10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

GWD-R Peter Troger, Hasso-Plattner-Institute (editor)
DRMAA-WG Daniel Templeton, Cloudera (editor)
drmaa-wgQogf.org March 2011

Distributed Resource Management Application APl Version 2
(DRMAA) - Draft 3

Status of This Document

Group Working Draft Recommendation (GWD-R)

(See footnote)

Obsoletes

This document obsoletes GFD-R.022 [7], GFD-R-P.130 [9], and GWD-R.133 [8].

Copyright Notice

Copyright © Open Grid Forum (2005-2011). Some Rights Reserved. Distribution is unlimited.

Trademark

All company, product or service names referenced in this document are used for identification purposes only
and may be trademarks of their respective owners.

Abstract

This document describes the Distributed Resource Management Application API Version 2 (DRMAA), which
provides a generalized API to Distributed Resource Management (DRM) systems in order to facilitate the
development of portable application programs and high-level libraries for such systems. DRMAA defines
interfaces for a tightly coupled, but still portable access by abstracting the fundamental functions available
in the majority of DRM systems. The scope is limited to job submission, job control, and retrieval of job
and machine monitoring information.

This document acts as root specification for the abstract API concepts and the behavioral rules that must be
fulfilled by a DRMA A-compliant implementation. The programming language representation of the abstract
API concepts must be formulated by a separate language binding specification derived from this document.

The intended audience for this specification are DRMAA language binding designers, DRM system vendors,
high-level API designers and meta-scheduler architects. End users are expected to rely on product-specific
documentation for the DRMAA API implementation in their particular programming language.

1 This is the non-normative annotated version of the specification with line numbers. It includes historical information
concerning the content and why features were included or discarded by the working group. It also emphasizes the consequences
of some aspects that may not be immediately apparent. This document in only intended for internal working group discussions.

drmaa-wgQogf.org 1

mailto:drmaa-wg@ogf.org
http://www.drmaa.org/
http://www.drmaa.org/
mailto:drmaa-wg@ogf.org

27

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

GWD-R March 2011

Contents
1 Introduction L L e e e 3
1.1 Notational Conventions e e 3
1.2 Language Bindings 4
1.3 Slots and Queues 4
1.4 Multithreading« . e 5
2 Namespace oL e 5
3 Common Type Definitions 5
4 Enumerations e e e e e 6
4.1 OperatingSystem enumeration 6
4.2 CpuArchitecture enumeration L. 8
4.3 ResourceLimitType enumeration L 8
4.4 JobTemplatePlaceholder enumeration 9
5 Extensible Data Structures L 10
5.1 Queue Structure e 11
5.2 Version structure L e e e e e 11
5.3 Machine structure L. e 11
5.4 Joblnfo structure L e e e 13
5.5 JobTemplate structure. L e e e e 16
5.6 ReservationTemplate structure L L 24
5.7 DrmaaReflective Interface e 26
6 Common Exceptions L 26
7 The DRMAA Session Concept o o i i i e e e 28
7.1 SessionManager Interface 28
8 Working with Jobs 31
8.1 The DRMAA State Model e 31
8.2 JobSession Interface L 34
8.3 DrmaaCallback Interface 37
8.4 JobInterface e e 37
8.5 JobArray Interface 39
9 Working with Advance Reservation L L L 41
9.1 ReservationSession Interface 41
9.2 Reservation Interface e e 42
10 Monitoring the DRM System 43
10.1 MonitoringSession Interface L 44
11 Annex A: Complete DRMAA IDL Specification 46
12 Security Considerations L e 51
13 Contributors L e e 52
14 Intellectual Property Statement L 53
15 Disclaimer L o e 53
16 Full Copyright Notice o e 53
17 References L e e 53

drmaa-wgQogf.org 2

mailto:drmaa-wg@ogf.org

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

98

99

100

101

102

103

GWD-R March 2011

1 Introduction

This document describes the Distributed Resource Management Application API Version 2 (DRMAA) in-
terface semantics in a generalized way by using the OMG Interface Definition Language (IDL) [4] syntax for
a language-agnostic description. Based on this abstract specification, language binding standards have to
be designed that map the described concepts into a library interface for a particular programming language
(e.g. C, Java, Python). While this document has the responsibility to ensure consistent API semantics over
all possible DRMAA implementations, the language binding has the responsibility to ensure source-code
portability for DRMAA applications on different DRM systems.

An effort has been made to choose an API layout that is not unique to a particular language. However, in
some cases, various languages disagree over some points. In those cases, the most meritous approach was
taken, irrespective of language.

There are other relevant OGF standards in the area of job submission and monitoring. An in-depth com-
parison and positioning of the obsoleted DRMAA1 specification was provided by another publication [10].

The DRMAA specification is based on the following stakeholders:

e Distributed resource management system / DRM system / DRMS: Any system that supports the con-
cept of distributing computational jobs on execution resources through the help of a central scheduling
entity. Examples are multi-processor systems controlled by a operating system scheduler, cluster sys-
tems with multiple machines controlled by a central scheduler software, grid systems, or cloud systems
with a job concept.

e DRMAA implementation, DRMAA library: The implementation of a DRMAA language binding spec-
ification with the functional semantics described in this document. The resulting artifact is expected
to be a library that is deployed together with the DRM system that is wrapped by the particular
implementation.

e (DRMAA-based) application: Software that utilizes the DRMAA implementation for gaining access to
one or multiple DRM systems in a standardized way.

e Submission host: A execution resource in the DRM system that runs the DRMA A-based application.
e Execution host: A execution resource in the DRM system that can run a job submitted through the

DRMAA implementation.

1.1 Notational Conventions

In this document, IDL language elements and definitions are represented in a fixed-width font.

The key words “MUST” “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT?, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described in RFC 2119 [1].

Memory quantities are expressed in kibibyte (KiB), the unit established by the International Electrotechnical
Commission (IEC) in 1999. 1 kibibyte equals 1024 bytes.

Parts of the specification which are normative for derived language binding specifications only are graphically
marked as shaded box.

drmaa-wgQogf.org 3

Proposal to
use bytes in-
stead, similar
to JSDL

mailto:drmaa-wg@ogf.org

104

105

106

107

108

109

110

111

112

GWD-R March 2011

1.2 Language Bindings

A language binding specification derived from this document MUST define a mapping between the IDL
constructs and programming language constructs, with focus on source code portability for the resulting
DRMAA-based applications.

A language binding SHOULD NOT rely completely on the OMG language mapping standards available for
many programming languages, since they have a huge overhead of irrelevant CORBA-related mapping rules.
Therefore, language binding authors must carefully decide if a binding decision reflects a natural and simple
mapping of the intended purpose for the DRMAA interfaces. The binding SHOULD reuse OMG value type
mappings (e.g. IDL long long to Java long), and SHOULD define custom mappings for the other types.
The language binding MUST use the described concept mapping in a consistent manner for its overal API
layout.

Due to the usage of IDL, all method groups for a particular purpose (e.g. job control) are described in terms
of interfaces, and not classes. The mapping to a class concept depends on the specific language-mapping
rules.

It may be the case that IDL constructs do not map directly to any language construct. In this case it MUST
be ensured that the chosen mapping retains the intended semantic of the DRMAA interface definition.

Access to scalar attributes (string, boolean, long) MUST operate in a pass-by-value mode. A language
binding must ensure that this behavior is always fulfilled. For non-scalar attributes, the language binding
MUST specify a consistent access strategy for all these attributes — either pass-by-value or pass-by-reference
— according to the use cases of language binding implementations.

This specification tries to consider the possibility of a Remote Procedure Call (RPC) scenario in a DRMAA-
conformant language mapping. It SHOULD therefore be ensured that the programming language type for
an IDL struct definition supports the serialization and comparison of instances. These capabilities should
be accomplished through whatever mechanism is most natural for the programming language.

A language binding MUST define a way to declare an invalid value (UNSET). In case, a definition per data
type needs to be provided. Evaluating an UNSET boolean value MUST result in a negative result, e.g. for
JobTemplate: :emailOnStarted.

2
(See footnote)

1.3 Slots and Queues

DRMAA supports the notion of slots and queues as resources of a DRM system. A DRMAA application
can request them in advance reservation and job submission. However, slots and queues SHALL be opaque
concepts from the viewpoint of a DRMAA implementation, meaning that the requirements given by the
application are just passed through to the DRM system. This is reasoned by the large variation in interpreting
that concepts in the different DRM systems, which makes it impossible to define a common understanding
on the level of the DRMAA API.

2 The concept of a UNSET value was decided on a conf call (Aug 25th 2010). Boolean in C can use custom enumeration

(TRUE, FALSE, INVALID) or pointer to static values. A numerical UNSET in C should use a magic number, since all long
attributes are unsigned, it could be MIN_INT. With Python, just use None. For Java, Dan has an idea.

drmaa-wgQogf.org 4

mailto:drmaa-wg@ogf.org

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

GWD-R March 2011

(See footnote)

1.4 Multithreading

High-level APIs such as SAGA [3] are expected to utilize DRMAA for asynchronous operations, based on the
assumption that re-entrancy is supported by DRMAA implementations. For this reason, implementations
SHOULD ensure the proper functioning of the library in case of re-entrant library calls. A DRMAA library
SHOULD allow a multithreaded application to use DRMAA interfaces without any explicit synchronization
among the application threads. DRMAA implementers should document their work as thread safe if they
meet the above criteria. Providers of non-thread-safe DRMAA implementations should document all the
interfaces that are thread unsafe and provide a list of interfaces and their dependencies on external thread
unsafe routines.

2 Namespace

The DRMAA interfaces and structures are encapsulated by a naming scope, which avoids conflicts with
other APIs used in the same application.

module DRMAA2 {

Language binding authors MUST map the IDL module encapsulation to an according package or namespace
concept and MAY change the module name according to programming language conventions.

(See footnote)

3 Common Type Definitions

The DRMAA specification defines some custom types to express special value semantics not expressible in
IDL.

typedef sequence<string> OrderedStringlist;
typedef sequence<string> Stringlist;

typedef sequence<Job> JobList;

typedef sequence<Queue> Queuelist;

typedef sequence<Machine> Machinelist;

typedef sequence<Reservation> ReservationlList;
typedef sequence< sequence<string,2> > Dictionary;
typedef string AbsoluteTime;

typedef long long TimeAmount;

native ZERO_TIME;

native INFINITE_TIME;

OrderedStringList: An unbounded list of strings, which supports element insertion, element deletion, and
iteration over elements while keeping an element order.

3 As one example, queues can be either treated as representation of execution hosts (Sun Grid Engine) or as central waiting
line located at the scheduler (LSF).

4 Comparison to DRMAA v1.0: The IDL module name was change to DRMAAZ2, in order to intentionally break backward
compatibility of the interface.

drmaa-wgQogf.org 5

mailto:drmaa-wg@ogf.org

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

GWD-R March 2011

StringList: An unbounded list of strings, without any demand on element order.

JobList: An unbounded list of Job instances, without any demand on element order.

MachineList: An unbounded list of Machine instances, without any demand on element order.
QueueList: An unbounded list of Queue instances, without any demand on element order.
ReservationList: An unbounded list of Reservation instances, without any demand on element order.

Dictionary: An unbounded dictionary type for storing key-value pairs, without any demand on element
order.

AbsoluteTime: Expression of a point in time, with a resolution at least to seconds.
TimeAmount: Expression of an amount of time, with a resolution at least to seconds.
ZERO_TIME: A constant value of type TimeAmount that expresses a zero amount of time.

INFINITE_TIME: A constant value of type TimeAmount that expresses an infinite amount of time.

A language binding MUST replace these type definitions with semantically equal reference or value types in
the according language. This may include the creation of new complex language types for one or more of the
above concepts. The language binding MUST define a consistent mapping on module level, and a mechanism
for obtaining the RFC822 string representation from a given AbsoluteTime or TimeAmount instance.

(See footnote)

4 Enumerations

Language bindings SHOULD define numerical values for all DRMAA constants and enumeration members,
in order to foster binary portability of DRMA A-based applications.

4.1 OperatingSystem enumeration

DRMAA supports the identification of an operating system installation on execution resources in the DRM
system. The OperatingSystem enumeration is used as data type both in the advanced reservation and the
DRM system monitoring functionalities. It defines a set of standardized identifiers for operating system
types. The list is a shortened version of the according CIM Schema [6]. Tt includes only operating systems
that are supported by the majority of DRM systems available at the time of writing:

enum OperatingSystem {
HPUX, LINUX, IRIX, TRUE64, MACOS, SUNOS, WIN, WINNT, AIX, UNIXWARE,
BSD, OTHER_0S}I;
ATIX: AIX Unix by IBM.

BSD: All operating system distributions based on the BSD kernel.

5 The PartialTimestamp functionality from DRMAA 1.0 was completely removed. Absolute date and time values are now
expressed as RFC822 conformant data items with stringification support (conf. call Mar 31st 2009). String list for job identifiers
are replaced by Job object lists (F2F meeting July 2009)

drmaa-wgQogf.org 6

mailto:drmaa-wg@ogf.org

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

189

190

191

GWD-R March 2011

LINUX: All operating system distributions based on the Linux kernel.

HPUX: HP-UX Unix by Hewlett-Packard.

IRIX: The IRIX operating system by SGI.

MACOS: The MAC OS X operating system by Apple.

SUNOS: SunOS or Solaris operating system by Sun / Oracle.

TRUEG64: True64 Unix by Hewlett-Packard, or DEC Digital Unix, or DEC OSF/1 AXP.
UNIXWARE: UnixWare system by SCO group.

WIN: Windows 95, Windows 98, Windows ME.

WINNT: Microsoft Windows operating systems based on the NT kernel

OTHER_OS: An operating system type not specified in this list.

Implementations SHOULD NOT add new operating system identifiers to this enumeration, even if they are
supported by the underlying DRM system.

The operating system information is only useful in conjunction with version information (see Section 10.1),
which is also the reporting approach taken in most DRM systems. Examples:

e The Apple MacOS X operating system commonly denoted as “Snow Leopard” would be reported as
“MACOS” with the version structure [“107,%6”]

e The Microsoft Windows 7 operating system would be reported as “WINNT” with the version infor-
mation [“67,“1”], which is the internal version number reported by the Windows APIL.

e All Linux distributions would be reported as operating system type “LINUX” with the major revision
of the kernel, such as [“2”,“6”].

e The Solaris operating system is reported as “SUNOS”, together with the internal version number, e.g.
[“57,“107] for Solaris 10.

The DRMAA OperatingSystem enumeration can be mapped to other high-level APIs. Table 1 gives a
non-normative set of examples.

DRMAA OperatingSystem value | JSDL jsdl:OperatingSystemTypeEnumeration value
HPUX HPUX
LINUX LINUX
IRIX IRIX
TRUE64 Tru64_UNIX, OSF
MACOS MACOS
SUNOS SunOS, SOLARIS
WIN WIN95, WIN98, Windows_R_Me
WINNT WINNT, Windows_2000, Windows_XP
AIX AIX
UNIXWARE SCO_UnixWare, SCO_OpenServer
BSD BSDUNIX, FreeBSD, NetBSD, OpenBSD
OTHER_-OS Other

Table 1: Mapping example for the DRMAA OperatingSystem enumeration

drmaa-wgQogf.org 7

mailto:drmaa-wg@ogf.org

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

GWD-R March 2011

4.2 CpuArchitecture enumeration

DRMAA supports identifying the processor instruction set architecture on execution resources in the DRM
system. The CpuArchitecture enumeration is used as data type both in the advanced reservation and the
DRM system monitoring functionalities. It defines a set of standardized identifiers for processor architecture
families. The list is a shortened version of the according CIM Schema [6], It includes only processor families
that are supported by the majority of DRM systems available at the time of writing:

enum CpulArchitecture {

ALPHA, ARM, CELL, PARISC, X86, X64, IA64, MIPS, PPC, PPC64,

SPARC, SPARC64, OTHER_CPU};
ALPHA: The DEC Alpha / Alpha AXP processor architecture.
ARM: The ARM processor architecture.
CELL: The Cell processor architecture.
PA-RISC: The PA-RISC processor architecture.
X86: The TA-32 line of the X86 processor architecture family, with 32bit support only.
X64: The X86-64 line of the X86 processor architecture family, with 64bit support.
TA-64: The Itanium processor architecture.
MIPS: The MIPS processor architecture.
PPC: The PowerPC processor architecture, all models with 32bit support only.
PPC64: The PowerPC processor architecture, all models with 64bit support.
SPARC: The SPARC processor architecture, all models with 32bit support only.
SPARCG64: The SPARC processor architecture, all models with 64bit support.
OTHER_CPU: A processor architecture not specified in this list.

The DRMAA CpuArchitecture enumeration can be mapped to other high-level APIs. Table 2 gives a
non-normative set of examples.

The reporting and job configuration for processor architectures SHOULD operate on a “as-is” base, if sup-
ported by the DRM system. This means that the reported architecture should reflect the current operation
mode of the processor with the running operating system. For example, X64 processors executing a 32-bit
operating system typically report themself as X86 processor.

4.3 ResourceLimitType enumeration

Modern DRM systems expose resource constraint capabilities from the operating system for jobs on the
execution host. The ResourceLimitType enumeration represents the typical wulimit(3) parameters [5] in
different DRM systems. All parameters relate to the operating system process representing some job on the
execution host.

enum ResourcelLimitType {
CORE_FILE_SIZE, CPU_TIME, DATA_SEG_SIZE, FILE_SIZE, OPEN_FILES,
STACK_SIZE, VIRTUAL_MEMORY, WALLCLOCK_TIME };

drmaa-wgQogf.org 8

mailto:drmaa-wg@ogf.org

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

GWD-R March 2011

DRMAA CpuArchitecture value | JSDL jsdl:ProcessorArchitectureEnumeration value
ALPHA other
ARM arm
CELL other
PA-RISC parisc
X86 x86_32
X64 x86_64
T1A-64 iab4
MIPS mips
PPC powerpc
PPC64 powerpc
SPARC sparc
SPARC64 sparc
OTHER other

Table 2: Mapping example for DRMAA CpuArchitecture enumeration

CORE_FILE_SIZE: The maximum size of the core dump file created on fatal errors of the process, in
Kibibyte. Setting this value to zero SHOULD disable the creation of core dump files on the execution
host.

CPU_TIME: The maximum accumulated time in seconds the process is allowed to perform computations
on all processors in the execution host.

DATA _SEG _SIZE: The maximum amount of memory the process can allocate on the heap e.g. for object
creation, in Kibibyte.

FILE _SIZE: The maximum file size the process can generate, in Kibibyte.

OPEN_FILES: The maximum number of file descriptors the process is allowed to have open at the same
time.

STACK _SIZE: The maximum amount of memory the process can allocate on the stack, e.g. for local
variables, in Kibibyte.

VIRTUAL_MEMORY: The maximum amount of memory the process is allowed to allocate, in Kibibyte.

WALLCLOCK_TIME: The maximum wall clock time in seconds the job is allowed to exist in RUNNING
and SUSPENDED state (see Section 8.1).

(See footnote)G
4.4 JobTemplatePlaceholder enumeration

The JobTemplatePlaceholder enumeration defines constant macros to be used in string attributes of a
JobTemplate instance.

enum JobTemplatePlaceholder {

6 “Pipe size” was not added, since there is no use case in DRM systems with a job concept. “Max user processes” was
omitted because it operates on the notion of users, which is not an explicit concept in DRMAA.

The understanding of wallclock time was decided in the Apr 6th 2011 conf call. At least Condor and Grid Engine fulfil this
definition.

drmaa-wgQogf.org 9

mailto:drmaa-wg@ogf.org

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

GWD-R March 2011

HOME_DIRECTORY ,WORKING_DIRECTORY ,HOST_NAME ,6 USER_NAME ,PARAMETRIC_INDEX };

A HOME_DIRECTORY placeholder SHOULD be only allowed at the beginning of a JobTemplate attribute value.
It denotes the remaining portion as a directory / file path resolved relative to the job users home directory
at the execution host.

A WORKING_DIRECTORY placeholder SHOULD be only allowed at the beginning of a JobTemplate attribute
value. It denotes the remaining portion as a directory / file path resolved relative to the jobs working
directory at the execution host.

The HOST_NAME placeholder SHOULD be usable at any position within an attribute value that supports place
holders. It SHALL be substituted by the full-qualified name of the execution host were the job is executed.

The USER_NAME placeholder SHOULD be usable at any position within an attribute value that supports
place holders. It SHALL be substituted by the job users account name on the execution host.

The PARAMETRIC_INDEX placeholder SHOULD be usable at any position within an attribute value that
supports place holders. It SHALL be substituted by the parametric job index in a JobSession: :runBulkJobs
call (see Section 8.2.6). If the job template is used for a JobSession:runJob call, PARAMETRIC_INDEX
SHOULD be substituted with a constant implementation-specific value.

(See footnote)7

5 Extensible Data Structures

DRMAA defines a set of data structures commonly used by different interfaces to express information
for and from the DRM system. A DRMAA implementation is allowed to extend these structures with
implementation-specific attributes in all cases. Behavioral aspects of such extended attributes are out of
scope for DRMAA. The interpretation is implementation-specific, implementations MAY even ignore such
attribute values.

Implementations SHALL only extend data structures in the way specified by the language binding. The
introspection about supported implementation-specific attributes is supported by the DrmaaReflective
interface (see Section 5.7). Implementations SHOULD also support native introspection functionalities if
defined by the language binding.

A language binding MUST define a consistent mechanism to realize implementation-specific structure ex-
tension, without breaking the portability of DRMA A-based applications that relies on the original version
of the structure. Object oriented languages MAY use inheritance mechanisms for this purpose. Instances
of these structures SHALL be treated in a “call-by-value” fashion, meaning that the collection of struct
member values is handed over as one to the called interface method.

Language bindings MAY define how native introspection capabilities of the language or it’s runtime envi-
ronment can also be used to work with implementation-specific attributes. These mechanisms MUST work
in parallel to the DrmaaReflective interface.

7 Placeholders for other job template attributes were rejected, in order to avoid circular dependencies (Conf. call Oct 20th
2010)

drmaa-wgQogf.org 10

Mariusz pro-
poses to re-
move igno-
rance possi-
bility.

mailto:drmaa-wg@ogf.org

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

GWD-R March 2011

(See footnote)

5.1 Queue structure

Queue is an opaque concept from the perspective of the DRMAA application (see Section 1.3). The Queue
struct contains read-only information.

struct Queue {
string name;

};

5.1.1 name

This attribute contains the name of the queue as reported by the DRM system. The format of the queue
name is implementation-specific. The naming scheme SHOULD be consistent for all strings returned.

5.2 Version structure

The Version structure denotes versioning information for an operating system, DRM system, or DRMAA
implementation.

struct Version {
string major;
string minor;

};

Both the major and the minor part are expressed as strings, in order to allow extensions with character
combinations such as “rev”’. Original version strings containing a dot, e.g. Linux “2.6”, SHOULD be
interpreted as having the major part before the dot, and the minor part after the dot. The dot character

SHOULD NOT be added to the Version attributes.

5.3 Machine structure

The Machine structure describes the properties of a particular execution host in the DRM system. It contains
read-only information. An implementation or its DRM system MAY restrict jobs in their resource utilization
even below the limits described in the Machine structure. The limits given here MAY be imposed by the
hardware configuration, or MAY be be imposed by DRM system policies.

struct Machine {

string name;

long sockets;

long coresPerSocket;
long threadsPerCore;
double 1load;

long physMemory;
long virtMemory;

8 Comparison to DRMAA 1.0: The binding of job template attribute names and exception names to strings was removed.
Language bindings have to define their own mapping, if needed.
One example for native language introspection support could be attributes.

drmaa-wgQogf.org 11

mailto:drmaa-wg@ogf.org

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

GWD-R March 2011

OperatingSystem machine0S;
Version machineOSVersion;
CpuArchitecture machineArch;

};

5.3.1 name

This attribute describes the name of the machine as reported by the DRM system. The format of the
machine name is implementation-specific, but MAY be a DNS host name. The naming scheme SHOULD be
consistent for all strings returned.

5.3.2 sockets

This attribute describes the number of processor sockets (CPUs) usable for jobs on the machine from oper-
ating system perspective. The attribute value MUST be greater than 0. In the case where the correct value
is unknown to the implementation, the value MUST be set to 1.

5.3.3 coresPerSocket

This attribute describes the number of cores per socket usable for jobs on the machine from operating system
perspective. The attribute value MUST be greater than 0. In case where the correct value is unknown to
the implementation, the value MUST be set to 1.

5.3.4 threadsPerCore

This attribute describes the number of threads that can be executed in parallel by a job on one core in the
machine. The attribute value MUST be greater than 0. In case where the correct value is unknown to the
implementation, the value MUST be set to 1.

5.3.5 load

This attributes describes the 1-minute average load on the given machine, similar to the Unix uptime com-
mand. The value has only informative character, and should not be utilized by end user applications for job
scheduling purposes. An implementation MAY provide delayed or averaged data here, if necessary due to
implementation issues. The implementation strategy on non-Unix systems is undefined.

5.3.6 physMemory
This attribute describes the amount of physical memory in Kibibyte available on the machine.
5.3.7 virtMemory

This attribute describes the amount of virtual memory in Kibibyte available for a job executing on this
machine. The virtual memory amount is defined as the sum of physical memory installed plus the configured
swap space for the operating system. The value is expected to be used as indicator whether or not an
application is able to get its memory allocation needs fulfilled on a particular machine. Implementations
SHOULD derive this value directly from operating system information, without further consideration of
additional memory allocation restrictions such as address space range or already running processes.

drmaa-wgQogf.org 12

mailto:drmaa-wg@ogf.org

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

GWD-R March 2011

5.3.8 machineOS

This attribute describes the operating system installed on the described machine, with semantics as specified
in Section 4.1.

5.3.9 machineOSVersion

This attribute describes the operating system version of the machine, with semantics as specified in Section
4.1.

5.3.10 machineArch

This attribute describes the instruction set architecture of the machine, with semantics as specified in Section
4.2,

5.4 Joblnfo structure

The JobInfo structure describes job information that is available for the DRMAA-based application.

struct JobInfo {
string joblId;
Dictionary resourceUsage;
long exitStatus;
string terminatingSignal;
string annotation;
JobState jobState;
any jobSubState;
OrderedStringlist allocatedMachines;
string submissionMachine;
string jobOwner;
string queueName;
TimeAmount wallclockTime;
long cpuTime;
AbsoluteTime submissionTime;
AbsoluteTime dispatchTime;
AbsoluteTime finishTime;7};

The structure is used in two occasions - first for the expression of information about a single job, and second
as filter expression when retrieving a list of jobs from the DRMAA implementation.

In both usage scenarios, the structure information has to be understood as snapshot of the live DRM system.
Multiple values being set in one structure instance should be interpreted as “occurring at the same time”.
In real implementations, some granularity limits must be assumed - for example, the wallclockTime and
the cpuTime attributes might hold values that were measured with a very small delay one after each other.

In the use case of job information monitoring, it is assumed that the DRM system has three job information
states: running, buffered, purged. Only information for jobs that are still running or are still held in the
buffer of finished job information will be reported completely. In this case, the information SHOULD reflect
the current status of the job as as close as possible to the time of the call.

drmaa-wgQogf.org 13

mailto:drmaa-wg@ogf.org

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

GWD-R March 2011

If jobs have been purged out to accounting, different attributes might not contain valid data. Implementa-
tions MAY decide to return only partially filled JobInfo instances due to performance restrictions in the
communication with the DRM system.

For additional DRMS-specific information, the JobInfo structure MAY be extended by the DRMAA imple-
mentation (see Section 5).

9
(See footnote)

5.4.1 jobld

For monitoring: Returns the stringified job identifier assigned to the job by the DRM system.
For filtering: Returns the job with the chosen job identifier.

5.4.2 resourceUsage

For monitoring: Returns resource consumption information for the given job. The dictionary keys are
implementation-specific.

For filtering: Returns the jobs that have the dictionary key-value pairs as subset of their own.

5.4.3 exitStatus

For monitoring: The process exit status of the job, as reported by the operating system. If the job is not in
one of the terminated states, the value should be UNSET.

For filtering: Return the jobs with the given exitStatus value. Jobs without exit status information should
be filtered out by asking for the appropriate states.

5.4.4 terminatingSignal

For monitoring: This attribute specifies the UNIX signal that reasoned the end of the job. Implementations
should document the extent to which they can gather such information in the particular DRM system (e.g.
with Windows hosts).

For filtering: Returns the jobs with the given terminatingSignal value.
5.4.5 annotation

For monitoring: Gives a human-readable annotation describing why the job is in its current state or sub-state.
The support for this information is optional.

For filtering: This attribute is ignored for filtering.

9 In comparison to DRMAA 1.0, the JobInfo value type was heavily extended for providing more information (solves issue
#2827). JobInfo::hasCoreDump is no longer supported, since the information is useless without according core file staging
support, which is not implementable in a portable way. (conf. call Jun 9th 2010)

Some DRM systems (SGE / Condor at least) support the automated modification of job template attributes after submission,
and therefore allow to fetch the true job template attributes at run-time from the job. The monitoring for such data was
intentionally not included in DRMAA (mailing list July 2010).

drmaa-wgQogf.org 14

Standardize
resource

usage key
names ?!7

mailto:drmaa-wg@ogf.org

409

410

411

412

413

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

GWD-R March 2011

5.4.6 jobState

For monitoring: This attribute specifies the jobs current state according to the DRMAA job state model
(see Section 8.1).

For filtering: Returns all jobs in the specified state. If the given state is simulated by the implementation
(see Section 8.1), the implementation SHOULD raise an InvalidArgumentException explaining that this
filter can never match.

5.4.7 jobSubState

For monitoring: This attribute specifies the jobs current DRMAA implementation specific sub-state (see
Section 8.1).

For filtering: Returns all jobs in the specified sub-state. If the given sub-state is not supported by the imple-
mentation (see Section 8.1), the implementation SHOULD raise an InvalidArgumentException explaining
that this filter can never match.

5.4.8 allocatedMachines

This attribute expresses the set of machines that are utilized for job execution. Implementations MAY
decide to give the ordering of machine names a particular meaning, for example putting the master node in
a parallel job at first position. This decision should be documented for the user. For performance reasons,
only the machine names are returned, and SHOULD be equal to the according Machine: :name attribute in
monitoring data.

For monitoring: This attribute lists the set of names of the machines to which this job has been assigned.

For filtering: Returns the list of jobs which have a set of assigned machines that is a superset of the given
set of machines.

5.4.9 submissionMachine

This attribute provides the machine name of the submission host for this job. For performance reasons,
only the machine name is returned, and SHOULD be equal to the according Machine: :name attribute in
monitoring data.

For monitoring: This attribute specifies the machine from which this job was submitted.

For filtering: Returns the set of jobs that were submitted from the specified machine.
5.4.10 jobOwner

For monitoring: This attribute specifies the job owner as reported by the DRM system.
For filtering: Returns all jobs owned by the specified user.

5.4.11 queueName

For monitoring: This attribute specifies the queue in which the job was queued or started (see Section 1.3).

For filtering: Returns all jobs that were queued or started in the specified queue.

drmaa-wgQogf.org 15

mailto:drmaa-wg@ogf.org

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

466

467

468

469

470

471

472

473

474

475

GWD-R March 2011

5.4.12 wallclockTime

For monitoring: Accumulated time the job spent in RUNNING and SUSPENDED state.

For filtering: Returns all jobs that have consumed at least the specified amount of wall clock time.
5.4.13 cpuTime

For monitoring: This attribute specifies the amount of CPU time consumed by the job. This value includes
only time the job spent in JobState: :RUNNING (see Section 8.1).

For filtering: Returns all jobs that have consumed at least the specified amount of CPU time.
5.4.14 submissionTime

For monitoring: This attribute specifies the time at which the job was submitted. Implementations SHOULD
use the submission time recorded by the DRM system, if available.

For filtering: Returns all jobs that were submitted at or after the specified submission time.
5.4.15 dispatchTime

For monitoring: The time the job first entered a “Started” state (see Section 8.1). On job restart or re-
scheduling, this value does not change.

For filtering: Returns all jobs that entered a “Started” state at, or after the specified dispatch time.
5.4.16 finishTime

For monitoring: The time the job first entered a “Terminated” state (see Section 8.1).

For filtering: Returns all jobs that entered a “Terminated” state at or after the specified finish time.

5.5 JobTemplate structure

In order to define the attributes associated with a job, a DRMAA application uses the JobTemplate struc-
ture. It specifies any required job parameters and is passed to the DRMAA JobSession instance when job
execution is requested.

struct JobTemplate {
string remoteCommand;
OrderedStringlList args;
boolean submitAsHold;
boolean rerunnable;
Dictionary jobEnvironment;
string workingDirectory;
string jobCategory;
Stringlist email;
boolean emailOnStarted;
boolean emailOnTerminated;

drmaa-wgQogf.org 16

Resolve how
to report slot
assignments
for jobs

mailto:drmaa-wg@ogf.org

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

GWD-R March 2011

string jobName;

string inputPath;

string outputPath;

string errorPath;

boolean joinFiles;

string reservationId;

string queueName;

long minSlots;

long maxSlots;

long priority;

OrderedStringlist candidateMachines;

long minPhysMemory;

OperatingSystem machine0S;
CpuArchitecture machineArch;

AbsoluteTime startTime;

AbsoluteTime deadlineTime;

Dictionary stagelnFiles;

Dictionary stageOutFiles;

Dictionary softResourcelimits;

Dictionary hardResourcelimits;

string accountingld;

};

The DRMAA job template concept makes a distinction between mandatory and optional attributes. Manda-
tory attributes MUST be supported by the implementation in the sense that they are evaluated on job
submission. Optional attributes MAY be evaluated on job submission, but MUST be provided as part of the
JobTemplate structure in the implementation. If an unsupported optional attribute has a value different to
UNSET, the job submission MUST fail with a UnsupportedAttributeException. DRMAA applications are
expected to check for the availability of optional attributes before using them.

Implementations MUST set all attribute values to UNSET on struct allocation. This ensures that both the
DRMAA application and the library implementation can determine untouched attribute members. If not
described differently in the following sections, all attributes SHOULD be allowed to have the UNSET value
on job submission.

An implementation MAY support JobTemplatePlaceholder macros in more occasions than defined in this

specification.

A language binding specification SHOULD define how a JobTemplate instance is convertible to a string
for printing, through whatever mechanism is most natural for the implementation language. The resulting
string MUST contain the values of all set properties.

The initialization to UNSET SHOULD be realized without additional methods in the DRMAA interface, if
possible. The according approach MUST be specified by the language binding.

drmaa-wgQogf.org 17

‘Which
attributes
should allow

the new
HOST_NAME

and
USER_NAME
place holders
?

mailto:drmaa-wg@ogf.org

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

GWD-R March 2011

10

(See footnote)
5.5.1 remoteCommand

This attribute describes the command to be executed on the remote host. In case this parameter contains
path information, it MUST be seen as relative to the execution host file system and is therefore evaluated
there. The implementation SHOULD NOT relate the value of this attribute to binary file management or
file staging activities. The behavior with an UNSET value is implementation-specific.

The support for this attribute is mandatory.
5.5.2 args

This attribute contains the list of command-line arguments for the job(s) to be executed.

The support for this attribute is mandatory.
5.5.3 submitAsHold

This attribute defines if the job(s) should be submitted as QUEUED or QUEUED_HELD (see Section 8.1). Since
the boolean UNSET value defaults to False, jobs are submitted as non-held if this attribute is not set.

The support for this attribute is mandatory.
5.5.4 rerunnable

This flag indicates if the submitted job(s) can safely be restarted by the DRM system, for example on a
node failure or some other re-scheduling event. Since the boolean UNSET value defaults to False, jobs are
submitted as not rerunnable if this attribute is not set. This attribute SHOULD NOT be used by the
implementation to let the application denote the checkpointability of a job.

The support for this attribute is mandatory.

(See footnote)ll
5.5.5 jobEnvironment

This attribute holds the environment variable key-value pairs for the execution machine(s). The values
SHOULD override the execution host environment values if there is a collision.

The support for this attribute is mandatory.

10 Comparison to DRMAA 1.0: JobTemplate is now a value type, meaning that it maps to a struct in C. This removes the
need for DRMAA-defined methods for construction and destruction of job templates. An eventual RPC scenario for DRMAA
gets easier with this approach, since it is closer to the JSDL concept of a job description document.

Supported string placeholders for job template attributes are now listed in the JobTemplatePlaceholder enumeration, and
must be filled with values by the language binding. Invalid job template settings are now only detected on job submission, not
when the attribute is set.

DRMAA1 supported the utilization of new DRM features through an old DRMAA implementation, based on the
nativeSpecification field. A conf call (Jul 14th 2010) voted for dropping this intentionally. Implementations should use
according implementation-specific attributes for this.

11 The differentiation between rerunnable and checkpointable was decided on a conf call (Aug 25th 2010)

drmaa-wgQogf.org 18

How should
check-
pointability
be denoted ?

mailto:drmaa-wg@ogf.org

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

GWD-R March 2011

5.5.6 workingDirectory

This attribute specifies the directory where the job or the bulk jobs are executed. If the attribute value
is UNSET, the behavior is implementation dependent. Otherwise, the attribute value MUST be evaluated
relative to the file system on the execution host. The attribute value MUST be allowed to contain either the
JobTemplatePlaceholder: :HOME_DIRECTORY or the JobTemplatePlaceholder: :PARAMETRIC_INDEX place-
holder (see Section 4.4).

The workingDirectory attribute should be specified by the application in a syntax that is common at the
host where the job is executed. Implementations MAY perform according validity checks on job submission.
If the attribute is set and no placeholder is used, an absolute directory specification is expected. If the
attribute is set and the job was submitted successfully and the directory does not exist on the execution
host, the job MUST enter the state JobState: :FAILED.

The support for this attribute is mandatory.
5.5.7 jobCategory

DRMAA facilitates writing DRM-enabled applications even though the deployment properties, in particular
the configuration of the DRMS, cannot be known in advance.

Through the jobCategory string attribute, a DRMAA application can specify additional needs of the job(s)
that are to be mapped by the implementation or DRM system itself to DRMS-specific options. It is intended
as non-programmatic extension of DRMAA job submission capabilities. The mapping is performed during
the process of job submission. Each category expresses a particular type of job execution that demands
site-specific configuration, for example path settings, environment variables, or application starters such as
MPIRUN.

A valid input SHOULD be one of the returned strings in MonitoringSession: :drmsJobCategoryNames (see
Section 10.1), otherwise an InvalidArgumentException SHOULD be raised.

A non-normative recommendation of category names is maintained at:
http://www.drmaa.org/jobcategories/

In case the name is not taken from the DRMAA working group recommendations, it should be self-
explanatory for the user to understand the implications on job execution. Implementations are recommended
to provide a library configuration facility, which allows site administrators to link job category names with
specific product- and site-specific configuration options, such as submission wrapper shell scripts.

The interpretation of the supported jobCategory values is implementation-specific. The order of precedence
for the jobCategory attribute value or other attribute values is implementation-specific. It is RECOM-
MENDED to overrule job template settings with a conflicting jobCategory setting.

The support for this attribute is mandatory.
5.5.8 email

This attribute holds a list of email addresses that should be used to report DRM information. Content and
formatting of the emails are defined by the implementation or the DRM system. If the attribute value is
UNSET, no emails SHOULD be sent to the user running the job(s), even if the DRM system default behavior
is to send emails on some event.

drmaa-wgQogf.org 19

http://www.drmaa.org/jobcategories/
mailto:drmaa-wg@ogf.org

575

576

577

578

579

580

581

582

583

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

GWD-R March 2011

The support for this attribute is optional. If an implementation cannot configure the email notification
functionality of the DRM system, or if the DRM system has no such functionality, the attribute SHOULD
NOT be supported in the implementation.

1
(See footnote)

5.5.9 emailOnStarted / emailOnTerminated

The emailOnStarted flag indicates if the given email address(es) SHOULD get a notification when the job
(or any of the bulk jobs) entered one of the “Started” states. emailOnTerminated fulfills the same purpose

for the ” Terminated” states. Since the boolean UNSET value defaults to False, the notification about state
changes SHOULD NOT be sent if the attribute is not set.

The support for this attribute is optional. It SHALL only be supported if the email attribute is supported
in the implementation.

5.5.10 jobName

The job name attributes allows the specification of an additional non-unique string identifier for the job(s).
The implementation MAY truncate any client-provided job name to an implementation-defined length.

The support for this attribute is mandatory.
5.5.11 inputPath / outputPath / errorPath

This attribute specifies standard input / output / error stream of the job as a path to a file. If the attribute
value is UNSET, the behavior is implementation dependent. Otherwise, the attribute value MUST be evaluated
relative to the file system of the execution host in a syntax that is common at the host. Implementations
MAY perform according validity checks on job submission. The attribute value MUST be allowed to contain
any of the JobTemplatePlaceholder placeholders (see Section 4.4). If the attribute is set and no placeholder
is used, an absolute file path specification is expected.

If the outputPath or errorPath file does not exist at the time the job is about to be executed, the file
SHALL first be created. An existing outputPath or errorPath file SHALL be opened in append mode.

If the attribute is set and the job was submitted successfully and the file cannot be created / read / written
on the execution host, the job MUST enter the state JobState: :FAILED.

The support for this attribute is mandatory.
5.5.12 joinFiles

Specifies whether the error stream should be intermixed with the output stream. Since the boolean UNSET
value defaults to False, intermixing SHALL NOT happen if the attribute is not set.

If this attribute is set to True, the implementation SHALL ignore the value of the errorPath attribute and
intermix the standard error stream with the standard output stream as specified by the outputPath.

The support for this attribute is mandatory.

12 The blockEmail attribute in the JobTemplate was replaced by the UNSET semantic for the email adresses. (conf. call
July 28th 2010).

drmaa-wgQogf.org 20

This became
an optional
attribute,
since_we
mandate the
’switch off’
semantic in
case of UNSET

mailto:drmaa-wg@ogf.org

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

GWD-R March 2011

5.5.13 stagelnFiles / stageOutFiles

Specifies what files should be transfered (staged) as part of the job execution. The data staging operation
MUST be a copy operation between the submission host and the execution host(s). File transfers between
execution hosts are not covered by DRMAA.

The attribute value is formulated as dictionary. For each key-value pair in the dictionary, the key defines
the source path of one file or directory, and the value defines the destination path of one file or directory
for the copy operation. For stageInFiles, the submission host acts as source, and the execution host(s)
act as destination. For stageOutFiles, the execution host(s) acts as source, and the submission host act as
destination.

All values MUST be evaluated relative to the file system on the host in a syntax that is common at that
host. Implementations MAY perform according validity checks on job submission. Paths on the execution
host(s) MUST be allowed to contain any of the JobTemplatePlaceholder placeholders. Paths on the sub-
mission host MUST be allowed to contain the JobTemplatePlaceholder: :PARAMETRIC_INDEX placeholder
(see Section 4.4). If no placeholder is used in the values, an absolute path specification on the particular
host SHOULD be assumed by the implementation.

Jobs SHOULD NOT enter JobState: :DONE unless all staging operations are finished. The behavior in
case of missing files is implementation-specific. The support for wildcard operators in path specifications is
implementation-specific.

The support for this attribute is optional.

(See footnotc)13

5.5.14 reservationld

Specifies the identifier of the advance reservation associated with the job(s). The application is expected
to create an advance reservation through the ReservationSession interface, the resulting reservationId
(see Section 9.2) then acts as valid input for this job template attribute. Implementations MAY support an
reservation identifier from non-DRMAA information sources as valid input.

The support for this attribute is mandatory.
5.5.15 queueName

This attribute specifies the name of the queue the job(s) should be submitted to. In case this attribute
value is UNSET, and MonitoringSession: :getAllQueues returns a list with a minimum length of 1, the
implementation SHOULD use the DRM systems default queue.

The MonitoringSession::getAllQueues method (see 10.1) supports the determination of valid queue
names. Implementations SHOULD allow these queue names to be used in the queueName attribute. Imple-
mentations MAY also support queue names from other non-DRMAA information sources as valid input. If

13 Comparsion to DRMAA 1.0: New job template attributes for file transfers were introduced. They allow to express a set
of file staging activities, similar to the approach in LSF and SAGA. They replace the old transferFiles attribute, the according
FileTransferMode data structure and the special host definition syntax in inputPath / outputPath / errorPath (different conf.
calls, SAGA F2F meeting, solves issue #5876)

drmaa-wgQogf.org 21

Needs final
approval by

the group.

mailto:drmaa-wg@ogf.org

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

GWD-R March 2011

no default queue is defined or if the given queue name is not valid, the job submission MUST lead to an
InvalidArgumentException.

If MonitoringSession: :getAllQueues returns an empty list, this attribute MUST be only accepted with
the value UNSET.

Since the meaning of “queues” is implementation-specific, there is no implication on the effects in the DRM
system when using this attribute. As one example, requesting a number of slots for a job in one queue has no
implication on the number of utilized machines at run-time. Implementations therefore SHOULD document
the effects of this attribute accordingly.

The support for this attribute is mandatory.
5.5.16 minSlots / maxSlots

This attribute expresses the minimum / maximum number of slots requested per job (see also Section 1.3).
If the value of minSlots is UNSET, it SHOULD default to 1. If the value of maxSlots is UNSET, it SHOULD
default to the value of minSlots.

Implementations MAY interprete the slot count as number of concurrent processes being allowed on one
machine. If this interpretation is taken, and minSlots is greater than 1, than the jobCategory SHOULD
also be demanded on job submission, in order to express the nature of the intended parallel job execution.

The support for this attribute is mandatory.
5.5.17 priority

This attribute specifies the scheduling priority for the job. The intepretation of the given value incl. an
UNSET value is implementation-specific.

The support for this attribute is mandatory.
5.5.18 candidateMachines

Requests that the job(s) should run on any subset (with minimum size of 1), or all of the given machines.
If the attribute value is UNSET, it should default to the result of the MonitoringSession: :getAllMachines
method. If this resource demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised
on job submission time. If the problem can only be detected after job submission, the job should enter
JobState: :FAILED.

The support for this attribute is mandatory.
5.5.19 minPhysMemory

This attribute denotes the minimum amount of physical memory in Kibibyte expected on the / all execution
host(s). If this resource demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised
at job submission time. If the problem can only be detected after job submission, the job SHOULD enter
JobState: :FAILED accordingly.

The support for this attribute is mandatory.

drmaa-wgQogf.org 22

mailto:drmaa-wg@ogf.org

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

GWD-R March 2011

5.5.20 machineOS

This attribute denotes the expected operating system type on the / all execution host(s). If this resource de-
mand cannot be fulfilled, an InvalidArgumentException SHOULD be raised on job submission time. If the
problem can only be detected after job submission, the job SHOULD enter JobState: : FAILED accordingly.

The support for this attribute is mandatory.

1
(See footnote)

5.5.21 machineArch

This attribute denotes the expected machine architecture on the / all execution host(s). If this resource
demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised on job submission time. If
the problem can only be detected after job submission, the job should enter JobState: :FAILED.

The support for this attribute is mandatory.
5.5.22 startTime

This attribute specifies the earliest time when the job may be eligible to be run.

The support for this attribute is mandatory.
5.5.23 deadlineTime

Specifies a deadline after which the implementation or the DRM system SHOULD change the job state to
any of the “Terminated” states (see Section 8.1).

The support for this attribute is optional.
5.5.24 softResourcelLimits / hardResourceLimits

This attribute specifies the soft / hard limits on resource utilization of the job(s) on the execution host(s).
The valid dictionary keys and their value semantics are defined in Section 4.3. An implementation MAY
map the settings to an ulimit(3) on the operating system, if available.

The support for this attribute is optional. If only a subset of the attributes from ResourceLimitType is
supported by the implementation, and some of the unsupported attributes are used, the job submission
SHOULD raise an InvalidArgumentException expressing the fact that resource limits are supported in
general.

Conflicts of these attribute values with any other job template attribute or with referenced advanced reser-
vations are handled in an implementation-specific manner. Implementations SHOULD try to delegate the
decision about parameter combination validity to the DRM system, in order to ensure similar semantics in
different DRMAA implementations for this system.

(See footnotc)15

14 Requesting a particular operating system version is not supported by the majority of DRM systems (conf call Jul 28th
2010)
15 In comparison to DRMAA 1.0, resource usage limitations can now be expressed by two dictionaries and an according

drmaa-wgQogf.org 23

mailto:drmaa-wg@ogf.org

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

GWD-R March 2011

5.5.25 accountingld

This attribute denotes a string that can be used by the DRM system for job accounting purposes. Im-
plementations SHOULD NOT utilize this information as authentication token, but only as identification
information in addition to the implementation-specific authentication (see Section 12).

The support for this attribute is optional.

5.6 ReservationTemplate structure

In order to define the attributes associated with an advance reservation, the DRMAA application creates
an ReservationTemplate instance and requests the fulfilment through the ReservationSession methods
in the DRM system.

struct ReservationTemplate {
string reservationName;
AbsoluteTime startTime;
AbsoluteTime endTime;
TimeAmount duration;
long minSlots;
long maxSlots;
OrderedStringlList candidateMachines;
long minPhysMemory;
OperatingSystem machine0S;
CpuArchitecture machineArch;

};

Similar to the JobTemplate concept (see Section 5.5), there is a distinction between mandatory and op-
tional attributes. Mandatory attributes MUST be supported by the implementation in the sense that they
are evaluated in a ReservationSession::requestReservation call. Optional attributes MAY NOT be
evaluated by the particular implementation, but MUST be provided as part of the ReservationTemplate
structure in the implementation. If an optional attribute is not evaluated by the particular implementation,
but has a value different to UNSET, the callto ReservationSession: :requestReservation MUST fail with
a UnsupportedAttributeException.

Implementations MUST set all attribute values to UNSET on struct allocation. This ensures that both the
DRMAA application and the library implementation can determine untouched attribute members. If not
described differently in the following sections, all attributes SHOULD be allowed to have the UNSET value
when ReservationSession: :requestReservation is called.

A language binding specification SHOULD model the ReservationTemplate representation the same way as
the JobTemplate interface (see Section 5.5), and therefore MUST define the realization of implementation-
specific attributes, printing, and and the initialization of attribute values.

standardized set of valid dictionary keys (LimitType). The idea is to allow a direct mapping to ulimit(3) semantics, which are
supported by the majority of DRM system today. A separate run duration limit is no longer needed, since this is covered by
the new CPU_TIME limit parameter. (conf. call Jun 9th 2010).

drmaa-wgQogf.org 24

Complete sec-

tion needs
group ap-
proval

mailto:drmaa-wg@ogf.org

742

743

744

745

746

747

748

749

750

751

752

753

755

GWD-R March 2011

5.6.1 reservationName

A human-readable reservation name. If this attribute is omitted then the name of the reservation SHALL be
automatically defined by the implementation. The implementation MAY truncate any application-provided
job name to an implementation-defined length.

The support for this attribute is mandatory.
5.6.2 startTime / endTime / duration

The time frame in which resources should be reserved. Table 3 explains the different possible parameter
combinations and their semantic.

startTime | endTime | duration | Description
UNSET UNSET UNSET The implementation or the DRM system is free to choose a time
frame for the reservation.
Set UNSET UNSET Invalid, SHALL leave to a InvalidAttributeException on the
reservation attempt.
UNSET Set UNSET Invalid, SHALL leave to a InvalidAttributeException on the
reservation attempt.
Set Set UNSET Perform reservation attempt to get resources in the specified time
frame.
UNSET UNSET Set Perform reservation attempt the get resources at least for the time
amount given in duration.
Set UNSET Set Implies endTime = startTime + duration
UNSET Set Set Implies startTime = endTime - duration
Set Set Set If endTime - startTime is larger than duration, perform a reser-
vation attempt where the demanded duration is fulfilled at the ear-
liest point in time after startTime, and without extending endTime.
If endTime - startTime is smaller than duration, the reserva-
tion attempt SHALL leave to a InvalidAttributeException. If
endTime - startTime and duration are equal, duration SHALL
be ignored.

Table 3: Parameter combinations for the advance reservation time frame. If duration is not supported, it
should be treated as UNSET.

The support for startTime and endTime is mandatory. The support for duration is optional.

5.6.3 minSlots

The minimum number of requested slots (see also Section 1.3). If the attribute value is UNSET, it should
default to 1.

The support for this attribute is mandatory.

drmaa-wgQogf.org 25

On UNSET
/ UNSET
/ UNSET,

throw Inval-
idArgument

instead ?

mailto:drmaa-wg@ogf.org

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

778

779

780

781

782

783

784

785

GWD-R March 2011

5.6.4 maxSlots

The maximum number of requested slots (see also Section 1.3). If this attribute is not specified, it should
default to the value of minSlots.

The support for this attribute is mandatory.
5.6.5 candidateMachines

Requests that the reservation must be created on any subset of the given list of machines. If this attribute
is not specified, it should default to the result of MonitoringSession: :getAllMachines (see Section 10.1).

The support for this attribute is optional.
5.6.6 minPhysMemory

Requests that the reservation must be created with machines that have at least the given amount of physical
memory in Kibibyte.

The support for this attribute is optional.
5.6.7 machineOS

Requests that the reservation must be created with machines that have the given type of operating system,
regardless of its version, with semantics as specified in Section 4.1.

The support for this attribute is optional.
16

(See footnote)

5.6.8 machineArch

Requests that the reservation must be created with machines that have the given instruction set architecture,
with semantics as specified in Section 4.2.

The support for this attribute is optional.
Group ap-
proval for
concept, then
add descrip-
tion

5.7 DrmaaReflective Interface

6 Common Exceptions

The exception model specifies error information that can be returned by a DRMAA implementation on
method calls.

exception DeniedByDrmException {string message;l};
exception DrmCommunicationException {string message;l};
exception TryLaterException {string message;};
exception SessionManagementException {string message;};

16 Requesting a particular operating system version is not supported by the majority of DRM systems (conf call Jul 28th
2010)

drmaa-wgQogf.org 26

mailto:drmaa-wg@ogf.org

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

GWD-R March 2011

exception TimeoutException {string message;};

exception InternalException {string message;};

exception InvalidArgumentException {string message;1};
exception InvalidSessionException {string message;l;
exception InvalidStateException {string message;};
exception OutOfMemoryException {string message;};
exception UnsupportedAttributeException {string message;l};
exception UnsupportedOperationException {string message;l};

If not defined otherwise, the exceptions have the following meaning:

DeniedByDrmException: The DRM system rejected the operation due to security issues.

DrmCommunicationException: The DRMAA implementation could not contact the DRM system. The
problem source is unknown to the implementation, so it is unknown if the problem is transient or not.

TryLaterException: The DRMAA implementation detected a transient problem with performing the
operation, for example due to excessive load. The application is recommended to retry the call.

SessionManagementException: A problem was encountered while trying to create / open / close /
destroy a session.

TimeoutException: The timeout given in one the waiting functions was reached without successfully
finishing the waiting attempt.

InternalException: An unexpected or internal error occurred in the DRMAA library, for example a system
call failure. It is unknown if the problem is transient or not.

Invalid ArgumentException: From the viewpoint of the DRMAA library, a function parameter is invalid
or inappropriate for the particular function call.

InvalidSessionException: The session used for the function is not valid, for example since it was closed
before.

InvalidStateException: The function call is not allowed in the current state of the job.

OutOfMemoryException: This exception can be thrown by any method at any time when the DRMAA
implementation has run out of free memory.

UnsupportedAttributeException: The optional attribute is not supported by the DRMAA implemen-
tation.

UnsupportedOperationException: The function is not supported by the DRMAA implementation. One
example is the registration of an event callback function.

The DRMAA specification assumes that programming languages targeted by language bindings typically

drmaa-wgQogf.org 27

‘We might
want to
Egggfiﬁ?empl
for separating
input
parameter
issues

mailto:drmaa-wg@ogf.org

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

GWD-R March 2011

support the concept of exceptions. If a destination language does not support them (like ANSI C), the
language binding specification SHOULD map error conditions to an appropriate consistent concept. A
language binding MAY chose to model exceptions as numeric error code return values, and return values as
additional output parameters of the operation. In this case, the language binding specification SHOULD
specify numeric values for all DRMAA error constants.

The representation of exceptions in the language binding MUST support a possibility to express an exception
cause as textual description. Implementations MAY use this text to express DRMS-specific error conditions
that are outside of the DRMAA scope.

Object-oriented language bindings MAY decide to derive all exceptions from one or multiple exception base
classes, in order to support generic catch clauses. Whenever it is appropriate, language bindings SHOULD
replace DRMAA exceptions by their semantically equivalent native exception from the application runtime
environment.

Language bindings MAY decide to introduce a hierarchical ordering of the DRMAA exceptions through class
derivation. In this case, any new exceptions added for aggregation purposes SHOULD be prevented from
being thrown, for example by marking them as abstract.

The UnsupportedAttributeException may either be raised by the setter function for the attribute or by
the job submission function. A consistent decision for either one or the other approach MUST be made by
the language binding specification.

(See footnote) 17

7 The DRMAA Session Concept

DRMAA relies on an overall session concept, which supports the persistency of job and advance reservation
information over multiple application runs. This supports short-lived applications that need to work with
DRM system state spanning multiple application runs. Typical examples are job submission portals or
command-line tools. The session concept is also intended to allow implementations to perform DRM system
attach / detach operations at dedicated points in the application control flow.

7.1 SessionManager Interface

interface SessionManager{
readonly attribute string drmsName;
readonly attribute Version drmaaVersion;
readonly attribute boolean reservationSupported;
JobSession createJobSession(in string sessionName,
in string contactString);

ReservationSession createReservationSession(in string sessionName,

in string contactString);
MonitoringSession createMonitoringSession (in string contactString);

17 Comparsion to DRMAA 1.0: The InconsistentStateException was removed, since it is semantically equal to the In-
validStateException (conf. call Jan 7th 2010) The former HoldInconsistentStateException, ReleaseInconsistentStateException,
ResumelnconsistentStateException, and SuspendInconsistentStateException from DRMAA v1.0 are now expressed as single
InvalidStateException with different meaning per raising method. (F2F meeting July 2009)

drmaa-wgQogf.org 28

mailto:drmaa-wg@ogf.org

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

GWD-R March 2011

JobSession openJobSession(in string sessionName);
ReservationSession openReservationSession(in string sessionName);
void closeJobSession(in JobSession s);

void closeReservationSession(in ReservationSession s);

void closeMonitoringSession(in MonitoringSession s);

void destroyJobSession(in string sessionName);

void destroyReservationSession(in string sessionName);

Stringlist getJobSessions();

Stringlist getReservationSessions();

};

The SessionManager interface is the main interface for establishing communication with a given DRM sys-
tem. By the help of this interface, sessions for job management, monitoring, and/or reservation management
can be maintained.

Job and reservation sessions maintain persistent state information (about jobs and reservations created)
between application runs. State data SHOULD be persisted by the library implementation or the DRMS
itself (if supported) after closing the session through the according method in the SessionManager interface.

The re-opening of a session MUST be possible on the machine where the session was originally created.
Implementations MAY also offer to re-open the session on another machine.

The state information SHOULD be kept until the job or reservation session is explicitly reaped by the
according destroy method in the SessionManager interface. If an implementation runs out of resources for
storing the session information, the closing function SHOULD throw a SessionManagementException. If
an application ends without closing the session properly, the behavior of the DRMAA implementation is
undefined.

An implementation MUST allow the application to have multiple sessions of the same or different types
instantiated at the same time. This includes the proper coordination of parallel calls to session methods
that share state information.

(See footnotc)18

7.1.1 drmsName

A system identifier denoting a specific type of DRM system, e.g. “LSF” or “GridWay”. It is intended
to support conditional code blocks in the DRMAA application that rely on DRMS-specific details of the
DRMAA implementation. Implementations SHOULD NOT make versioning information of the particular
DRM system a part of this attribute value.

7.1.2 drmaaVersion

A combination of minor / major version number information for the DRMAA implementation. The major
version number MUST be the constant value “2”, the minor version number SHOULD be used by the

18 Comparison to DRMAA 1.0: The concept of a factory from GFD.130 was removed (solves issue #6276). Version 2.0 of
DRMAA supports restartable sessions by the newly introduced SessionManager interface. It allows creating multiple concurrent
sessions for job submission (solves issue #2821), which can be restarted by their generated session name (solves issue #2820).
Session.init() and Session.exit() functionalities are moved to the according session creation and closing routines. The descriptions
were fixed accordingly (solves issue #2822). The AlreadyActiveSession error was removed. (F2F meeting July 2009) The
drmaalmplementation attribute from DRMAA 1.0 was removed, since it was redundant to the drmsInfo attribute. This one is
now available in the new SessionManager interface. (F2F meeting July 2009).

drmaa-wgQogf.org 29

mailto:drmaa-wg@ogf.org

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

GWD-R March 2011

DRMAA implementation for expressing its own versioning information.
7.1.3 reservationSupported

The attribute indicates if advance reservation is supported by the DRMAA implementation. If False, all
methods related to advance reservation will raise an UnsupportedOperationExeption if being used.

(See footnotc)lg
7.1.4 createJobSession / createReservationSession / createMonitoringSession

The method creates a new session instance of the particular type for the application. On successful completion
of this method, the necessary initalization for making the session usable MUST be completed. Examples are
the connection establishment from the DRMAA library to the DRM system, or the prefetching of information
from non-thread-safe operating system calls, such as getHostByName.

The contactString parameter is an implementation-dependent string that SHALL allow the application to
specify which DRM system instance to use. A contact string represents a specific installation of a specific
DRM system, e.g. a Condor central manager machine at a given IP address, or a Grid Engine ‘root’ and
‘cell’. Contact strings are always implementation dependent and therefore opaque to the application. If
contactString has the value UNSET, a default DRM system SHOULD be contacted. The manual configu-
ration or automated detection of a default contact is implementation-specific.

The sessionName parameter denotes a unique name to be used for the new session. If a session with such
a name was created before, the method MUST throw an InvalidArgumentException. In all other cases,
including if the provided name has the value UNSET, a new session MUST be created with a unique name
generated by the implementation. A MonitoringSession instance has no persistent state, and therefore
does not support the name concept.

If the DRM system does not support advance reservation, than createReservationSession SHALL throw
an UnsupportedOperationException.

7.1.5 openJobSession / openReservationSession

The method is used to open a persisted JobSession or ReservationSession instance that has previously
been created under the given sessionName. The implementation MUST support the case that the session
have been created by the same application or by a different application running on the same machine. The
implementation MAY support the case that the session was created or updated on a different machine. If
no session with the given sessionName exists, an InvalidArgumentException MUST be raised.

If the session described by sessionName was already opened before, implementations MAY return the same
job or reservation session instance.

If the DRM system does not support advance reservation, openReservationSession SHALL throw an
UnsupportedOperationException.

19This attribute is intended to avoid test calls for checking if advance reservation is supported by the implementation

drmaa-wgQogf.org 30

New, needs
group ap-
proval

mailto:drmaa-wg@ogf.org

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

GWD-R March 2011

7.1.6 closeJobSession / closeReservationSession / closeMonitoringSession

The method MUST do whatever work is required to disengage from the DRM system. It SHOULD be callable
only once, by only one of the application threads. This SHOULD be ensured by the library implementation.
Additional calls beyond the first SHOULD lead to a NoActiveSessionException error notification.

For JobSession or ReservationSession instances, the according state information MUST be saved to some
stable storage before the method returns. This method SHALL NOT affect any jobs or reservations in the
session (e.g., queued and running jobs remain queued and running).

If the DRM system does not support advance reservation, closeReservationSession SHALL throw an
UnsupportedOperationException.

7.1.7 destroyJobSession / destroyReservationSession

The method MUST do whatever work is required to reap persistent session state and cached job state
information for the given session name. If session instances for the given name exist, they MUST become
invalid after this method was finished sucessfully. Invalid sessions MUST throw InvalidSessionException
on every attempt of utilization. This method SHALL NOT affect any jobs or reservations in the session in
their operation, e.g. queued and running jobs remain queued and running.

If the DRM system does not support advance reservation, destroyReservationSession SHALL throw an
UnsupportedOperationException.

7.1.8 getJobSessions / getReservationSessions

This method returns a list of JobSession or ReservationSession names that are valid input for a openJobSession

or openReservationSession call.

If the DRM system does not support advance reservation, getReservationSessions SHALL throw an
UnsupportedOperationException.

8 Working with Jobs

A DRMAA job represents a single computational activity that is executed by the DRM system on a execution
host, typically as operating system process. The JobSession interface represents all control and monitoring
functions commonly available in DRM systems for such jobs as a whole, while the Job interface represents the
common functionality for single jobs. Sets of jobs resulting from a bulk submission are separately represented
by the JobArray interface. JobTemplate instances allow to formulate conditions and requirements for the
job execution by the DRM system.

8.1 The DRMAA State Model

DRMAA defines the following job states:

enum JobState {
UNDETERMINED , QUEUED, QUEUED_HELD, RUNNING, SUSPENDED, REQUEUED,
REQUEUED_HELD, DONE, FAILED};

UNDETERMINED: The job status cannot be determined. This is a permanent issue, not being solvable
by querying again for the job state.

drmaa-wgQogf.org 31

mailto:drmaa-wg@ogf.org

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

GWD-R March 2011

QUEUED: The job is queued for being scheduled and executed.

QUEUED _HELD: The job has been placed on hold by the system, the administrator, or the submitting
user.

RUNNING: The job is running on a execution host.

SUSPENDED: The job has been suspended by the user, the system or the administrator.
REQUEUED: The job was re-queued by the DRM system, and is eligible to run.

REQUEUED _HELD: The job was re-queued by the DRM system, and is currently placed on hold.
DONE: The job finished without an error.

FAILED: The job exited abnormally before finishing.

If a DRMAA job state has no representation in the underlying DRMS, the DRMAA implementation MAY
never report that job state value. However, all DRMAA implementations MUST provide the JobState
enumeration as given here. An implementation SHOULD NOT return any job state value other than those
defined in the JobState enumeration.

The status values relate to the DRMAA job state transition model, as shown in Figure 1.

runJob()
runBulkJobs()

Y
Queued Started Terminated

QUEUED > RUNNING > DONE

REQUEUED

QUEUED_HELD

REQUEUED_HELD

i

 —
M— FAILED)

i

v

UNDETERMINED)

Figure 1: DRMAA Job State Transition Model

|

The transition diagram in Figure 1 expresses the clasification of possible job states into “Queued”, “Started”,
and “Terminated”. This is relevant for the job waiting functions (see Section 8.2 and Section 8.4), which

drmaa-wgQogf.org 32

mailto:drmaa-wg@ogf.org

956

957

958

959

960

961

962

963

964

965

966

967

968

969

GWD-R March 2011

operate on job state classes only. The “Terminated” class of states is final, meaning that further state
transition is not allowed.

Implementations SHALL NOT introduce other job transitions (e.g. from RUNNING to QUEUED) beside the ones
stated in Figure 1, even if they might happen in the underlying DRM system. In this case, implementations
MAY emulate the neccessary intermediate steps for the DRMAA-based application.

When an application requests job state information, the implementation SHOULD also provide the subState
value to explain DRM-specific information about the job state. The possible values of this attribute are
implementation-specific, but should be documented properly. Examples are extra states for staging phases
or details on the hold reason. Implementations SHOULD define a DRMS-specific data structure for the
sub-state information that can be converted to / from the data type defined by the language binding.

The IDL definition declares the sub state attributes as type any, expressing the fact that the language
binding MUST map the data type to a generic language type (e.g. void*, Object) that maintains source code
portability across DRMAA implementations and still accepts an UNSET value.

The DRMAA job state model can be mapped to other high-level API state models. Table 4 gives a non-
normative set of examples.

DRMAA JobState SAGA JobState [3] OGSA-BES Job State [2]
UNDETERMINED N/A N/A

QUEUED Running Pending (Queued)
QUEUED_HELD Running Pending (Queued)
RUNNING Running Running (Executing)
SUSPENDED Suspended Running (Suspended)
REQUEUED Running Pending (Queued)
REQUEUED_HELD Running Pending (Queued)
DONE Done Finished

FAILED Cancelled, Failed Cancelled, Failed

Table 4: Example Mapping of DRMAA Job States

2
(See footnote)

20 Comparison to DRMAA 1.0:

The differentiation between the system hold, user hold, and system / user hold job states was removed (conf. call Jan
20th 2009). There is only one hold state now. A job can now change its state from one of the SUSPENDED states to the
QUEUED_ACTIVE state (conf. call Jan 20th 2009, solves issue #2788). The job state UNDETERMINED is now clearer
defined. It expressed a permanent issue, meaning that the job state will not change by just waiting. Temporary problems in
the detection of the job state are now expressed by the TryLaterException (conf. call Feb 5th 2009, solves issue #2783). The
description of the FAILED state was extended to support a more specific differentiation between different job failure reasons.
The new subState feature allows the DRMAA implementation to provide better information, if available. There was no portable
way of standardizing extended failure information in a better way. (conf. call May 12th 2009, solves issue #5875) The different
suspend job states from DRMAA1 (user suspended, system suspended, user / system suspended) are now combined into one
suspend state. DRM systems with the need to express the different suspend reasons can use the new sub-state feature (conf.
call Mar 5th 2010).

drmaa-wgQogf.org 33

Re-check job
state map-

ping

mailto:drmaa-wg@ogf.org

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

GWD-R March 2011

8.2 JobSession Interface

A job session instance acts as container for job instances controlled through the DRMAA API. The session
methods support the submission of new jobs, the monitoring and the control of existing jobs. The relationship
between jobs and their session MUST be persisted, as described in Section 7.1.

interface JobSession {
readonly attribute string contact;
readonly attribute string sessionName;
readonly attribute boolean notificationSupported;
JobList getJobs(in JobInfo filter);
Job runJob(in JobTemplate jobTemplate);
JobArray runBulkJobs(
in JobTemplate jobTemplate,
in long beginlIndex,
in long endIndex,
in long step);
Job waitAnyStarted(in JobList jobs, in TimeAmount timeout);
Job waitAnyTerminated(in JobList jobs, in TimeAmount timeout);
void registerEventNotification(in DrmaaCallback callback);

s
(See footnote)21
8.2.1 contact

This attribute contains the contact value that was used in the SessionManager: :createJobSession call
for this instance (see Section 7.1). If no value was originally provided, the default contact string from the
implementation MUST be returned. This attribute is read-only.

8.2.2 sessionName

This attribute contains the sessionName value that was used in the SessionManager: :createJobSession
or SessionManager: :openJobSession call for this instance (see Section 7.1). This attribute is read-only.

21 Comparison to DRMAA 1.0: The original separation between synchronize() and wait() was replaced by a complete new
synchronization semantic in the API. DRMAA2 has now two methods, waitStarted() and waitTerminated(). The first waits
for any state that expresses that the job was started, the second for any terminal status. Both methods are available on
session level (wait for any of the given jobs to start / end) or on single job level (solves issue #5880 and #2838). The function
returns always a Job object, in order to allow chaining, e.g. job.wait(JobStatus. RUNNING).hold(). The session-level functions
implement the old DRMAA wait(SESSION_ANY). The old synchronize() semantics are no longer directly supported - instead,
the DRMAA application should use a looped Job.wait... / JobSession.waitAny... call. The result is a more condensed and
responsive API, were the application can decide to keep the user informed during synchronization on a set of jobs. DRMAA
library implementations should also become easier to design, since the danger of multithreading side effects inside the DRMAA
API is reduced by this change. As a side effect, JOB_IDS_SESSION_ANY and JOB_IDS_SESSION_ALL are no longer needed.
The special consideration of a partial failures during SESSION_ALL wait activities is also no longer necessary (F2F meeting
July 2009). The JobSession now allows to fetch also information about jobs that were not submitted through DRMAA (conf.
call June 23th 2010).

drmaa-wgQogf.org 34

mailto:drmaa-wg@ogf.org

GWD-R March 2011

o7 8.2.3 notificationSupported

ws The attribute indicates if event notification is supported by the DRMAA implementation for the job session.
we If False, then registerEventNotification will raise an UnsupportedOperationExeption if being used. gr%‘{vlbn:;ds

proval
1000

w1 8.2.4 getJobs

w2 This method returns a sequence of jobs that belong to the job session. The filter parameter allows one
w0 to choose a subset of the session jobs as return value. The attribute semantics for the filter argument are
e explained in Section 5.4. If no job matches or the session has no jobs attached, the method MUST return
w05 an empty sequence instance. If filter is UNSET, all session jobs MUST be returned.

s Time-dependent effects of this method, such as jobs no longer matching to filter criteria on evaluation time,
wr are implementation-specific. The purpose of the filter parameter is to keep scalability with a large number
s Of jobs per session. Applications therefore must consider the possibly changed state of jobs during their
w0 evaluation of the method result.

oo 8.2.5 runJob

w1 The runJob method submits a job with the attributes defined in the job template parameter. It returns a
1012 Job object that represents the job in the underlying DRM system. Depending on the job template settings,
w3 submission attempts may be rejected with an InvalidArgumentException. The error details SHOULD
s provide further information about the attribute(s) responsible for the rejection.

s When this method returns a valid Job instance, the following conditions SHOULD be fulfilled:
1016 e The job is part of the persistent state of the job session.

1017 e All non-DRMAA and DRMAA interfaces to the DRM system report the job as being submitted to
1018 the DRM system.

1019 e The job has one of the DRMAA job states.
00 8.2.6 runBulkJobs

w2 The runBulkJobs method creates a set of parametric jobs, each with attributes defined in the given
w2 job template. Each job in the set is identical, except for the job template attributes that include the
123 JobTemplatePlaceholder: :PARAMETRIC_INDEX macro (see Section 5.5).

w4 If any of the resulting parametric job templates is not accepted by the DRM system, the method call MUST
w25 raise an InvalidArgumentException. No job from the set SHOULD be submitted in this case.

w26 The first job in the set has an index equal to the beginIndex parameter of the method call. The smallest valid
w2 value for beginIndex is 1. The next job has an index equal to beginIndex + step, and so on. The last job
w26 has an index equal to beginIndex + n * step, where n is equal to(endIndex - beginIndex) / step. The
w0 index of the last job may not be equal to endIndex if the difference between beginIndex and endIndex is not
w0 evenly divisible by step. The beginIndex value must be less than or equal to the endIndex value, and only
w31 positive index numbers are allowed, otherwise the method SHOULD raise an InvalidArgumentException.

w2 Implementations MAY provide custom ways for the job to determine its index number.

drmaa-wgQogf.org 35

mailto:drmaa-wg@ogf.org

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

GWD-R March 2011

The runBulkJobs method returns a JobArray (see Section 8.5) instance that represents the set of Job objects
created by the method call under a common array identifier. For each of the jobs in the array, the same
conditions as for the result of runJob SHOULD apply.

The largest valid value for endIndex MUST be defined by the language binding.

22
(See footnote)

8.2.7 waitAnyStarted / waitAnyTerminated

The waitAnyStarted method blocks until any of the jobs referenced in the jobs parameter entered one of
the “Started” states. The waitAnyTerminated method blocks until any of the jobs referenced in the jobs
parameter entered one of the “Terminated” states (see Section 8.1). If the input list contains jobs that are
not part of the session, waitAnyStarted SHALL fail with an InvalidArgumentException.

The timeout argument specifies the desired behavior when a result is not immediately available. The con-
stant value INFINITE_TIME may be specified to wait indefinitely for a result. The constant value ZERO_TIME
may be specified to return immediately. Alternatively, a number of seconds may be specified to indicate
how long to wait for a result to become available. If the invocation exits on timeout, an TimeoutException
SHALL be raised.

In a multi-threaded environment with multiple JobSession: :waitAny. .. calls, only one of the active thread
SHOULD get the status change notification for a particular job, while the other threads SHOULD continue
waiting. If there are no more queryable jobs left in the session, all remaining waiting threads SHOULD fail
with an InvalidStateException. If thread A is waiting for a specific job with Job: :wait. .., and another
thread, thread B, waiting for that same job or with JobSession: :waitAny. .., than B SHOULD receive the
notification that the job has finished, thread A SHOULD fail with an InvalidStateException. Waiting for
a job state is a read-only operation.

An application waiting for some condition to happen in all jobs of a set is expected to perform looped calls
of these waiting functions.

(See footnotc)23
8.2.8 registerEventNotification

This method is used to register a DrmaaCallback interface (see Section 8.3) implemented by the DRMAA-
based application. If the callback functionality is not supported by the DRMAA implementation, the method
SHALL raise an UnsupportedOperationException. Implementations MAY support the registration of
multiple callback methods.

A language binding specification MUST define how the reference to an interface-compliant method can be
given as argument to this method.

22 There was a discussion (mailing list Jan 2011) about having specialized job templates for bulk submission, with support
for the start / end index and a slots limit. We rejected that, since job templates are intended for re-usage.

23 People typically ask for the waitAll..() counterparts of these functions. Since they are so easy to implement in the
application itself, we could not see any benefit in adding them. Due to there intended long-blocking operation, the DRM
system would no be able to offer any better (meaning much faster) implementation to be wrapped by DRMAA.

drmaa-wgQogf.org 36

mailto:drmaa-wg@ogf.org

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

GWD-R March 2011

8.3 DrmaaCallback Interface

The DrmaaCallback interface allows the DRMAA library or the DRM system to inform the application about
relevant events from the DRM system in a asynchronous fashion. One expected use case is loseless monitoring
of job state transitions. The support for such callback functionality is optional, but all implementations
MUST define the DrmaaCallback interface type as given in the language binding.

interface DrmaaCallback {
void notify(in DrmaaNotification notification);

};

struct DrmaaNotification {
DrmaaEvent event;
Job job;
JobState jobState;

};

enum DrmaaEvent {
NEW_STATE, MIGRATED, ATTRIBUTE_CHANGE
};

The application callback interface is registered through the JobSession::registerEventNotification
method (see Section 8.2). The DrmaaNotification structure represents the notification information from
the DRM system. Implementations MAY extend this structure for further information (see Section 5). All
given information SHOULD be valid at least at the time of notification generation.

The DrmaaEvent enumeration defines standard event types for notification:

NEW _STATE The job entered a new state, which is described in the jobState attribute of the notification
structure.

MIGRATED The job was migrated to another execution host, and is now in the given state.

ATTRIBUTE_CHANGE A monitoring attribute of the job, such as the memory consumption, changed
to a new value. The jobState attribute MAY have the value UNSET on this event.

DRMAA implementations SHOULD protect themself from unexpected behavior of the called application.
This includes indefinite delays or unexpected exceptions from the callee. An implementation SHOULD
also disallow any library calls while the callback function is running, to avoid recursion scenarios. It is
RECOMMENDED to raise TryLaterException in this case.

Scalability issues of the notification facility are out of scope for this specification. Implementations MAY
decide to support non-standardized throttling configuration options.

(See footnotc)24

8.4 Job Interface

Every job in the JobSession is expressed by an own instance of the Job interface. It allows one to instruct
the DRM system for a job status change, and to query the status attributes of the job in the DRM system.

24 We intentionally did not add subState to the notification information, since this would make callback interface implemen-
tations specific for the DRM system, without any chance for creating a portable DRMAA application.

drmaa-wgQogf.org 37

mailto:drmaa-wg@ogf.org

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

GWD-R March 2011

interface Job {
readonly attribute string jobId;
readonly attribute JobSession session;
readonly attribute JobTemplate jobTemplate;
void suspend();
void resume ();
void hold ();
void release();
void terminate();
JobState getState(out any jobSubState);
JobInfo getInfo();
Job waitStarted(in TimeAmount timeout);
Job waitTerminated(in TimeAmount timeout);

s
(See footnute)25
8.4.1 jobld

This attribute provides the string job identifier assigned to the job by the DRM system. It is intended as
performant alternative for fetching a complete JobInfo instance for this information.

8.4.2 session

This attribute offers a reference to the JobSession instance that represents the session used for the job
submission creating this Job instance.

8.4.3 jobTemplate

This attribute provides a reference to a JobTemplate instance that has equal values to the one that was
used for the job submission creating this Job instance.

8.4.4 suspend / resume / hold / release / terminate

The job control functions allow modifying the status of the single job in the DRM system, according to the
state model presented in Section 8.1.

The suspend method triggers a transition from RUNNING to SUSPENDED state. The resume method triggers
a transition from SUSPENDED to RUNNING state. The hold method triggers a transition from QUEUED to
QUEUED_HELD, or from REQUEUED to REQUEUED_HELD state. The release method triggers a transition from
QUEUED_HELD to QUEUED, or from REQUEUED_HELD to REQUEUED state. The terminate method triggers a

25 In comparison to DRMAA v1.0, DRMAA2 replaces the identification of jobs by strings with Job objects. This enables a
tighter integration of job meta-data and identity, for the price of reduced performance in (so far not existing) DRMAA RPC
scenarios. The former DRMAA control() with the JobControlAction structure is now split up into dedicated functions (such
as hold() and release()) on the Job object.

Even though the DRMAAv2 surveys showed interest in interactive job support, this feature was intentionally left out. Reasons
are the missing support in some major DRM systems, and the lack of a relevant DRMAA-related use case (conf. call Jan 7th
2010)

Issue #5877 (support for direct job signaling) was rejected, even though there was an according request from the SAGA WG.
Issue #2782 (change attributes of submitted, but pending jobs) was rejected based on group decision.

drmaa-wgQogf.org 38

mailto:drmaa-wg@ogf.org

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

GWD-R March 2011

transition from any of the “Started” states to one of the “Terminated” states. If the job is in an inappropriate
state for the particular method, the method MUST raise an InvalidStateException.

The methods SHOULD return after the action has been acknowledged by the DRM system, but MAY
return before the action has been completed. Some DRMAA implementations MAY allow this method
to be used to control jobs submitted externally to the DRMAA session, such as jobs submitted by other
DRMAA sessions in other DRMAA implementations or jobs submitted via native utilities. This behavior is
implementation-specific.

8.4.5 getState

This method allows one to gather the current status of the job according to the DRMAA state model,
together with an implementation specific sub state (see Section 8.1). It is intended as performant alternative
for fetching a complete JobInfo instance for state checks. The timing conditions are described in Section
5.4.

(See fuotnute)26

8.4.6 getlnfo
This method returns a JobInfo instance for the particular job under the conditions described in Section 5.4.
8.4.7 waitStarted / waitTerminated

The waitStarted method blocks until the job entered one of the “Started” states. The waitTerminated
method blocks until the job entered one of the “Terminated” states (see Section 8.1). The timeout argument
specifies the desired behavior when a result is not immediately available. The constant value INFINITE_TIME
may be specified to wait indefinitely for a result. The constant value ZERO_TIME may be specified to return
immediately. Alternatively, a number of seconds may be specified to indicate how long to wait for a result to
become available. If the invocation exits on timeout, an TimeoutException SHALL be raised. If the job is
in an inappropriate state for the particular method, the method MUST raise an InvalidStateException.

8.5 JobArray Interface

The following section explains the set of methods and attributes defined in the JobArray interface. Any
instance of this interface represent an job array, a common concept in many DRM systems for a job set created
by one operation. In DRMAA, JobArray instances are only created by the runBulkJobs operation (see
Section 8.2). JobArray instances differ from the JobList data structure due to their potential for representing
a DRM system concept, while JobList is a DRMAA-only concept mainly realized by the language binding
sequence support. Implementations SHOULD realize the JobArray functionality as wrapper for DRM system
job arrays, if possible. If the DRM system has only single job support or incomplete job array support with
respect to the DRMAA-provided functionality, implementations MUST realize the JobArray functionality
on their own, for example based on looped operations with a list of jobs.

interface JobArray {
readonly attribute string jobArraylId;
readonly attribute JobList jobs;
readonly attribute JobSession session;

26 The getState() function now also returns job subState information. This is intended as additional information for the given
DRMAA job state, and can be used for expressing the hold state differentiation from DRMAA 1.0 (conf. call Mar 31st 2009).

drmaa-wgQogf.org 39

mailto:drmaa-wg@ogf.org

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

GWD-R March 2011

readonly attribute JobTemplate jobTemplate;
void suspend();

void resume ();

void hold ();

void release ();

void terminate ();

};

(See foutnute)27

8.5.1 jobArrayld

This attribute provides the string job identifier assigned to the job array by the DRM system. If the DRM
system has no job array support, the implementation MUST generate a system-wide unique identifier for
the result of the successful runBulkJobs operation.

8.5.2 jobs

This attribute provides the static list of jobs that are part of the job array.

(See footnote)2
8.5.3 session

This attribute offers a reference to a JobSession instance that represents the session which was used for the
job submission creating this JobArray instance.

8.5.4 jobTemplate

This attribute provides a reference to a JobTemplate instance that has equal values to the one that was
used for the job submission creating this JobArray instance.

(See footnote)

8.5.5 suspend / resume / hold / release / terminate

The job control functions allow modifying the status of the job array in the DRM system, with the same
semantic as with the counterparts in the Job interface (see Section 8.4). If one of the jobs in the array is in
an inappropriate state for the particular method, the method MUST raise an InvalidStateException.

27 We are aware of the fact that some systems (e.g. LSF at the time of writing) do not support all DRMAA control operations
offered for JobArrays. Since we intended to avoid optional DRMAA operations wherever we could, the text here mandates
the implementation to simulate the JobArray support on its own. For example, looping over all jobs in the array and calling
“suspend” for each one is trivial to implement and fulfills the same purpose.

28 We were asked for offering a filter support similar to JobSession here. This was rejected by discussion on the list (Jan
2011), since the number of jobs returned here is normally comparatively short. In this case, the DRM system cannot provide
any benefit over the looped check in the application itself.

29 The use case from SAGA perspective is that the user can easily resubmit the same job - just changing for example some
command line parameter, but leaving the remainder fixed (mail by Andre Merzky, July 29th 2010).

drmaa-wgQogf.org 40

Completely
new, needs
group ap-
proval

mailto:drmaa-wg@ogf.org

GWD-R March 2011

nos The methods SHOULD return after the action has been acknowledged by the DRM system for all jobs in
nee the array, but MAY return before the action has been completed. Some DRMAA implementations MAY
nes allow this method to be used to control job arrays created externally to the DRMAA session, such as job
ngs arrays submitted by other DRMAA sessions in other DRMAA implementations or job arrays submitted via
ner native utilities. This behavior is implementation-specific.

we 9 Working with Advance Reservation

ne Adance reservation is a DRM system concept that allows the reservation of execution resources for jobs
120 to be submitted. DRMAA encapsulates such functionality of a DRM system with the interfaces and data
1o structures described in this chapter.

122 DRMAA implementations for DRM systems that do not support advance reservation still MUST imple-
103 mented the described interfaces, in order to keep source code portability for DRMA A-based applications.

v 9.1 ReservationSession Interface

s Every ReservationSession instance represents a set of advance reservations in the DRM system. Every
1206 Reservation instance SHALL belong only to one ReservationSession instance.

1207 interface ReservationSession {

1208 readonly attribute string contact;

1200 readonly attribute string sessionName;

1210 Reservation getReservation(in string reservationId);

1211 Reservation requestReservation(in ReservationTemplate reservationTemplate);
1212 Reservationlist getReservations ();

1213 } 5

1214 If the DRM system does not support advance reservation, all methods in this interface SHALL throw an
1215 UnsupportedOperationException.

e 9.1.1 contact

1217 This attribute contains the contact value that was used in the createReservationSession call for this
s instance (see Section 7.1). If no value was originally provided, the default contact string from the implemen-
129 tation MUST be returned. This attribute is read-only.

20 9.1.2 sessionName

vz This attribute contains the name of the session that was used for creating or opening this Reservation
12 instance (see Section 7.1). This attribute is read-only.

1223 9.1.3 getReservation

12¢ This method returns a Reservation instance that has the given reservationId. Implementations MAY
125 support the access to reservations created outside of a DRMAA session scope, under the same regulari-
26 ties as for the MonitoringSession: :getAllReservations method (see Section 10.1.2). If no reservation
1227 matches, the method SHALL raise an InvalidArgumentException. Time-dependent effects of this method
128 are implementation-specific.

drmaa-wgQogf.org 41

mailto:drmaa-wg@ogf.org

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

GWD-R March 2011

9.1.4 requestReservation

The requestReservation method SHALL request an advance reservation in the DRM system with at-
tributes defined in the provided ReservationTemplate. On a successful reservation, the method returns a
Reservation instance that represents the advance reservation in the underlying DRM system.

The method SHALL raise an InvalidArgumentException if the reservation cannot be performed by the
DRM system. It SHOULD further provide detailed information about the rejection cause in the extended
error information (see Section 6).

In case some of the conditions are not fulfilled after the reservation was succesfully created, for example due
to execution host outages, the reservation itself SHOULD remain valid, as long is it wasn’t cancelled either
through or outside of DRMAA.

9.1.5 getReservations

This method returns the list of reservations successfully created so far in this session, regardless of their start
and end time. The list of Reservation instances is only cleared in conjunction with the destruction of the
actual session instance through SessionManager: :destroyReservationSession (see also Section 7.1).

9.2 Reservation Interface

The Reservation interface represents attributes and methods available for an advance reservation success-
fully created in the DRM system.

interface Reservation {
readonly attribute string reservationld;

};

readonly
readonly
readonly
readonly
readonly
readonly
readonly

attribute
attribute
attribute
attribute
attribute
attribute
attribute

void terminate ();

(See footnote)

9.2.1

reservationld

ReservationSession session;
ReservationTemplate reservationTemplate;
OrderedStringlist reservedMachines;
AbsoluteTime reservedStartTime;
AbsoluteTime reservedEndTime;
AbsoluteTime reservedSlots;

string reservationName;

The reservationld is an opaque string identifier for the advance reservation. If the DRM system has

identifiers for advance reservations, this attribute SHOULD provide the according stringified value. If not,
the DRMAA implementation MUST generate value this is unique in time and extend of the DRM system.

Any relation-
ship to reser-
¥aﬁonNanm

30 The reason for not having a separate ReservationInfo struct is that there are only three relevant attributes for this structure,
and that all of them have static semantics. There is, therefore, no need for refetching reservation information several times,
which is the case with JobInfo. Because of this, the according information can be a part of the Reservation interface itself.

drmaa-wgQogf.org

42

mailto:drmaa-wg@ogf.org

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

GWD-R March 2011

9.2.2 session
This attribute references the ReservationSession which was used to create the advance reservation instance.
9.2.3 reservationTemplate

This attribute provides a reference to a ReservationTemplate instance that has equal values to the one
that was used for the advance reservation creating this Reservation instance. This attribute value MUST
be UNSET if the referenced reservation was created outside of a DRMAA session.

9.2.4 reservedMachines

This attribute describes the set of machines which was reserved under the conditions described in the
according reservation template. Either reservedMachines or reservedSlots or both MUST have a value
different from UNSET.

9.2.5 reservedStartTime

This attribute describes the start time for the reservation described by this instance. If the value is UNSET,
it expresses an unrestricted start time for this reservation.

9.2.6 reservedEndTime

This attribute describes the end time for the reservation described by this instance. If the value is UNSET, it
expresses an unrestricted end time for this reservation.

9.2.7 reservedSlots

This attribute describes the number of slots that was reserved by the DRM system, based on the original
minSlots and maxSlots arguments in ReservationTemplate. Either reservedSlots or reservedMachines
or both MUST have a value different from UNSET.

9.2.8 reservationName

This attribute describes the reservation name that was stored by the implementation or DRM system, derived
from the original reservationName attribute given in the ReservationTemplate.

9.2.9 terminate

This method terminates the advance reservation in the DRM system represented by this Reservation
instance. .

10 Monitoring the DRM System

The DRMAA monitoring facility supports four basic units of monitoring:

drmaa-wgQogf.org 43

mailto:drmaa-wg@ogf.org

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

GWD-R March 2011

e Properties of the DRM system as a whole (e.g. DRM system version number) that are independent
from the particular session and contact string,

e Properties of the DRM system that depend on the current contact string (e.g. list of machines in the
currently accessed Grid Engine cell)

e Properties of individual queues known from a getAllQueues call

e Properties of individual machines available with the current contact string (e.g. amount of physical
memory in a chosen machine)

The MonitoringSession interface in DRMAA supports the monitoring of execution resources in the DRM
system. This is distinct from the monitoring of jobs running in the DRM system, which is covered by the
JobSession and the Job interface.

10.1 MonitoringSession Interface

The MonitoringSession interface represents a set of stateless methods for fetching information about the
DRM system and the DRMAA implementation itself. It MAY be used to implement DRM system monitoring
tools like gstat.

interface MonitoringSession {
readonly attribute Version drmsVersion;
ReservationList getAllReservations ();
JobList getAllJobs(in JobInfo filter);
Queuelist getAllQueues(in Stringlist names);
MachinelList getAllMachines(in Stringlist names);
readonly attribute StringlList drmsJobCategoryNames;
s

All returned data SHOULD be related to the current user running the DRMAA-based application. For
example, the getAllQueues function MAY be reduced to only denote queues that are usable or generally
accessible for the DRMAA application and user performing the query.

Because no guarantee can be made as to future accessibility, and because of cases where list reduction may
demand excessive overhead in the DRMAA implementation, an unreduced or partially reduced result MAY
be returned on all methods returning lists. The behavior of the DRMAA implementation in this regard
should be clearly documented. In all cases, the list items MUST all be valid input for job submission or
advance reservation through the DRMAA APIL

10.1.1 drmsVersion

This attribute provides the DRM-system specific version information. While the DRM system type is avail-
able from the SessionManager: :drmsName attribute (see Section 7.1), this attribute provides the according
version of the product. Applications are expected to use the information about the general DRM system type
for accessing product-specific features. Applications are not expected to make decisions based on versioning
information from this attribute - instead, the value should only be utilized for informative output to the end
user.

drmaa-wgQogf.org 44

mailto:drmaa-wg@ogf.org

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

GWD-R March 2011

10.1.2 getAllReservations

This method returns the list of all DRMS advance reservations accessible for the user running the DRMAA-
based application. In contrast to a ReservationSession::getReservations call, this method SHOULD
also return reservations that were created outside of DRMAA (e.g. through command-line tools) by this user.
The returned list MAY also contain reservations that were created by other users if the security policies of
the DRM system allow such global visibility. The DRM system or the DRMAA implementation is at liberty,
however, to restrict the set of returned reservations based on site or system policies, such as security settings
or scheduler load restrictions.

This method SHALL raise an UnsupportedOperationException if advance reservation is not supported by
the implementation.

10.1.3 getAllJobs

This method returns the list of all DRMS jobs visible to the user running the DRMA A-based application. In
contrast to a JobSession: :getJobs call, this method SHOULD also return jobs that were submitted outside
of DRMAA (e.g. through command-line tools) by this user. The returned list MAY also contain jobs that
were submitted by other users if the security policies of the DRM system allow such global visibility. The
DRM system or the DRMAA implementation is at liberty, however, to restrict the set of returned jobs based
on site or system policies, such as security settings or scheduler load restrictions.

Querying the DRM system for all jobs might result in returning an excessive number of Job objects. Impli-
cations to the library implementation are out of scope for this specification.

The method supports a filter argument for fetching only a subset of the job information available. Both
the return value semantics and the filter semantics SHOULD be similar to the ones described for the
JobSession: :getJobs method (see Section 8.2).

Language bindings SHOULD NOT try to solve the scalability issues by replacing the sequence type of
the return value with some iterator-like solution. This approach would break the basic snapshot semantic
intended for this method.

3
(See footnote)

10.1.4 getAllQueues

This method returns a list of queues available for job submission in the DRM system. All Queue instances
in this list SHOULD be (based on their name attribute) a valid input for the JobTemplate: :queueName
attribute (see Section 5.5). The result can be an empty list or might be incomplete, based on queue, host,
or system policies. It might also contain queues that are not accessible for the user (because of queue
configuration limits) at job submission time.

The names parameter supports restricting the result to Queue instances that have one of the names given in
the argument. If the names parameter value is UNSET, all Queue instances should be returned.

31 The non-argumentation about the scalability problem was the final result of a clarification attempt. We hand this one
over to the implementors. (conf call Jul 14th 2010)

drmaa-wgQogf.org 45

mailto:drmaa-wg@ogf.org

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

GWD-R March 2011

10.1.5 getAllMachines

This method returns the list of machines available in the DRM system as execution host. The returned list
might be empty or incomplete based on machine or system policies. The returned list might also contain
machines that are not accessible by the user, e.g. because of host configuration limits.

The names parameter supports restricting the result to Machine instances that have one of the names given
in the argument. If the names parameter value is UNSET, all Machine instances should be returned.

10.1.6 drmsJobCategoryNames

This method provides the list of of valid job category names which can be used for the jobCategory attribute
in a job template. The semantics are described in Section 5.5.7.

11 Annex A: Complete DRMAA IDL Specification

The following text shows the complete IDL specification for the DRMAAv2 application programming inter-
face. The ordering of IDL constructs here has no normative meaning, but ensures the correct compilation
with a standard CORBA IDL compiler for syntactical correctness checks. This demands only some additional
forward declarations to resolve circular dependencies.

module DRMAA2 {

enum JobState {
UNDETERMINED, QUEUED, QUEUED_HELD, RUNNING, SUSPENDED, REQUEUED,
REQUEUED_HELD, DONE, FAILED};

enum OperatingSystem {
HPUX, LINUX, IRIX, TRUE64, MACOS, SUNOS, WIN, WINNT, AIX, UNIXWARE,
BSD, OTHER_0S}Z;

enum CpulArchitecture {
ALPHA, ARM, CELL, PARISC, X86, X64, IA64, MIPS, PPC, PPC64,
SPARC, SPARC64, OTHER_CPU};

enum ResourcelLimitType {
CORE_FILE_SIZE, CPU_TIME, DATA_SEG_SIZE, FILE_SIZE, OPEN_FILES,
STACK_SIZE, VIRTUAL_MEMORY, WALLCLOCK_TIME };

enum JobTemplatePlaceholder {
HOME_DIRECTORY , WORKING_DIRECTORY ,HOST_NAME ,USER_NAME , PARAMETRIC_INDEX };

enum DrmaaEvent {
NEW_STATE, MIGRATED, ATTRIBUTE_CHANGE
};

typedef sequence<string> OrderedStringlList;

typedef sequence<string> Stringlist;
typedef sequence<Job> JobList;

drmaa-wgQogf.org 46

mailto:drmaa-wg@ogf.org

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

GWD-R

typedef
typedef
typedef
typedef
typedef
typedef
native Z
native I

struct J
string

sequence <Queue> Queuelist;

sequence <Machine> MachinelList;
sequence<Reservation> ReservationList;
sequence< sequence<string,2> > Dictionary;
string AbsoluteTime;

long long TimeAmount;

ERO_TIME;

NFINITE_TIME;

obInfo {
jobId;

Dictionary resourceUsage;

long e
string
string

xitStatus;
terminatingSignal;
annotation;

JobState jobState;
any jobSubState;

Ordere
string
string
string

dStringlList allocatedMachines;
submissionMachine;
jobOwner;
queueName ;

TimeAmount wallclockTime;

long c

puTime;

AbsoluteTime submissionTime;
AbsoluteTime dispatchTime;
AbsoluteTime finishTime;};

struct JobTemplate {

string
Ordere

remoteCommand ;
dStringlList args;

boolean submitAsHold;
boolean rerunnable;
Dictionary jobEnvironment;

string
string

workingDirectory;
jobCategory;

Stringlist email;
boolean emailOnStarted;
boolean emailOnTerminated;

string
string
string
string

jobName;
inputPath;
outputPath;
errorPath;

boolean joinFiles;

string
string

reservationlId;
queueName ;

long minSlots;
long maxSlots;
long priority;

drmaa-wgQogf.

org

March 2011

47

mailto:drmaa-wg@ogf.org

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

GWD-R

OrderedStringlist candidateMachines;
long minPhysMemory;
OperatingSystem machine0S;

CpuArchitecture machineArch;
AbsoluteTime startTime;
AbsoluteTime deadlineTime;
Dictionary stagelnFiles;
Dictionary stageOutFiles;
Dictionary softResourcelimits;
Dictionary hardResourcelimits;
string accountingld;

};

struct ReservationTemplate {
string reservationName;
AbsoluteTime startTime;
AbsoluteTime endTime;
TimeAmount duration;
long minSlots;
long maxSlots;
OrderedStringlist candidateMachines;
long minPhysMemory;
OperatingSystem machine(OS;
CpuArchitecture machineArch;

};

struct DrmaaNotification {
DrmaaEvent event;
Job job;
JobState jobState;

};

struct Queue {
string name;

}s

struct Version {
string major;
string minor;

};

struct Machine {
string name;
long sockets;
long coresPerSocket;
long threadsPerCore;
double 1load;
long physMemory;

drmaa-wgQogf.org

March 2011

48

mailto:drmaa-wg@ogf.org

GWD-R March 2011

1485 long virtMemory;

1486 OperatingSystem machine0S;

1487 Version machineOSVersion;

1488 CpuArchitecture machineArch;

1489 } N

1490 exception DeniedByDrmException {string message;l};

1491 exception DrmCommunicationException {string message;l};
1492 exception TryLaterException {string message;};

1493 exception SessionManagementException {string message;};
1494 exception TimeoutException {string message;};

1495 exception InternalException {string message;l;

1496 exception InvalidArgumentException {string message;};

1497 exception InvalidSessionException {string message;};

1498 exception InvalidStateException {string message;7};

1499 exception OutOfMemoryException {string message;l};

1500 exception UnsupportedAttributeException {string message;l};
1501 exception UnsupportedOperationException {string message;l};
1502 interface DrmaaReflective {

1503 readonly attribute Stringlist jobTemplateOpt;

1504 readonly attribute Stringlist jobTemplateImpl;

1505 readonly attribute Stringlist jobInfoOpt;

1506 readonly attribute StringlList jobInfolmpl;

1507 readonly attribute StringlList reservationTemplateOpt;
1508 readonly attribute Stringlist reservationTemplatelmpl;
1509 readonly attribute Stringlist queuelmpl;

1510 readonly attribute Stringlist machineImpl;

1511

1512 string getAttr (any instance, in string name);

1513 void setAttr (any instance, in string name, in string value);
1514 string describeAttr (in string name);

1515 } N

1516 interface DrmaaCallback {

1517 void notify(in DrmaaNotification notification);

1518 } M

1510 interface ReservationSession {

1520 readonly attribute string contact;

1521 readonly attribute string sessionName;

1522 Reservation getReservation(in string reservationId);
1523 Reservation requestReservation(in ReservationTemplate reservationTemplate);
1524 ReservationlList getReservations ();

1525 } ;

1526 interface Reservation {

1527 readonly attribute string reservationId;

drmaa-wgQogf.org 49

mailto:drmaa-wg@ogf.org

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

GWD-R

readonly
readonly
readonly
readonly
readonly
readonly
readonly

attribute
attribute
attribute
attribute
attribute
attribute
attribute

void terminate ();

};

interface JobArray {

ReservationSession session;
ReservationTemplate reservationTemplate;
OrderedStringlList reservedMachines;
AbsoluteTime reservedStartTime;
AbsoluteTime reservedEndTime;
AbsoluteTime reservedSlots;

string reservationName;

March 2011

readonly attribute string jobArrayId;
readonly attribute JobList jobs;

readonly attribute JobSession session;
readonly attribute JobTemplate jobTemplate;
void suspend();

void resume ();

void hold ();

void release ();

void terminate ();

};

interface JobSession {
readonly attribute string contact;
readonly attribute string sessionName;
readonly attribute boolean notificationSupported;
JobList getJobs(in JobInfo filter);
Job runJob(in JobTemplate jobTemplate);
JobArray runBulkJobs(
in JobTemplate jobTemplate,
in long beginlIndex,
in long endIndex,
in long step);
Job waitAnyStarted(in JobList jobs, in TimeAmount timeout);
Job waitAnyTerminated (in JobList jobs, in TimeAmount timeout);
void registerEventNotification(in DrmaaCallback callback);

};

interface Job {
readonly attribute string jobId;
readonly attribute JobSession session;
readonly attribute JobTemplate jobTemplate;
void suspend ();
void resume ();

hold ();

release () ;

void terminate ();

JobState getState(out any jobSubState);

void
void

drmaa-wgQogf.org 50

mailto:drmaa-wg@ogf.org

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

GWD-R March 2011

JobInfo getInfo();
Job waitStarted(in TimeAmount timeout);
Job waitTerminated(in TimeAmount timeout);

};

interface MonitoringSession {
readonly attribute Version drmsVersion;
ReservationList getAllReservations ();
JobList getAllJobs(in JobInfo filter);
Queuelist getAllQueues(in Stringlist names);
MachinelList getAllMachines(in Stringlist names);
readonly attribute StringlList drmsJobCategoryNames;
}s

interface SessionManager{
readonly attribute string drmsName;
readonly attribute Version drmaaVersion;
readonly attribute boolean reservationSupported;
JobSession createJobSession(in string sessionName,
in string contactString);
ReservationSession createReservationSession(in string sessionName,
in string contactString);
MonitoringSession createMonitoringSession (in string contactString);
JobSession openJobSession(in string sessionName);
ReservationSession openReservationSession(in string sessionName);
void closeJobSession(in JobSession s);
void closeReservationSession(in ReservationSession s);
void closeMonitoringSession(in MonitoringSession s);
void destroyJobSession(in string sessionName);
void destroyReservationSession(in string sessionName);
StringlList getJobSessions ();
Stringlist getReservationSessions();

};
};

12 Security Considerations

The DRMAA API does not specifically assume the existence of a particular security infrastructure in the
DRM system. The scheduling scenario described herein presumes that security is handled at the point of job
authorization/execution on a particular resource. It is assumed that credentials owned by the application
using the API are in effect for the DRMAA implementation too.

It is conceivable an authorized but malicious user could use a DRMAA implementation or a DRMAA enabled
application to saturate a DRM system with a flood of requests. Unfortunately for the DRM system this
case is not distinguishable from the case of an authorized good-natured user who has many jobs to be
processed. For temporary load defense, implementations SHOULD utilize the TryLaterException. In case
of permanent issues, the implementation SHOULD raise the DeniedByDrmException.

drmaa-wgQogf.org 51

mailto:drmaa-wg@ogf.org

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

GWD-R March 2011

DRMAA implementers should guard against buffer overflows that could be exploited through DRMAA
enabled interactive applications or web portals. Implementations of the DRMAA API will most likely
require a network to coordinate subordinate DRMS; however the API makes no assumptions about the
security posture provided the networking environment. Therefore, application developers should further
consider the security implications of “on-the-wire” communications.

For environments that allow remote or protocol based DRMAA clients, the implementation SHOULD offer
support for secure transport layers to prevent man in the middle attacks.

13 Contributors

Roger Brobst

Cadence Design Systems, Inc.
555 River Oaks Parkway

San Jose, CA 95134

Email: rbrobst@cadence.com

Daniel Gruber
Univa

Mariusz Mamonski

Daniel Templeton (Corresponding Author)
Cloudera

Peter Troger (Corresponding Author)
Hasso-Plattner-Institute at University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3

14482 Potsdam, Germany

Email: peter@troeger.eu

We are grateful to numerous colleagues for support and discussions on the topics covered in this document,
in particular (in alphabetical order, with apologies to anybody we have missed):

Guillaume Alleon, Ali Anjomshoaa, Ed Baskerville, Harald Bohme, Nadav Brandes, Matthieu Cargnelli,
Karl Czajkowski, Piotr Domagalski, Fritz Ferstl, Paul Foley, Nicholas Geib, Becky Gietzel, Alleon Guillaume,
Daniel S. Katz, Andreas Haas, Tim Harsch, Greg Hewgill, Rayson Ho, Eduardo Huedo, Dieter Kranzmiiller,
Krzysztof Kurowski, Peter G. Lane, Miron Livny, Ignacio M. Llorente, Martin v. Lowis, Andre Merzky,
Ruben S. Montero, Greg Newby, Steven Newhouse, Michael Primeaux, Greg Quinn, Hrabri L. Rajic, Martin
Sarachu, Jennifer Schopf, Enrico Sirola, Chris Smith, Ancor Gonzalez Sosa, Douglas Thain, John Tollefsrud,
Jose R. Valverde, and Peter Zhu.

drmaa-wgQogf.org 52

Add miss-
ing contact
details

mailto:drmaa-wg@ogf.org

1653

1654
1655
1656
1657
1658
1659

1660

1661
1662

1663

1664

1665
1666
1667

1668

1669

1670

1671
1672
1673
1674
1675
1676
1677

1678

1679

1680

1682

1683

1684

1685

1686

1687
1688

1689

GWD-R March 2011

14 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or the
extent to which any license under such rights might or might not be available; neither does it represent that
it has made any effort to identify any such rights. Copies of claims of rights made available for publication
and any assurances of licenses to be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by implementers or users of this specification can
be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to practice this recommendation.
Please address the information to the OGF Executive Director.

15 Disclaimer

This document and the information contained herein is provided on an “as-is” basis and the OGF disclaims
all warranties, express or implied, including but not limited to any warranty that the use of the information
herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular
purpose.

16 Full Copyright Notice

Copyright (© Open Grid Forum (2005-2011). Some Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice or references to the OGF or
other organizations, except as needed for the purpose of developing Grid Recommendations in which case
the procedures for copyrights defined in the OGF Document process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors
or assignees.

17 References

[1] Scott Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119 (Best Current
Practice), March 1997. URL http://tools.ietf.org/html/rfc2119.

[2] T. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pickles, D. Pulsipher, C. Smith,
and M. Theimer. OGSA Basic Execution Service v1.0 (GFD-R.108), nov 2008.

[3] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Kleijer, Andre Merzky, John
Shalf, and Christopher Smith. A Simple API for Grid Applications (SAGA) Version 1.1 (GFD-R-P.90),
jan 2008.

drmaa-wgQogf.org 53

http://tools.ietf.org/html/rfc2119
mailto:drmaa-wg@ogf.org

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

GWD-R March 2011

[4] Object Management Group. Common Object Request Broker Architecture (CORBA) Specification,
Version 3.1. http://www.omg.org/spec/CORBA /3.1 /Interfaces/PDF, jan 2008.

[5] The IEEE and The Open Group. The Open Group Base Specifications Issue 6 IEEE Std 1003.1.
http://www.opengroup.org/onlinepubs/000095399 /utilities /ulimit.html.

[6] Distributed Management Task Force (DMTF) Inc. CIM System Model White Paper CIM Version 2.7,
jun 2003.

[7] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas Haas, Bill Nitzberg,
Daniel Templeton, John Tollefsrud, and Peter Troger. Distributed Resource Management Application
API Specification 1.0 (GFD-R.022), aug 2007.

[8] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas Haas, Bill Nitzberg,
Daniel Templeton, John Tollefsrud, and Peter Troger. Distributed Resource Management Application
API Specification 1.0 (GWD-R.133), jun 2008.

[9] Peter Troger, Daniel Templeton, Roger Brobst, Andreas Haas, and Hrabri Rajic. Distributed Resource
Management Application API 1.0 - IDL Specification (GFD-R-P.130), apr 2008.

[10] Peter Troger, Hrabri Rajic, Andreas Haas, and Piotr Domagalski. Standardised job submission and
control in cluster and grid environments. International Journal of Grid and Utility Computing, 1:
134-145, dec 2009. doi: {http://dx.doi.org/10.1504/I1JGUC.2009.022029}.

drmaa-wgQogf.org 54

mailto:drmaa-wg@ogf.org

	Introduction
	Notational Conventions
	Language Bindings
	Slots and Queues
	Multithreading

	Namespace
	Common Type Definitions
	Enumerations
	OperatingSystem enumeration
	CpuArchitecture enumeration
	ResourceLimitType enumeration
	JobTemplatePlaceholder enumeration

	Extensible Data Structures
	Queue structure
	Version structure
	Machine structure
	JobInfo structure
	JobTemplate structure
	ReservationTemplate structure
	DrmaaReflective Interface

	Common Exceptions
	The DRMAA Session Concept
	SessionManager Interface

	Working with Jobs
	The DRMAA State Model
	JobSession Interface
	DrmaaCallback Interface
	Job Interface
	JobArray Interface

	Working with Advance Reservation
	ReservationSession Interface
	Reservation Interface

	Monitoring the DRM System
	MonitoringSession Interface

	Annex A: Complete DRMAA IDL Specification
	Security Considerations
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice
	References

