between
non-existent and reaped jobs. If the routine successfully validates a job ID for an already reaped
job, it MAY return successfully without any error.

void synchronize(1in StringList jobList,
in long long timeout,
in boolean dispose)
raises (DrmCommunicationException,
AuthorizationException,
ExitTimeoutException,
InvalidJobException,
NoActiveSessionException,
OutOfMemoryException,
InvalidArgumentException,
InternalException) ;

Parameters

jobList - the list of names for the jobs to synchronize.

drmaa-wg@ogf.org 28

Peter Troger 3.9.08 10:58

Kommentar: TODO: #2838 — possibility
to synchronize with job start

timeout - the maximum number of seconds to wait.
dispose - specifies how to treat reaping information.

Exceptions

* DrmCommunicationException — unable to communicate with the DRMS.

« AuthorizationException — the user does not have permission to synchronize against jobs.

 ExitTimeoutException — the call was interrupted before all given jobs finished.

« InvalidJobException — the job id does not represent a valid job.

» NoActiveSessionException — the session has not been initialized or exit() has already
been called.

* OutOfMemoryException — the DRMAA implementation does not have enough free
memory to perform the operation.

* InvalidArgumentException — an argument value is invalid.

« InternalException — an error has occurred in the DRMAA implementation.

9.10 wait

This method SHALL wait for a job with jobName to finish execution or fail. If
JOB_IDS SESSION ANY is provided as the jobName, this method SHALL wait for any job
submitted during this DRMAA session up to the moment wait() is called. At any time during a
call to wait() with JOB_IDS_SESSION_ANY as the jobName parameter, if no jobs are active in
the session, the call to wait() SHALL fail, throwing an InvalidJobException. This method is
modeled on the wait3 POSIX routine. Only one invocation of the wait() method for a given job
id MAY succeed. The others MUST throw an InvalidJobException.

The timeout value SHALL be used to specify the desired behavior when a result is not
immediately available. The constant value TTMEOUT WAIT FOREVER may be specified to wait
indefinitely for a result. The constant value TIMEOUT NO WAIT may be specified to return
immediately. Alternatively, a number of seconds may be specified to indicate how long to wait
for a result to become available.

If the call exits before timeout seconds, either the job has been waited on successfully or there
was an abortion or termination of the job. If the invocation exits on timeout, an
ExitTimeoutException SHALL be thrown or a corresponding error code returned if exceptions
aren't supported. The caller should check system time before and after this call in order to be
sure how much time has passed.

The method SHALL reap job data records on a successful call, so any subsequent calls to
wait() SHALL fail, throwing an InvalidJobException, meaning that the job's data record has been
already been reaped. This exception is the same as if the job were unknown. (The only case
where wait() MAY be successfully called on a single job more than once is when the previous
call to wait() timed out before the job finished.)

In a multi-threaded environment with a wait() call using JOB IDS SESSION ANY, only the
active thread gets the status of the finished or job in that case, while the other
threads continue waiting. If there are no more running or completed jobs left in the session, all
remaining waiting threads SHOULD fail with an InvalidJobException.

If thread A is waiting for a specific job, and another thread, thread B, waiting for that same job or
with JOB_IDS_SESSION_ANY, receives notification that the job has finished, thread A
SHOULD fail with an InvalidJobException. At any time during a call to wait() with
JOB_IDS_SESSION_ANY as the jobName parameter, if no jobs are active in the session, the
call to wait() SHALL fail, throwing an InvalidJobException.

When successful, the resource usage information for the job SHALL be provided as a
Dictionary of usage parameter names and their values in the returned job info. The values
contain the amount of resources consumed by the job and are implementation defined. If the
resource usage information is unavailable, the provided dictionary SHOULD be empty or null.

drmaa-wg@ogf.org 29

Peter Troger 3.9.08 13:15

Kommentar: TODO: #5879 — Solution
applied to GFD.133 needs to be reflected
also here.

Geloscht: failed

If the destination language does not support the notion of interfaces or objects, the wait() call
SHOULD return an opaque data structure which contains the job exit information or references
to the job exit information. The opaque data structure is decoded using the routines which
model the Joblnfo interface.

JobInfo wait(in string jobName,
in long long timeout)

raises (DrmCommunicationException,
AuthorizationException,
ExitTimeoutException,
InvalidJobException,
NoActiveSessionException,
OutOfMemoryException,
InvalidArgumentException,

InternalException) ;

Parameters

jobName - the id of the job for which to wait.
timeout - the maximum number of seconds to wait.

Returns

This method SHALL return the resource usage and status information as Job/nfo instance.

Exceptions

* DrmCommunicationException — unable to communicate with the DRMS.

« AuthorizationException — the user does not have permission to wait for a job.

» ExitTimeoutException — the call was interrupted before the given job finished.

* InvalidJobException — the job id does not represent a valid job.

» NoActiveSessionException — the session has not been initialized or exit() has already
been called.

* OutOfMemoryException — the DRMAA implementation does not have enough free
memory to perform the operation.

* InvalidArgumentException — an argument value is invalid.

* InternalException — an error has occurred in the DRMAA implementation.

9.11 jobStatus

The jobStatus() method SHALL return the status of the job identified by jobName. The possible
values returned from this method are:

¢ JobState:UNDETERMINED: The job status cannot be determined. This is a permanent
issue, not being solvable by querying again for the job state.

* JobState:QUEUED ACTIVE: The job is queued for being scheduled and executed.

¢ JobState:HOLD: The job has been placed on hold by the system, the administrator, or
the user.

¢ JobState:RUNNING: The job is running in the DRM system.

e JobState:SYSTEM SUSPENDED: Ihe job has been suspended by the system or_the
administrator.

* JobState:USER SUSPENDED: The job has been suspended by a user.

e JobState:USER SYSTEM SUSPENDED: The job has been suspended by both the
system or administrator and a user.

¢ JobState:DONE: The job finished without an error.

drmaa-wg@ogf.org 30

Peter Troger 3.9.08 13:40

Kommentar: TODO: #2824 — Clarify
status query on reaped jobs

e JobState:FAILED: The job exited abnormally by itself before finishing. In POSIX-like
systems, this is typically triggered by a signal to the application process.

¢ JobState:TERMINATED: The job was ended by an external entity (e.g. the user or the
DRM system) before finishing execution. In POSIX-like systems, this is typically triggered
by a signal ‘to the job’ containing the application process.

The DRMAA implementation MUST always get the status of the job from the DRM system
unless the status has already been determined to be FAILED, 1 D or DONE and the
status has been successfully cached. Jt is up to the implementation to determine whether this
method is capable of operating on jobs submitted outside of the current DRMAA session.

JobState jobStatus (in string jobName, out native subState)
raises (DrmCommunicationException,

AuthorizationException,

InvalidJobException,

NoActiveSessionException,

OutOfMemoryException,

InvalidArgumentException,

InternalException) ;

Parameters

jobName - the id of the job whose status is to be retrieved.
subState — a DRMS-specific sub state for the returned state

Returns

The jobStatus() method SHALL return the job status, together with an implementation specific
sub state. This is intended to be a more detailed description of the current DRMAA job state, for
example the specific kind of HOLD state (user-triggered, system-triggered). Applications
SHOULD NOT expect this information to be available in all cases. Language bindings MUST
allow the application to discard this information (e.q. by passing a NULL value), and SHOULD
use a generic reference data type (e.g. *void or Object pointer). Implementations of the DRMAA
API SHOULD then define a DRMS-specific data structure for the sub-state information.

Exceptions

* DrmCommunicationException — unable to communicate with the DRMS.
« AuthorizationException — the user does not have permission to query for a job's status.
* InvalidJobException — the job id does not represent a valid job.

» NoActiveSessionException — the session has not been initialized or exit() has already
been called.

» OutOfMemoryException — the DRMAA implementation does not have enough free
memory to perform the operation.

« InvalidArgumentException — an argument value is invalid.

* InternalException — an error has occurred in the DRMAA implementation.

9.12 contact

If this attribute is read before the first call to the init() method, then it SHALL return a string
containing a comma-delimited list of default DRMAA implementation contacts strings. A contact
string represents a specific installation of a specific DRM system, e.g. a Condor central
manager machine at a given IP address or a Sun Grid Engine ‘root’ and ‘cell’.

drmaa-wg@ogf.org 31

Peter Troger 1.4.09 10:43

Geldscht: Terminated jobs SHALL return
a FATLED status.

If the value of the attribute is queried after a successful call to init(), this attribute SHALL contain
the contact string for the DRM system to which the session is attached.

The returned Strings are always implementation dependent and SHOULD NOT be interpreted
by the application.

readonly attribute string contact;

9.13 version
This attribute SHALL contain a Version instance containing the major and minor version
numbers of the DRMAA library. This attribute may not be read before init() has been called.

readonly attribute DRMAA::Version version;

9.14 drmsinfo

If the value of this attribute is read before the first successful call to the init() method, this
attribute SHALL return a string containing a comma-delimited list of DRM system identifiers. A
DRM system identifier denotes a specific type of DRM system, e.g. Sun Grid Engine.

If the value is read after init(), this attribute SHALL contain the selected DRM system identifier.
The Strings are implementation dependent and SHOULD NOT be interpreted by the application.

readonly attribute string drmsInfo;

9.15 drmaalmplementation

If the value of this attribute is read before the first successful call to init(), this attribute SHALL
return a string containing a comma-delimited list of DRMAA implementations. A DRMAA
implementation string denotes a specific version of a DRM system, e.g. Condor v6.6. If read
after init(), this attribute SHALL contain the selected DRMAA implementation. The returned
strings are implementation dependent and SHOULD NOT be interpreted by the application.

readonly attribute string drmaaImplementation;

drmaa-wg@ogf.org 32

10 Annex

10.1 Complete IDL specification

... (LEFT OUT FOR EASIER CHANGE TRACKING) ...

10.2 Correlation of DRMAA exceptions and error codes

The following table shows how exceptions can map to error codes, similar to the definition in the

Distributed Resource Management Application API Specification 1.0 [GFD133].

Error Code Name (DRMAA_ERRNO_...)

Exception Name

SUCCESS

Not needed

INTERNAL_ERROR

InternalException

DRM_COMMUNICATION_FAILURE

DrmCommunicationException

AUTH_FAILURE

AuthorizationException

INVALID_ARGUMENT

InvalidArgumentException

NO_ACTIVE_SESSION

NoActiveSessionException

NO_MEMORY

OutOfMemoryException

INVALID_CONTACT_STRING

InvalidContactStringException

DEFAULT_CONTACT_STRING_ERROR

DefaultContactStringException

DRMS_INIT_FAILED

ALREADY_ACTIVE_SESSION

DrmslnitException

AlreadyActiveSessionException

DRMS_EXIT_ERROR

INVALID_ATTRIBUTE_FORMAT

DrmsExitException

InvalidAttributeFormatException

INVALID_ATTRIBUTE_VALUE

InvalidAttributeValueException

CONFLICTING_ATTRIBUTE_VALUES

ConflictingAttributeValuesException

TRY_LATER

TryLaterException

DENIED_BY_DRM

DeniedByDrmException

INVALID_JOB

InvalidJobException

RESUME_INCONSISTENT_STATE

ResumelnconsistentStateException

SUSPEND_INCONSISTENT_STATE

SuspendInconsistentStateException

drmaa-wg@ogf.org 33

Error Code Name (DRMAA_ERRNO_...) Exception Name
HOLD_INCONSISTENT_STATE HoldInconsistentStateException
RELEASE_INCONSISTENT_STATE ReleaselnconsistentStateException
EXIT_TIMEOUT ExitTimeoutException
NO_RUSAGE Not needed
INVALID_JOB_TEMPLATE InvalidJobTemplateException
UNSUPPORTED_ATTRIBUTE UnsupportedAttributeException

The DRMAA_ERRNO_SUCCESS code reflects a successful operation call, if a language
binding models the error codes as operation return values. The
DRMAA_ERRNO_NO_RUSAGE is used to indicate that the target of a wait() call has exited
without providing resource usage information in languages which do no support the notion of
interfaces or objects. See section

In comparison to [GFD133], this specification introduces two new error conditions. The
InvalidJob TemplateException is used to indicate that the job template instance currently being
used is not valid. This may be, for example, because it has already been deleted via
Session::deleteJobTemplate(). The UnsupportedAttributeException is used to indicate that for
the current DRMAA implementation the accessed attribute of a job template is unsupported.

10.3 Correlation of JobTemplate attributes and attribute name strings

The following table shows the string names for the attributes in the JobTemplate interface. The
string names are needed as input parameter for the JobTemplate.getAttribute() and
JobTemplate.setAttribute() operations (see section). Following the [GFD133] semantics,
JobTemplate attributes with a complex type are prefixed by “v_" (vector attribute).

String Name JobTemplate Attribute
“remote_command” JobTemplate.remoteCommand
“v_argv” JobTemplate.args
“js_state” JobTemplate.jobSubmissionState
“v_env” JobTemplate.jobEnvironment
“‘wd” JobTemplate.workingDirectory
“job_category” JobTemplate.jobCategory
“native_specification” JobTemplate.nativeSpecification
“v_email” JobTemplate.email

drmaa-wg@ogf.org 34

String Name

JobTemplate Attribute

“block_email” JobTemplate.blockEmail
“start_time” JobTemplate.startTime
“job_name” JobTemplate.jobName
“input_path” JobTemplate.inputPath

“output_path”

JobTemplate.outputPath

“error_path”

JobTemplate.errorPath

“join_files”

JobTemplate.joinFiles

“transfer_files”

JobTemplate.transferFiles

“deadline_time”

JobTemplate.deadlineTime

“wet_hlimit” JobTemplate.hardWallclockTimeLimit

“wet_slimit” JobTemplate.softWallclockTimeLimit

“run_duration_hlimit” JobTemplate.hardRunDurationLimit

“run_duration_slimit” TJobTempIate.softRunDurationLimit

11 Security Considerations

Security issues are not discussed in this document. The scheduling scenario described here
assumeslthat security is handled at the point of job authorization/execution on a particular
resource.

Peter Troger 3.9.08 11:10

Kommentar: TODO: According to
survey, some people want us to consider
security details, such as the user account
the job is running under. Needs check with
both the DRM systems and GridWay.

12 References

[OMG IDL] Object Management Group. Common Object Request Broker Architecture: Core
Specification, Chapter 3, March 2004

[RFC 2119] S. Bradner. RFC 2119 — Key words for use in RFCs to Indicate Requirement
Levels, March 1997

[IUGUCO08] Peter Troger, Hrabri Rajic, Andreas Haas, and Piotr Domagalski. Standardized Job
Submission and Control in Cluster and Grid Environments. In International Journal
of Grid and Utility Computing (IJGUC). 2008. ISSN 1741-847X

[GFD133] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas
Haas, Bill Nitzberg, John Tollefsrud, and Peter Troger. Distributed Resource
Management Application API Specification 1.0 (GFD.133). Grid Recommendation.
Open Grid Forum, 2008.

13 Contributors

Peter Troger

drmaa-wg@ogf.org 35

peter@troeger.eu
Blekinge Institute of Technology

14 Acknowledgements

We are grateful to numerous colleagues for support and discussions on the topics covered in
this document, in particular (in alphabetical order, with apologies to anybody we've missed)
Guillaume Alleon, Ali Anjomshoaa, Ed Baskerville, Harald Béhme, Matthieu Cargnelli, Karl
Czajkowski, Piotr Domagalski, Fritz Ferstl, Paul Foley, Nicholas Geib, Becky Gietzel, Alleon
Guillaume, Tim Harsch, Greg Hewgil, Rayson Ho, Eduardo Huedo, Dieter Kranzmdiiller,
Krzysztof Kurowski, Peter G. Lane, Miron Livny, Ignacio M. Llorente, Martin v. Léwis, Andre
Merzky, Ruben S. Montero, Greg Newby, Steven Newhouse, Michael Primeaux, Greg Quinn,
Martin Sarachu, Jennifer Schopf, Enrico Sirola, Chris Smith, Ancor Gonzalez Sosa, Douglas
Thain, John Tollefsrud, Jose R. Valverde, and Peter Zhu.

15 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described
in this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights.
Copies of claims of rights made available for publication and any assurances of licenses to be
made available, or the result of an attempt made to obtain a general license or permission for
the use of such proprietary rights by implementers or users of this specification can be obtained
from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the OGF Executive Director.

16 Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the
OGF disclaims all warranties, express or implied, including but not limited to any warranty that
the use of the information herein will not infringe any rights or any implied warranties of
merchantability or fitness for a particular purpose.

17 Full Copyright Notice

Copyright (C) Open Grid Forum (2008). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be prepared,
copied, published and distributed, in whole or in part, without restriction of any kind, provided
that the above copyright notice and this paragraph are included on all such copies and
derivative works.

However, this document itself may not be modified in any way, such as by removing the
copyright notice or references to the OGF or other organizations, except as needed for the
purpose of developing Grid Recommendations in which case the procedures for copyrights
defined in the OGF Document process must be followed, or as required to translate it into
languages other than English.

drmaa-wg@ogf.org 36

The limited permissions granted above are perpetual and will not be revoked by the OGF or its
SUCCESSOrs or assignees.

drmaa-wg@ogf.org 37

