
GWD-R
Andreas Haas, Sun Microsystems (maintainer)

Distributed Resource Management Application API (DRMAA) Working Group
Roger Brobst, Cadence Design Systems

 Andreas Haas*, Sun Microsystems

Nicholas Geib, Condor Group

Hrabri Rajic*, Intel Americas Inc.

Daniel Templeton, Sun Microsystems

John Tollefsrud++, Sun Microsystems

Peter Tröger, Universität Potsdam

*co-chairs

++founding co-chair

September, 2006

Distributed Resource Management Application API C Bindings v1.0

Status of This Memo

This memo is a Global Grid Forum Grid Working Draft - Recommendations (GWD-R) in process,

in general accordance with the provisions of Global Grid Forum Document GFD-C.1, the Global

Grid Forum Documents and Recommendations: Process and Requirements, revised April 2002.

Copyright Notice

Copyright © Global Grid Forum (2003). All Rights Reserved.

Abstract

This document describes the Distributed Resource Management Application API (DRMAA) C binding. The document is based on the implementation work of the DRMAA GWD-R document.

Table of Contents

1. Overview
7

2. Conventions
7

3. The C Header File
7

4. Late Binding and Portability
7

5. Application Programming Interface
8

5.1 Compile Time Symbols
8

5.1.1 Opaque Data Types
8

5.1.2 C Preprocessor Directives for String Handling
8

5.1.2.1 DRMAA_ATTR_BUFFER
9

5.1.2.2 DRMAA_CONTACT_BUFFER
9

5.1.2.3 DRMAA_DRM_SYSTEM_BUFFER
9

5.1.2.4 DRMAA_DRMAA_IMPL_BUFFER
9

5.1.2.5 DRMAA_ERROR_STRING_BUFFER
9

5.1.2.6 DRMAA_JOBNAME_BUFFER
9

5.1.2.7 DRMAA_SIGNAL_BUFFER
9

5.1.3 C Preprocessor Directives for Control Operations
9

5.1.3.1 DRMAA_TIMEOUT_NO_WAIT
10

5.1.3.2 DRMAA_TIMEOUT_WAIT_FOREVER
10

5.1.3.3 DRMAA_PS_UNDETERMINED
10

5.1.3.4 DRMAA_PS_QUEUED_ACTIVE
10

5.1.3.5 DRMAA_PS_SYSTEM_ON_HOLD
10

5.1.3.6 DRMAA_PS_USER_ON_HOLD
10

5.1.3.7 DRMAA_PS_USER_SYSTEM_ON_HOLD
10

5.1.3.8 DRMAA_PS_RUNNING
10

5.1.3.9 DRMAA_PS_SYSTEM_SUSPENDED
11

5.1.3.10 DRMAA_PS_USER_SUSPENDED
11

5.1.3.11 DRMAA_PS_USER_SYSTEM_SUSPENDED
11

5.1.3.12 DRMAA_DONE
11

5.1.3.13 DRMAA_FAILED
11

5.1.3.14 DRMAA_CONTROL_SUSPEND
11

5.1.3.15 DRMAA_CONTROL_RESUME
11

5.1.3.16 DRMAA_CONTROL_HOLD
11

5.1.3.17 DRMAA_CONTROL_RELEASE
11

5.1.3.18 DRMAA_CONTROL_TERMINATE
11

5.1.3.19 DRMAA_JOB_IDS_SESSION_ALL
12

5.1.3.20 DRMAA_JOB_IDS_SESSION_ANY
12

5.1.4 C Preprocessor Directives for Job Template Compilation
12

5.1.4.1 DRMAA_BLOCK_EMAIL
12

5.1.4.2 DRMAA_DEADLINE_TIME
13

5.1.4.3 DRMAA_DURATION_HLIMIT
13

5.1.4.4 DRMAA_DURATION_SLIMIT
13

5.1.4.5 DRMAA_ERROR_PATH
13

5.1.4.6 DRMAA_INPUT_PATH
13

5.1.4.7 DRMAA_JOB_CATEGORY
13

5.1.4.8 DRMAA_JOB_NAME
13

5.1.4.9 DRMAA_JOIN_FILES
13

5.1.4.10 DRMAA_JS_STATE
13

5.1.4.11 DRMAA_NATIVE_SPECIFICATION
13

5.1.4.12 DRMAA_OUTPUT_PATH
13

5.1.4.13 DRMAA_REMOTE_COMMAND
13

5.1.4.14 DRMAA_START_TIME
14

5.1.4.15 DRMAA_TRANSFER_FILES
14

5.1.4.16 DRMAA_V_ARGV
14

5.1.4.17 DRMAA_V_EMAIL
14

5.1.4.18 DRMAA_V_ENV
14

5.1.4.19 DRMAA_WCT_HLIMIT
14

5.1.4.20 DRMAA_WCT_SLIMIT
14

5.1.4.21 DRMAA_SUBMISSION_STATE_ACTIVE
14

5.1.4.22 DRMAA_SUBMISSION_STATE_HOLD
14

5.1.4.23 DRMAA_PLACEHOLDER_HD
14

5.1.4.24 DRMAA_PLACEHOLDER_WD
14

5.1.4.25 DRMAA_PLACEHOLDER_INCR
14

5.1.5 C Preprocessor Directives for DRMAA Error Codes
15

5.1.5.1 DRMAA_ERRNO_SUCCESS
15

5.1.5.2 DRMAA_ERRNO_INTERNAL_ERROR
15

5.1.5.3 DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE
15

5.1.5.4 DRMAA_ERRNO_AUTH_FAILURE
16

5.1.5.5 DRMAA_ERRNO_INVALID_ARGUMENT
16

5.1.5.6 DRMAA_ERRNO_NO_ACTIVE_SESSION
16

5.1.5.7 DRMAA_ERRNO_NO_MEMORY
16

5.1.5.8 DRMAA_ERRNO_INVALID_CONTACT_STRING
16

5.1.5.9 DRMAA_ERRNO_DEFAULT_CONTACT_STRING_ERROR
16

5.1.5.10 DRMAA_ERRNO_NO_DEFAULT_CONTACT_STRING_SELECTED
16

5.1.5.11 DRMAA_ERRNO_DRMS_INIT_FAILED
16

5.1.5.12 DRMAA_ERRNO_ALREADY_ACTIVE_SESSION
16

5.1.5.13 DRMAA_ERRNO_DRMS_EXIT_ERROR
16

5.1.5.14 DRMAA_ERRNO_INVALID_ATTRIBUTE_FORMAT
17

5.1.5.15 DRMAA_ERRNO_INVALID_ATTRIBUTE_VALUE
17

5.1.5.16 DRMAA_ERRNO_CONFLICTING_ATTRIBUTE_VALUES
17

5.1.5.17 DRMAA_ERRNO_TRY_LATER
17

5.1.5.18 DRMAA_ERRNO_DENIED_BY_DRM
17

5.1.5.19 DRMAA_ERRNO_INVALID_JOB
17

5.1.5.20 DRMAA_ERRNO_RESUME_INCONSISTENT_STATE
17

5.1.5.21 DRMAA_ERRNO_SUSPEND_INCONSISTENT_STATE
17

5.1.5.22 DRMAA_ERRNO_HOLD_INCONSISTENT_STATE
17

5.1.5.23 DRMAA_ERRNO_RELEASE_INCONSISTENT_STATE
17

5.1.5.24 DRMAA_ERRNO_EXIT_TIMEOUT
18

5.1.5.25 DRMAA_ERRNO_NO_RUSAGE
18

5.2 String Vector Helper Functions
18

5.2.1 drmaa_get_next_attr_name
18

5.2.1.1 Parameters
18

5.2.1.2 Return Codes
18

5.2.2 drmaa_get_next_attr_value
19

5.2.2.1 Parameters
19

5.2.2.2 Return Codes
19

5.2.3 drmaa_get_next_job_id
19

5.2.3.1 Parameters
19

5.2.3.2 Return Codes
19

5.2.4 drmaa_get_num_attr_names
20

5.2.4.1 Parameters
20

5.2.4.2 Return Codes
20

5.2.5 drmaa_get_num_attr_values
20

5.2.5.1 Parameters
20

5.2.5.2 Return Codes
20

5.2.6 drmaa_get_num_job_ids
20

5.2.6.1 Parameters
20

5.2.6.2 Return Codes
20

5.2.7 drmaa_release_attr_names
21

5.2.7.1 Parameters
21

5.2.7.2 Return Codes
21

5.2.8 drmaa_release_attr_values
21

5.2.8.1 Parameters
21

5.2.8.2 Return Codes
21

5.2.9 drmaa_release_job_ids
21

5.2.9.1 Parameters
22

5.2.9.2 Return Codes
22

5.3 Session Management
22

5.3.1 drmaa_init
22

5.3.1.1 Parameters
22

5.3.1.2 Return Codes
22

5.3.2 drmaa_exit
23

5.3.2.1 Parameters
23

5.3.2.2 Return Codes
23

5.4 Job Templates
23

5.4.1 drmaa_allocate_job_template
24

5.4.1.1 Parameters
24

5.4.1.2 Return Codes
24

5.4.2 drmaa_delete_job_template
25

5.4.2.1 Parameters
25

5.4.2.2 Return Codes
25

5.4.3 drmaa_set_atrribute
25

5.4.3.1 Parameters
25

5.4.3.2 Return Codes
25

5.4.4 drmaa_get_attribute
25

5.4.4.1 Parameters
26

5.4.4.2 Return Codes
26

5.4.5 drmaa_set_vector_atrribute
26

5.4.5.1 Parameters
26

5.4.5.2 Return Codes
26

5.4.6 drmaa_get_vector_attribute
27

5.4.6.1 Parameters
27

5.4.6.2 Return Codes
27

5.4.7 drmaa_get_attribute_names
27

5.4.7.1 Parameters
27

5.4.7.2 Return Codes
27

5.4.8 drmaa_get_vector_attribute_names
27

5.4.8.1 Parameters
28

5.4.8.2 Return Codes
28

5.4.9 Required Job Attributes
28

5.4.9.1 drmaa_remote_command
28

5.4.9.2 drmaa_js_state
28

5.4.9.3 drmaa_wd
28

5.4.9.4 drmaa_job_name
28

5.4.9.5 drmaa_input_path
29

5.4.9.6 drmaa_output_path
29

5.4.9.7 drmaa_error_path
30

5.4.9.8 drmaa_join_files
30

5.4.9.9 drmaa_v_argv
30

5.4.9.10 drmaa_job_category
30

5.4.9.11 drmaa_native_specification
30

5.4.9.12 drmaa_v_env
30

5.4.9.13 drmaa_v_email
31

5.4.9.14 drmaa_block_email
31

5.4.9.15 drmaa_start_time
31

5.4.10 Optional Job Attributes
31

5.4.10.1 drmaa_transfer_files
32

5.4.10.2 drmaa_deadline_time
32

5.4.10.3 drmaa_wct_hlimit
32

5.4.10.4 drmaa_wct_slimit
33

5.4.10.5 drmaa_duration_hlimit
33

5.4.10.6 drmaa_duration_slimit
33

5.5 Job Submission
33

5.5.1 drmaa_run_job
34

5.5.1.1 Parameters
34

5.5.1.2 Return Codes
34

5.5.2 drmaa_run_bulk_jobs
34

5.5.2.1 Parameters
35

5.5.2.2 Return Codes
35

5.6 Job Status and Control
35

5.6.1 drmaa_control
36

5.6.1.1 Parameters
36

5.6.1.2 Return Codes
36

5.6.2 drmaa_job_ps
37

5.6.2.1 Parameters
37

5.6.2.2 Return Codes
37

5.6.3 drmaa_synchronize
37

5.6.3.1 Parameters
38

5.6.3.2 Return Codes
38

5.6.4 drmaa_wait
38

5.6.4.1 Parameters
39

5.6.4.2 Return Codes
39

5.6.5 drmaa_wifexited
39

5.6.5.1 Parameters
39

5.6.5.2 Return Codes
39

5.6.6 drmaa_wexitstatus
40

5.6.6.1 Parameters
40

5.6.6.2 Return Codes
40

5.6.7 drmaa_wifsignaled
40

5.6.7.1 Parameters
40

5.6.7.2 Return Codes
40

5.6.8 drmaa_wtermsig
41

5.6.8.1 Parameters
41

5.6.8.2 Return Codes
41

5.6.9 drmaa_wcoredump
41

5.6.9.1 Parameters
41

5.6.9.2 Return Codes
41

5.6.10 drmaa_wifaborted
41

5.6.10.1 Parameters
42

5.6.10.2 Return Codes
42

5.7 Auxilliary Functions
42

5.7.1 drmaa_strerror
42

5.7.1.1 Parameters
42

5.7.1.2 Return Value
42

5.7.2 drmaa_get_contact
43

5.7.2.1 Parameters
43

5.7.2.2 Return Codes
43

5.7.3 drmaa_version
43

5.7.3.1 Parameters
43

5.7.3.2 Return Codes
43

5.7.4 drmaa_get_DRM_system
43

5.7.4.1 Parameters
43

5.7.4.2 Return Codes
44

5.7.5 drmaa_get_DRMAA_implementation
44

5.7.5.1 Parameters
44

5.7.5.2 Return Codes
44

6. C binding example
44

7. Security Considerations
48

8. Author Information
48

9. Intellectual Property Statement
49

10. Full Copyright Notice
49

1. Overview

This document represents a C language binding for the DRMAA interface. This C binding may be used with C++ programs through use of the extern "C" {} wrapping technique, which is widely used to import C binding interfaces in C++ programs. An example is listed in the header file.

2. Conventions

In this document, the following conventions are used:

· C Language Elements are represented in a fixed-width font.

· References to Parameters to functions are represented in itallics.

· Parameter and Error Code Names in parameter and error code definitions are represented in a fixed-width font.

· Attribute Names for job templates are represented in itallics.

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” are to be interpreted as described in RFC-2119 [RFC 2119].

In function definitions, the word “return” is often used to denote that a value is received from the function. This word does not necessarily mean that the returned value is received via the function's return value. The information shown in the function signature listings always takes precedence and should be used as a basis for interpreting the textual function definitions.

The following abbreviations are used in this document:

API

Application Programming Interface

DRM

Distributed Resource Manager

DRMS

Distributed Resource Management System

DRMAA
Distributed Resource Management Application API

ISV

Independent Software Vendor

3. The C Header File

The header file contains a C function prototype for each interface operation described in this specification. The function names in this document are always identical with the names from the Distributed Resource Management Application API Specification 1.0.

Function prototypes and opaque data types in the header file that do not have a counterpart in

the Distributed Resource Management Application API Specification 1.0 are specific to the C language binding. The Distributed Resource Management Application API Specification 1.0 makes frequent use of strings and string vectors as input and output arguments. Since C language does not have a “real” string data type, a few additional opaque data types and helper functions are used to handle output string vector arguments with the actual interface calls. To minimize the complexity that was added for the C language binding compared to the language independent specification, traditional C constructs such as const char* and const char *job_ids[] are used whenever possible. As a result very little has been added beyond what is specified in section 3.2 of the Distributed Resource Management Application API Specification 1.0.

See sections 2.1, 2.2, 2.3, and 2.4 of the Distributed Resource Management Application API Specification 1.0 for additional information regarding implementation requirements and expectations.

4. Late Binding and Portability

DRMAA implementations SHALL be provided as shared modules that may be dynamically linked into an application at run time. An application SHALL NOT be required to directly load more than one library in order to use a DRMAA implementation. The name by which the run time linker will identify the library which an application will directly load SHALL be “drmaa”. On many platforms, this name will translate into the file name, “libdrmaa.so”. On some platforms, the library file name MAY be different.

5. Application Programming Interface

5.1 Compile Time Symbols

5.1.1 Opaque Data Types

Five opaque data types SHALL be defined by a C binding implementation. They are:

typedef struct drmaa_job_template_s drmaa_job_template_t;

typedef struct drmaa_attr_names_s drmaa_attr_names_t;

typedef struct drmaa_attr_values_s drmaa_attr_values_t;

typedef struct drmaa_job_ids_s drmaa_job_ids_t;

The drmaa_job_template_s data type holds the attribute values for a job template. A job template is used to define the characteristics of a job to be submitted via the drmaa_run_job() or drmaa_run_bulk_jobs() functions. See sections 5.5.1 and 5.5.2 for more details.

The remaining three data types are used to store and iterate through name, value, and job id data. Special functions are defined for extracting values from the structures and releasing the structures when they are no longer needed. See section for more details.

In order to preclude the unintended access to these structures' internal data members, the DRMAA header file SHALL NOT include the struct definitions. By leaving the struct definitions out of the header file, it ensures that the structures' internal data members can only be accessed via the access functions described in section .

5.1.2 C Preprocessor Directives for String Handling

A DRMAA header file SHALL define the following preprocessor directives:

#define DRMAA_ATTR_BUFFER 1024

#define DRMAA_CONTACT_BUFFER 1024

#define DRMAA_DRM_SYSTEM_BUFFER 1024

#define DRMAA_DRMAA_IMPL_BUFFER 1024

#define DRMAA_ERROR_STRING_BUFFER 1024

#define DRMAA_JOBNAME_BUFFER 1024

#define DRMAA_SIGNAL_BUFFER 32

These preprocessor directives define default lengths which may be used by developers in the creation of char* variables. The sizes defined by these directives are the recommended minimum lengths for buffer variables used to store the corresponding data values. If buffer variables of shorter length are used, the DRMAA implementation MUST either truncate the data string to be stored in the buffer variable or return the DRMAA_ERRNO_INVALID_ARGUMENT error.

5.1.2.1 DRMAA_ATTR_BUFFER

The DRMAA_ATTR_BUFFER directive is the default length for the attribute names used by drmaa_set_attribute(), drmaa_set_vector_attribute(), drmaa_get_attribute(), drmaa_get_vector_attribute(), and drmaa_get_attribute_names().

5.1.2.2 DRMAA_CONTACT_BUFFER

The DRMAA_CONTACT_BUFFER directive is the default length for the contact string used by drmaa_init().

5.1.2.3 DRMAA_DRM_SYSTEM_BUFFER

The DRMAA_DRM_SYSTEM_BUFFER directive is the default length for DRM system name returned by drmaa_get_DRM_system().

5.1.2.4 DRMAA_DRMAA_IMPL_BUFFER

The DRMAA_DRMAA_IMPL_BUFFER directive is the default length for the DRMAA implementation name returned by drmaa_get_DRMAA_implementation().

5.1.2.5 DRMAA_ERROR_STRING_BUFFER

The DRMAA_ERROR_STRING_BUFFER directive is the default length for error strings returned by most DRMAA functions.

5.1.2.6 DRMAA_JOBNAME_BUFFER

The DRMAA_JOBNAME_BUFFER directive is the default length for the job identifiers used by drmaa_run_job(), drmaa_run_bulk_jobs(), drmaa_wait(), drmaa_synchronize(), drmaa_control(), and drmaa_job_ps().

5.1.2.7 DRMAA_SIGNAL_BUFFER

The DRMAA_SIGNAL_BUFFER directive is the default length for the signal name returned by drmaa_wtermsig().

5.1.3 C Preprocessor Directives for Control Operations

A DRMAA header file SHALL define the following preprocessor directives:

#define DRMAA_TIMEOUT_NO_WAIT 0

#define DRMAA_TIMEOUT_WAIT_FOREVER -1

#define DRMAA_PS_UNDETERMINED 0x00

#define DRMAA_PS_QUEUED_ACTIVE 0x10

#define DRMAA_PS_SYSTEM_ON_HOLD 0x11

#define DRMAA_PS_USER_ON_HOLD 0x12

#define DRMAA_PS_USER_SYSTEM_ON_HOLD 0x13

#define DRMAA_PS_RUNNING 0x20

#define DRMAA_PS_SYSTEM_SUSPENDED 0x21

#define DRMAA_PS_USER_SUSPENDED 0x22

#define DRMAA_PS_DONE 0x30

#define DRMAA_PS_FAILED 0x40

#define DRMAA_CONTROL_SUSPEND 0

#define DRMAA_CONTROL_RESUME 1

#define DRMAA_CONTROL_HOLD 2

#define DRMAA_CONTROL_RELEASE 3

#define DRMAA_CONTROL_TERMINATE 4

#define DRMAA_JOB_IDS_SESSION_ALL "DRMAA_JOB_IDS_SESSION_ALL"

#define DRMAA_JOB_IDS_SESSION_ANY "DRMAA_JOB_IDS_SESSION_ANY"

5.1.3.1 DRMAA_TIMEOUT_NO_WAIT

The DRMAA_TIMEOUT_NO_WAIT directive is used as to indicate to drmaa_wait() and drmaa_synchronize() that the implementation should not block if the requested job exit status information is not available.

5.1.3.2 DRMAA_TIMEOUT_WAIT_FOREVER

The DRMAA_TIMEOUT_WAIT_FOREVER directive is used as to indicate to drmaa_wait() and drmaa_synchronize() that the implementation should block indefinitely until the requested job exit status information is available.

5.1.3.3 DRMAA_PS_UNDETERMINED

The DRMAA_PS_UNDETERMINED directive is used by drmaa_job_ps() to indicate that status of the requested job cannot be determined.

5.1.3.4 DRMAA_PS_QUEUED_ACTIVE

The DRMAA_PS_QUEUED_ACTIVE directive is used by drmaa_job_ps() to indicate that the requested job's status is queued and active.

5.1.3.5 DRMAA_PS_SYSTEM_ON_HOLD

The DRMAA_PS_SYSTEM_ON_HOLD directive is used by drmaa_job_ps() to indicate that the requested job has been placed in a hold state by the system or administrator.

5.1.3.6 DRMAA_PS_USER_ON_HOLD

The DRMAA_PS_USER_ON_HOLD directive is used by drmaa_job_ps() to indicate that the requested job has been placed in a hold state by the user.

5.1.3.7 DRMAA_PS_USER_SYSTEM_ON_HOLD

The DRMAA_PS_USER_SYSTEM_ON_HOLD directive is used by drmaa_job_ps() to indicate that the requested job has been placed in a hold state by the system or administrator and the user.

5.1.3.8 DRMAA_PS_RUNNING

The DRMAA_PS_RUNNING directive is used by drmaa_job_ps() to indicate that the requested job is running

5.1.3.9 DRMAA_PS_SYSTEM_SUSPENDED

The DRMAA_PS_SYSTEM_SUSPENDED directive is used by drmaa_job_ps() to indicate that the requested job has been placed in a suspend state by the system or administrator.

5.1.3.10 DRMAA_PS_USER_SUSPENDED

The DRMAA_PS_USER_SUSPENDED directive is used by drmaa_job_ps() to indicate that the requested job has been placed in a suspend state by the user.

5.1.3.11 DRMAA_PS_USER_SYSTEM_SUSPENDED

The DRMAA_PS_USER_SYSTEM_SUSPENDED directive is used by drmaa_job_ps() to indicate that the requested job has been placed in a suspend state by the system or administrator and user.

5.1.3.12 DRMAA_DONE

The DRMAA_PS_DONE directive is used by drmaa_job_ps() to indicate that the requested job has successfully completed.

5.1.3.13 DRMAA_FAILED

The DRMAA_PS_FAILED directive is used by drmaa_job_ps() to indicate that the requested job has terminated execution abnormally.

5.1.3.14 DRMAA_CONTROL_SUSPEND

The DRMAA_CONTROL_SUSPEND directive is used to indicate to drmaa_control() that the requested job should be placed in a user suspend state.

5.1.3.15 DRMAA_CONTROL_RESUME

The DRMAA_CONTROL_RESUME directive is used to indicate to drmaa_control() that the requested job should be resumed from a user suspend state.

5.1.3.16 DRMAA_CONTROL_HOLD

The DRMAA_CONTROL_HOLD directive is used to indicate to drmaa_control() that the requested job should be placed into a user hold state.

5.1.3.17 DRMAA_CONTROL_RELEASE

The DRMAA_CONTROL_RELEASE directive is used to indicate to drmaa_control() that the requested job should the released from a user hold state.

5.1.3.18 DRMAA_CONTROL_TERMINATE

The DRMAA_CONTROL_TERMINATE directive is used to indicate to drmaa_control() that the requested job should be terminated.

5.1.3.19 DRMAA_JOB_IDS_SESSION_ALL

The DRMAA_JOB_IDS_SESSION_ALL directive is used to indicate to drmaa_control() and drmaa_synchronize() that all jobs currently active in the session should be the operation's target.

5.1.3.20 DRMAA_JOB_IDS_SESSION_ANY

The DRMAA_JOB_IDS_SESSION_ANY directive is used to indicate to drmaa_wait() that any job currently active in the session should be the operation's target.

5.1.4 C Preprocessor Directives for Job Template Compilation

A DRMAA header file SHALL define the following preprocessor directives:

#define DRMAA_BLOCK_EMAIL "drmaa_block_email"

#define DRMAA_DEADLINE_TIME "drmaa_deadline_time"

#define DRMAA_DURATION_HLIMIT "drmaa_duration_hlimit"

#define DRMAA_DURATION_SLIMIT "drmaa_duration_slimit"

#define DRMAA_ERROR_PATH "drmaa_error_path"

#define DRMAA_INPUT_PATH "drmaa_input_path"

#define DRMAA_JOB_CATEGORY "drmaa_job_category"

#define DRMAA_JOB_NAME "drmaa_job_name"

#define DRMAA_JOIN_FILES "drmaa_join_files"

#define DRMAA_JS_STATE "drmaa_js_state"

#define DRMAA_NATIVE_SPECIFICATION "drmaa_native_specification"

#define DRMAA_OUTPUT_PATH "drmaa_output_path"

#define DRMAA_REMOTE_COMMAND "drmaa_remote_command"

#define DRMAA_START_TIME "drmaa_start_time"

#define DRMAA_TRANSFER_FILES "drmaa_transfer_files"

#define DRMAA_V_ARGV "drmaa_v_argv"

#define DRMAA_V_EMAIL "drmaa_v_email"

#define DRMAA_V_ENV "drmaa_v_env"

#define DRMAA_WCT_HLIMIT "drmaa_wct_hlimit"

#define DRMAA_WCT_SLIMIT "drmaa_wct_slimit"

#define DRMAA_WD "drmaa_wd"

#define DRMAA_SUBMISSION_STATE_ACTIVE "drmaa_active"

#define DRMAA_SUBMISSION_STATE_HOLD "drmaa_hold"

#define DRMAA_PLACEHOLDER_HD "$drmaa_hd_ph$"

#define DRMAA_PLACEHOLDER_WD "$drmaa_wd_ph$"

#define DRMAA_PLACEHOLDER_INCR "$drmaa_incr_ph$"

For more information about job template attributes, see sections .
 and
5.1.4.1 DRMAA_BLOCK_EMAIL

The DRMAA_BLOCK_EMAIL directive is used to represent the drmaa_block_email attribute.

5.1.4.2 DRMAA_DEADLINE_TIME

The DRMAA_DEADLINE_TIME directive is used to represent the drmaa_deadline_time attribute.

5.1.4.3 DRMAA_DURATION_HLIMIT

The DRMAA_DURATION_HLIMIT directive is used to represent the drmaa_duration_hlimit attribute.

5.1.4.4 DRMAA_DURATION_SLIMIT

The DRMAA_DURATION_SLIMIT directive is used to represent the drmaa_duration_slimit attribute.

5.1.4.5 DRMAA_ERROR_PATH

The DRMAA_ERROR_PATH directive is used to represent the drmaa_error_path attribute.

5.1.4.6 DRMAA_INPUT_PATH

The DRMAA_INPUT_PATH directive is used to represent the drmaa_input_path attribute.

5.1.4.7 DRMAA_JOB_CATEGORY

The DRMAA_JOB_CATEGORY directive is used to represent the drmaa_job_category attribute.

5.1.4.8 DRMAA_JOB_NAME

The DRMAA_JOB_NAME directive is used to represent the drmaa_job_name attribute.

5.1.4.9 DRMAA_JOIN_FILES

The DRMAA_JOIN_FILES directive is used to represent the drmaa_join files attribute.

5.1.4.10 DRMAA_JS_STATE

The DRMAA_JS_STATE directive is used to represent the drmaa_js_state attribute.

5.1.4.11 DRMAA_NATIVE_SPECIFICATION

The DRMAA_NATIVE_SPECIFICATION directive is used to represent the drmaa_native_specification attribute.

5.1.4.12 DRMAA_OUTPUT_PATH

The DRMAA_OUTPUT_PATH directive is used to represent the drmaa_output_path attribute.

5.1.4.13 DRMAA_REMOTE_COMMAND

The DRMAA_REMOTE_COMMAND directive is used to represent the drmaa_remote_command attribute.

5.1.4.14 DRMAA_START_TIME

The DRMAA_START_TIME directive is used to represent the drmaa_start_time attribute.

5.1.4.15 DRMAA_TRANSFER_FILES

The DRMAA_TRANSFER_FILES directive is used to represent the drmaa_transfer_files attribute.

5.1.4.16 DRMAA_V_ARGV

The DRMAA_V_ARGV directive is used to represent the drmaa_v_argv attribute.

5.1.4.17 DRMAA_V_EMAIL

The DRMAA_V_EMAIL directive is used to represent the drmaa_v_email attribute.

5.1.4.18 DRMAA_V_ENV

The DRMAA_V_ENV directive is used to represent the drmaa_v_env attribute.

5.1.4.19 DRMAA_WCT_HLIMIT

The DRMAA_WCT_HLIMIT directive is used to represent the drmaa_wct_hlimit attribute.

5.1.4.20 DRMAA_WCT_SLIMIT

The DRMAA_WCT_SLIMIT directive is used to represent the drmaa_wct_slimit attribute.

5.1.4.21 DRMAA_SUBMISSION_STATE_ACTIVE

The DRMAA_SUBMISSION_STATE_ACTIVE directive is used with the drmaa_js_state attribute to indicate that the job to be executed should not be placed into a user hold state.

5.1.4.22 DRMAA_SUBMISSION_STATE_HOLD

The DRMAA_SUBMISSION_STATE_HOLD directive is used with the drmaa_js_state attribute to indicate that the job to be executed should be immediately placed into a user hold state.

5.1.4.23 DRMAA_PLACEHOLDER_HD

The DRMAA_PLACEHOLDER_HD directive is used with the drmaa_wd, drmaa_input_path, drmaa_output_path, and drmaa_error_path attributes to represent the user's home directory.

5.1.4.24 DRMAA_PLACEHOLDER_WD

The DRMAA_PLACEHOLDER_WD directive is used with the drmaa_input_path, drmaa_output_path, and drmaa_error_path attributes to represent the job working directory.

5.1.4.25 DRMAA_PLACEHOLDER_INCR

The DRMAA_PLACEHOLDER_INCR directive is used with the drmaa_wd, drmaa_input_path, drmaa_output_path, and drmaa_error_path attributes to represent the individual id of each subjob in the parametric job. See drmaa_run_bulk_jobs().

5.1.5 C Preprocessor Directives for DRMAA Error Codes

A DRMAA header file SHALL define the following preprocessor directives:

#define DRMAA_ERRNO_SUCCESS 0

#define DRMAA_ERRNO_INTERNAL_ERROR 1

#define DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE 2

#define DRMAA_ERRNO_AUTH_FAILURE 3

#define DRMAA_ERRNO_INVALID_ARGUMENT 4

#define DRMAA_ERRNO_NO_ACTIVE_SESSION 5

#define DRMAA_ERRNO_NO_MEMORY 6

#define DRMAA_ERRNO_INVALID_CONTACT_STRING 7

#define DRMAA_ERRNO_DEFAULT_CONTACT_STRING_ERROR 8

#define DRMAA_ERRNO_NO_DEFAULT_CONTACT_STRING_SELECTED 9

#define DRMAA_ERRNO_DRMS_INIT_FAILED 10

#define DRMAA_ERRNO_ALREADY_ACTIVE_SESSION 11

#define DRMAA_ERRNO_DRMS_EXIT_ERROR 12

#define DRMAA_ERRNO_INVALID_ATTRIBUTE_FORMAT 13

#define DRMAA_ERRNO_INVALID_ATTRIBUTE_VALUE 14

#define DRMAA_ERRNO_CONFLICTING_ATTRIBUTE_VALUES 15

#define DRMAA_ERRNO_TRY_LATER 16

#define DRMAA_ERRNO_DENIED_BY_DRM 17

#define DRMAA_ERRNO_INVALID_JOB 18

#define DRMAA_ERRNO_RESUME_INCONSISTENT_STATE 19

#define DRMAA_ERRNO_SUSPEND_INCONSISTENT_STATE 20

#define DRMAA_ERRNO_HOLD_INCONSISTENT_STATE 21

#define DRMAA_ERRNO_RELEASE_INCONSISTENT_STATE 22

#define DRMAA_ERRNO_EXIT_TIMEOUT 23

#define DRMAA_ERRNO_NO_RUSAGE 24

#define DRMAA_ERRNO_NO_MORE_ELEMENTS 25

5.1.5.1 DRMAA_ERRNO_SUCCESS

The DRMAA_ERRNO_SUCCESS error code indicates that the called function returned normally with success.

5.1.5.2 DRMAA_ERRNO_INTERNAL_ERROR

The DRMAA_ERRNO_INTERNAL_ERROR error code indicates that an unexpected or internal DRMAA error, like system call failure, etc, has occurred.

5.1.5.3 DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE

The DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE error code indicates that the DRMAA implementation could not contact DRM system for this request.

5.1.5.4 DRMAA_ERRNO_AUTH_FAILURE

The DRMAA_ERRNO_AUTH_FAILURE error code indicates that the specified request was not processed successfully due to an authorization failure.

5.1.5.5 DRMAA_ERRNO_INVALID_ARGUMENT

The DRMAA_ERRNO_INVALID_ARGUMENT error code indicates that the value of an argument is invalid.

5.1.5.6 DRMAA_ERRNO_NO_ACTIVE_SESSION

The DRMAA_ERRNO_NO_ACTIVE_SESSION error code indicates that the function failed because there is no active session.

5.1.5.7 DRMAA_ERRNO_NO_MEMORY

The DRMAA_ERRNO_NO_MEMORY error code indicates that the system is unable to allocate the memory resources required to perform the requested operation.

5.1.5.8 DRMAA_ERRNO_INVALID_CONTACT_STRING

The DRMAA_ERRNO_INVALID_CONTACT_STRING error code indicates that session initialization failed due to an invalid contact string.

5.1.5.9 DRMAA_ERRNO_DEFAULT_CONTACT_STRING_ERROR

The DRMAA_ERRNO_DEFAULT_CONTACT_STRING_ERROR error code indicates that the DRMAA implementation could not use the default contact string to connect to any DRM

system.

5.1.5.10 DRMAA_ERRNO_NO_DEFAULT_CONTACT_STRING_SELECTED

The DRMAA_ERRNO_NO_DEFAULT_CONTACT_STRING_SELECTED error code indicates that no default contact string was provided by or selected for drmaa_init(). DRMAA requires that the default contact string is selected when there is more than one default contact string available due to multiple DRMAA implementations contained in a single binary module.

5.1.5.11 DRMAA_ERRNO_DRMS_INIT_FAILED

The DRMAA_ERRNO_DRMS_INIT_FAILED error code indicates that session initialization failed because the DRMAA implementation was unable to initialize the DRM system.

5.1.5.12 DRMAA_ERRNO_ALREADY_ACTIVE_SESSION

The DRMAA_ERRNO_ALREADY_ACTIVE_SESSION error code indicates that session initialization failed due to an already existing DRMAA session.

5.1.5.13 DRMAA_ERRNO_DRMS_EXIT_ERROR

The DRMAA_ERRNO_DRMS_EXIT_ERROR error code indicates that disengagement from the DRM system failed.

5.1.5.14 DRMAA_ERRNO_INVALID_ATTRIBUTE_FORMAT

The DRMAA_ERRNO_INVALID_ATTRIBUTE_FORMAT error code indicates that the format of the job attribute value is invalid.

5.1.5.15 DRMAA_ERRNO_INVALID_ATTRIBUTE_VALUE

The DRMAA_ERRNO_INVALID_ATTRIBUTE_VALUE error code indicates that the value of the job attribute is invalid.

5.1.5.16 DRMAA_ERRNO_CONFLICTING_ATTRIBUTE_VALUES

The DRMAA_ERRNO_CONFLICTING_ATTRIBUTE_VALUES error code indicates that the value of this attribute conflicts with the value or values of one or more previously set attributes.

5.1.5.17 DRMAA_ERRNO_TRY_LATER

The DRMAA_ERRNO_TRY_LATER error code indicates that the DRMAA implementation could not perform the desired operation at this time, due to excessive load in the DRM system. A retry MAY succeed.

5.1.5.18 DRMAA_ERRNO_DENIED_BY_DRM

The DRMAA_ERRNO_DENIED_BY_DRM error code indicates that the DRM system rejected the job due to DRM configuration or job template settings. The job will never be accepted.

5.1.5.19 DRMAA_ERRNO_INVALID_JOB

The DRMAA_ERRNO_INVALID_JOB error code indicates that the specified job does not exist.

5.1.5.20 DRMAA_ERRNO_RESUME_INCONSISTENT_STATE

The DRMAA_ERRNO_RESUME_INCONSISTENT_STATE error code indicates that the job is not in a state from which it can be resumed, e.g. It is not in a user suspend state. The request SHALL NOT be processed.

5.1.5.21 DRMAA_ERRNO_SUSPEND_INCONSISTENT_STATE

The DRMAA_ERRNO_SUSPEND_INCONSISTENT_STATE error code indicates that the job is not in a state from which it can be suspended, e.g. It is not in a running state. The request SHALL NOT be processed.

5.1.5.22 DRMAA_ERRNO_HOLD_INCONSISTENT_STATE

The DRMAA_ERRNO_HOLD_INCONSISTENT_STATE error code indicates that the job is not in a state from which it can be held. The request SHALL NOT be processed.

5.1.5.23 DRMAA_ERRNO_RELEASE_INCONSISTENT_STATE

The DRMAA_ERRNO_RELEASE_INCONSISTENT_STATE error code indicates that the job is not in a state from which it can be released, e.g. It is not in a user hold state. The request SHALL NOT be processed.

5.1.5.24 DRMAA_ERRNO_EXIT_TIMEOUT

The DRMAA_ERRNO_EXIT_TIMEOUT error code indicates that the DRMAA implementation has encountered a time-out condition during a call to drmaa_synchronize() or drmaa_wait().

5.1.5.25 DRMAA_ERRNO_NO_RUSAGE

The DRMAA_ERRNO_NO_RUSAGE error code indicates that during a call to drmaa_wait(), the specified job has finished, but no rusage and/or stat data could be provided.

5.1.5.26 DRMAA_ERRNO_NO_MORE_ELEMENTS

The DRMAA_ERRNO_NO_RUSAGE error code is returned by the functions drmaa_get_next_job_id(), drmaa_get_next_attr_name(), and drmaa_get_next_attr_value()

as an indication that no string was returned.

5.2 String Vector Helper Functions

A DRMAA C binding implementation SHALL provide the following functions for processing the opaque string vector data types:

int drmaa_get_next_attr_name(drmaa_attr_names_t* values,

 char *value, size_t value_len);

int drmaa_get_next_attr_value(drmaa_attr_values_t* values,

 char *value, size_t value_len);

int drmaa_get_next_job_id(drmaa_job_ids_t* values,

 char *value, size_t value_len);

int drmaa_get_num_attr_names(drmaa_attr_names_t* values,

 size_t *size);
int drmaa_get_num_attr_values(drmaa_attr_values_t* values,

 size_t *size);
int drmaa_get_num_job_ids(drmaa_job_ids_t* values, size_t *size);

void drmaa_release_attr_names(drmaa_attr_names_t* values);

void drmaa_release_attr_values(drmaa_attr_values_t* values);

void drmaa_release_job_ids(drmaa_job_ids_t* values);

Through these functions a program can iterate through the values contained in an opaque string vector once, moving from the first entry to the last entry. Once the opaque string vector has been iterated past the last entry, the opaque string vector data values are no longer accessible.

5.2.1 drmaa_get_next_attr_name

The drmaa_get_next_attr_name() function SHALL store up to value_len bytes of the next attribute name from the values opaque string vector in the value buffer. The opaque string vector's internal iterator SHALL then be moved forward to the next entry.

5.2.1.1 Parameters

values – The opaque string vector from which the next attribute name will be extracted.

value – The buffer into which the attribute name will be stored.

value_len – the length of the value buffer.

5.2.1.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

DRMAA_ERRNO_NO_MORE_ELEMENTS – no more attribute names are available.

5.2.2 drmaa_get_next_attr_value

The drmaa_get_next_attr_value() function SHALL store up to value_len bytes of the next attribute value from the values opaque string vector in the value buffer. The opaque string vector's internal iterator SHALL then be moved forward to the next entry.

5.2.2.1 Parameters

values – The opaque string vector from which the next attribute value will be extracted.

value – The buffer into which the attribute value will be stored.

value_len – the length of the value buffer.

5.2.2.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

DRMAA_ERRNO_NO_MORE_ELEMENTS – no more attribute value are available.

5.2.3 drmaa_get_next_job_id

The drmaa_get_next_job_id() function SHALL store up to value_len bytes of the next job id from the values opaque string vector in the value buffer. The opaque string vector's internal iterator SHALL then be moved forward to the next entry.

5.2.3.1 Parameters

values – The opaque string vector from which the next job id will be extracted.

value – The buffer into which the job id will be stored.

value_len – the length of the value buffer.

5.2.3.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

DRMAA_ERRNO_NO_MORE_ELEMENTS – no more job ids are available.

5.2.4 drmaa_get_num_attr_names

The drmaa_get_num_attr_names() function SHALL store the number of elements in the space provided by size.

5.2.4.1 Parameters

values – The opaque string vector from whose number of elements will be returned.

size – Space into which to write the number of elements.

5.2.4.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

5.2.5 drmaa_get_num_attr_values

The drmaa_get_num_attr_values() function SHALL store the number of elements in the space provided by size.

5.2.5.1 Parameters

values – The opaque string vector from whose number of elements will be returned.

size – Space into which to write the number of elements.

5.2.5.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

5.2.6 drmaa_get_num_job_ids

The drmaa_get_num_job_ids() function SHALL store the number of elements in the space provided by size.

5.2.6.1 Parameters

values – The opaque string vector from whose number of elements will be returned.

size – Space into which to write the number of elements.

5.2.6.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

5.2.7 drmaa_release_attr_names

The drmaa_release_attr_names() function frees the memory used by the values opaque string vector. All memory used by strings contained therein is also freed.

5.2.7.1 Parameters

values – The opaque string vector to be freed.

5.2.7.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – the argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

5.2.8 drmaa_release_attr_values

The drmaa_release_attr_values() function frees the memory used by the values opaque string vector. All memory used by strings contained therein is also freed.

5.2.8.1 Parameters

values – The opaque string vector to be freed.

5.2.8.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – the argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

5.2.9 drmaa_release_job_ids

The drmaa_release_attr_job_ids() function frees the memory used by the values opaque string vector. All memory used by strings contained therein is also freed.

5.2.9.1 Parameters

values – The opaque string vector to be freed.

5.2.9.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – the argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

5.3 Session Management

A DRMAA C binding implementation SHALL provide the following functions for managing sessions:

int drmaa_init(const char *contact, char *error_diagnosis,

 size_t error_diag_len);

int drmaa_exit(char *error_diagnosis, size_t error_diag_len);

5.3.1 drmaa_init

The drmaa_init() function SHALL initialize DRMAA library and create a new DRMAA session, using the contact parameter, if provided, to determine to which DRMS to connect. This function MUST be called before any other DRMAA function, except for drmaa_get_DRM_system(),

drmaa_get_DRMAA_implementation(), drmaa_get_contact(), and drmaa_strerror().

If contact is NULL, the default DRM system SHALL be used, provided there

is only one DRMAA implementation in the provided binary module. When

there is more than one DRMAA implementation in the binary module,

drmaa_init() SHALL return the DRMAA_ERRNO_NO_DEFAULT_CONTACT_STRING_SELECTED error code.

The drmaa_init() function SHOULD be called by only one of the threads. The main thread is RECOMMENDED. A call by another thread SHALL return the DRMAA_ERRNO_ALREADY_ACTIVE_SESSION error code.

5.3.1.1 Parameters

contact – A string indicating to which DRMS the DRMAA session should bind during initialization.

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.3.1.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_INVALID_CONTACT_STRING – the DRMAA implementation was unable to use the provided contact to contact the DRMS.

DRMAA_ERRNO_DEFAULT_CONTACT_STRING_ERROR – no contact string was provided, and the DRMAA implementation was unable to use the default contact to contact the DRMS.

DRMAA_ERRNO_NO_DEFAULT_CONTACT_STRING_SELECTED – there is no single default contact string, and no contact string was provided.

DRMAA_ERRNO_ERRNO_DRMS_INIT_FAILED – unable to initialize DRMS connection.

DRMAA_ERRNO_ERRNO_ALREADY_ACTIVE_SESSION – the session is already active.

5.3.2 drmaa_exit

The drmaa_exit() function SHALL disengage from DRMAA library and allow the DRMAA library to perform any necessary internal cleanup. This routine SHALL end the current DRMAA session but SHALL NOT affect any jobs (e.g, queued and running jobs SHALL remain queued and running). drmaa_exit() SHOULD be called by only one of the threads. The first call to call drmaa_exit() by a thread will operate normally. All other calls from the same and other threads SHALL fail, returning a DRMAA_ERRNO_NO_ACTIVE_SESSION error code.

5.3.2.1 Parameters

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.3.2.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

DRMAA_ERRNO_DRMS_EXIT_ERROR – an error occurred while disconnecting from the DRMS.

5.4 Job Templates

A job template is a pattern used for defining job characteristics. Each job template is able to hold a different set of job characteristics. Upon job submission, the provided job template will be used to set the characteristics of the job to be submitted.

There is a 1:n relationship between job templates and jobs. A single job template can be used to submit any number of jobs. Once a job has been submitted, e.g. via drmaa_run_job(), the job template no longer has any affect on the job. Changes made to the job template will have no affect on already running jobs. Deleting the job template (via drmaa_delete_job_template()) also has no effect on running jobs.

A DRMAA C binding implementation SHALL provide the following functions for managing job templates:

int drmaa_allocate_job_template(drmaa_job_template_t **jt,

 char *error_diagnosis,

 size_t error_diag_len);

int drmaa_delete_job_template(drmaa_job_template_t *jt,

 char *error_diagnosis,

 size_t error_diag_len);

int drmaa_set_attribute(drmaa_job_template_t *jt,

 const char *name, const char *value,

 char *error_diagnosis,

 size_t error_diag_len);

int drmaa_get_attribute(drmaa_job_template_t *jt,

 const char *name, char *value,

 size_t value_len, char *error_diagnosis,

 size_t error_diag_len);

int drmaa_set_vector_attribute(drmaa_job_template_t *jt,

 const char *name,

 const char *value[],

 char *error_diagnosis,

 size_t error_diag_len);

int drmaa_get_vector_attribute(drmaa_job_template_t *jt,

 const char *name,

 drmaa_attr_values_t **values,

 char *error_diagnosis,

 size_t error_diag_len);

int drmaa_get_attribute_names(drmaa_attr_names_t **values,

 char *error_diagnosis,

 size_t error_diag_len);

int drmaa_get_vector_attribute_names(drmaa_attr_names_t **values,

 char *error_diagnosis,

 size_t error_diag_len);

5.4.1 drmaa_allocate_job_template

The function drmaa_allocate_job_template() SHALL allocate a new job template, returned in jt. This template is used to describe the job to be submitted. This description is accomplished by setting the desired scalar and vector attributes to their appropriate values. This template is then used in the job submission process.

5.4.1.1 Parameters

jt – The buffer to hold the newly allocated job template.

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.4.1.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

5.4.2 drmaa_delete_job_template

The function drmaa_delete_job_template() SHALL free the job template pointed to by jt.

5.4.2.1 Parameters

jt – The job template to be freed.

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.4.2.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

5.4.3 drmaa_set_atrribute

The function drmaa_set_attribute() SHALL set the value of the scalar attribute, name, in the job template, jt, to the value, value.

5.4.3.1 Parameters

jt – The job template in which the attribute is to be set.

name – The name of the attribute to set.

value – The value to which to set the attribute.

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.4.3.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

DRMAA_ERRNO_INVALID_ATTRIBUTE_FORMAT – the format of the attribute value is invalid for the attribute.

DRMAA_ERRNO_INVALID_ATTRIBUTE_VALUE – the attribute value is invalid.

DRMAA_ERRNO_CONFLICTING_ATTRIBUTE_VALUES – the attribute value conflicts with one or more prevously set attribute values.

5.4.4 drmaa_get_attribute

The function drmaa_get_attribute() SHALL fill the value buffer with up to value_len characters of the scalar attribute, name's, value in the given job template.

5.4.4.1 Parameters

jt – The job template from which to get the attribute value.

name – The name of the attribute whose value will be retrieved.

value – A buffer into which the attribute's value will be written.

value_len – The size in characters of the attribute value buffer.

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.4.4.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

5.4.5 drmaa_set_vector_atrribute

The function drmaa_set_vector_attribute() SHALL set the vector attribute, name, in the job template, jt, to the value(s), value. The DRMAA implementation MUST accept value values that are arrays of one or more strings terminated by a NULL entry.

5.4.5.1 Parameters

jt – The job template in which the attribute is to be set.

name – The name of the attribute to set.

value – The value array to which to set the attribute.

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.4.5.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

DRMAA_ERRNO_INVALID_ATTRIBUTE_FORMAT – the format of one or more of the attribute values is invalid for the attribute.

DRMAA_ERRNO_INVALID_ATTRIBUTE_VALUE – one or more of the attribute value is invalid.

DRMAA_ERRNO_CONFLICTING_ATTRIBUTE_VALUES – one or more of the attribute value conflicts with one or more prevously set attribute values.

5.4.6 drmaa_get_vector_attribute

The function drmaa_get_vector_attribute() SHALL store in values an opaque values string vector containing the values of the vector attribute, name's, value in the given job template.

5.4.6.1 Parameters

jt – The job template from which to get the attribute values.

name – The name of the attribute whose values will be retrieved.

values – An opaque string vector containing the attribute values

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.4.6.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

5.4.7 drmaa_get_attribute_names

The function drmaa_get_attribute_names() SHALL return the set of supported scalar attribute names in an opaque names string vector stored in values. This vector SHALL include all required scalar attributes, all supported optional scalar attributes, all DRM-specific scalar attributes, and no unsupported optional attributes.

5.4.7.1 Parameters

values – Space to write an opaque string vector containing the attribute names

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.4.7.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

5.4.8 drmaa_get_vector_attribute_names

The function drmaa_get_vector_attribute_names() SHALL return the set of supported vector attribute names in an opaque names string vector stored in values. This vector SHALL include all required vector attributes, all supported optional vector attributes, all DRM-specific vector attributes, and no unsupported optional attributes.

5.4.8.1 Parameters

values – Space to write an opaque string vector containing the attribute names

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.4.8.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

5.4.9 Required Job Attributes

A DRMAA C binding implementation SHALL implement the following attributes. Vector attribute names contain a “_v_”.

5.4.9.1 drmaa_remote_command

The drmaa_remote_command attribute specifies the remote command to execute. The drmaa_remote_command must be the path of an executable that is available at the job's execution host. If the path is relative, it is assumed to be relative to the working directory, usually set through the drmaa_wd attribute. If the working directory is not set, the path is interpreted in an implementation-specific manner. In any case, no binary file management is done.

5.4.9.2 drmaa_js_state

The drmaa_js_state attribute specifies the job's state at submission. The string values “drmaa_hold” and “drmaa_active” SHALL be supported. When “drmaa_active” is used, the job SHALL be submitted in a runnable state. When “drmaa_hold” is used, the job SHALL be submitted in a user hold state (either DRMAA_PS_USER_ON_HOLD or DRMAA_PS_USER_SYSTEM_ON_HOLD).

5.4.9.3 drmaa_wd

The drmaa_wd attribute specifies the directory name where the job will be executed. A “$drmaa_hd_ph$” placeholder at the beginning of the drmaa_wd value denotes the remaining string portion as a relative directory name which is resolved relative to the job user's home directory at the execution host. When the DRMAA job template is used for bulk job submission (See section 5.5.2), the “$drmaa_incr_ph$” placeholder can be used at any position within the drmaa_wd value to cause a substitution with the parametric job's index.

The drmaa_wd value must be specified in a syntax that is common at the host where the job is executed. If set to a relative path and no placeholder is used, the path is interpreted in an implementation-specific manner. If not set, the working directory will be set in an implementation-specific manner. If set and the given directory does not exist, the job will enter the DRMAA_PS_FAILED state when run.

5.4.9.4 drmaa_job_name

The drmaa_job_name attribute specifies the job's name. A job name SHALL contain only alpha-numeric and '_' characters.

5.4.9.5 drmaa_input_path

The drmaa_input_path attribute specifies the standard input path of the job. If set, this attribute's value specifies the network path of the job's input stream file. The value of the drmaa_input_path attribute must be of the form:

[hostname]:file_path

When the drmaa_transfer_files attribute is supported and contains the character “i”, the input file SHALL be fetched by the DRMS from the specified host or from the submit host if no hostname is specified in the drmaa_input_path attribute value. When the drmaa_transfer_files attribute is not supported or does not contain the character “i”, the input file is always expected at the host where the job is executed, regardless of any hostname specified in the drmaa_input_path attribute value.

If the DRMAA job template will be used for bulk job submission, (See section 5.5.2.) the “$drmaa_incr_ph$” placeholder can be used at any position within the drmaa_input_path attribute value to cause a substitution with the parametric job's index. A “$drmaa_hd_ph$” placeholder at the beginning of the drmaa_input_path attribute value denotes the remaining portion of the drmaa_input_path attribute value as a relative file specification resolved relative to the job submitter's home directory at the host where the file is located. A “$drmaa_wd_ph$” placeholder at the beginning of the drmaa_input_path attribute value denotes the remaining portion of the the drmaa_input_path attribute value as a relative file specification resolved relative to the job's working directory at the host where the file is located. The drmaa_input_path attribute value must be specified in a syntax that is common at the host where the file is located. If set and the file can't be read the job enters the state DRMAA_PS_FAILED upon submission.

5.4.9.6 drmaa_output_path

The drmaa_output_path attribute specifies the standard output path of the job. If set, this attribute's value specifies the network path of the job's output stream file. The value of the drmaa_output_path attribute must be of the form:

[hostname]:file_path

When the drmaa_transfer_files attribute is supported and contains the character, “o”, the output file SHALL be transferred by the DRMS to the specified host or to the submit host if no hostname is specified in the drmaa_output_path attribute value. When the drmaa_transfer_files attribute is not supported or does not contain the character, “o”, the output file is always kept at the host where the job is executed, regardless of any hostname specified in the drmaa_output_path attribute value.

If the DRMAA job template will be used for bulk job submission, (See section 5.5.2.) the “$drmaa_incr_ph$” placeholder can be used at any position within the drmaa_output_path attribute value to cause a substitution with the parametric job's index. A “$drmaa_hd_ph$” placeholder at the beginning of the drmaa_output_path attribute value denotes the remaining portion of the drmaa_output_path attribute value as a relative file specification resolved relative to the job submitter's home directory at the host where the file is located. A “$drmaa_wd_ph$” placeholder at the beginning of the drmaa_output_path attribute value denotes the remaining portion of the the drmaa_output_path attribute value as a relative file specification resolved relative to the job's working directory at the host where the file is located. The drmaa_output_path attribute value must be specified in a syntax that is common at the host where the file is located. If set and the file can't be written before execution the job enters the state DRMAA_PS_FAILED upon submission.

5.4.9.7 drmaa_error_path

The drmaa_error_path attribute specifies the standard error path of the job. If set, this attribute's value specifies the network path of the job's error stream file. The value of the drmaa_error_path attribute must be of the form:

[hostname]:file_path

When the drmaa_transfer_files attribute is supported and contains the character, “e”, the output file SHALL be transferred by the DRMS to the specified host or to the submit host if no hostname is specified in the drmaa_error_path attribute value. When the drmaa_transfer_files attribute is not supported or does not contain the character, “e”, the output file is always kept at the host where the job is executed, regardless of any hostname specified in the drmaa_error_path attribute value.

If the DRMAA job template will be used for bulk job submission, (See section 5.5.2.) the “$drmaa_incr_ph$” placeholder can be used at any position within the drmaa_error_path attribute value to cause a substitution with the parametric job's index. A “$drmaa_hd_ph$” placeholder at the beginning of the drmaa_error_path attribute value denotes the remaining portion of the drmaa_error_path attribute value as a relative file specification resolved relative to the job submitter's home directory at the host where the file is located. A “$drmaa_wd_ph$” placeholder at the beginning of the drmaa_error_path attribute value denotes the remaining portion of the the drmaa_error_path attribute value as a relative file specification resolved relative to the job's working directory at the host where the file is located. The drmaa_error_path attribute value must be specified in a syntax that is common at the host where the file is located. If set and the file can't be written before execution the job enters the state DRMAA_PS_FAILED upon submission.

5.4.9.8 drmaa_join_files

The drmaa_join_files attribute specifies whether the job's error stream should be intermixed with the job's output stream. If not explicitly set in the job template, the attribute's value defaults to “n”. Either “y” or “n” can be specified as valid attribute values. If “y” is specified as the drmaa_join_files attribute value, the DRMAA implementation will ignore the value of the drmaa_error_path attribute and intermix the standard error stream with the standard output stream at the location specified by the drmaa_output_path attribute value.

5.4.9.9 drmaa_v_argv

The drmaa_v_argv attribute specifies the array of string values which SHALL be passed as arguments to the job.

5.4.9.10 drmaa_job_category

The drmaa_job_catrgory attribute specifies the DRMAA job category. See section 2.4.1 of the Distributed Resource Management Application API Specification 1.0 for more information about DRMAA job categories.

5.4.9.11 drmaa_native_specification

The drmaa_native_specification attribute specifies the native submission options which SHALL be passed to the DRMS at job submission time. See section 2.4.2 of the Distributed Resource Management Application API Specification 1.0 for more information about DRMAA job categories.

5.4.9.12 drmaa_v_env

The drmaa_v_env attribute specifies the environment variable settings for the job to be submitted. Each value in the attribute's value array represent an environment variable setting of the form:

<name>=<value>

5.4.9.13 drmaa_v_email

The drmaa_v_email attribute specifies the list of e-mail addresses to which job completion and status reports are to be sent. Which reports are sent and when they are sent are determined by the DRMS configuration and the drmaa_block_email attribute value.

5.4.9.14 drmaa_block_email

The drmaa_block_email attribute specifies whether the sending of email SHALL blocked or not. If the DRMS configuration or the drmaa_native_specification or drmaa_job_category attribute would normally cause email to be sent in association with job events, the drmaa_block_email attribute value can will override that setting, causing no email to be sent.

If the attribute's value is “0”, no email will be sent, regardless of DRMS configuration or other attribute values. If the attribute's value “1”, the sending of email is unaffected.

5.4.9.15 drmaa_start_time

The drmaa_start_time attribute specifies the earliest point in time when the job may be eligible to be run. drmaa_start_time attribute value is of the format:

[[[[CC]YY/]MM/]DD] hh:mm[:ss] [{-|+}UU:uu]

where

· CC is the first two digits of the year [19,)

· YY is the last two digits of the year [00,99]

· MM is the two digits of the month [01,12]

· DD is the two digit day of the month [01,31]

· hh is the two digit hour of the day [00,23]

· mm is the two digit minute of the day [00,59]

· ss is the two digit second of the minute [00,61]

· UU is the two digit hours since (before) UTC [-11,12]

· uu is the two digit minutes since (before) UTC [00,59]

If the optional UTC-offset is not specified, the offset associated with the local timezone will be used. If any of the other optional fields are not specified, the time SHALL be resolved to the soonest time which can be constructed using the values of the specified fields, which is in the future at the time of resolution. That is to say that if the attribute's value is “10:00”, and it is resolved to a concrete time at 11:01am on November 24th, the time will be resolved to 10:00am on November 25th, because that is the soonest time which matches the specified fields and is in the future. If at 9:34am on December 1st the same time string is resolved again (such as by reusing the containing job template for another job submission), it will resolve to 10:00am on December 1st.

5.4.10 Optional Job Attributes

The following reserved attribute names are OPTIONAL in a conforming DRMAA implementation. For attributes that are implemented, the meanings are REQUIRED to be as follows.

Note that the list of attributes that are implemented may be programmatically obtained by using the drmaa_get_attribute_names() and drmaa_get_vector_attribute_names() functions.

5.4.10.1 drmaa_transfer_files

The drmaa_transfer_files attribute specifies, which of the standard I/O files (stdin, stdout and stderr) are to be transferred to/from the execution host. If not set, this attribute's value defaults to "". The attribute's value may contain any of the characters, “e”, “i” and “o”. If the character, “e”, is present, the error stream will be transferred. If the character, “i”, is present, the input stream will be transferred. If the character, “o”, is present, the output stream will be transferred. See the drmaa_input_path, drmaa_output_path and drmaa_error_path for information about how to specify the standard input file, standard output file and standard error file and the effects of this attribute's value.

5.4.10.2 drmaa_deadline_time

The drmaa_start_time attribute specifies a deadline after which the DRMS will terminate a job.. drmaa_start_time attribute value is of the format:

[[[[CC]YY/]MM/]DD] hh:mm[:ss] [{-|+}UU:uu]

where

· CC is the first two digits of the year [19,)

· YY is the last two digits of the year [00,99]

· MM is the two digits of the month [01,12]

· DD is the two digit day of the month [01,31]

· hh is the two digit hour of the day [00,23]

· mm is the two digit minute of the day [00,59]

· ss is the two digit second of the minute [00,61]

· UU is the two digit hours since (before) UTC [-11,12]

· uu is the two digit minutes since (before) UTC [00,59]

If the optional UTC-offset is not specified, the offset associated with the local timezone will be

used. If any of the other optional fields are not specified, the time SHALL be resolved to the soonest time which can be constructed using the values of the specified fields, which is in the future at the time of resolution. That is to say that if the attribute's value is “10:00”, and it is resolved to a concrete time at 11:01am on November 24th, the time will be resolved to 10:00am on November 25th, because that is the soonest time which matches the specified fields and is in the future. If at 9:34am on December 1st the same time string is resolved again (such as by reusing the containing job template for another job submission), it will resolve to 10:00am on December 1st.

5.4.10.3 drmaa_wct_hlimit

The drmaa_wct_hlimit attribute specifies how much wall clock time a job is allowed to consume before its limit has been exceeded. The DRMS SHALL terminate a job that has exceeded its wallclock time limit. Suspended time SHALL also be accumulated here.

This attribute's value MUST be of the form:

[[h:]m:]s

where

· h is one or more digits representing hours

· m is one or more digits representing minutes

· s is one or more digits representing seconds

5.4.10.4 drmaa_wct_slimit

The drmaa_wct_slimit attribute specifies an estimate as to how much wall clock time the job will need to complete. Suspended time SHALL also be accumulated here. This attribute is intended to assist the scheduler. If the time specified by this attribute's value in insufficient, the DRMAA implementation MAY impose a scheduling penalty.

This attribute's value MUST be of the form:

[[h:]m:]s

where

· h is one or more digits representing hours

· m is one or more digits representing minutes

· s is one or more digits representing seconds

5.4.10.5 drmaa_duration_hlimit

The drmaa_duration_hlimit attribute specifies how long the job MAY be in a running state before its time limit has been exceeded, and therefore is terminated by the DRMS.

This attribute's value MUST be of the form:

[[h:]m:]s

where

· h is one or more digits representing hours

· m is one or more digits representing minutes

· s is one or more digits representing seconds

5.4.10.6 drmaa_duration_slimit

The drmaa_duration_slimit attribute specifies an estimate as to how long the job will need to

remain in a running state in order to complete. This attribute is intended to assist the scheduler. If the time specified by this attribute's value in insufficient, the DRMAA iimplementation MAY impose a scheduling penalty.

This attribute's value MUST be of the form:

[[h:]m:]s

where

· h is one or more digits representing hours

· m is one or more digits representing minutes

· s is one or more digits representing seconds

5.5 Job Submission

A DRMAA C binding implementation SHALL provide the following functions for submitting jobs to be run by the DRMS:

int drmaa_run_job(char *job_id, size_t job_id_len,

 const drmaa_job_template_t *jt,

 char *error_diagnosis, size_t error_diag_len);

int drmaa_run_bulk_jobs(drmaa_job_ids_t **jobids,

 const drmaa_job_template_t *jt,

 int start, int end, int incr,

 char *error_diagnosis,

 size_t error_diag_len);

5.5.1 drmaa_run_job

The drmaa_run_job() function submits a single job with the attributes defined in the job template, jt. Upon success, up to job_id_len characters of the submitted job's job identifier are stored in the buffer, job_id.

5.5.1.1 Parameters

job_id – A buffer into which the submitted job's job identifier will be written.

job_id_len – The size in characters of the job identifier buffer.

jt – The job template in which the attribute is to be set.

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.5.1.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

DRMAA_ERRNO_TRY_LATER – the DRMAA implementation could not perform the desired operation at this time.

DRMAA_ERRNO_DENIED_BY_DRM – the DRM system rejected the job. The job will never be

accepted due to DRM configuration or job template settings.

5.5.2 drmaa_run_bulk_jobs

The drmaa_run_bulk_jobs() function submits a set of parametric jobs which can be run concurrently. The attributes defined in the job template, jt are used for every parametric job in the set. Each job in the set is identical except for it's index. The first parametric job has an index equal to start. The next job has an index equal to start + incr, and so on. The last job has an index equal to start + n * incr, where n is equal to (end – start) / incr. Note that the value of the last job's index may not be equal to end if the difference between start and end is not evenly divisble by incr. The smallest valid value for start is 1. The largest valid value for end is 2147483647 (2^31-1). The start value must be less than or equal to the end value, and only positive index numbers are allowed. The index number can be determined by the job in an implementation specific fashion. On success, an opaque job id string vector containing job identifiers for all submitted jobs SHALL be returned into job_ids. The job identifiers in the opaque job id string vector can be extracted using the drmaa_get_next_job_id() function. The caller is responsible for releasing the opaque job id string vector returned into job_ids using the drmaa_release_job_ids() function. See section for more information on these functions.

5.5.2.1 Parameters

job_ids – Space to write an opaque string vector containing the submitted jobs' job identifiers.

jt – The job template in which the attribute is to be set.

start – The minimum parametric job index to be assigned.

end – The maximum parametric job index to be assigned.

incr – The difference between consecuative parameteric job indices.

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.5.2.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

DRMAA_ERRNO_TRY_LATER – the DRMAA implementation could not perform the desired operation at this time.

DRMAA_ERRNO_DENIED_BY_DRM – the DRM system rejected the jobs. The jobs will never be

accepted due to DRM configuration or job template settings.

5.6 Job Status and Control

A DRMAA C binding implementation SHALL provide the following functions for monitoring and controlling jobs:

int drmaa_control(const char *job_id, int action,

 char *error_diagnosis, size_t error_diag_len);

int drmaa_job_ps(const char *job_id, int *remote_ps,

 char *error_diagnosis, size_t error_diag_len);

int drmaa_synchronize(const char *job_ids[], signed long timeout,

 int dispose, char *error_diagnosis,

 size_t error_diag_len);

int drmaa_wait(const char *job_id, char *job_id_out,

 size_t job_id_out_len, int *stat,

 signed long timeout, drmaa_attr_values_t **rusage,

 char *error_diagnosis, size_t error_diag_len);

A DRMAA implementation SHALL also provide the following functions for interpreting the drmaa_wait() status code:

int drmaa_wifexited(int *exited, int stat, char *error_diagnosis,

 size_t error_diag_len);

int drmaa_wexitstatus(int *exit_status, int stat,

 char *error_diagnosis, size_t error_diag_len);

int drmaa_wifsignaled(int *signaled, int stat,

 char *error_diagnosis, size_t error_diag_len);

int drmaa_wtermsig(char *signal, size_t signal_len, int stat,

 char *error_diagnosis, size_t error_diag_len);

int drmaa_wcoredump(int *core_dumped, int stat,

 char *error_diagnosis, size_t error_diag_len);

int drmaa_wifaborted(int *aborted, int stat,

 char *error_diagnosis, size_t error_diag_len);

5.6.1 drmaa_control

The drmaa_control() function SHALL enact the action indicated by action on the job specified by the job identifier, jobid. The action parameter's value may be one of the following:

· DRMAA_CONTROL_SUSPEND

· DRMAA_CONTROL_RESUME

· DRMAA_CONTROL_HOLD

· DRMAA_CONTROL_RELEASE

· DRMAA_CONTROL_TERMINATE

See section for more details.

The drmaa_control() function SHALL return after the DRM system has acknowledged the command, not necessarily after the desired action has been performed. If jobid is DRMAA_JOB_IDS_SESSION_ALL, this function SHALL perform the specified action on all jobs submitted during this session as of this function is called. See section 2.6 of the Distributed Resource Management Application API Specification 1.0 for more information about DRMAA job states.

5.6.1.1 Parameters

job_id – The job identifier of the job to be acted upon.

action – The action to be performed.

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.6.1.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

DRMAA_ERRNO_INVALID_JOB – the job does not exist or has already been reaped.

DRMAA_ERRNO_HOLD_INCONSISTENT_STATE – the HOLD action could not be performed.

DRMAA_ERRNO_RELEASE_INCONSISTENT_STATE – the RELEASE action could not be performed.

DRMAA_ERRNO_RESUME_INCONSISTENT_STATE – the RESUME action could not be performed.

DRMAA_ERRNO_SUSPEND_INCONSISTENT_STATE – the SUSPEND action could not be performed.

5.6.2 drmaa_job_ps

The drmaa_job_ps() function SHALL store in remote_ps the program status of the job identified by job_id. The possible values of a program's staus are:

· DRMAA_PS_UNDETERMINED

· DRMAA_PS_QUEUED_ACTIVE

· DRMAA_PS_SYSTEM_ON_HOLD

· DRMAA_PS_USER_ON_HOLD

· DRMAA_PS_USER_SYSTEM_ON_HOLD

· DRMAA_PS_RUNNING

· DRMAA_PS_SYSTEM_SUSPENDED

· DRMAA_PS_USER_SUSPENDED

· DRMAA_PS_DONE

· DRMAA_PS_FAILED

Terminated jobs have a status of DRMAA_PS_FAILED. See section 2.6 of the Distributed Resource Management Application API Specification 1.0 for more information about DRMAA job states.

5.6.2.1 Parameters

job_id – The job identifier of the job to be queried.

remote_ps – Space to write the job's status information.

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.6.2.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

DRMAA_ERRNO_INVALID_JOB – the job does not exist or has already been reaped.

5.6.3 drmaa_synchronize

The drmaa_synchronize() function SHALL cause the calling thread to block until all jobs specified by job_ids have finished execution. If job_ids contains DRMAA_JOB_IDS_SESSION_ALL, then this function SHALL wait for all jobs submitted during this DRMAA session as of the point in time when drmaa_synchronize() is called. To avoid thread race conditions in multithreaded applications, the DRMAA implementation user should explicitly synchronize this call with any other job submission calls or control calls that may change the number of remote jobs.

The timeout parameter value indicates how many seconds to remain blocked in this call waiting for results to become available, before returning with a DRMAA_ERRNO_EXIT_TIMEOUT error code. The value, DRMAA_TIMEOUT_WAIT_FOREVER, MAY be specified to wait indefinitely for a result. The value, DRMAA_TIMEOUT_NO_WAIT, MAY be specified to return immediately with a DRMAA_ERRNO_EXIT_TIMEOUT error code if no result is available. If the call exits before the timeout has elapsed, all the jobs have been waited on or there was an interrupt. The caller should check system time before and after this call in order to be sure of how much time has passed.

The dispose parameter specifies how to treat the reaping of the remote job's internal data record, which includes a record of the job's consumption of system resources during its execution and other statistical information. If the dispose parameter's value is 1, the DRMAA implementation SHALL dispose of the job's data record at the end of the drmaa_synchroniize() call. If the dispose parameter's value is 0, the data record SHALL be left for future access via the drmaa_wait() method.

5.6.3.1 Parameters

job_ids – The job identifiers of the jobs to synchronize against.

timeout – The number of seconds to remain blocked waiting for a result. This value is signed because the value, DRMAA_TIMEOUT_WAIT_FOREVER, is equal to -1.

dispose – Whether to dispose of the jobs' exit status information.

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.6.3.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

DRMAA_ERRNO_INVALID_JOB – the job does not exist or has already been reaped.

DRMAA_ERRNO_EXIT_TIMEOUT – the timeout period elapsed before a result was received.

5.6.4 drmaa_wait

The drmaa_wait() function SHALL wait for a job identified by job_id to finish execution or fail. If the special string, JOB_IDS_SESSION_ANY, is provided as the job_id, this function will wait for any job from the session to finish execution or fail. In this case, any job for which exit status information is available will satisfy the requirement, including jobs which preivously finished but

have never been the subject of a drmaa_wait() call. This routine is modeled on the wait3 POSIX

routine.

The timeout parameter value indicates how many seconds to remain blocked in this call waiting for a result, before returning with a DRMAA_ERRNO_EXIT_TIMEOUT error code. The value, DRMAA_TIMEOUT_WAIT_FOREVER, MAY be specified to wait indefinitely for a result. The value, DRMAA_TIMEOUT_NO_WAIT, MAY be specified to return immediately with a DRMAA_ERRNO_EXIT_TIMEOUT error code if no result is available. If the call exits before the timeout has elapsed, the job has been successfully waited on or there was an interrupt. The caller should check system time before and after this call in order to be sure of how much time has passed.

Upon success, drmaa_wait() fills job_id_out with up to job_id_out_len characters of the waited

job's id, stat with the a code that includes information about the conditions under which the job

terminated, and rusage with an array of <name>=<value> strings that describe the amount of

resources consumed by the job and are implementation defined. The stat parameter is further

described below. The rusage parameter's values may be accessed via drmaa_get_next_attr_value().

The drmaa_wait() function reaps job data records on a successful call, so any subsequent calls to drmaa_wait() will fail, returning a DRMAA_ERRNO_INVALID_JOB error code, meaning that the job's data record has already been reaped. This error code is the same as if the job were unknown. If drmaa_wait() exists due to a timeout, DRMAA_ERRNO_EXIT_TIMEOUT is returned and no rusage information is reaped. (The only case where drmaa_wait() can be successfully called on a single job more than once is when the previous call(s) to drmaa_wait() returned

DRMAA_ERRNO_EXIT_TIMEOUT.)

The stat parameter, set by a successful call to drmaa_wait(), is used to retrieve further input about

the exit condition of the waited job, identified by job_id_out, through the following functions:

drmaa_wifexited(), drmaa_wexitstatus(), drmaa_wifsignaled(), drmaa_wtermsig(),drmaa_wcoredump() and drmaa_wifaborted().

5.6.4.1 Parameters

job_id – The job identifier of the job for which to wait.

job_id_out – A buffer into which the finished job identifier will be written.

job_id_out_len – The size in characters of the job identifier buffer.

stat – Space to write the status code of the finished job.

timeout – The number of seconds to remain blocked waiting for a result.

rusage – Space to write the resouce usage information of the finished job.

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.6.4.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

DRMAA_ERRNO_INVALID_JOB – the job does not exist or has already been reaped.

DRMAA_ERRNO_EXIT_TIMEOUT – the timeout period elapsed before a result was received.

5.6.5 drmaa_wifexited

The drmaa_wifexited() function SHALL evaluate into exited a non-zero value if stat was returned for a job that termined normally, and the job's exit status can be retrieved using the drmaa_wexitstatus() function. The exited parameter is filled with zero if either the job terminated abnormally and hence has no exit status, or if the job terminated normally but nevertheless has no exit status. In the former case, more information can be provided about the job by the drmaa_wifsignaled() and drmaa_wcoredump() functions. In the later case, drmaa_wifsignaled() and drmaa_wifaborted() will provide no additional information.

5.6.5.1 Parameters

exited – Space to write whether the job has an exit status available.

stat – The status code of a finished job.

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.6.5.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

5.6.6 drmaa_wexitstatus

The drmaa_wexitstatus() function evaluates into exit_status the exit code extracted from stat, provided that a call to drmaa_wifexited() with this stat would return a non-zero value.

5.6.6.1 Parameters

exit_status – Space to write job's exit status.

stat – The status code of a finished job.

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.6.6.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

5.6.7 drmaa_wifsignaled

The drmaa_wifsignaled() function SHALL evaluate into signaled a non-zero value if stat was returned for a job that terminated due to the receipt of a signal. A zero value indicates the job either did not terminate due to a signal or it is not known if the job terminated due to a signal.

5.6.7.1 Parameters

signaled – Space to write whether the job terminated on a signal.

stat – The status code of a finished job.

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.6.7.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

5.6.8 drmaa_wtermsig

The drmaa_wtermsig() function SHALL fill signal with up to signal_len characters of the signal name that caused the termination of the job, provided that a call to drmaa_wifsignaled() with this stat would return a non-zero value. For signals declared by POSIX, the symbolic names are returned. For non-POSIX signals, the returned names are implementation dependent.

5.6.8.1 Parameters

signal – A buffer in which to write the name of the signal.

signal_len – The size in characters of the signal buffer.

stat – The status code of a finished job.

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.6.8.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

5.6.9 drmaa_wcoredump

The drmaa_wcoredump() function SHALL fill core_dumped with a non-zero value provided that a call to drmaa_wifsignaled() with this stat would return a non-zero value, and a core image of the terminated job was created.

5.6.9.1 Parameters

core_dump – Space in which to write whether the job produce a core image.

stat – The status code of a finished job.

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.6.9.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

5.6.10 drmaa_wifaborted

The drmaa_wifaborted() function SHALL fill aborted with a non-zero value if stat was returned for a job that ended before entering the running state.

5.6.10.1 Parameters

aborted – Space in which to write whether the job aborted before running.

stat – The status code of a finished job.

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.6.10.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

5.7 Auxilliary Functions

A DRMAA C binding implementation SHALL provide the following auxilliary functions:

const char *drmaa_strerror(int drmaa_errno);

int drmaa_get_contact(char *contact, size_t contact_len,

 char *error_diagnosis, size_t error_diag_len);

int drmaa_version(unsigned int *major, unsigned int *minor,

 char *error_diagnosis, size_t error_diag_len);

int drmaa_get_DRM_system(char *drm_system, size_t drm_system_len,

 char *error_diagnosis,

 size_t error_diag_len);

int drmaa_get_DRMAA_implementation(char *drmaa_impl,

 size_t drmaa_impl_len,

 char *error_diagnosis,

 size_t error_diag_len);

5.7.1 drmaa_strerror

The drmaa_strerror() function SHALL return the error string describing the DRMAA error number drmaa_errno.

5.7.1.1 Parameters

drmaa_errno – The error code for which a string description is to be returned.

5.7.1.2 Return Value

Upon success, the drmaa_strerror() function SHALL return a string description for the error code, drmaa_errno. If drmaa_errno is not a recognized error code, the drmaa_strerror() function SHALL return NULL.

5.7.2 drmaa_get_contact

The drmaa_get_contacts() function, if called before drmaa_init(), SHALL return a string containing a comma-delimited list of default DRMAA implementation contacts strings, one per DRM implementation provided. If called after drmaa_init(), drmaa_get_contacts() SHALL return the contact string for the DRM system for which the library has been initialized.

5.7.2.1 Parameters

contact – A buffer into which the contact string(s) will be written.

contact_len – The size in characters of the contact string buffer.

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.7.2.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

5.7.3 drmaa_version

The drmaa_version() function SHALL set major and minor to the major and minor versions of the DRMAA C binding specification implemented by the DRMAA implementation.

5.7.3.1 Parameters

major – Space into which the major version number will be written.

minor – Space into which the minor version number will be written.

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.7.3.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

DRMAA_ERRNO_NO_ACTIVE_SESSION – no active session.

5.7.4 drmaa_get_DRM_system

The drmaa_get_DRM_system() function, if called before drmaa_init(), SHALL return a string containing a comma-delimited list of DRM system identifiers, one per DRM system implementation provided. If called after drmaa_init(), drmaa_get_DRM_system() SHALL return the selected DRM system.

5.7.4.1 Parameters

drm_system – A buffer into which the DRM system identifier(s) will be written.

drm_system_len – The size in characters of the DRM system identifier buffer.

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.7.4.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

5.7.5 drmaa_get_DRMAA_implementation

The drmaa_get_DRMAA_implementation() function, if called before drmaa_init(), SHALL return a string containing a comma-delimited list of DRMAA implementations, one per DRMAA implementation provided. If called after drmaa_init(), drmaa_get_DRMAA_implementation() SHALL return the selected DRMAA implementation.

5.7.5.1 Parameters

drmaa_impl – A buffer into which the DRMAA implementation identifier(s) will be written.

drmaa_impl_len – The size in characters of the DRMAA implementation identifier buffer.

error_diagnosis – A buffer into which error diagnosis information will be written.

error_diag_len – The size in characters of the error diagnosis string buffer.

5.7.5.2 Return Codes

DRMAA_ERRNO_SUCCESS – success.

DRMAA_ERRNO_INTERNAL_ERROR – unexpected or internal error.

DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE – could not contact the DRMS for this request.

DRMAA_ERRNO_AUTH_FAILURE – the user is not authorized to perform this operation.

DRMAA_ERRNO_INVALID_ARGUMENT – an argument value is invalid.

DRMAA_ERRNO_NO_MEMORY – not enough free memory to perform the operation.

6. C binding example

The C program below serves as an example of an application that uses the DRMAA C binding interface. It illustrates submission of both single and bulk remote jobs. After submission the drmaa_synchronize() call is used to synchronize the remote jobs execution. The call returns after all the jobs have finished executing. Finally, drmaa_wait() call is used to retrieve and print out the remote jobs' execution information.

A full path for the remote command is passed as the first argument to the test program. That value is directly used as the value for the “drmaa_remote_command” job template attribute. The C binding example program below uses value “5” as a first argument to the job template vector attribute “drmaa_v_argv”. Passing “/bin/sleep” as a first argument to the test program will, for example, cause 32 “sleep” jobs to be run that sleep for 5 seconds each before finishing execution. Note that the example program expects, in this case, to find “/bin/sleep” command on all of the remote nodes.

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#include "drmaa.h"

#define JOB_CHUNK 8

#define NBULKS 3

static drmaa_job_template_t *create_job_template(const char *job_path, int seconds,

 int as_bulk_job);

int main(int argc, char *argv[])

{

 char diagnosis[DRMAA_ERROR_STRING_BUFFER];

 const char *all_jobids[NBULKS*JOB_CHUNK + JOB_CHUNK+1];

 char jobid[100];

 int drmaa_errno, i, pos = 0;

 const char *job_path = NULL;

 drmaa_job_template_t *jt = NULL;

 if (argc<2) {

 fprintf(stderr, "usage: example <path-to-job>\n");

 return 1;

 }

 job_path = argv[1];

 if (drmaa_init(NULL, diagnosis, sizeof(diagnosis)-1) != DRMAA_ERRNO_SUCCESS) {

 fprintf(stderr, "drmaa_init() failed: %s\n", diagnosis);

 return 1;

 }

 /*

 * submit some bulk jobs

 */

 if (!(jt = create_job_template(job_path, 5, 1))) {

 fprintf(stderr, "create_job_template() failed\n");

 return 1;

 }

 for (i=0; i<NBULKS; i++) {

 drmaa_job_ids_t *jobids = NULL;

 int j;

 while ((drmaa_errno=drmaa_run_bulk_jobs(&jobids, jt, 1, JOB_CHUNK, 1, diagnosis,

 sizeof(diagnosis)-1)) ==

 DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE) {

 fprintf(stderr, "drmaa_run_bulk_jobs() failed - retry: %s %s\n", diagnosis,

 drmaa_strerror(drmaa_errno));

 sleep(1);

 }

 if (drmaa_errno != DRMAA_ERRNO_SUCCESS) {

 fprintf(stderr, "drmaa_run_bulk_jobs() failed: %s %s\n", diagnosis,

 drmaa_strerror(drmaa_errno));

 return 1;

 }

 printf("submitted bulk job with jobids:\n");

 for (j=0; j<JOB_CHUNK; j++) {

 drmaa_get_next_job_id(jobids, jobid, sizeof(jobid)-1);

 all_jobids[pos++] = strdup(jobid);

 printf("\t \"%s\"\n", jobid);

 }

 drmaa_release_job_ids(jobids);

 }

 drmaa_delete_job_template(jt, NULL, 0);

 /*

 * submit some sequential jobs

 */

 if (!(jt = create_job_template(job_path, 5, 0))) {

 fprintf(stderr, "create_sleeper_job_template() failed\n");

 return 1;

 }

 for (i=0; i<JOB_CHUNK; i++) {

 while ((drmaa_errno=drmaa_run_job(jobid, sizeof(jobid)-1, jt, diagnosis,

 sizeof(diagnosis)-1)) ==

 DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE) {

 fprintf(stderr, "drmaa_run_job() failed - retry: %s\n", diagnosis);

 sleep(1);

 }

 if (drmaa_errno != DRMAA_ERRNO_SUCCESS) {

 fprintf(stderr, "drmaa_run_job() failed: %s\n", diagnosis);

 return 1;

 }

 printf("\t \"%s\"\n", jobid);

 all_jobids[pos++] = strdup(jobid);

 }

 /* set string array end mark */

 all_jobids[pos] = NULL;

 drmaa_delete_job_template(jt, NULL, 0);

 /*

 * synchronize with all jobs

 */

 drmaa_errno = drmaa_synchronize(all_jobids, DRMAA_TIMEOUT_WAIT_FOREVER, 0, diagnosis,

 sizeof(diagnosis)-1);

 if (drmaa_errno != DRMAA_ERRNO_SUCCESS) {

 fprintf(stderr,

 "drmaa_synchronize(DRMAA_JOB_IDS_SESSION_ALL, dispose) failed: %s\n",

 diagnosis);

 return 1;

 }

 printf("synchronized with all jobs\n");

 /*

 * wait all those jobs

 */

 for (pos=0; pos<NBULKS*JOB_CHUNK + JOB_CHUNK; pos++) {

 int stat;

 int aborted, exited, exit_status, signaled;

 drmaa_errno = drmaa_wait(all_jobids[pos], jobid, sizeof(jobid)-1, &stat,

 DRMAA_TIMEOUT_WAIT_FOREVER, NULL, diagnosis,

 sizeof(diagnosis)-1);

 if (drmaa_errno != DRMAA_ERRNO_SUCCESS) {

 fprintf(stderr, "drmaa_wait(%s) failed: %s\n", all_jobids[pos], diagnosis);

 return 1;

 }

 /*

 * report how job finished

 */

 drmaa_wifaborted(&aborted, stat, NULL, 0);

 if (aborted) {

 printf("job \"%s\" never ran\n", all_jobids[pos]);

 } else {

 drmaa_wifexited(&exited, stat, NULL, 0);

 if (exited) {

 drmaa_wexitstatus(&exit_status, stat, NULL, 0);

 printf("job \"%s\" finished regularly with exit status %d\n",

 all_jobids[pos], exit_status);

 } else {

 drmaa_wifsignaled(&signaled, stat, NULL, 0);

 if (signaled) {

 char termsig[DRMAA_SIGNAL_BUFFER+1];

 drmaa_wtermsig(termsig, DRMAA_SIGNAL_BUFFER, stat, NULL, 0);

 printf("job \"%s\" finished due to signal %s\n",

 all_jobids[pos], termsig);

 } else {

 printf("job \"%s\" finished with unclear conditions\n",

 all_jobids[pos]);

 }

 }

 }

 }

 if (drmaa_exit(diagnosis, sizeof(diagnosis)-1) != DRMAA_ERRNO_SUCCESS) {

 fprintf(stderr, "drmaa_exit() failed: %s\n", diagnosis);

 return 1;

 }

 return 0;

}

static drmaa_job_template_t *create_job_template(const char *job_path, int seconds,

 int as_bulk_job)

{

 const char *job_argv[2];

 drmaa_job_template_t *jt = NULL;

 char buffer[100];

 if (drmaa_allocate_job_template(&jt, NULL, 0)!=DRMAA_ERRNO_SUCCESS) {

 return NULL;

 }

 /* run in users home directory */

 drmaa_set_attribute(jt, DRMAA_WD, DRMAA_PLACEHOLDER_HD, NULL, 0);

 /* the job to be run */

 drmaa_set_attribute(jt, DRMAA_REMOTE_COMMAND, job_path, NULL, 0);

 /* the job's arguments */

 sprintf(buffer, "%d", seconds);

 job_argv[0] = buffer;

 job_argv[1] = NULL;

 drmaa_set_vector_attribute(jt, DRMAA_V_ARGV, job_argv, NULL, 0);

 /* join output/error file */

 drmaa_set_attribute(jt, DRMAA_JOIN_FILES, "y", NULL, 0);

 /* path for output */

 if (!as_bulk_job) {

 drmaa_set_attribute(jt, DRMAA_OUTPUT_PATH, ":"DRMAA_PLACEHOLDER_HD"/DRMAA_JOB",

 NULL, 0);

 } else {

 drmaa_set_attribute(jt, DRMAA_OUTPUT_PATH,

 ":"DRMAA_PLACEHOLDER_HD"/DRMAA_JOB."DRMAA_PLACEHOLDER_INCR,

 NULL, 0);

 }

 return jt;

}

7. Security Considerations

The DRMAA API does not specifically assume the existence of a GRID Security infrastructure. The scheduling scenario described herein presumes that security is handled at the point of job authorization/execution on a particular resource. It is assumed that credentials owned by the process using the API are used by the DRMAA implementation to prevent abuse of the interface. In order to not unnecessarily restrict the spectrum of usable credentials, no explicit interface is defined for passing credentials.

It is conceivable that an authorized but malicious user could use a DRMAA implementation or a DRMAA-enabled application to saturate a DRM system with a flood of requests. Unfortunately for the DRM system, this case is not distinguishable from the case of an authorized, good-natured user that has many jobs to be processed. To address this case, DRMAA defines the DRMAA_ERRNO_TRY_LATER return code, to allow a DRM system to reject requests and properly indicate DRM saturation.

DRMAA implementers should guard against buffer overflows that could be exploited through DRMAA-enabled interactive applications or web portals. Implementations of DRMAA will most likely require a network to coordinate subordinate DRMS. However, the API makes no assumptions about the security posture provided by the networking environment. Therefore, application developers should further consider the security implications of the "on-the-wire" communications.

For environments that allow remote or protocol based DRMAA clients, DRMAA should consider implementing support for secure transport layers to prevent man in the middle attacks. DRMAA does not impose any security requirements on its clients.

8. Author Information

Roger Brobst

rbrobst@cadence.com

Cadence Design Systems, Inc

555 River Oaks Parkway

San Jose, CA 95134

Nicholas Geib

njgeib@wisc.edu
University of Wisconsin Madison

USA

Andreas Haas

andreas.haas@sun.com

Sun Microsystems GmbH

Dr.-Leo-Ritter-Str. 7

D-93049 Regensburg

Germany

Hrabri L. Rajic

hrabri.rajic@intel.com

Intel Americas Inc.

1906 Fox Drive

Champaign, IL 61820

Daniel Templeton

dan.templeton@sun.com

Sun Microsystems GmbH

Dr.-Leo-Ritter-Str. 7

D-93049 Regensburg

Germany

John Tollefsrud

j.t@sun.com

Sun Microsystems

18 Network Circle, UMPK18-211

Menlo Park, CA 94025

Peter Tröger

peter.troeger@hpi.uni-potsdam.de

Hasso-Plattner-Institute, University of Potsdam

Prof.-Dr.-Helmert-Str. 2-3

14482 Potsdam

Germany

9. Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this recommendation. Please address the information to the GGF Executive Director.

10. Full Copyright Notice

Copyright (C) Global Grid Forum (date). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the GGF or other organizations, except as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the GGF Document process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

drmaa-wg@gridforum.org
1

