
GWD-R
DRMAA-WG
drmaa-wg@ogf.org

Peter Tröger, Hasso-Plattner-Institute (editor)
Daniel Templeton, Cloudera (editor)

March 2011

1

Distributed Resource Management Application API Version 22

(DRMAA) - Draft 33

Status of This Document4

Group Working Draft Recommendation (GWD-R)5

(See footnote)
1

6

Obsoletes7

This document obsoletes GFD-R.022 [7], GFD-R-P.130 [9], and GWD-R.133 [8].8

Copyright Notice9

Copyright c© Open Grid Forum (2005-2011). Some Rights Reserved. Distribution is unlimited.10

Trademark11

All company, product or service names referenced in this document are used for identification purposes only12

and may be trademarks of their respective owners.13

Abstract14

This document describes the Distributed Resource Management Application API Version 2 (DRMAA), which15

provides a generalized API to Distributed Resource Management (DRM) systems in order to facilitate the16

development of portable application programs and high-level libraries for such systems. DRMAA defines17

interfaces for a tightly coupled, but still portable access by abstracting the fundamental functions available18

in the majority of DRM systems. The scope is limited to job submission, job control, and retrieval of job19

and machine monitoring information.20

This document acts as root specification for the abstract API concepts and the behavioral rules that must be21

fulfilled by a DRMAA-compliant implementation. The programming language representation of the abstract22

API concepts must be formulated by a separate language binding specification derived from this document.23

The intended audience for this specification are DRMAA language binding designers, DRM system vendors,24

high-level API designers and meta-scheduler architects. End users are expected to rely on product-specific25

documentation for the DRMAA API implementation in their particular programming language.26

1 This is the non-normative annotated version of the specification with line numbers. It includes historical information
concerning the content and why features were included or discarded by the working group. It also emphasizes the consequences
of some aspects that may not be immediately apparent. This document in only intended for internal working group discussions.

drmaa-wg@ogf.org 1

mailto:drmaa-wg@ogf.org
http://www.drmaa.org/
http://www.drmaa.org/
mailto:drmaa-wg@ogf.org

GWD-R March 2011

Contents27

1 Introduction . 328

1.1 Notational Conventions . 329

1.2 Language Bindings . 430

1.3 Slots and Queues . 431

1.4 Multithreading . 532

2 Namespace . 533

3 Common Type Definitions . 534

4 Enumerations . 635

4.1 OperatingSystem enumeration . 636

4.2 CpuArchitecture enumeration . 837

4.3 ResourceLimitType enumeration . 838

4.4 JobTemplatePlaceholder enumeration . 939

5 Extensible Data Structures . 1040

5.1 Queue structure . 1141

5.2 Version structure . 1142

5.3 Machine structure . 1143

5.4 JobInfo structure . 1344

5.5 JobTemplate structure . 1645

5.6 ReservationTemplate structure . 2446

5.7 DrmaaReflective Interface . 2647

6 Common Exceptions . 2648

7 The DRMAA Session Concept . 2849

7.1 SessionManager Interface . 2850

8 Working with Jobs . 3151

8.1 The DRMAA State Model . 3152

8.2 JobSession Interface . 3453

8.3 DrmaaCallback Interface . 3754

8.4 Job Interface . 3755

8.5 JobArray Interface . 3956

9 Working with Advance Reservation . 4157

9.1 ReservationSession Interface . 4158

9.2 Reservation Interface . 4259

10 Monitoring the DRM System . 4360

10.1 MonitoringSession Interface . 4461

11 Annex A: Complete DRMAA IDL Specification . 4662

12 Security Considerations . 5163

13 Contributors . 5264

14 Intellectual Property Statement . 5365

15 Disclaimer . 5366

16 Full Copyright Notice . 5367

17 References . 5368

drmaa-wg@ogf.org 2

mailto:drmaa-wg@ogf.org

GWD-R March 2011

1 Introduction69

This document describes the Distributed Resource Management Application API Version 2 (DRMAA) in-70

terface semantics in a generalized way by using the OMG Interface Definition Language (IDL) [4] syntax for71

a language-agnostic description. Based on this abstract specification, language binding standards have to72

be designed that map the described concepts into a library interface for a particular programming language73

(e.g. C, Java, Python). While this document has the responsibility to ensure consistent API semantics over74

all possible DRMAA implementations, the language binding has the responsibility to ensure source-code75

portability for DRMAA applications on different DRM systems.76

An effort has been made to choose an API layout that is not unique to a particular language. However, in77

some cases, various languages disagree over some points. In those cases, the most meritous approach was78

taken, irrespective of language.79

There are other relevant OGF standards in the area of job submission and monitoring. An in-depth com-80

parison and positioning of the obsoleted DRMAA1 specification was provided by another publication [10].81

The DRMAA specification is based on the following stakeholders:82

• Distributed resource management system / DRM system / DRMS : Any system that supports the con-83

cept of distributing computational jobs on execution resources through the help of a central scheduling84

entity. Examples are multi-processor systems controlled by a operating system scheduler, cluster sys-85

tems with multiple machines controlled by a central scheduler software, grid systems, or cloud systems86

with a job concept.87

• DRMAA implementation, DRMAA library : The implementation of a DRMAA language binding spec-88

ification with the functional semantics described in this document. The resulting artifact is expected89

to be a library that is deployed together with the DRM system that is wrapped by the particular90

implementation.91

• (DRMAA-based) application: Software that utilizes the DRMAA implementation for gaining access to92

one or multiple DRM systems in a standardized way.93

• Submission host : A execution resource in the DRM system that runs the DRMAA-based application.94

• Execution host : A execution resource in the DRM system that can run a job submitted through the95

DRMAA implementation.96

1.1 Notational Conventions97

In this document, IDL language elements and definitions are represented in a fixed-width font.98

The key words “MUST” “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD99

NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described in RFC 2119 [1].100

Memory quantities are expressed in kibibyte (KiB), the unit established by the International Electrotechnical101

Commission (IEC) in 1999. 1 kibibyte equals 1024 bytes.102

Proposal to
use bytes in-
stead, similar
to JSDL

103

Parts of the specification which are normative for derived language binding specifications only are graphically
marked as shaded box.

drmaa-wg@ogf.org 3

mailto:drmaa-wg@ogf.org

GWD-R March 2011

1.2 Language Bindings104

A language binding specification derived from this document MUST define a mapping between the IDL
constructs and programming language constructs, with focus on source code portability for the resulting
DRMAA-based applications.

A language binding SHOULD NOT rely completely on the OMG language mapping standards available for
many programming languages, since they have a huge overhead of irrelevant CORBA-related mapping rules.
Therefore, language binding authors must carefully decide if a binding decision reflects a natural and simple
mapping of the intended purpose for the DRMAA interfaces. The binding SHOULD reuse OMG value type
mappings (e.g. IDL long long to Java long), and SHOULD define custom mappings for the other types.
The language binding MUST use the described concept mapping in a consistent manner for its overal API
layout.

Due to the usage of IDL, all method groups for a particular purpose (e.g. job control) are described in terms
of interfaces, and not classes. The mapping to a class concept depends on the specific language-mapping
rules.

It may be the case that IDL constructs do not map directly to any language construct. In this case it MUST
be ensured that the chosen mapping retains the intended semantic of the DRMAA interface definition.

Access to scalar attributes (string, boolean, long) MUST operate in a pass-by-value mode. A language
binding must ensure that this behavior is always fulfilled. For non-scalar attributes, the language binding
MUST specify a consistent access strategy for all these attributes – either pass-by-value or pass-by-reference
– according to the use cases of language binding implementations.

This specification tries to consider the possibility of a Remote Procedure Call (RPC) scenario in a DRMAA-
conformant language mapping. It SHOULD therefore be ensured that the programming language type for
an IDL struct definition supports the serialization and comparison of instances. These capabilities should
be accomplished through whatever mechanism is most natural for the programming language.

A language binding MUST define a way to declare an invalid value (UNSET). In case, a definition per data
type needs to be provided. Evaluating an UNSET boolean value MUST result in a negative result, e.g. for
JobTemplate::emailOnStarted.

(See footnote)
2

105

1.3 Slots and Queues106

DRMAA supports the notion of slots and queues as resources of a DRM system. A DRMAA application107

can request them in advance reservation and job submission. However, slots and queues SHALL be opaque108

concepts from the viewpoint of a DRMAA implementation, meaning that the requirements given by the109

application are just passed through to the DRM system. This is reasoned by the large variation in interpreting110

that concepts in the different DRM systems, which makes it impossible to define a common understanding111

on the level of the DRMAA API.112

2 The concept of a UNSET value was decided on a conf call (Aug 25th 2010). Boolean in C can use custom enumeration
(TRUE, FALSE, INVALID) or pointer to static values. A numerical UNSET in C should use a magic number, since all long
attributes are unsigned, it could be MIN INT. With Python, just use None. For Java, Dan has an idea.

drmaa-wg@ogf.org 4

mailto:drmaa-wg@ogf.org

GWD-R March 2011

(See footnote)
3

113

1.4 Multithreading114

High-level APIs such as SAGA [3] are expected to utilize DRMAA for asynchronous operations, based on the115

assumption that re-entrancy is supported by DRMAA implementations. For this reason, implementations116

SHOULD ensure the proper functioning of the library in case of re-entrant library calls. A DRMAA library117

SHOULD allow a multithreaded application to use DRMAA interfaces without any explicit synchronization118

among the application threads. DRMAA implementers should document their work as thread safe if they119

meet the above criteria. Providers of non-thread-safe DRMAA implementations should document all the120

interfaces that are thread unsafe and provide a list of interfaces and their dependencies on external thread121

unsafe routines.122

2 Namespace123

The DRMAA interfaces and structures are encapsulated by a naming scope, which avoids conflicts with124

other APIs used in the same application.125

module DRMAA2 {126

Language binding authors MUST map the IDL module encapsulation to an according package or namespace
concept and MAY change the module name according to programming language conventions.

(See footnote)
4

127

3 Common Type Definitions128

The DRMAA specification defines some custom types to express special value semantics not expressible in129

IDL.130

typedef sequence <string > OrderedStringList;131

typedef sequence <string > StringList;132

typedef sequence <Job > JobList;133

typedef sequence <Queue > QueueList;134

typedef sequence <Machine > MachineList;135

typedef sequence <Reservation > ReservationList;136

typedef sequence < sequence <string ,2> > Dictionary;137

typedef string AbsoluteTime;138

typedef long long TimeAmount;139

native ZERO_TIME;140

native INFINITE_TIME;141

OrderedStringList: An unbounded list of strings, which supports element insertion, element deletion, and142

iteration over elements while keeping an element order.143

3 As one example, queues can be either treated as representation of execution hosts (Sun Grid Engine) or as central waiting
line located at the scheduler (LSF).

4 Comparison to DRMAA v1.0: The IDL module name was change to DRMAA2, in order to intentionally break backward
compatibility of the interface.

drmaa-wg@ogf.org 5

mailto:drmaa-wg@ogf.org

GWD-R March 2011

StringList: An unbounded list of strings, without any demand on element order.144

JobList: An unbounded list of Job instances, without any demand on element order.145

MachineList: An unbounded list of Machine instances, without any demand on element order.146

QueueList: An unbounded list of Queue instances, without any demand on element order.147

ReservationList: An unbounded list of Reservation instances, without any demand on element order.148

Dictionary: An unbounded dictionary type for storing key-value pairs, without any demand on element149

order.150

AbsoluteTime: Expression of a point in time, with a resolution at least to seconds.151

TimeAmount: Expression of an amount of time, with a resolution at least to seconds.152

ZERO TIME: A constant value of type TimeAmount that expresses a zero amount of time.153

INFINITE TIME: A constant value of type TimeAmount that expresses an infinite amount of time.154

A language binding MUST replace these type definitions with semantically equal reference or value types in
the according language. This may include the creation of new complex language types for one or more of the
above concepts. The language binding MUST define a consistent mapping on module level, and a mechanism
for obtaining the RFC822 string representation from a given AbsoluteTime or TimeAmount instance.

(See footnote)
5

155

4 Enumerations156

Language bindings SHOULD define numerical values for all DRMAA constants and enumeration members,
in order to foster binary portability of DRMAA-based applications.

4.1 OperatingSystem enumeration157

DRMAA supports the identification of an operating system installation on execution resources in the DRM158

system. The OperatingSystem enumeration is used as data type both in the advanced reservation and the159

DRM system monitoring functionalities. It defines a set of standardized identifiers for operating system160

types. The list is a shortened version of the according CIM Schema [6]. It includes only operating systems161

that are supported by the majority of DRM systems available at the time of writing:162

enum OperatingSystem {163

HPUX , LINUX , IRIX , TRUE64 , MACOS , SUNOS , WIN , WINNT , AIX , UNIXWARE ,164

BSD , OTHER_OS };165

AIX: AIX Unix by IBM.166

BSD: All operating system distributions based on the BSD kernel.167

5 The PartialTimestamp functionality from DRMAA 1.0 was completely removed. Absolute date and time values are now
expressed as RFC822 conformant data items with stringification support (conf. call Mar 31st 2009). String list for job identifiers
are replaced by Job object lists (F2F meeting July 2009)

drmaa-wg@ogf.org 6

mailto:drmaa-wg@ogf.org

GWD-R March 2011

LINUX: All operating system distributions based on the Linux kernel.168

HPUX: HP-UX Unix by Hewlett-Packard.169

IRIX: The IRIX operating system by SGI.170

MACOS: The MAC OS X operating system by Apple.171

SUNOS: SunOS or Solaris operating system by Sun / Oracle.172

TRUE64: True64 Unix by Hewlett-Packard, or DEC Digital Unix, or DEC OSF/1 AXP.173

UNIXWARE: UnixWare system by SCO group.174

WIN: Windows 95, Windows 98, Windows ME.175

WINNT: Microsoft Windows operating systems based on the NT kernel176

OTHER OS: An operating system type not specified in this list.177

Implementations SHOULD NOT add new operating system identifiers to this enumeration, even if they are178

supported by the underlying DRM system.179

The operating system information is only useful in conjunction with version information (see Section 10.1),180

which is also the reporting approach taken in most DRM systems. Examples:181

• The Apple MacOS X operating system commonly denoted as “Snow Leopard” would be reported as182

“MACOS” with the version structure [“10”,“6”]183

• The Microsoft Windows 7 operating system would be reported as “WINNT” with the version infor-184

mation [“6”,“1”], which is the internal version number reported by the Windows API.185

• All Linux distributions would be reported as operating system type “LINUX” with the major revision186

of the kernel, such as [“2”,“6”].187

• The Solaris operating system is reported as “SUNOS”, together with the internal version number, e.g.188

[“5”,“10”] for Solaris 10.189

The DRMAA OperatingSystem enumeration can be mapped to other high-level APIs. Table 1 gives a190

non-normative set of examples.191

DRMAA OperatingSystem value JSDL jsdl:OperatingSystemTypeEnumeration value
HPUX HPUX
LINUX LINUX
IRIX IRIX

TRUE64 Tru64 UNIX, OSF
MACOS MACOS
SUNOS SunOS, SOLARIS

WIN WIN95, WIN98, Windows R Me
WINNT WINNT, Windows 2000, Windows XP

AIX AIX
UNIXWARE SCO UnixWare, SCO OpenServer

BSD BSDUNIX, FreeBSD, NetBSD, OpenBSD
OTHER OS Other

Table 1: Mapping example for the DRMAA OperatingSystem enumeration

drmaa-wg@ogf.org 7

mailto:drmaa-wg@ogf.org

GWD-R March 2011

4.2 CpuArchitecture enumeration192

DRMAA supports identifying the processor instruction set architecture on execution resources in the DRM193

system. The CpuArchitecture enumeration is used as data type both in the advanced reservation and the194

DRM system monitoring functionalities. It defines a set of standardized identifiers for processor architecture195

families. The list is a shortened version of the according CIM Schema [6], It includes only processor families196

that are supported by the majority of DRM systems available at the time of writing:197

enum CpuArchitecture {198

ALPHA , ARM , CELL , PARISC , X86 , X64 , IA64 , MIPS , PPC , PPC64 ,199

SPARC , SPARC64 , OTHER_CPU };200

ALPHA: The DEC Alpha / Alpha AXP processor architecture.201

ARM: The ARM processor architecture.202

CELL: The Cell processor architecture.203

PA-RISC: The PA-RISC processor architecture.204

X86: The IA-32 line of the X86 processor architecture family, with 32bit support only.205

X64: The X86-64 line of the X86 processor architecture family, with 64bit support.206

IA-64: The Itanium processor architecture.207

MIPS: The MIPS processor architecture.208

PPC: The PowerPC processor architecture, all models with 32bit support only.209

PPC64: The PowerPC processor architecture, all models with 64bit support.210

SPARC: The SPARC processor architecture, all models with 32bit support only.211

SPARC64: The SPARC processor architecture, all models with 64bit support.212

OTHER CPU: A processor architecture not specified in this list.213

The DRMAA CpuArchitecture enumeration can be mapped to other high-level APIs. Table 2 gives a214

non-normative set of examples.215

The reporting and job configuration for processor architectures SHOULD operate on a “as-is” base, if sup-216

ported by the DRM system. This means that the reported architecture should reflect the current operation217

mode of the processor with the running operating system. For example, X64 processors executing a 32-bit218

operating system typically report themself as X86 processor.219

4.3 ResourceLimitType enumeration220

Modern DRM systems expose resource constraint capabilities from the operating system for jobs on the221

execution host. The ResourceLimitType enumeration represents the typical ulimit(3) parameters [5] in222

different DRM systems. All parameters relate to the operating system process representing some job on the223

execution host.224

enum ResourceLimitType {225

CORE_FILE_SIZE , CPU_TIME , DATA_SEG_SIZE , FILE_SIZE , OPEN_FILES ,226

STACK_SIZE , VIRTUAL_MEMORY , WALLCLOCK_TIME };227

drmaa-wg@ogf.org 8

mailto:drmaa-wg@ogf.org

GWD-R March 2011

DRMAA CpuArchitecture value JSDL jsdl:ProcessorArchitectureEnumeration value
ALPHA other

ARM arm
CELL other

PA-RISC parisc
X86 x86 32
X64 x86 64

IA-64 ia64
MIPS mips
PPC powerpc

PPC64 powerpc
SPARC sparc

SPARC64 sparc
OTHER other

Table 2: Mapping example for DRMAA CpuArchitecture enumeration

CORE FILE SIZE: The maximum size of the core dump file created on fatal errors of the process, in228

Kibibyte. Setting this value to zero SHOULD disable the creation of core dump files on the execution229

host.230

CPU TIME: The maximum accumulated time in seconds the process is allowed to perform computations231

on all processors in the execution host.232

DATA SEG SIZE: The maximum amount of memory the process can allocate on the heap e.g. for object233

creation, in Kibibyte.234

FILE SIZE: The maximum file size the process can generate, in Kibibyte.235

OPEN FILES: The maximum number of file descriptors the process is allowed to have open at the same236

time.237

STACK SIZE: The maximum amount of memory the process can allocate on the stack, e.g. for local238

variables, in Kibibyte.239

VIRTUAL MEMORY: The maximum amount of memory the process is allowed to allocate, in Kibibyte.240

WALLCLOCK TIME: The maximum wall clock time in seconds the job is allowed to exist in RUNNING241

and SUSPENDED state (see Section 8.1).242

(See footnote)
6

243

4.4 JobTemplatePlaceholder enumeration244

The JobTemplatePlaceholder enumeration defines constant macros to be used in string attributes of a245

JobTemplate instance.246

enum JobTemplatePlaceholder {247

6 “Pipe size” was not added, since there is no use case in DRM systems with a job concept. “Max user processes” was
omitted because it operates on the notion of users, which is not an explicit concept in DRMAA.

The understanding of wallclock time was decided in the Apr 6th 2011 conf call. At least Condor and Grid Engine fulfil this
definition.

drmaa-wg@ogf.org 9

mailto:drmaa-wg@ogf.org

GWD-R March 2011

HOME_DIRECTORY ,WORKING_DIRECTORY ,HOST_NAME ,USER_NAME ,PARAMETRIC_INDEX };248

A HOME_DIRECTORY placeholder SHOULD be only allowed at the beginning of a JobTemplate attribute value.249

It denotes the remaining portion as a directory / file path resolved relative to the job users home directory250

at the execution host.251

A WORKING_DIRECTORY placeholder SHOULD be only allowed at the beginning of a JobTemplate attribute252

value. It denotes the remaining portion as a directory / file path resolved relative to the jobs working253

directory at the execution host.254

The HOST_NAME placeholder SHOULD be usable at any position within an attribute value that supports place255

holders. It SHALL be substituted by the full-qualified name of the execution host were the job is executed.256

The USER_NAME placeholder SHOULD be usable at any position within an attribute value that supports257

place holders. It SHALL be substituted by the job users account name on the execution host.258

The PARAMETRIC_INDEX placeholder SHOULD be usable at any position within an attribute value that259

supports place holders. It SHALL be substituted by the parametric job index in a JobSession::runBulkJobs260

call (see Section 8.2.6). If the job template is used for a JobSession:runJob call, PARAMETRIC_INDEX261

SHOULD be substituted with a constant implementation-specific value.262

(See footnote)
7

263

5 Extensible Data Structures264

DRMAA defines a set of data structures commonly used by different interfaces to express information265

for and from the DRM system. A DRMAA implementation is allowed to extend these structures with266

implementation-specific attributes in all cases. Behavioral aspects of such extended attributes are out of267

scope for DRMAA. The interpretation is implementation-specific, implementations MAY even ignore such268

attribute values.269

Mariusz pro-
poses to re-
move igno-
rance possi-
bility.

270

Implementations SHALL only extend data structures in the way specified by the language binding. The271

introspection about supported implementation-specific attributes is supported by the DrmaaReflective272

interface (see Section 5.7). Implementations SHOULD also support native introspection functionalities if273

defined by the language binding.274

A language binding MUST define a consistent mechanism to realize implementation-specific structure ex-
tension, without breaking the portability of DRMAA-based applications that relies on the original version
of the structure. Object oriented languages MAY use inheritance mechanisms for this purpose. Instances
of these structures SHALL be treated in a “call-by-value” fashion, meaning that the collection of struct
member values is handed over as one to the called interface method.

Language bindings MAY define how native introspection capabilities of the language or it’s runtime envi-
ronment can also be used to work with implementation-specific attributes. These mechanisms MUST work
in parallel to the DrmaaReflective interface.

7 Placeholders for other job template attributes were rejected, in order to avoid circular dependencies (Conf. call Oct 20th
2010)

drmaa-wg@ogf.org 10

mailto:drmaa-wg@ogf.org

GWD-R March 2011

(See footnote)
8

275

5.1 Queue structure276

Queue is an opaque concept from the perspective of the DRMAA application (see Section 1.3). The Queue277

struct contains read-only information.278

struct Queue {279

string name;280

};281

5.1.1 name282

This attribute contains the name of the queue as reported by the DRM system. The format of the queue283

name is implementation-specific. The naming scheme SHOULD be consistent for all strings returned.284

5.2 Version structure285

The Version structure denotes versioning information for an operating system, DRM system, or DRMAA286

implementation.287

struct Version {288

string major;289

string minor;290

};291

Both the major and the minor part are expressed as strings, in order to allow extensions with character292

combinations such as “rev”. Original version strings containing a dot, e.g. Linux “2.6”, SHOULD be293

interpreted as having the major part before the dot, and the minor part after the dot. The dot character294

SHOULD NOT be added to the Version attributes.295

5.3 Machine structure296

The Machine structure describes the properties of a particular execution host in the DRM system. It contains297

read-only information. An implementation or its DRM system MAY restrict jobs in their resource utilization298

even below the limits described in the Machine structure. The limits given here MAY be imposed by the299

hardware configuration, or MAY be be imposed by DRM system policies.300

struct Machine {301

string name;302

long sockets;303

long coresPerSocket;304

long threadsPerCore;305

double load;306

long physMemory;307

long virtMemory;308

8 Comparison to DRMAA 1.0: The binding of job template attribute names and exception names to strings was removed.
Language bindings have to define their own mapping, if needed.

One example for native language introspection support could be attributes.

drmaa-wg@ogf.org 11

mailto:drmaa-wg@ogf.org

GWD-R March 2011

OperatingSystem machineOS;309

Version machineOSVersion;310

CpuArchitecture machineArch;311

};312

5.3.1 name313

This attribute describes the name of the machine as reported by the DRM system. The format of the314

machine name is implementation-specific, but MAY be a DNS host name. The naming scheme SHOULD be315

consistent for all strings returned.316

5.3.2 sockets317

This attribute describes the number of processor sockets (CPUs) usable for jobs on the machine from oper-318

ating system perspective. The attribute value MUST be greater than 0. In the case where the correct value319

is unknown to the implementation, the value MUST be set to 1.320

5.3.3 coresPerSocket321

This attribute describes the number of cores per socket usable for jobs on the machine from operating system322

perspective. The attribute value MUST be greater than 0. In case where the correct value is unknown to323

the implementation, the value MUST be set to 1.324

5.3.4 threadsPerCore325

This attribute describes the number of threads that can be executed in parallel by a job on one core in the326

machine. The attribute value MUST be greater than 0. In case where the correct value is unknown to the327

implementation, the value MUST be set to 1.328

5.3.5 load329

This attributes describes the 1-minute average load on the given machine, similar to the Unix uptime com-330

mand. The value has only informative character, and should not be utilized by end user applications for job331

scheduling purposes. An implementation MAY provide delayed or averaged data here, if necessary due to332

implementation issues. The implementation strategy on non-Unix systems is undefined.333

5.3.6 physMemory334

This attribute describes the amount of physical memory in Kibibyte available on the machine.335

5.3.7 virtMemory336

This attribute describes the amount of virtual memory in Kibibyte available for a job executing on this337

machine. The virtual memory amount is defined as the sum of physical memory installed plus the configured338

swap space for the operating system. The value is expected to be used as indicator whether or not an339

application is able to get its memory allocation needs fulfilled on a particular machine. Implementations340

SHOULD derive this value directly from operating system information, without further consideration of341

additional memory allocation restrictions such as address space range or already running processes.342

drmaa-wg@ogf.org 12

mailto:drmaa-wg@ogf.org

GWD-R March 2011

5.3.8 machineOS343

This attribute describes the operating system installed on the described machine, with semantics as specified344

in Section 4.1.345

5.3.9 machineOSVersion346

This attribute describes the operating system version of the machine, with semantics as specified in Section347

4.1.348

5.3.10 machineArch349

This attribute describes the instruction set architecture of the machine, with semantics as specified in Section350

4.2.351

5.4 JobInfo structure352

The JobInfo structure describes job information that is available for the DRMAA-based application.353

struct JobInfo {354

string jobId;355

Dictionary resourceUsage;356

long exitStatus;357

string terminatingSignal;358

string annotation;359

JobState jobState;360

any jobSubState;361

OrderedStringList allocatedMachines;362

string submissionMachine;363

string jobOwner;364

string queueName;365

TimeAmount wallclockTime;366

long cpuTime;367

AbsoluteTime submissionTime;368

AbsoluteTime dispatchTime;369

AbsoluteTime finishTime ;};370

The structure is used in two occasions - first for the expression of information about a single job, and second371

as filter expression when retrieving a list of jobs from the DRMAA implementation.372

In both usage scenarios, the structure information has to be understood as snapshot of the live DRM system.373

Multiple values being set in one structure instance should be interpreted as “occurring at the same time”.374

In real implementations, some granularity limits must be assumed - for example, the wallclockTime and375

the cpuTime attributes might hold values that were measured with a very small delay one after each other.376

In the use case of job information monitoring, it is assumed that the DRM system has three job information377

states: running, buffered, purged. Only information for jobs that are still running or are still held in the378

buffer of finished job information will be reported completely. In this case, the information SHOULD reflect379

the current status of the job as as close as possible to the time of the call.380

drmaa-wg@ogf.org 13

mailto:drmaa-wg@ogf.org

GWD-R March 2011

If jobs have been purged out to accounting, different attributes might not contain valid data. Implementa-381

tions MAY decide to return only partially filled JobInfo instances due to performance restrictions in the382

communication with the DRM system.383

For additional DRMS-specific information, the JobInfo structure MAY be extended by the DRMAA imple-384

mentation (see Section 5).385

(See footnote)
9

386

5.4.1 jobId387

For monitoring: Returns the stringified job identifier assigned to the job by the DRM system.388

For filtering: Returns the job with the chosen job identifier.389

5.4.2 resourceUsage390

For monitoring: Returns resource consumption information for the given job. The dictionary keys are391

implementation-specific.392

For filtering: Returns the jobs that have the dictionary key-value pairs as subset of their own.393

Standardize
resource
usage key
names ?!?

394

5.4.3 exitStatus395

For monitoring: The process exit status of the job, as reported by the operating system. If the job is not in396

one of the terminated states, the value should be UNSET.397

For filtering: Return the jobs with the given exitStatus value. Jobs without exit status information should398

be filtered out by asking for the appropriate states.399

5.4.4 terminatingSignal400

For monitoring: This attribute specifies the UNIX signal that reasoned the end of the job. Implementations401

should document the extent to which they can gather such information in the particular DRM system (e.g.402

with Windows hosts).403

For filtering: Returns the jobs with the given terminatingSignal value.404

5.4.5 annotation405

For monitoring: Gives a human-readable annotation describing why the job is in its current state or sub-state.406

The support for this information is optional.407

For filtering: This attribute is ignored for filtering.408

9 In comparison to DRMAA 1.0, the JobInfo value type was heavily extended for providing more information (solves issue
#2827). JobInfo::hasCoreDump is no longer supported, since the information is useless without according core file staging
support, which is not implementable in a portable way. (conf. call Jun 9th 2010)

Some DRM systems (SGE / Condor at least) support the automated modification of job template attributes after submission,
and therefore allow to fetch the true job template attributes at run-time from the job. The monitoring for such data was
intentionally not included in DRMAA (mailing list July 2010).

drmaa-wg@ogf.org 14

mailto:drmaa-wg@ogf.org

GWD-R March 2011

5.4.6 jobState409

For monitoring: This attribute specifies the jobs current state according to the DRMAA job state model410

(see Section 8.1).411

For filtering: Returns all jobs in the specified state. If the given state is simulated by the implementation412

(see Section 8.1), the implementation SHOULD raise an InvalidArgumentException explaining that this413

filter can never match.414

5.4.7 jobSubState415

For monitoring: This attribute specifies the jobs current DRMAA implementation specific sub-state (see416

Section 8.1).417

For filtering: Returns all jobs in the specified sub-state. If the given sub-state is not supported by the imple-418

mentation (see Section 8.1), the implementation SHOULD raise an InvalidArgumentException explaining419

that this filter can never match.420

5.4.8 allocatedMachines421

This attribute expresses the set of machines that are utilized for job execution. Implementations MAY422

decide to give the ordering of machine names a particular meaning, for example putting the master node in423

a parallel job at first position. This decision should be documented for the user. For performance reasons,424

only the machine names are returned, and SHOULD be equal to the according Machine::name attribute in425

monitoring data.426

For monitoring: This attribute lists the set of names of the machines to which this job has been assigned.427

For filtering: Returns the list of jobs which have a set of assigned machines that is a superset of the given428

set of machines.429

5.4.9 submissionMachine430

This attribute provides the machine name of the submission host for this job. For performance reasons,431

only the machine name is returned, and SHOULD be equal to the according Machine::name attribute in432

monitoring data.433

For monitoring: This attribute specifies the machine from which this job was submitted.434

For filtering: Returns the set of jobs that were submitted from the specified machine.435

5.4.10 jobOwner436

For monitoring: This attribute specifies the job owner as reported by the DRM system.437

For filtering: Returns all jobs owned by the specified user.438

5.4.11 queueName439

For monitoring: This attribute specifies the queue in which the job was queued or started (see Section 1.3).440

For filtering: Returns all jobs that were queued or started in the specified queue.441

drmaa-wg@ogf.org 15

mailto:drmaa-wg@ogf.org

GWD-R March 2011

5.4.12 wallclockTime442

For monitoring: Accumulated time the job spent in RUNNING and SUSPENDED state.443

For filtering: Returns all jobs that have consumed at least the specified amount of wall clock time.444

5.4.13 cpuTime445

For monitoring: This attribute specifies the amount of CPU time consumed by the job. This value includes446

only time the job spent in JobState::RUNNING (see Section 8.1).447

For filtering: Returns all jobs that have consumed at least the specified amount of CPU time.448

5.4.14 submissionTime449

For monitoring: This attribute specifies the time at which the job was submitted. Implementations SHOULD450

use the submission time recorded by the DRM system, if available.451

For filtering: Returns all jobs that were submitted at or after the specified submission time.452

5.4.15 dispatchTime453

For monitoring: The time the job first entered a “Started” state (see Section 8.1). On job restart or re-454

scheduling, this value does not change.455

For filtering: Returns all jobs that entered a “Started” state at, or after the specified dispatch time.456

5.4.16 finishTime457

For monitoring: The time the job first entered a “Terminated” state (see Section 8.1).458

For filtering: Returns all jobs that entered a “Terminated” state at or after the specified finish time.459

Resolve how
to report slot
assignments
for jobs

460

5.5 JobTemplate structure461

In order to define the attributes associated with a job, a DRMAA application uses the JobTemplate struc-462

ture. It specifies any required job parameters and is passed to the DRMAA JobSession instance when job463

execution is requested.464

struct JobTemplate {465

string remoteCommand;466

OrderedStringList args;467

boolean submitAsHold;468

boolean rerunnable;469

Dictionary jobEnvironment;470

string workingDirectory;471

string jobCategory;472

StringList email;473

boolean emailOnStarted;474

boolean emailOnTerminated;475

drmaa-wg@ogf.org 16

mailto:drmaa-wg@ogf.org

GWD-R March 2011

string jobName;476

string inputPath;477

string outputPath;478

string errorPath;479

boolean joinFiles;480

string reservationId;481

string queueName;482

long minSlots;483

long maxSlots;484

long priority;485

OrderedStringList candidateMachines;486

long minPhysMemory;487

OperatingSystem machineOS;488

CpuArchitecture machineArch;489

AbsoluteTime startTime;490

AbsoluteTime deadlineTime;491

Dictionary stageInFiles;492

Dictionary stageOutFiles;493

Dictionary softResourceLimits;494

Dictionary hardResourceLimits;495

string accountingId;496

};497

The DRMAA job template concept makes a distinction between mandatory and optional attributes. Manda-498

tory attributes MUST be supported by the implementation in the sense that they are evaluated on job499

submission. Optional attributes MAY be evaluated on job submission, but MUST be provided as part of the500

JobTemplate structure in the implementation. If an unsupported optional attribute has a value different to501

UNSET, the job submission MUST fail with a UnsupportedAttributeException. DRMAA applications are502

expected to check for the availability of optional attributes before using them.503

Implementations MUST set all attribute values to UNSET on struct allocation. This ensures that both the504

DRMAA application and the library implementation can determine untouched attribute members. If not505

described differently in the following sections, all attributes SHOULD be allowed to have the UNSET value506

on job submission.507

An implementation MAY support JobTemplatePlaceholder macros in more occasions than defined in this508

specification.509

A language binding specification SHOULD define how a JobTemplate instance is convertible to a string
for printing, through whatever mechanism is most natural for the implementation language. The resulting
string MUST contain the values of all set properties.

The initialization to UNSET SHOULD be realized without additional methods in the DRMAA interface, if
possible. The according approach MUST be specified by the language binding.

Which
attributes
should allow
the new
HOST NAME
and
USER NAME
place holders
?

510

drmaa-wg@ogf.org 17

mailto:drmaa-wg@ogf.org

GWD-R March 2011

(See footnote)
10

511

5.5.1 remoteCommand512

This attribute describes the command to be executed on the remote host. In case this parameter contains513

path information, it MUST be seen as relative to the execution host file system and is therefore evaluated514

there. The implementation SHOULD NOT relate the value of this attribute to binary file management or515

file staging activities. The behavior with an UNSET value is implementation-specific.516

The support for this attribute is mandatory.517

5.5.2 args518

This attribute contains the list of command-line arguments for the job(s) to be executed.519

The support for this attribute is mandatory.520

5.5.3 submitAsHold521

This attribute defines if the job(s) should be submitted as QUEUED or QUEUED_HELD (see Section 8.1). Since522

the boolean UNSET value defaults to False, jobs are submitted as non-held if this attribute is not set.523

The support for this attribute is mandatory.524

5.5.4 rerunnable525

This flag indicates if the submitted job(s) can safely be restarted by the DRM system, for example on a526

node failure or some other re-scheduling event. Since the boolean UNSET value defaults to False, jobs are527

submitted as not rerunnable if this attribute is not set. This attribute SHOULD NOT be used by the528

implementation to let the application denote the checkpointability of a job.529

How should
check-
pointability
be denoted ?

530

The support for this attribute is mandatory.531

(See footnote)
11

532

5.5.5 jobEnvironment533

This attribute holds the environment variable key-value pairs for the execution machine(s). The values534

SHOULD override the execution host environment values if there is a collision.535

The support for this attribute is mandatory.536

10 Comparison to DRMAA 1.0: JobTemplate is now a value type, meaning that it maps to a struct in C. This removes the
need for DRMAA-defined methods for construction and destruction of job templates. An eventual RPC scenario for DRMAA
gets easier with this approach, since it is closer to the JSDL concept of a job description document.

Supported string placeholders for job template attributes are now listed in the JobTemplatePlaceholder enumeration, and
must be filled with values by the language binding. Invalid job template settings are now only detected on job submission, not
when the attribute is set.

DRMAA1 supported the utilization of new DRM features through an old DRMAA implementation, based on the
nativeSpecification field. A conf call (Jul 14th 2010) voted for dropping this intentionally. Implementations should use
according implementation-specific attributes for this.

11 The differentiation between rerunnable and checkpointable was decided on a conf call (Aug 25th 2010)

drmaa-wg@ogf.org 18

mailto:drmaa-wg@ogf.org

GWD-R March 2011

5.5.6 workingDirectory537

This attribute specifies the directory where the job or the bulk jobs are executed. If the attribute value538

is UNSET, the behavior is implementation dependent. Otherwise, the attribute value MUST be evaluated539

relative to the file system on the execution host. The attribute value MUST be allowed to contain either the540

JobTemplatePlaceholder::HOME_DIRECTORY or the JobTemplatePlaceholder::PARAMETRIC_INDEX place-541

holder (see Section 4.4).542

The workingDirectory attribute should be specified by the application in a syntax that is common at the543

host where the job is executed. Implementations MAY perform according validity checks on job submission.544

If the attribute is set and no placeholder is used, an absolute directory specification is expected. If the545

attribute is set and the job was submitted successfully and the directory does not exist on the execution546

host, the job MUST enter the state JobState::FAILED.547

The support for this attribute is mandatory.548

5.5.7 jobCategory549

DRMAA facilitates writing DRM-enabled applications even though the deployment properties, in particular550

the configuration of the DRMS, cannot be known in advance.551

Through the jobCategory string attribute, a DRMAA application can specify additional needs of the job(s)552

that are to be mapped by the implementation or DRM system itself to DRMS-specific options. It is intended553

as non-programmatic extension of DRMAA job submission capabilities. The mapping is performed during554

the process of job submission. Each category expresses a particular type of job execution that demands555

site-specific configuration, for example path settings, environment variables, or application starters such as556

MPIRUN.557

A valid input SHOULD be one of the returned strings in MonitoringSession::drmsJobCategoryNames (see558

Section 10.1), otherwise an InvalidArgumentException SHOULD be raised.559

A non-normative recommendation of category names is maintained at:560

http://www.drmaa.org/jobcategories/561

In case the name is not taken from the DRMAA working group recommendations, it should be self-562

explanatory for the user to understand the implications on job execution. Implementations are recommended563

to provide a library configuration facility, which allows site administrators to link job category names with564

specific product- and site-specific configuration options, such as submission wrapper shell scripts.565

The interpretation of the supported jobCategory values is implementation-specific. The order of precedence566

for the jobCategory attribute value or other attribute values is implementation-specific. It is RECOM-567

MENDED to overrule job template settings with a conflicting jobCategory setting.568

The support for this attribute is mandatory.569

5.5.8 email570

This attribute holds a list of email addresses that should be used to report DRM information. Content and571

formatting of the emails are defined by the implementation or the DRM system. If the attribute value is572

UNSET, no emails SHOULD be sent to the user running the job(s), even if the DRM system default behavior573

is to send emails on some event.574

drmaa-wg@ogf.org 19

http://www.drmaa.org/jobcategories/
mailto:drmaa-wg@ogf.org

GWD-R March 2011

The support for this attribute is optional. If an implementation cannot configure the email notification575

functionality of the DRM system, or if the DRM system has no such functionality, the attribute SHOULD576

NOT be supported in the implementation.577

This became
an optional
attribute,
since we
mandate the
’switch off’
semantic in
case of UNSET

578

(See footnote)
12

579

5.5.9 emailOnStarted / emailOnTerminated580

The emailOnStarted flag indicates if the given email address(es) SHOULD get a notification when the job581

(or any of the bulk jobs) entered one of the “Started” states. emailOnTerminated fulfills the same purpose582

for the ”Terminated” states. Since the boolean UNSET value defaults to False, the notification about state583

changes SHOULD NOT be sent if the attribute is not set.584

The support for this attribute is optional. It SHALL only be supported if the email attribute is supported585

in the implementation.586

5.5.10 jobName587

The job name attributes allows the specification of an additional non-unique string identifier for the job(s).588

The implementation MAY truncate any client-provided job name to an implementation-defined length.589

The support for this attribute is mandatory.590

5.5.11 inputPath / outputPath / errorPath591

This attribute specifies standard input / output / error stream of the job as a path to a file. If the attribute592

value is UNSET, the behavior is implementation dependent. Otherwise, the attribute value MUST be evaluated593

relative to the file system of the execution host in a syntax that is common at the host. Implementations594

MAY perform according validity checks on job submission. The attribute value MUST be allowed to contain595

any of the JobTemplatePlaceholder placeholders (see Section 4.4). If the attribute is set and no placeholder596

is used, an absolute file path specification is expected.597

If the outputPath or errorPath file does not exist at the time the job is about to be executed, the file598

SHALL first be created. An existing outputPath or errorPath file SHALL be opened in append mode.599

If the attribute is set and the job was submitted successfully and the file cannot be created / read / written600

on the execution host, the job MUST enter the state JobState::FAILED.601

The support for this attribute is mandatory.602

5.5.12 joinFiles603

Specifies whether the error stream should be intermixed with the output stream. Since the boolean UNSET604

value defaults to False, intermixing SHALL NOT happen if the attribute is not set.605

If this attribute is set to True, the implementation SHALL ignore the value of the errorPath attribute and606

intermix the standard error stream with the standard output stream as specified by the outputPath.607

The support for this attribute is mandatory.608

12 The blockEmail attribute in the JobTemplate was replaced by the UNSET semantic for the email adresses. (conf. call
July 28th 2010).

drmaa-wg@ogf.org 20

mailto:drmaa-wg@ogf.org

GWD-R March 2011

5.5.13 stageInFiles / stageOutFiles609

Specifies what files should be transfered (staged) as part of the job execution. The data staging operation610

MUST be a copy operation between the submission host and the execution host(s). File transfers between611

execution hosts are not covered by DRMAA.612

The attribute value is formulated as dictionary. For each key-value pair in the dictionary, the key defines613

the source path of one file or directory, and the value defines the destination path of one file or directory614

for the copy operation. For stageInFiles, the submission host acts as source, and the execution host(s)615

act as destination. For stageOutFiles, the execution host(s) acts as source, and the submission host act as616

destination.617

All values MUST be evaluated relative to the file system on the host in a syntax that is common at that618

host. Implementations MAY perform according validity checks on job submission. Paths on the execution619

host(s) MUST be allowed to contain any of the JobTemplatePlaceholder placeholders. Paths on the sub-620

mission host MUST be allowed to contain the JobTemplatePlaceholder::PARAMETRIC_INDEX placeholder621

(see Section 4.4). If no placeholder is used in the values, an absolute path specification on the particular622

host SHOULD be assumed by the implementation.623

Jobs SHOULD NOT enter JobState::DONE unless all staging operations are finished. The behavior in624

case of missing files is implementation-specific. The support for wildcard operators in path specifications is625

implementation-specific.626

The support for this attribute is optional.627
Needs final
approval by
the group.

628

(See footnote)
13

629

5.5.14 reservationId630

Specifies the identifier of the advance reservation associated with the job(s). The application is expected631

to create an advance reservation through the ReservationSession interface, the resulting reservationId632

(see Section 9.2) then acts as valid input for this job template attribute. Implementations MAY support an633

reservation identifier from non-DRMAA information sources as valid input.634

The support for this attribute is mandatory.635

5.5.15 queueName636

This attribute specifies the name of the queue the job(s) should be submitted to. In case this attribute637

value is UNSET, and MonitoringSession::getAllQueues returns a list with a minimum length of 1, the638

implementation SHOULD use the DRM systems default queue.639

The MonitoringSession::getAllQueues method (see 10.1) supports the determination of valid queue640

names. Implementations SHOULD allow these queue names to be used in the queueName attribute. Imple-641

mentations MAY also support queue names from other non-DRMAA information sources as valid input. If642

13 Comparsion to DRMAA 1.0: New job template attributes for file transfers were introduced. They allow to express a set
of file staging activities, similar to the approach in LSF and SAGA. They replace the old transferFiles attribute, the according
FileTransferMode data structure and the special host definition syntax in inputPath / outputPath / errorPath (different conf.
calls, SAGA F2F meeting, solves issue #5876)

drmaa-wg@ogf.org 21

mailto:drmaa-wg@ogf.org

GWD-R March 2011

no default queue is defined or if the given queue name is not valid, the job submission MUST lead to an643

InvalidArgumentException.644

If MonitoringSession::getAllQueues returns an empty list, this attribute MUST be only accepted with645

the value UNSET.646

Since the meaning of “queues” is implementation-specific, there is no implication on the effects in the DRM647

system when using this attribute. As one example, requesting a number of slots for a job in one queue has no648

implication on the number of utilized machines at run-time. Implementations therefore SHOULD document649

the effects of this attribute accordingly.650

The support for this attribute is mandatory.651

5.5.16 minSlots / maxSlots652

This attribute expresses the minimum / maximum number of slots requested per job (see also Section 1.3).653

If the value of minSlots is UNSET, it SHOULD default to 1. If the value of maxSlots is UNSET, it SHOULD654

default to the value of minSlots.655

Implementations MAY interprete the slot count as number of concurrent processes being allowed on one656

machine. If this interpretation is taken, and minSlots is greater than 1, than the jobCategory SHOULD657

also be demanded on job submission, in order to express the nature of the intended parallel job execution.658

The support for this attribute is mandatory.659

5.5.17 priority660

This attribute specifies the scheduling priority for the job. The intepretation of the given value incl. an661

UNSET value is implementation-specific.662

The support for this attribute is mandatory.663

5.5.18 candidateMachines664

Requests that the job(s) should run on any subset (with minimum size of 1), or all of the given machines.665

If the attribute value is UNSET, it should default to the result of the MonitoringSession::getAllMachines666

method. If this resource demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised667

on job submission time. If the problem can only be detected after job submission, the job should enter668

JobState::FAILED.669

The support for this attribute is mandatory.670

5.5.19 minPhysMemory671

This attribute denotes the minimum amount of physical memory in Kibibyte expected on the / all execution672

host(s). If this resource demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised673

at job submission time. If the problem can only be detected after job submission, the job SHOULD enter674

JobState::FAILED accordingly.675

The support for this attribute is mandatory.676

drmaa-wg@ogf.org 22

mailto:drmaa-wg@ogf.org

GWD-R March 2011

5.5.20 machineOS677

This attribute denotes the expected operating system type on the / all execution host(s). If this resource de-678

mand cannot be fulfilled, an InvalidArgumentException SHOULD be raised on job submission time. If the679

problem can only be detected after job submission, the job SHOULD enter JobState::FAILED accordingly.680

The support for this attribute is mandatory.681

(See footnote)
14

682

5.5.21 machineArch683

This attribute denotes the expected machine architecture on the / all execution host(s). If this resource684

demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised on job submission time. If685

the problem can only be detected after job submission, the job should enter JobState::FAILED.686

The support for this attribute is mandatory.687

5.5.22 startTime688

This attribute specifies the earliest time when the job may be eligible to be run.689

The support for this attribute is mandatory.690

5.5.23 deadlineTime691

Specifies a deadline after which the implementation or the DRM system SHOULD change the job state to692

any of the “Terminated” states (see Section 8.1).693

The support for this attribute is optional.694

5.5.24 softResourceLimits / hardResourceLimits695

This attribute specifies the soft / hard limits on resource utilization of the job(s) on the execution host(s).696

The valid dictionary keys and their value semantics are defined in Section 4.3. An implementation MAY697

map the settings to an ulimit(3) on the operating system, if available.698

The support for this attribute is optional. If only a subset of the attributes from ResourceLimitType is699

supported by the implementation, and some of the unsupported attributes are used, the job submission700

SHOULD raise an InvalidArgumentException expressing the fact that resource limits are supported in701

general.702

Conflicts of these attribute values with any other job template attribute or with referenced advanced reser-703

vations are handled in an implementation-specific manner. Implementations SHOULD try to delegate the704

decision about parameter combination validity to the DRM system, in order to ensure similar semantics in705

different DRMAA implementations for this system.706

Unclear what
happens from
DRMAA per-
spective if
a soft limit
is violated.
We have no
signals.

707

(See footnote)
15

708

14 Requesting a particular operating system version is not supported by the majority of DRM systems (conf call Jul 28th
2010)

15 In comparison to DRMAA 1.0, resource usage limitations can now be expressed by two dictionaries and an according

drmaa-wg@ogf.org 23

mailto:drmaa-wg@ogf.org

GWD-R March 2011

5.5.25 accountingId709

This attribute denotes a string that can be used by the DRM system for job accounting purposes. Im-710

plementations SHOULD NOT utilize this information as authentication token, but only as identification711

information in addition to the implementation-specific authentication (see Section 12).712

The support for this attribute is optional.713

5.6 ReservationTemplate structure714

In order to define the attributes associated with an advance reservation, the DRMAA application creates715

an ReservationTemplate instance and requests the fulfilment through the ReservationSession methods716

in the DRM system.717

struct ReservationTemplate {718

string reservationName;719

AbsoluteTime startTime;720

AbsoluteTime endTime;721

TimeAmount duration;722

long minSlots;723

long maxSlots;724

OrderedStringList candidateMachines;725

long minPhysMemory;726

OperatingSystem machineOS;727

CpuArchitecture machineArch;728

};729

Similar to the JobTemplate concept (see Section 5.5), there is a distinction between mandatory and op-730

tional attributes. Mandatory attributes MUST be supported by the implementation in the sense that they731

are evaluated in a ReservationSession::requestReservation call. Optional attributes MAY NOT be732

evaluated by the particular implementation, but MUST be provided as part of the ReservationTemplate733

structure in the implementation. If an optional attribute is not evaluated by the particular implementation,734

but has a value different to UNSET, the callto ReservationSession::requestReservation MUST fail with735

a UnsupportedAttributeException.736

Implementations MUST set all attribute values to UNSET on struct allocation. This ensures that both the737

DRMAA application and the library implementation can determine untouched attribute members. If not738

described differently in the following sections, all attributes SHOULD be allowed to have the UNSET value739

when ReservationSession::requestReservation is called.740

A language binding specification SHOULD model the ReservationTemplate representation the same way as
the JobTemplate interface (see Section 5.5), and therefore MUST define the realization of implementation-
specific attributes, printing, and and the initialization of attribute values. Complete sec-

tion needs
group ap-
proval

741

standardized set of valid dictionary keys (LimitType). The idea is to allow a direct mapping to ulimit(3) semantics, which are
supported by the majority of DRM system today. A separate run duration limit is no longer needed, since this is covered by
the new CPU TIME limit parameter. (conf. call Jun 9th 2010).

drmaa-wg@ogf.org 24

mailto:drmaa-wg@ogf.org

GWD-R March 2011

5.6.1 reservationName742

A human-readable reservation name. If this attribute is omitted then the name of the reservation SHALL be743

automatically defined by the implementation. The implementation MAY truncate any application-provided744

job name to an implementation-defined length.745

The support for this attribute is mandatory.746

5.6.2 startTime / endTime / duration747

The time frame in which resources should be reserved. Table 3 explains the different possible parameter748

combinations and their semantic.749

startTime endTime duration Description
UNSET UNSET UNSET The implementation or the DRM system is free to choose a time

frame for the reservation.
Set UNSET UNSET Invalid, SHALL leave to a InvalidAttributeException on the

reservation attempt.
UNSET Set UNSET Invalid, SHALL leave to a InvalidAttributeException on the

reservation attempt.
Set Set UNSET Perform reservation attempt to get resources in the specified time

frame.
UNSET UNSET Set Perform reservation attempt the get resources at least for the time

amount given in duration.
Set UNSET Set Implies endTime = startTime + duration

UNSET Set Set Implies startTime = endTime - duration

Set Set Set If endTime - startTime is larger than duration, perform a reser-
vation attempt where the demanded duration is fulfilled at the ear-
liest point in time after startTime, and without extending endTime.
If endTime - startTime is smaller than duration, the reserva-
tion attempt SHALL leave to a InvalidAttributeException. If
endTime - startTime and duration are equal, duration SHALL
be ignored.

Table 3: Parameter combinations for the advance reservation time frame. If duration is not supported, it
should be treated as UNSET.

The support for startTime and endTime is mandatory. The support for duration is optional.750

On UNSET
/ UNSET
/ UNSET,
throw Inval-
idArgument
instead ?

751

5.6.3 minSlots752

The minimum number of requested slots (see also Section 1.3). If the attribute value is UNSET, it should753

default to 1.754

The support for this attribute is mandatory.755

drmaa-wg@ogf.org 25

mailto:drmaa-wg@ogf.org

GWD-R March 2011

5.6.4 maxSlots756

The maximum number of requested slots (see also Section 1.3). If this attribute is not specified, it should757

default to the value of minSlots.758

The support for this attribute is mandatory.759

5.6.5 candidateMachines760

Requests that the reservation must be created on any subset of the given list of machines. If this attribute761

is not specified, it should default to the result of MonitoringSession::getAllMachines (see Section 10.1).762

The support for this attribute is optional.763

5.6.6 minPhysMemory764

Requests that the reservation must be created with machines that have at least the given amount of physical765

memory in Kibibyte.766

The support for this attribute is optional.767

5.6.7 machineOS768

Requests that the reservation must be created with machines that have the given type of operating system,769

regardless of its version, with semantics as specified in Section 4.1.770

The support for this attribute is optional.771

(See footnote)
16

772

5.6.8 machineArch773

Requests that the reservation must be created with machines that have the given instruction set architecture,774

with semantics as specified in Section 4.2.775

The support for this attribute is optional.776

5.7 DrmaaReflective Interface777

Group ap-
proval for
concept, then
add descrip-
tion

778

6 Common Exceptions779

The exception model specifies error information that can be returned by a DRMAA implementation on780

method calls.781

exception DeniedByDrmException {string message ;};782

exception DrmCommunicationException {string message ;};783

exception TryLaterException {string message ;};784

exception SessionManagementException {string message ;};785

16 Requesting a particular operating system version is not supported by the majority of DRM systems (conf call Jul 28th
2010)

drmaa-wg@ogf.org 26

mailto:drmaa-wg@ogf.org

GWD-R March 2011

exception TimeoutException {string message ;};786

exception InternalException {string message ;};787

exception InvalidArgumentException {string message ;};788

exception InvalidSessionException {string message ;};789

exception InvalidStateException {string message ;};790

exception OutOfMemoryException {string message ;};791

exception UnsupportedAttributeException {string message ;};792

exception UnsupportedOperationException {string message ;};793

If not defined otherwise, the exceptions have the following meaning:794

DeniedByDrmException: The DRM system rejected the operation due to security issues.795

DrmCommunicationException: The DRMAA implementation could not contact the DRM system. The796

problem source is unknown to the implementation, so it is unknown if the problem is transient or not.797

TryLaterException: The DRMAA implementation detected a transient problem with performing the798

operation, for example due to excessive load. The application is recommended to retry the call.799

SessionManagementException: A problem was encountered while trying to create / open / close /800

destroy a session.801

TimeoutException: The timeout given in one the waiting functions was reached without successfully802

finishing the waiting attempt.803

InternalException: An unexpected or internal error occurred in the DRMAA library, for example a system804

call failure. It is unknown if the problem is transient or not.805

InvalidArgumentException: From the viewpoint of the DRMAA library, a function parameter is invalid806

or inappropriate for the particular function call.807

InvalidSessionException: The session used for the function is not valid, for example since it was closed808

before.809

InvalidStateException: The function call is not allowed in the current state of the job.810

OutOfMemoryException: This exception can be thrown by any method at any time when the DRMAA811

implementation has run out of free memory.812

UnsupportedAttributeException: The optional attribute is not supported by the DRMAA implemen-813

tation.814

UnsupportedOperationException: The function is not supported by the DRMAA implementation. One815

example is the registration of an event callback function.816

.

We might
want to
introduce
InvalidTemplateException
for separating
input
parameter
issues

817

The DRMAA specification assumes that programming languages targeted by language bindings typically

drmaa-wg@ogf.org 27

mailto:drmaa-wg@ogf.org

GWD-R March 2011

support the concept of exceptions. If a destination language does not support them (like ANSI C), the
language binding specification SHOULD map error conditions to an appropriate consistent concept. A
language binding MAY chose to model exceptions as numeric error code return values, and return values as
additional output parameters of the operation. In this case, the language binding specification SHOULD
specify numeric values for all DRMAA error constants.

The representation of exceptions in the language binding MUST support a possibility to express an exception
cause as textual description. Implementations MAY use this text to express DRMS-specific error conditions
that are outside of the DRMAA scope.

Object-oriented language bindings MAY decide to derive all exceptions from one or multiple exception base
classes, in order to support generic catch clauses. Whenever it is appropriate, language bindings SHOULD
replace DRMAA exceptions by their semantically equivalent native exception from the application runtime
environment.

Language bindings MAY decide to introduce a hierarchical ordering of the DRMAA exceptions through class
derivation. In this case, any new exceptions added for aggregation purposes SHOULD be prevented from
being thrown, for example by marking them as abstract.

The UnsupportedAttributeException may either be raised by the setter function for the attribute or by
the job submission function. A consistent decision for either one or the other approach MUST be made by
the language binding specification.

(See footnote)
17

818

7 The DRMAA Session Concept819

DRMAA relies on an overall session concept, which supports the persistency of job and advance reservation820

information over multiple application runs. This supports short-lived applications that need to work with821

DRM system state spanning multiple application runs. Typical examples are job submission portals or822

command-line tools. The session concept is also intended to allow implementations to perform DRM system823

attach / detach operations at dedicated points in the application control flow.824

7.1 SessionManager Interface825

interface SessionManager{826

readonly attribute string drmsName;827

readonly attribute Version drmaaVersion;828

readonly attribute boolean reservationSupported;829

JobSession createJobSession(in string sessionName ,830

in string contactString);831

ReservationSession createReservationSession(in string sessionName ,832

in string contactString);833

MonitoringSession createMonitoringSession (in string contactString);834

17 Comparsion to DRMAA 1.0: The InconsistentStateException was removed, since it is semantically equal to the In-
validStateException (conf. call Jan 7th 2010) The former HoldInconsistentStateException, ReleaseInconsistentStateException,
ResumeInconsistentStateException, and SuspendInconsistentStateException from DRMAA v1.0 are now expressed as single
InvalidStateException with different meaning per raising method. (F2F meeting July 2009)

drmaa-wg@ogf.org 28

mailto:drmaa-wg@ogf.org

GWD-R March 2011

JobSession openJobSession(in string sessionName);835

ReservationSession openReservationSession(in string sessionName);836

void closeJobSession(in JobSession s);837

void closeReservationSession(in ReservationSession s);838

void closeMonitoringSession(in MonitoringSession s);839

void destroyJobSession(in string sessionName);840

void destroyReservationSession(in string sessionName);841

StringList getJobSessions ();842

StringList getReservationSessions ();843

};844

The SessionManager interface is the main interface for establishing communication with a given DRM sys-845

tem. By the help of this interface, sessions for job management, monitoring, and/or reservation management846

can be maintained.847

Job and reservation sessions maintain persistent state information (about jobs and reservations created)848

between application runs. State data SHOULD be persisted by the library implementation or the DRMS849

itself (if supported) after closing the session through the according method in the SessionManager interface.850

The re-opening of a session MUST be possible on the machine where the session was originally created.851

Implementations MAY also offer to re-open the session on another machine.852

The state information SHOULD be kept until the job or reservation session is explicitly reaped by the853

according destroy method in the SessionManager interface. If an implementation runs out of resources for854

storing the session information, the closing function SHOULD throw a SessionManagementException. If855

an application ends without closing the session properly, the behavior of the DRMAA implementation is856

undefined.857

An implementation MUST allow the application to have multiple sessions of the same or different types858

instantiated at the same time. This includes the proper coordination of parallel calls to session methods859

that share state information.860

(See footnote)
18

861

7.1.1 drmsName862

A system identifier denoting a specific type of DRM system, e.g. “LSF” or “GridWay”. It is intended863

to support conditional code blocks in the DRMAA application that rely on DRMS-specific details of the864

DRMAA implementation. Implementations SHOULD NOT make versioning information of the particular865

DRM system a part of this attribute value.866

7.1.2 drmaaVersion867

A combination of minor / major version number information for the DRMAA implementation. The major868

version number MUST be the constant value “2”, the minor version number SHOULD be used by the869

18 Comparison to DRMAA 1.0: The concept of a factory from GFD.130 was removed (solves issue #6276). Version 2.0 of
DRMAA supports restartable sessions by the newly introduced SessionManager interface. It allows creating multiple concurrent
sessions for job submission (solves issue #2821), which can be restarted by their generated session name (solves issue #2820).
Session.init() and Session.exit() functionalities are moved to the according session creation and closing routines. The descriptions
were fixed accordingly (solves issue #2822). The AlreadyActiveSession error was removed. (F2F meeting July 2009) The
drmaaImplementation attribute from DRMAA 1.0 was removed, since it was redundant to the drmsInfo attribute. This one is
now available in the new SessionManager interface. (F2F meeting July 2009).

drmaa-wg@ogf.org 29

mailto:drmaa-wg@ogf.org

GWD-R March 2011

DRMAA implementation for expressing its own versioning information.870

7.1.3 reservationSupported871

The attribute indicates if advance reservation is supported by the DRMAA implementation. If False, all872

methods related to advance reservation will raise an UnsupportedOperationExeption if being used.873
New, needs
group ap-
proval

874

(See footnote)
19

875

7.1.4 createJobSession / createReservationSession / createMonitoringSession876

The method creates a new session instance of the particular type for the application. On successful completion877

of this method, the necessary initalization for making the session usable MUST be completed. Examples are878

the connection establishment from the DRMAA library to the DRM system, or the prefetching of information879

from non-thread-safe operating system calls, such as getHostByName.880

The contactString parameter is an implementation-dependent string that SHALL allow the application to881

specify which DRM system instance to use. A contact string represents a specific installation of a specific882

DRM system, e.g. a Condor central manager machine at a given IP address, or a Grid Engine ‘root’ and883

‘cell’. Contact strings are always implementation dependent and therefore opaque to the application. If884

contactString has the value UNSET, a default DRM system SHOULD be contacted. The manual configu-885

ration or automated detection of a default contact is implementation-specific.886

The sessionName parameter denotes a unique name to be used for the new session. If a session with such887

a name was created before, the method MUST throw an InvalidArgumentException. In all other cases,888

including if the provided name has the value UNSET, a new session MUST be created with a unique name889

generated by the implementation. A MonitoringSession instance has no persistent state, and therefore890

does not support the name concept.891

If the DRM system does not support advance reservation, than createReservationSession SHALL throw892

an UnsupportedOperationException.893

7.1.5 openJobSession / openReservationSession894

The method is used to open a persisted JobSession or ReservationSession instance that has previously895

been created under the given sessionName. The implementation MUST support the case that the session896

have been created by the same application or by a different application running on the same machine. The897

implementation MAY support the case that the session was created or updated on a different machine. If898

no session with the given sessionName exists, an InvalidArgumentException MUST be raised.899

If the session described by sessionName was already opened before, implementations MAY return the same900

job or reservation session instance.901

If the DRM system does not support advance reservation, openReservationSession SHALL throw an902

UnsupportedOperationException.903

19This attribute is intended to avoid test calls for checking if advance reservation is supported by the implementation

drmaa-wg@ogf.org 30

mailto:drmaa-wg@ogf.org

GWD-R March 2011

7.1.6 closeJobSession / closeReservationSession / closeMonitoringSession904

The method MUST do whatever work is required to disengage from the DRM system. It SHOULD be callable905

only once, by only one of the application threads. This SHOULD be ensured by the library implementation.906

Additional calls beyond the first SHOULD lead to a NoActiveSessionException error notification.907

For JobSession or ReservationSession instances, the according state information MUST be saved to some908

stable storage before the method returns. This method SHALL NOT affect any jobs or reservations in the909

session (e.g., queued and running jobs remain queued and running).910

If the DRM system does not support advance reservation, closeReservationSession SHALL throw an911

UnsupportedOperationException.912

7.1.7 destroyJobSession / destroyReservationSession913

The method MUST do whatever work is required to reap persistent session state and cached job state914

information for the given session name. If session instances for the given name exist, they MUST become915

invalid after this method was finished sucessfully. Invalid sessions MUST throw InvalidSessionException916

on every attempt of utilization. This method SHALL NOT affect any jobs or reservations in the session in917

their operation, e.g. queued and running jobs remain queued and running.918

If the DRM system does not support advance reservation, destroyReservationSession SHALL throw an919

UnsupportedOperationException.920

7.1.8 getJobSessions / getReservationSessions921

This method returns a list of JobSession or ReservationSession names that are valid input for a openJobSession922

or openReservationSession call.923

If the DRM system does not support advance reservation, getReservationSessions SHALL throw an924

UnsupportedOperationException.925

8 Working with Jobs926

A DRMAA job represents a single computational activity that is executed by the DRM system on a execution927

host, typically as operating system process. The JobSession interface represents all control and monitoring928

functions commonly available in DRM systems for such jobs as a whole, while the Job interface represents the929

common functionality for single jobs. Sets of jobs resulting from a bulk submission are separately represented930

by the JobArray interface. JobTemplate instances allow to formulate conditions and requirements for the931

job execution by the DRM system.932

8.1 The DRMAA State Model933

DRMAA defines the following job states:934

enum JobState {935

UNDETERMINED , QUEUED , QUEUED_HELD , RUNNING , SUSPENDED , REQUEUED ,936

REQUEUED_HELD , DONE , FAILED };937

UNDETERMINED: The job status cannot be determined. This is a permanent issue, not being solvable938

by querying again for the job state.939

drmaa-wg@ogf.org 31

mailto:drmaa-wg@ogf.org

GWD-R March 2011

QUEUED: The job is queued for being scheduled and executed.940

QUEUED HELD: The job has been placed on hold by the system, the administrator, or the submitting941

user.942

RUNNING: The job is running on a execution host.943

SUSPENDED: The job has been suspended by the user, the system or the administrator.944

REQUEUED: The job was re-queued by the DRM system, and is eligible to run.945

REQUEUED HELD: The job was re-queued by the DRM system, and is currently placed on hold.946

DONE: The job finished without an error.947

FAILED: The job exited abnormally before finishing.948

If a DRMAA job state has no representation in the underlying DRMS, the DRMAA implementation MAY949

never report that job state value. However, all DRMAA implementations MUST provide the JobState950

enumeration as given here. An implementation SHOULD NOT return any job state value other than those951

defined in the JobState enumeration.952

The status values relate to the DRMAA job state transition model, as shown in Figure 1.953

TerminatedStartedQueued

QUEUED

QUEUED_HELD

RUNNING

SUSPENDED

DONE

FAILED

UNDETERMINED

REQUEUED

REQUEUED_HELD

runJob()
runBulkJobs()

Figure 1: DRMAA Job State Transition Model

The transition diagram in Figure 1 expresses the clasification of possible job states into “Queued”, “Started”,954

and “Terminated”. This is relevant for the job waiting functions (see Section 8.2 and Section 8.4), which955

drmaa-wg@ogf.org 32

mailto:drmaa-wg@ogf.org

GWD-R March 2011

operate on job state classes only. The “Terminated” class of states is final, meaning that further state956

transition is not allowed.957

Implementations SHALL NOT introduce other job transitions (e.g. from RUNNING to QUEUED) beside the ones958

stated in Figure 1, even if they might happen in the underlying DRM system. In this case, implementations959

MAY emulate the neccessary intermediate steps for the DRMAA-based application.960

When an application requests job state information, the implementation SHOULD also provide the subState961

value to explain DRM-specific information about the job state. The possible values of this attribute are962

implementation-specific, but should be documented properly. Examples are extra states for staging phases963

or details on the hold reason. Implementations SHOULD define a DRMS-specific data structure for the964

sub-state information that can be converted to / from the data type defined by the language binding.965

The IDL definition declares the sub state attributes as type any, expressing the fact that the language
binding MUST map the data type to a generic language type (e.g. void*, Object) that maintains source code
portability across DRMAA implementations and still accepts an UNSET value.

The DRMAA job state model can be mapped to other high-level API state models. Table 4 gives a non-966

normative set of examples.967

DRMAA JobState SAGA JobState [3] OGSA-BES Job State [2]
UNDETERMINED N/A N/A
QUEUED Running Pending (Queued)
QUEUED HELD Running Pending (Queued)
RUNNING Running Running (Executing)
SUSPENDED Suspended Running (Suspended)
REQUEUED Running Pending (Queued)
REQUEUED HELD Running Pending (Queued)
DONE Done Finished
FAILED Cancelled, Failed Cancelled, Failed

Table 4: Example Mapping of DRMAA Job States Re-check job
state map-
ping

968

(See footnote)
20

969

20 Comparison to DRMAA 1.0:
The differentiation between the system hold, user hold, and system / user hold job states was removed (conf. call Jan

20th 2009). There is only one hold state now. A job can now change its state from one of the SUSPENDED states to the
QUEUED ACTIVE state (conf. call Jan 20th 2009, solves issue #2788). The job state UNDETERMINED is now clearer
defined. It expressed a permanent issue, meaning that the job state will not change by just waiting. Temporary problems in
the detection of the job state are now expressed by the TryLaterException (conf. call Feb 5th 2009, solves issue #2783). The
description of the FAILED state was extended to support a more specific differentiation between different job failure reasons.
The new subState feature allows the DRMAA implementation to provide better information, if available. There was no portable
way of standardizing extended failure information in a better way. (conf. call May 12th 2009, solves issue #5875) The different
suspend job states from DRMAA1 (user suspended, system suspended, user / system suspended) are now combined into one
suspend state. DRM systems with the need to express the different suspend reasons can use the new sub-state feature (conf.
call Mar 5th 2010).

drmaa-wg@ogf.org 33

mailto:drmaa-wg@ogf.org

GWD-R March 2011

8.2 JobSession Interface970

A job session instance acts as container for job instances controlled through the DRMAA API. The session971

methods support the submission of new jobs, the monitoring and the control of existing jobs. The relationship972

between jobs and their session MUST be persisted, as described in Section 7.1.973

interface JobSession {974

readonly attribute string contact;975

readonly attribute string sessionName;976

readonly attribute boolean notificationSupported;977

JobList getJobs(in JobInfo filter);978

Job runJob(in JobTemplate jobTemplate);979

JobArray runBulkJobs(980

in JobTemplate jobTemplate ,981

in long beginIndex ,982

in long endIndex ,983

in long step);984

Job waitAnyStarted(in JobList jobs , in TimeAmount timeout);985

Job waitAnyTerminated(in JobList jobs , in TimeAmount timeout);986

void registerEventNotification(in DrmaaCallback callback);987

};988

(See footnote)
21

989

8.2.1 contact990

This attribute contains the contact value that was used in the SessionManager::createJobSession call991

for this instance (see Section 7.1). If no value was originally provided, the default contact string from the992

implementation MUST be returned. This attribute is read-only.993

8.2.2 sessionName994

This attribute contains the sessionName value that was used in the SessionManager::createJobSession995

or SessionManager::openJobSession call for this instance (see Section 7.1). This attribute is read-only.996

21 Comparison to DRMAA 1.0: The original separation between synchronize() and wait() was replaced by a complete new
synchronization semantic in the API. DRMAA2 has now two methods, waitStarted() and waitTerminated(). The first waits
for any state that expresses that the job was started, the second for any terminal status. Both methods are available on
session level (wait for any of the given jobs to start / end) or on single job level (solves issue #5880 and #2838). The function
returns always a Job object, in order to allow chaining, e.g. job.wait(JobStatus.RUNNING).hold(). The session-level functions
implement the old DRMAA wait(SESSION ANY). The old synchronize() semantics are no longer directly supported - instead,
the DRMAA application should use a looped Job.wait... / JobSession.waitAny... call. The result is a more condensed and
responsive API, were the application can decide to keep the user informed during synchronization on a set of jobs. DRMAA
library implementations should also become easier to design, since the danger of multithreading side effects inside the DRMAA
API is reduced by this change. As a side effect, JOB IDS SESSION ANY and JOB IDS SESSION ALL are no longer needed.
The special consideration of a partial failures during SESSION ALL wait activities is also no longer necessary (F2F meeting
July 2009). The JobSession now allows to fetch also information about jobs that were not submitted through DRMAA (conf.
call June 23th 2010).

drmaa-wg@ogf.org 34

mailto:drmaa-wg@ogf.org

GWD-R March 2011

8.2.3 notificationSupported997

The attribute indicates if event notification is supported by the DRMAA implementation for the job session.998

If False, then registerEventNotification will raise an UnsupportedOperationExeption if being used.999
New, needs
group ap-
proval

1000

8.2.4 getJobs1001

This method returns a sequence of jobs that belong to the job session. The filter parameter allows one1002

to choose a subset of the session jobs as return value. The attribute semantics for the filter argument are1003

explained in Section 5.4. If no job matches or the session has no jobs attached, the method MUST return1004

an empty sequence instance. If filter is UNSET, all session jobs MUST be returned.1005

Time-dependent effects of this method, such as jobs no longer matching to filter criteria on evaluation time,1006

are implementation-specific. The purpose of the filter parameter is to keep scalability with a large number1007

of jobs per session. Applications therefore must consider the possibly changed state of jobs during their1008

evaluation of the method result.1009

8.2.5 runJob1010

The runJob method submits a job with the attributes defined in the job template parameter. It returns a1011

Job object that represents the job in the underlying DRM system. Depending on the job template settings,1012

submission attempts may be rejected with an InvalidArgumentException. The error details SHOULD1013

provide further information about the attribute(s) responsible for the rejection.1014

When this method returns a valid Job instance, the following conditions SHOULD be fulfilled:1015

• The job is part of the persistent state of the job session.1016

• All non-DRMAA and DRMAA interfaces to the DRM system report the job as being submitted to1017

the DRM system.1018

• The job has one of the DRMAA job states.1019

8.2.6 runBulkJobs1020

The runBulkJobs method creates a set of parametric jobs, each with attributes defined in the given1021

job template. Each job in the set is identical, except for the job template attributes that include the1022

JobTemplatePlaceholder::PARAMETRIC_INDEX macro (see Section 5.5).1023

If any of the resulting parametric job templates is not accepted by the DRM system, the method call MUST1024

raise an InvalidArgumentException. No job from the set SHOULD be submitted in this case.1025

The first job in the set has an index equal to the beginIndex parameter of the method call. The smallest valid1026

value for beginIndex is 1. The next job has an index equal to beginIndex + step, and so on. The last job1027

has an index equal to beginIndex + n * step, where n is equal to(endIndex - beginIndex) / step. The1028

index of the last job may not be equal to endIndex if the difference between beginIndex and endIndex is not1029

evenly divisible by step. The beginIndex value must be less than or equal to the endIndex value, and only1030

positive index numbers are allowed, otherwise the method SHOULD raise an InvalidArgumentException.1031

Implementations MAY provide custom ways for the job to determine its index number.1032

drmaa-wg@ogf.org 35

mailto:drmaa-wg@ogf.org

GWD-R March 2011

The runBulkJobs method returns a JobArray (see Section 8.5) instance that represents the set of Job objects1033

created by the method call under a common array identifier. For each of the jobs in the array, the same1034

conditions as for the result of runJob SHOULD apply.1035

The largest valid value for endIndex MUST be defined by the language binding.

(See footnote)
22

1036

8.2.7 waitAnyStarted / waitAnyTerminated1037

The waitAnyStarted method blocks until any of the jobs referenced in the jobs parameter entered one of1038

the “Started” states. The waitAnyTerminated method blocks until any of the jobs referenced in the jobs1039

parameter entered one of the “Terminated” states (see Section 8.1). If the input list contains jobs that are1040

not part of the session, waitAnyStarted SHALL fail with an InvalidArgumentException.1041

The timeout argument specifies the desired behavior when a result is not immediately available. The con-1042

stant value INFINITE_TIME may be specified to wait indefinitely for a result. The constant value ZERO_TIME1043

may be specified to return immediately. Alternatively, a number of seconds may be specified to indicate1044

how long to wait for a result to become available. If the invocation exits on timeout, an TimeoutException1045

SHALL be raised.1046

In a multi-threaded environment with multiple JobSession::waitAny... calls, only one of the active thread1047

SHOULD get the status change notification for a particular job, while the other threads SHOULD continue1048

waiting. If there are no more queryable jobs left in the session, all remaining waiting threads SHOULD fail1049

with an InvalidStateException. If thread A is waiting for a specific job with Job::wait..., and another1050

thread, thread B, waiting for that same job or with JobSession::waitAny..., than B SHOULD receive the1051

notification that the job has finished, thread A SHOULD fail with an InvalidStateException. Waiting for1052

a job state is a read-only operation.1053

An application waiting for some condition to happen in all jobs of a set is expected to perform looped calls1054

of these waiting functions.1055

(See footnote)
23

1056

8.2.8 registerEventNotification1057

This method is used to register a DrmaaCallback interface (see Section 8.3) implemented by the DRMAA-1058

based application. If the callback functionality is not supported by the DRMAA implementation, the method1059

SHALL raise an UnsupportedOperationException. Implementations MAY support the registration of1060

multiple callback methods.1061

A language binding specification MUST define how the reference to an interface-compliant method can be
given as argument to this method.

22 There was a discussion (mailing list Jan 2011) about having specialized job templates for bulk submission, with support
for the start / end index and a slots limit. We rejected that, since job templates are intended for re-usage.

23 People typically ask for the waitAll..() counterparts of these functions. Since they are so easy to implement in the
application itself, we could not see any benefit in adding them. Due to there intended long-blocking operation, the DRM
system would no be able to offer any better (meaning much faster) implementation to be wrapped by DRMAA.

drmaa-wg@ogf.org 36

mailto:drmaa-wg@ogf.org

GWD-R March 2011

8.3 DrmaaCallback Interface1062

The DrmaaCallback interface allows the DRMAA library or the DRM system to inform the application about1063

relevant events from the DRM system in a asynchronous fashion. One expected use case is loseless monitoring1064

of job state transitions. The support for such callback functionality is optional, but all implementations1065

MUST define the DrmaaCallback interface type as given in the language binding.1066

interface DrmaaCallback {1067

void notify(in DrmaaNotification notification);1068

};1069

struct DrmaaNotification {1070

DrmaaEvent event;1071

Job job;1072

JobState jobState;1073

};1074

enum DrmaaEvent {1075

NEW_STATE , MIGRATED , ATTRIBUTE_CHANGE1076

};1077

The application callback interface is registered through the JobSession::registerEventNotification1078

method (see Section 8.2). The DrmaaNotification structure represents the notification information from1079

the DRM system. Implementations MAY extend this structure for further information (see Section 5). All1080

given information SHOULD be valid at least at the time of notification generation.1081

The DrmaaEvent enumeration defines standard event types for notification:1082

NEW STATE The job entered a new state, which is described in the jobState attribute of the notification1083

structure.1084

MIGRATED The job was migrated to another execution host, and is now in the given state.1085

ATTRIBUTE CHANGE A monitoring attribute of the job, such as the memory consumption, changed1086

to a new value. The jobState attribute MAY have the value UNSET on this event.1087

DRMAA implementations SHOULD protect themself from unexpected behavior of the called application.1088

This includes indefinite delays or unexpected exceptions from the callee. An implementation SHOULD1089

also disallow any library calls while the callback function is running, to avoid recursion scenarios. It is1090

RECOMMENDED to raise TryLaterException in this case.1091

Scalability issues of the notification facility are out of scope for this specification. Implementations MAY1092

decide to support non-standardized throttling configuration options.1093

(See footnote)
24

1094

8.4 Job Interface1095

Every job in the JobSession is expressed by an own instance of the Job interface. It allows one to instruct1096

the DRM system for a job status change, and to query the status attributes of the job in the DRM system.1097

24 We intentionally did not add subState to the notification information, since this would make callback interface implemen-
tations specific for the DRM system, without any chance for creating a portable DRMAA application.

drmaa-wg@ogf.org 37

mailto:drmaa-wg@ogf.org

GWD-R March 2011

interface Job {1098

readonly attribute string jobId;1099

readonly attribute JobSession session;1100

readonly attribute JobTemplate jobTemplate;1101

void suspend ();1102

void resume ();1103

void hold ();1104

void release ();1105

void terminate ();1106

JobState getState(out any jobSubState);1107

JobInfo getInfo ();1108

Job waitStarted(in TimeAmount timeout);1109

Job waitTerminated(in TimeAmount timeout);1110

};1111

(See footnote)
25

1112

8.4.1 jobId1113

This attribute provides the string job identifier assigned to the job by the DRM system. It is intended as1114

performant alternative for fetching a complete JobInfo instance for this information.1115

8.4.2 session1116

This attribute offers a reference to the JobSession instance that represents the session used for the job1117

submission creating this Job instance.1118

8.4.3 jobTemplate1119

This attribute provides a reference to a JobTemplate instance that has equal values to the one that was1120

used for the job submission creating this Job instance.1121

8.4.4 suspend / resume / hold / release / terminate1122

The job control functions allow modifying the status of the single job in the DRM system, according to the1123

state model presented in Section 8.1.1124

The suspend method triggers a transition from RUNNING to SUSPENDED state. The resume method triggers1125

a transition from SUSPENDED to RUNNING state. The hold method triggers a transition from QUEUED to1126

QUEUED_HELD, or from REQUEUED to REQUEUED_HELD state. The release method triggers a transition from1127

QUEUED_HELD to QUEUED, or from REQUEUED_HELD to REQUEUED state. The terminate method triggers a1128

25 In comparison to DRMAA v1.0, DRMAA2 replaces the identification of jobs by strings with Job objects. This enables a
tighter integration of job meta-data and identity, for the price of reduced performance in (so far not existing) DRMAA RPC
scenarios. The former DRMAA control() with the JobControlAction structure is now split up into dedicated functions (such
as hold() and release()) on the Job object.

Even though the DRMAAv2 surveys showed interest in interactive job support, this feature was intentionally left out. Reasons
are the missing support in some major DRM systems, and the lack of a relevant DRMAA-related use case (conf. call Jan 7th
2010)

Issue #5877 (support for direct job signaling) was rejected, even though there was an according request from the SAGA WG.
Issue #2782 (change attributes of submitted, but pending jobs) was rejected based on group decision.

drmaa-wg@ogf.org 38

mailto:drmaa-wg@ogf.org

GWD-R March 2011

transition from any of the “Started” states to one of the “Terminated” states. If the job is in an inappropriate1129

state for the particular method, the method MUST raise an InvalidStateException.1130

The methods SHOULD return after the action has been acknowledged by the DRM system, but MAY1131

return before the action has been completed. Some DRMAA implementations MAY allow this method1132

to be used to control jobs submitted externally to the DRMAA session, such as jobs submitted by other1133

DRMAA sessions in other DRMAA implementations or jobs submitted via native utilities. This behavior is1134

implementation-specific.1135

8.4.5 getState1136

This method allows one to gather the current status of the job according to the DRMAA state model,1137

together with an implementation specific sub state (see Section 8.1). It is intended as performant alternative1138

for fetching a complete JobInfo instance for state checks. The timing conditions are described in Section1139

5.4.1140

(See footnote)
26

1141

8.4.6 getInfo1142

This method returns a JobInfo instance for the particular job under the conditions described in Section 5.4.1143

8.4.7 waitStarted / waitTerminated1144

The waitStarted method blocks until the job entered one of the “Started” states. The waitTerminated1145

method blocks until the job entered one of the “Terminated” states (see Section 8.1). The timeout argument1146

specifies the desired behavior when a result is not immediately available. The constant value INFINITE_TIME1147

may be specified to wait indefinitely for a result. The constant value ZERO_TIME may be specified to return1148

immediately. Alternatively, a number of seconds may be specified to indicate how long to wait for a result to1149

become available. If the invocation exits on timeout, an TimeoutException SHALL be raised. If the job is1150

in an inappropriate state for the particular method, the method MUST raise an InvalidStateException.1151

8.5 JobArray Interface1152

The following section explains the set of methods and attributes defined in the JobArray interface. Any1153

instance of this interface represent an job array, a common concept in many DRM systems for a job set created1154

by one operation. In DRMAA, JobArray instances are only created by the runBulkJobs operation (see1155

Section 8.2). JobArray instances differ from the JobList data structure due to their potential for representing1156

a DRM system concept, while JobList is a DRMAA-only concept mainly realized by the language binding1157

sequence support. Implementations SHOULD realize the JobArray functionality as wrapper for DRM system1158

job arrays, if possible. If the DRM system has only single job support or incomplete job array support with1159

respect to the DRMAA-provided functionality, implementations MUST realize the JobArray functionality1160

on their own, for example based on looped operations with a list of jobs.1161

interface JobArray {1162

readonly attribute string jobArrayId;1163

readonly attribute JobList jobs;1164

readonly attribute JobSession session;1165

26 The getState() function now also returns job subState information. This is intended as additional information for the given
DRMAA job state, and can be used for expressing the hold state differentiation from DRMAA 1.0 (conf. call Mar 31st 2009).

drmaa-wg@ogf.org 39

mailto:drmaa-wg@ogf.org

GWD-R March 2011

readonly attribute JobTemplate jobTemplate;1166

void suspend ();1167

void resume ();1168

void hold ();1169

void release ();1170

void terminate ();1171

};1172
Completely
new, needs
group ap-
proval

1173

(See footnote)
27

1174

8.5.1 jobArrayId1175

This attribute provides the string job identifier assigned to the job array by the DRM system. If the DRM1176

system has no job array support, the implementation MUST generate a system-wide unique identifier for1177

the result of the successful runBulkJobs operation.1178

8.5.2 jobs1179

This attribute provides the static list of jobs that are part of the job array.1180

(See footnote)
28

1181

8.5.3 session1182

This attribute offers a reference to a JobSession instance that represents the session which was used for the1183

job submission creating this JobArray instance.1184

8.5.4 jobTemplate1185

This attribute provides a reference to a JobTemplate instance that has equal values to the one that was1186

used for the job submission creating this JobArray instance.1187

(See footnote)
29

1188

8.5.5 suspend / resume / hold / release / terminate1189

The job control functions allow modifying the status of the job array in the DRM system, with the same1190

semantic as with the counterparts in the Job interface (see Section 8.4). If one of the jobs in the array is in1191

an inappropriate state for the particular method, the method MUST raise an InvalidStateException.1192

27 We are aware of the fact that some systems (e.g. LSF at the time of writing) do not support all DRMAA control operations
offered for JobArrays. Since we intended to avoid optional DRMAA operations wherever we could, the text here mandates
the implementation to simulate the JobArray support on its own. For example, looping over all jobs in the array and calling
“suspend” for each one is trivial to implement and fulfills the same purpose.

28 We were asked for offering a filter support similar to JobSession here. This was rejected by discussion on the list (Jan
2011), since the number of jobs returned here is normally comparatively short. In this case, the DRM system cannot provide
any benefit over the looped check in the application itself.

29 The use case from SAGA perspective is that the user can easily resubmit the same job - just changing for example some
command line parameter, but leaving the remainder fixed (mail by Andre Merzky, July 29th 2010).

drmaa-wg@ogf.org 40

mailto:drmaa-wg@ogf.org

GWD-R March 2011

The methods SHOULD return after the action has been acknowledged by the DRM system for all jobs in1193

the array, but MAY return before the action has been completed. Some DRMAA implementations MAY1194

allow this method to be used to control job arrays created externally to the DRMAA session, such as job1195

arrays submitted by other DRMAA sessions in other DRMAA implementations or job arrays submitted via1196

native utilities. This behavior is implementation-specific.1197

9 Working with Advance Reservation1198

Adance reservation is a DRM system concept that allows the reservation of execution resources for jobs1199

to be submitted. DRMAA encapsulates such functionality of a DRM system with the interfaces and data1200

structures described in this chapter.1201

DRMAA implementations for DRM systems that do not support advance reservation still MUST imple-1202

mented the described interfaces, in order to keep source code portability for DRMAA-based applications.1203

9.1 ReservationSession Interface1204

Every ReservationSession instance represents a set of advance reservations in the DRM system. Every1205

Reservation instance SHALL belong only to one ReservationSession instance.1206

interface ReservationSession {1207

readonly attribute string contact;1208

readonly attribute string sessionName;1209

Reservation getReservation(in string reservationId);1210

Reservation requestReservation(in ReservationTemplate reservationTemplate);1211

ReservationList getReservations ();1212

};1213

If the DRM system does not support advance reservation, all methods in this interface SHALL throw an1214

UnsupportedOperationException.1215

9.1.1 contact1216

This attribute contains the contact value that was used in the createReservationSession call for this1217

instance (see Section 7.1). If no value was originally provided, the default contact string from the implemen-1218

tation MUST be returned. This attribute is read-only.1219

9.1.2 sessionName1220

This attribute contains the name of the session that was used for creating or opening this Reservation1221

instance (see Section 7.1). This attribute is read-only.1222

9.1.3 getReservation1223

This method returns a Reservation instance that has the given reservationId. Implementations MAY1224

support the access to reservations created outside of a DRMAA session scope, under the same regulari-1225

ties as for the MonitoringSession::getAllReservations method (see Section 10.1.2). If no reservation1226

matches, the method SHALL raise an InvalidArgumentException. Time-dependent effects of this method1227

are implementation-specific.1228

drmaa-wg@ogf.org 41

mailto:drmaa-wg@ogf.org

GWD-R March 2011

9.1.4 requestReservation1229

The requestReservation method SHALL request an advance reservation in the DRM system with at-1230

tributes defined in the provided ReservationTemplate. On a successful reservation, the method returns a1231

Reservation instance that represents the advance reservation in the underlying DRM system.1232

The method SHALL raise an InvalidArgumentException if the reservation cannot be performed by the1233

DRM system. It SHOULD further provide detailed information about the rejection cause in the extended1234

error information (see Section 6).1235

In case some of the conditions are not fulfilled after the reservation was succesfully created, for example due1236

to execution host outages, the reservation itself SHOULD remain valid, as long is it wasn’t cancelled either1237

through or outside of DRMAA.1238

9.1.5 getReservations1239

This method returns the list of reservations successfully created so far in this session, regardless of their start1240

and end time. The list of Reservation instances is only cleared in conjunction with the destruction of the1241

actual session instance through SessionManager::destroyReservationSession (see also Section 7.1).1242

9.2 Reservation Interface1243

The Reservation interface represents attributes and methods available for an advance reservation success-1244

fully created in the DRM system.1245

interface Reservation {1246

readonly attribute string reservationId;1247

readonly attribute ReservationSession session;1248

readonly attribute ReservationTemplate reservationTemplate;1249

readonly attribute OrderedStringList reservedMachines;1250

readonly attribute AbsoluteTime reservedStartTime;1251

readonly attribute AbsoluteTime reservedEndTime;1252

readonly attribute AbsoluteTime reservedSlots;1253

readonly attribute string reservationName;1254

void terminate ();1255

};1256

(See footnote)
30

1257

9.2.1 reservationId1258

The reservationId is an opaque string identifier for the advance reservation. If the DRM system has1259

identifiers for advance reservations, this attribute SHOULD provide the according stringified value. If not,1260

the DRMAA implementation MUST generate value this is unique in time and extend of the DRM system.1261

Any relation-
ship to reser-
vationName
?

1262

30 The reason for not having a separate ReservationInfo struct is that there are only three relevant attributes for this structure,
and that all of them have static semantics. There is, therefore, no need for refetching reservation information several times,
which is the case with JobInfo. Because of this, the according information can be a part of the Reservation interface itself.

drmaa-wg@ogf.org 42

mailto:drmaa-wg@ogf.org

GWD-R March 2011

9.2.2 session1263

This attribute references the ReservationSession which was used to create the advance reservation instance.1264

9.2.3 reservationTemplate1265

This attribute provides a reference to a ReservationTemplate instance that has equal values to the one1266

that was used for the advance reservation creating this Reservation instance. This attribute value MUST1267

be UNSET if the referenced reservation was created outside of a DRMAA session.1268

9.2.4 reservedMachines1269

This attribute describes the set of machines which was reserved under the conditions described in the1270

according reservation template. Either reservedMachines or reservedSlots or both MUST have a value1271

different from UNSET.1272

9.2.5 reservedStartTime1273

This attribute describes the start time for the reservation described by this instance. If the value is UNSET,1274

it expresses an unrestricted start time for this reservation.1275

9.2.6 reservedEndTime1276

This attribute describes the end time for the reservation described by this instance. If the value is UNSET, it1277

expresses an unrestricted end time for this reservation.1278

9.2.7 reservedSlots1279

This attribute describes the number of slots that was reserved by the DRM system, based on the original1280

minSlots and maxSlots arguments in ReservationTemplate. Either reservedSlots or reservedMachines1281

or both MUST have a value different from UNSET.1282

Could the
reservation
result be a
range, or is
this always a
maximum ?

1283

9.2.8 reservationName1284

Could that
be UNSET ?

1285

This attribute describes the reservation name that was stored by the implementation or DRM system, derived1286

from the original reservationName attribute given in the ReservationTemplate.1287

9.2.9 terminate1288

This method terminates the advance reservation in the DRM system represented by this Reservation1289

instance. .

Needs ad-
ditional ex-
planation of
expected be-
havior

1290

10 Monitoring the DRM System1291

The DRMAA monitoring facility supports four basic units of monitoring:1292

drmaa-wg@ogf.org 43

mailto:drmaa-wg@ogf.org

GWD-R March 2011

• Properties of the DRM system as a whole (e.g. DRM system version number) that are independent1293

from the particular session and contact string,1294

• Properties of the DRM system that depend on the current contact string (e.g. list of machines in the1295

currently accessed Grid Engine cell)1296

• Properties of individual queues known from a getAllQueues call1297

• Properties of individual machines available with the current contact string (e.g. amount of physical1298

memory in a chosen machine)1299

The MonitoringSession interface in DRMAA supports the monitoring of execution resources in the DRM1300

system. This is distinct from the monitoring of jobs running in the DRM system, which is covered by the1301

JobSession and the Job interface.1302

10.1 MonitoringSession Interface1303

The MonitoringSession interface represents a set of stateless methods for fetching information about the1304

DRM system and the DRMAA implementation itself. It MAY be used to implement DRM system monitoring1305

tools like qstat.1306

interface MonitoringSession {1307

readonly attribute Version drmsVersion;1308

ReservationList getAllReservations ();1309

JobList getAllJobs(in JobInfo filter);1310

QueueList getAllQueues(in StringList names);1311

MachineList getAllMachines(in StringList names);1312

readonly attribute StringList drmsJobCategoryNames;1313

};1314

All returned data SHOULD be related to the current user running the DRMAA-based application. For1315

example, the getAllQueues function MAY be reduced to only denote queues that are usable or generally1316

accessible for the DRMAA application and user performing the query.1317

Because no guarantee can be made as to future accessibility, and because of cases where list reduction may1318

demand excessive overhead in the DRMAA implementation, an unreduced or partially reduced result MAY1319

be returned on all methods returning lists. The behavior of the DRMAA implementation in this regard1320

should be clearly documented. In all cases, the list items MUST all be valid input for job submission or1321

advance reservation through the DRMAA API.1322

10.1.1 drmsVersion1323

This attribute provides the DRM-system specific version information. While the DRM system type is avail-1324

able from the SessionManager::drmsName attribute (see Section 7.1), this attribute provides the according1325

version of the product. Applications are expected to use the information about the general DRM system type1326

for accessing product-specific features. Applications are not expected to make decisions based on versioning1327

information from this attribute - instead, the value should only be utilized for informative output to the end1328

user.1329

drmaa-wg@ogf.org 44

mailto:drmaa-wg@ogf.org

GWD-R March 2011

10.1.2 getAllReservations1330

This method returns the list of all DRMS advance reservations accessible for the user running the DRMAA-1331

based application. In contrast to a ReservationSession::getReservations call, this method SHOULD1332

also return reservations that were created outside of DRMAA (e.g. through command-line tools) by this user.1333

The returned list MAY also contain reservations that were created by other users if the security policies of1334

the DRM system allow such global visibility. The DRM system or the DRMAA implementation is at liberty,1335

however, to restrict the set of returned reservations based on site or system policies, such as security settings1336

or scheduler load restrictions.1337

This method SHALL raise an UnsupportedOperationException if advance reservation is not supported by1338

the implementation.1339

10.1.3 getAllJobs1340

This method returns the list of all DRMS jobs visible to the user running the DRMAA-based application. In1341

contrast to a JobSession::getJobs call, this method SHOULD also return jobs that were submitted outside1342

of DRMAA (e.g. through command-line tools) by this user. The returned list MAY also contain jobs that1343

were submitted by other users if the security policies of the DRM system allow such global visibility. The1344

DRM system or the DRMAA implementation is at liberty, however, to restrict the set of returned jobs based1345

on site or system policies, such as security settings or scheduler load restrictions.1346

Querying the DRM system for all jobs might result in returning an excessive number of Job objects. Impli-1347

cations to the library implementation are out of scope for this specification.1348

The method supports a filter argument for fetching only a subset of the job information available. Both1349

the return value semantics and the filter semantics SHOULD be similar to the ones described for the1350

JobSession::getJobs method (see Section 8.2).1351

Language bindings SHOULD NOT try to solve the scalability issues by replacing the sequence type of
the return value with some iterator-like solution. This approach would break the basic snapshot semantic
intended for this method.

(See footnote)
31

1352

10.1.4 getAllQueues1353

This method returns a list of queues available for job submission in the DRM system. All Queue instances1354

in this list SHOULD be (based on their name attribute) a valid input for the JobTemplate::queueName1355

attribute (see Section 5.5). The result can be an empty list or might be incomplete, based on queue, host,1356

or system policies. It might also contain queues that are not accessible for the user (because of queue1357

configuration limits) at job submission time.1358

The names parameter supports restricting the result to Queue instances that have one of the names given in1359

the argument. If the names parameter value is UNSET, all Queue instances should be returned.1360

31 The non-argumentation about the scalability problem was the final result of a clarification attempt. We hand this one
over to the implementors. (conf call Jul 14th 2010)

drmaa-wg@ogf.org 45

mailto:drmaa-wg@ogf.org

GWD-R March 2011

10.1.5 getAllMachines1361

This method returns the list of machines available in the DRM system as execution host. The returned list1362

might be empty or incomplete based on machine or system policies. The returned list might also contain1363

machines that are not accessible by the user, e.g. because of host configuration limits.1364

The names parameter supports restricting the result to Machine instances that have one of the names given1365

in the argument. If the names parameter value is UNSET, all Machine instances should be returned.1366

10.1.6 drmsJobCategoryNames1367

This method provides the list of of valid job category names which can be used for the jobCategory attribute1368

in a job template. The semantics are described in Section 5.5.7.1369

11 Annex A: Complete DRMAA IDL Specification1370

The following text shows the complete IDL specification for the DRMAAv2 application programming inter-1371

face. The ordering of IDL constructs here has no normative meaning, but ensures the correct compilation1372

with a standard CORBA IDL compiler for syntactical correctness checks. This demands only some additional1373

forward declarations to resolve circular dependencies.1374

module DRMAA2 {1375

enum JobState {1376

UNDETERMINED , QUEUED , QUEUED_HELD , RUNNING , SUSPENDED , REQUEUED ,1377

REQUEUED_HELD , DONE , FAILED };1378

enum OperatingSystem {1379

HPUX , LINUX , IRIX , TRUE64 , MACOS , SUNOS , WIN , WINNT , AIX , UNIXWARE ,1380

BSD , OTHER_OS };1381

enum CpuArchitecture {1382

ALPHA , ARM , CELL , PARISC , X86 , X64 , IA64 , MIPS , PPC , PPC64 ,1383

SPARC , SPARC64 , OTHER_CPU };1384

enum ResourceLimitType {1385

CORE_FILE_SIZE , CPU_TIME , DATA_SEG_SIZE , FILE_SIZE , OPEN_FILES ,1386

STACK_SIZE , VIRTUAL_MEMORY , WALLCLOCK_TIME };1387

enum JobTemplatePlaceholder {1388

HOME_DIRECTORY ,WORKING_DIRECTORY ,HOST_NAME ,USER_NAME ,PARAMETRIC_INDEX };1389

enum DrmaaEvent {1390

NEW_STATE , MIGRATED , ATTRIBUTE_CHANGE1391

};1392

typedef sequence <string > OrderedStringList;1393

typedef sequence <string > StringList;1394

typedef sequence <Job > JobList;1395

drmaa-wg@ogf.org 46

mailto:drmaa-wg@ogf.org

GWD-R March 2011

typedef sequence <Queue > QueueList;1396

typedef sequence <Machine > MachineList;1397

typedef sequence <Reservation > ReservationList;1398

typedef sequence < sequence <string ,2> > Dictionary;1399

typedef string AbsoluteTime;1400

typedef long long TimeAmount;1401

native ZERO_TIME;1402

native INFINITE_TIME;1403

struct JobInfo {1404

string jobId;1405

Dictionary resourceUsage;1406

long exitStatus;1407

string terminatingSignal;1408

string annotation;1409

JobState jobState;1410

any jobSubState;1411

OrderedStringList allocatedMachines;1412

string submissionMachine;1413

string jobOwner;1414

string queueName;1415

TimeAmount wallclockTime;1416

long cpuTime;1417

AbsoluteTime submissionTime;1418

AbsoluteTime dispatchTime;1419

AbsoluteTime finishTime ;};1420

struct JobTemplate {1421

string remoteCommand;1422

OrderedStringList args;1423

boolean submitAsHold;1424

boolean rerunnable;1425

Dictionary jobEnvironment;1426

string workingDirectory;1427

string jobCategory;1428

StringList email;1429

boolean emailOnStarted;1430

boolean emailOnTerminated;1431

string jobName;1432

string inputPath;1433

string outputPath;1434

string errorPath;1435

boolean joinFiles;1436

string reservationId;1437

string queueName;1438

long minSlots;1439

long maxSlots;1440

long priority;1441

drmaa-wg@ogf.org 47

mailto:drmaa-wg@ogf.org

GWD-R March 2011

OrderedStringList candidateMachines;1442

long minPhysMemory;1443

OperatingSystem machineOS;1444

CpuArchitecture machineArch;1445

AbsoluteTime startTime;1446

AbsoluteTime deadlineTime;1447

Dictionary stageInFiles;1448

Dictionary stageOutFiles;1449

Dictionary softResourceLimits;1450

Dictionary hardResourceLimits;1451

string accountingId;1452

};1453

struct ReservationTemplate {1454

string reservationName;1455

AbsoluteTime startTime;1456

AbsoluteTime endTime;1457

TimeAmount duration;1458

long minSlots;1459

long maxSlots;1460

OrderedStringList candidateMachines;1461

long minPhysMemory;1462

OperatingSystem machineOS;1463

CpuArchitecture machineArch;1464

};1465

struct DrmaaNotification {1466

DrmaaEvent event;1467

Job job;1468

JobState jobState;1469

};1470

struct Queue {1471

string name;1472

};1473

struct Version {1474

string major;1475

string minor;1476

};1477

struct Machine {1478

string name;1479

long sockets;1480

long coresPerSocket;1481

long threadsPerCore;1482

double load;1483

long physMemory;1484

drmaa-wg@ogf.org 48

mailto:drmaa-wg@ogf.org

GWD-R March 2011

long virtMemory;1485

OperatingSystem machineOS;1486

Version machineOSVersion;1487

CpuArchitecture machineArch;1488

};1489

exception DeniedByDrmException {string message ;};1490

exception DrmCommunicationException {string message ;};1491

exception TryLaterException {string message ;};1492

exception SessionManagementException {string message ;};1493

exception TimeoutException {string message ;};1494

exception InternalException {string message ;};1495

exception InvalidArgumentException {string message ;};1496

exception InvalidSessionException {string message ;};1497

exception InvalidStateException {string message ;};1498

exception OutOfMemoryException {string message ;};1499

exception UnsupportedAttributeException {string message ;};1500

exception UnsupportedOperationException {string message ;};1501

interface DrmaaReflective {1502

readonly attribute StringList jobTemplateOpt;1503

readonly attribute StringList jobTemplateImpl;1504

readonly attribute StringList jobInfoOpt;1505

readonly attribute StringList jobInfoImpl;1506

readonly attribute StringList reservationTemplateOpt;1507

readonly attribute StringList reservationTemplateImpl;1508

readonly attribute StringList queueImpl;1509

readonly attribute StringList machineImpl;1510

1511

string getAttr(any instance , in string name);1512

void setAttr(any instance , in string name , in string value);1513

string describeAttr(in string name);1514

};1515

interface DrmaaCallback {1516

void notify(in DrmaaNotification notification);1517

};1518

interface ReservationSession {1519

readonly attribute string contact;1520

readonly attribute string sessionName;1521

Reservation getReservation(in string reservationId);1522

Reservation requestReservation(in ReservationTemplate reservationTemplate);1523

ReservationList getReservations ();1524

};1525

interface Reservation {1526

readonly attribute string reservationId;1527

drmaa-wg@ogf.org 49

mailto:drmaa-wg@ogf.org

GWD-R March 2011

readonly attribute ReservationSession session;1528

readonly attribute ReservationTemplate reservationTemplate;1529

readonly attribute OrderedStringList reservedMachines;1530

readonly attribute AbsoluteTime reservedStartTime;1531

readonly attribute AbsoluteTime reservedEndTime;1532

readonly attribute AbsoluteTime reservedSlots;1533

readonly attribute string reservationName;1534

void terminate ();1535

};1536

interface JobArray {1537

readonly attribute string jobArrayId;1538

readonly attribute JobList jobs;1539

readonly attribute JobSession session;1540

readonly attribute JobTemplate jobTemplate;1541

void suspend ();1542

void resume ();1543

void hold ();1544

void release ();1545

void terminate ();1546

};1547

interface JobSession {1548

readonly attribute string contact;1549

readonly attribute string sessionName;1550

readonly attribute boolean notificationSupported;1551

JobList getJobs(in JobInfo filter);1552

Job runJob(in JobTemplate jobTemplate);1553

JobArray runBulkJobs(1554

in JobTemplate jobTemplate ,1555

in long beginIndex ,1556

in long endIndex ,1557

in long step);1558

Job waitAnyStarted(in JobList jobs , in TimeAmount timeout);1559

Job waitAnyTerminated(in JobList jobs , in TimeAmount timeout);1560

void registerEventNotification(in DrmaaCallback callback);1561

};1562

interface Job {1563

readonly attribute string jobId;1564

readonly attribute JobSession session;1565

readonly attribute JobTemplate jobTemplate;1566

void suspend ();1567

void resume ();1568

void hold ();1569

void release ();1570

void terminate ();1571

JobState getState(out any jobSubState);1572

drmaa-wg@ogf.org 50

mailto:drmaa-wg@ogf.org

GWD-R March 2011

JobInfo getInfo ();1573

Job waitStarted(in TimeAmount timeout);1574

Job waitTerminated(in TimeAmount timeout);1575

};1576

interface MonitoringSession {1577

readonly attribute Version drmsVersion;1578

ReservationList getAllReservations ();1579

JobList getAllJobs(in JobInfo filter);1580

QueueList getAllQueues(in StringList names);1581

MachineList getAllMachines(in StringList names);1582

readonly attribute StringList drmsJobCategoryNames;1583

};1584

interface SessionManager{1585

readonly attribute string drmsName;1586

readonly attribute Version drmaaVersion;1587

readonly attribute boolean reservationSupported;1588

JobSession createJobSession(in string sessionName ,1589

in string contactString);1590

ReservationSession createReservationSession(in string sessionName ,1591

in string contactString);1592

MonitoringSession createMonitoringSession (in string contactString);1593

JobSession openJobSession(in string sessionName);1594

ReservationSession openReservationSession(in string sessionName);1595

void closeJobSession(in JobSession s);1596

void closeReservationSession(in ReservationSession s);1597

void closeMonitoringSession(in MonitoringSession s);1598

void destroyJobSession(in string sessionName);1599

void destroyReservationSession(in string sessionName);1600

StringList getJobSessions ();1601

StringList getReservationSessions ();1602

};1603

};1604

12 Security Considerations1605

The DRMAA API does not specifically assume the existence of a particular security infrastructure in the1606

DRM system. The scheduling scenario described herein presumes that security is handled at the point of job1607

authorization/execution on a particular resource. It is assumed that credentials owned by the application1608

using the API are in effect for the DRMAA implementation too.1609

It is conceivable an authorized but malicious user could use a DRMAA implementation or a DRMAA enabled1610

application to saturate a DRM system with a flood of requests. Unfortunately for the DRM system this1611

case is not distinguishable from the case of an authorized good-natured user who has many jobs to be1612

processed. For temporary load defense, implementations SHOULD utilize the TryLaterException. In case1613

of permanent issues, the implementation SHOULD raise the DeniedByDrmException.1614

drmaa-wg@ogf.org 51

mailto:drmaa-wg@ogf.org

GWD-R March 2011

DRMAA implementers should guard against buffer overflows that could be exploited through DRMAA1615

enabled interactive applications or web portals. Implementations of the DRMAA API will most likely1616

require a network to coordinate subordinate DRMS; however the API makes no assumptions about the1617

security posture provided the networking environment. Therefore, application developers should further1618

consider the security implications of “on-the-wire” communications.1619

For environments that allow remote or protocol based DRMAA clients, the implementation SHOULD offer1620

support for secure transport layers to prevent man in the middle attacks.1621

13 Contributors1622

Roger Brobst1623

Cadence Design Systems, Inc.1624

555 River Oaks Parkway1625

San Jose, CA 951341626

Email: rbrobst@cadence.com1627

1628

Daniel Gruber1629

Univa1630

1631

Mariusz Mamonski1632

1633

Daniel Templeton (Corresponding Author)1634

Cloudera1635

1636

Peter Tröger (Corresponding Author)1637

Hasso-Plattner-Institute at University of Potsdam1638

Prof.-Dr.-Helmert-Str. 2-31639

14482 Potsdam, Germany1640

Email: peter@troeger.eu1641

1642 Add miss-
ing contact
details

1643

We are grateful to numerous colleagues for support and discussions on the topics covered in this document,1644

in particular (in alphabetical order, with apologies to anybody we have missed):1645

Guillaume Alleon, Ali Anjomshoaa, Ed Baskerville, Harald Böhme, Nadav Brandes, Matthieu Cargnelli,1646

Karl Czajkowski, Piotr Domagalski, Fritz Ferstl, Paul Foley, Nicholas Geib, Becky Gietzel, Alleon Guillaume,1647

Daniel S. Katz, Andreas Haas, Tim Harsch, Greg Hewgill, Rayson Ho, Eduardo Huedo, Dieter Kranzmüller,1648

Krzysztof Kurowski, Peter G. Lane, Miron Livny, Ignacio M. Llorente, Martin v. Löwis, Andre Merzky,1649

Ruben S. Montero, Greg Newby, Steven Newhouse, Michael Primeaux, Greg Quinn, Hrabri L. Rajic, Martin1650

Sarachu, Jennifer Schopf, Enrico Sirola, Chris Smith, Ancor Gonzalez Sosa, Douglas Thain, John Tollefsrud,1651

Jose R. Valverde, and Peter Zhu.1652

drmaa-wg@ogf.org 52

mailto:drmaa-wg@ogf.org

GWD-R March 2011

14 Intellectual Property Statement1653

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that1654

might be claimed to pertain to the implementation or use of the technology described in this document or the1655

extent to which any license under such rights might or might not be available; neither does it represent that1656

it has made any effort to identify any such rights. Copies of claims of rights made available for publication1657

and any assurances of licenses to be made available, or the result of an attempt made to obtain a general1658

license or permission for the use of such proprietary rights by implementers or users of this specification can1659

be obtained from the OGF Secretariat.1660

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications,1661

or other proprietary rights which may cover technology that may be required to practice this recommendation.1662

Please address the information to the OGF Executive Director.1663

15 Disclaimer1664

This document and the information contained herein is provided on an “as-is” basis and the OGF disclaims1665

all warranties, express or implied, including but not limited to any warranty that the use of the information1666

herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular1667

purpose.1668

16 Full Copyright Notice1669

Copyright c© Open Grid Forum (2005-2011). Some Rights Reserved.1670

This document and translations of it may be copied and furnished to others, and derivative works that1671

comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and1672

distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice1673

and this paragraph are included on all such copies and derivative works. However, this document itself1674

may not be modified in any way, such as by removing the copyright notice or references to the OGF or1675

other organizations, except as needed for the purpose of developing Grid Recommendations in which case1676

the procedures for copyrights defined in the OGF Document process must be followed, or as required to1677

translate it into languages other than English.1678

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors1679

or assignees.1680

17 References16811682

[1] Scott Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119 (Best Current1683

Practice), March 1997. URL http://tools.ietf.org/html/rfc2119.1684

[2] I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pickles, D. Pulsipher, C. Smith,1685

and M. Theimer. OGSA Basic Execution Service v1.0 (GFD-R.108), nov 2008.1686

[3] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Kleijer, Andre Merzky, John1687

Shalf, and Christopher Smith. A Simple API for Grid Applications (SAGA) Version 1.1 (GFD-R-P.90),1688

jan 2008.1689

drmaa-wg@ogf.org 53

http://tools.ietf.org/html/rfc2119
mailto:drmaa-wg@ogf.org

GWD-R March 2011

[4] Object Management Group. Common Object Request Broker Architecture (CORBA) Specification,1690

Version 3.1. http://www.omg.org/spec/CORBA/3.1/Interfaces/PDF, jan 2008.1691

[5] The IEEE and The Open Group. The Open Group Base Specifications Issue 6 IEEE Std 1003.1.1692

http://www.opengroup.org/onlinepubs/000095399/utilities/ulimit.html.1693

[6] Distributed Management Task Force (DMTF) Inc. CIM System Model White Paper CIM Version 2.7,1694

jun 2003.1695

[7] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas Haas, Bill Nitzberg,1696

Daniel Templeton, John Tollefsrud, and Peter Tröger. Distributed Resource Management Application1697

API Specification 1.0 (GFD-R.022), aug 2007.1698

[8] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas Haas, Bill Nitzberg,1699

Daniel Templeton, John Tollefsrud, and Peter Tröger. Distributed Resource Management Application1700

API Specification 1.0 (GWD-R.133), jun 2008.1701

[9] Peter Tröger, Daniel Templeton, Roger Brobst, Andreas Haas, and Hrabri Rajic. Distributed Resource1702

Management Application API 1.0 - IDL Specification (GFD-R-P.130), apr 2008.1703

[10] Peter Tröger, Hrabri Rajic, Andreas Haas, and Piotr Domagalski. Standardised job submission and1704

control in cluster and grid environments. International Journal of Grid and Utility Computing, 1:1705

134–145, dec 2009. doi: {http://dx.doi.org/10.1504/IJGUC.2009.022029}.1706

drmaa-wg@ogf.org 54

mailto:drmaa-wg@ogf.org

	Introduction
	Notational Conventions
	Language Bindings
	Slots and Queues
	Multithreading

	Namespace
	Common Type Definitions
	Enumerations
	OperatingSystem enumeration
	CpuArchitecture enumeration
	ResourceLimitType enumeration
	JobTemplatePlaceholder enumeration

	Extensible Data Structures
	Queue structure
	Version structure
	Machine structure
	JobInfo structure
	JobTemplate structure
	ReservationTemplate structure
	DrmaaReflective Interface

	Common Exceptions
	The DRMAA Session Concept
	SessionManager Interface

	Working with Jobs
	The DRMAA State Model
	JobSession Interface
	DrmaaCallback Interface
	Job Interface
	JobArray Interface

	Working with Advance Reservation
	ReservationSession Interface
	Reservation Interface

	Monitoring the DRM System
	MonitoringSession Interface

	Annex A: Complete DRMAA IDL Specification
	Security Considerations
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice
	References

