GWD-R Peter Troger*, Hasso-Plattner-Institute (editor)

Distributed Resource Management Daniel Templeton, Sun Microsystems (editor)
Application APl (DRMAA) Working Roger Brobst, Cadence Design Systems
Group Andreas Haas*, Sun Microsystems
Hrabri Rajic*, Intel Americas Inc.

*co-chairs

April, 2007

Distributed Resource Management Application API 1.0 - IDL Specification

Status of This Document

This document provides information to the Grid community. Distribution is unlimited.

Copyright Notice

Copyright © Open Grid Forum (2005-2007). All Rights Reserved.

Abstract

This document describes the common base for the Distributed Resource Management
Application APl (DRMAA) bindings for procedural and object-oriented languages. The

document reflects the original semantics from the DRMAA 1.0 OGF recommendation
document.

drmaa-wg@gridforum.org 1

Table of Contents

1 INTRODUCTION 4
1.1 NOTATIONAL CONVENTIONScooiutreriieeeeeiitrereeeeeeeiiitrereeeseeesstaereeeeeeessstssresesesesnsissresssessemsissseeees 4
2 GENERAL CONCEPTS 4
2.1 DESIGN DECISIONSc.oiiitttiiieeeeeeetteeeeeeeeeetee e e e e e e eseaaaereeeeeeesestaareeeeeeessttareeeesessasaareeesesseenraareeeess 4
2.2 IDL LANGUAGE MAPPINGccoiiuuveeieeeiieiieeeeeeeeeeesiateeeeeseeesiaseeseeeesesstssseeesseessssereesssssssssrsseeeesssnns 5
3 THE DRMAA API MODULE 6
4 DATA TYPES 7
4.1 JOBCONTROLACTION ENUMERATIONceoiiuttieeeeeeeeiiirereeeeeeeeetnrreeeeeeesesrsseseeeeeesisssssesseesesssnnseseess 7
4.2 JOBPROGRAMSTATE ENUMERATION.........ceoiiutrtreeeeeeeiitrereeeeeeeeeitrereeeeeeeeetrsseseeeeeeeisssseeeseeeeensnnseeeess 7
4.3 JOBSUBMISSIONSTATE ENUMERATIONuuuvviiiieeieeiiinereeeeeeeiitnrreeeeeeeseitssreseeeeeenssssseessessessnnseseens 8
4.4 FILETRANSFERMODE VALUE TYPEccieiiiiiiitiiiieeeeeeiiitaeeeeeeeeeseitaereeeeeeesestaseeeeeeeeesssssssesseeeeessnnsesesss 8
4.5 VERSION VALUE TYPEouvvtiiiieiieiiiiieeeeeeeeeeitteeeeeeeeesitaeseeeeeeesetasseseseeesetssseseseeeeesssssseeeeeseesnnreeeens 9
5 EXCEPTIONS 9
5.1 ALREADYACTIVESESSIONEXCEPTION........ccoiiuttieiieeieiiitreeeeeeeeeeetrereeeeeeeesstssreeeeesesessnneesseeesnssnnnes 10
52 AUTHORIZATIONEXCEPTIONcooiiuuiriiieeeiieiitreeeeeeeeeeiteeeeeeeeeesataereeeeeeeeetssreeeeeeeeensareeeeeeeeesnanes 10
53 CONFLICTINGATTRIBUTEVALUESEXCEPTIONuuvviiiiieeiieiiireeeeeeeeeeiteeeeeeeeeeeenarereeeeeeeeenannneeeees 10
54 DEFAULTCONTACTSTRINGEXCEPTIONcooiuitviiiieeiiiiitieeeeeeeeeeetrereeeeeeeeetaereeeeeeeeesssaneeseeeeeennnnes 10
5.5 DENIEDBYDRMEXCEPTION........ccoititutiiieeeiieiitreeeeeeeeeeitreeeeeeeeesestaereeeseeeesstssreeseeseesnsseeesseeeeesinnnes 10
5.6 DRMCOMMUNICATIONEXCEPTIONccoiiiiiiiiitieeeeeeeeesitreeeeeeeeesetaereeeeeeeeestssreeeeesesessnneesseeesnninnnes 11
5.7 DRMSEXITEXCEPTION.uuvttiiiiiiiiiiiieeeeeeeeeeeiteeeeeeeeeeeatveeeeeeeeesstaereeeeeeeastssreeeeeeeesssaseeeeeeeeassrnnes 11
5.8 DRMSINITEXCEPTION.cuuvtiiiieieiiiiiieeeeeeeeeeeiteeeeeeeeeesitreeeeeeeeessstaereeeseeeasstssreseeeeeeesssseeeeeeeeesirnnes 11
5.9 EXITTIMEOUTEXCEPTIONcoiiiiiiiiiiieeeee e e eeeeiteeee e e e eeeeitaee e e e e eeeeataaeeeeeeeessstsareeeseseennasaneeeseeeeennnnes 11
5.10 HOLDINCONSISTENTSTATEEXCEPTIONcuviiiiiiiiiiierieeeeeeieiirreeeeeeeeeeiareeeeeeeeesisserseeeeeesensnseeeees 11
5.11 INTERNALEXCEPTION......coiiiiiiiiiitieieeeeeeeiieeeeeeeeeeeaeeeeeeeeeeesaareeeeeeeeesiasaeseseeeeessstraseeeeeeennasrreeeeas 11
5.12 INVALIDARGUMENTEXCEPTIONcccotitiuririeeeeeeiiiiereeeeeeeeesisareeeeeeeeesissseseseeeeenssssesseeeeeenssssnreseees 11
5.13 INVALIDATTRIBUTEFORMATEXCEPTION......ccccciiiiiituiriieeeeiieiirreeeeeeeeeeitreeeeeeeeensstsereeeeeeennssnneeeees 11
5.14 INVALIDATTRIBUTEVALUEEXCEPTIONcciiiiiiiiitierieeeeeiieiitreeeeeeeeeeiatreeeeeeeeesnssrereeeeeeessssnneeeees 11
5.15 INVALIDCONTACTSTRINGEXCEPTIONcuvuviiiiiiiiiiiereieeeeeieiiereeeeeeeeeniereeeeeseeesesssereeeeeeesnsnnseseees 11
5.16 INVALIDJOBEXCEPTIONcccooiiuuuiriieeeeeiiireeeeeeeeeeeiuereeeeeeeeesssseeeseeeeesisssessseseesssssresseeeeeessssrseseees 12
5.17 INVALIDJOBTEMPLATEEXCEPTIONccooouuuviieeeeiiiiiereeeeeeeeeiitnreeeeeeeeesissereeeeeeenssssesseeeeeensnssnneseess 12
5.18 NOACTIVESESSIONEXCEPTIONccciiiiiiiiirerieeeeeeiiitereeeeeeeeeiissreeeeeeeeesissessseseessssssssesseeesnsisnseseess 12
5.19 NODEFAULTCONTACTSTRINGSELECTEDEXCEPTIONccceoviuvreiieeeeeeiirreeeeeeeeeniireeeeeeeeesnnnnneeeees 12
520 OUTOFMEMORYEXCEPTIONcuuviiiiiiiiiiiiiereeeeeeeieiaereeeeeeeeesaareeeeeeeeesiasaesseeseeessssresseeeeeeneararereees 12
5.21 RELEASEINCONSISTENTSTATEEXCEPTIONcceiitiuuuriieeeeiieiitrreeeeeeeeeeisrereeeeeeenssnereeeeeeesnsssnreeeess 12
5.22 RESUMEINCONSISTENTSTATEEXCEPTIONcccciiiiiiuiiriieeeeiieiirreeeeeeeeeeiaaeeeeeeeeenesssereeeeeeeseannneeeees 12
5.23 SUSPENDINCONSISTENTSTATEEXCEPTIONccceiiiiuiiriieeeeiieiirreeeeeeeeeiiiereeeeeeeeesessnereeeeeeessssnneeeees 12
5.24 TRYLATEREXCEPTIONcccoiiiiiitiitiieeeeeeiitieeeeeeeeeeeaeeeeeeeeeeesaaareeeeeeeeesssseseseseeessstraseeeeeeennarrreeeees 12
5.25 UNSUPPORTEDATTRIBUTEEXCEPTIONouvviiiiiiiiiitiiriieeeeiieiirreeeeeeeeeeiaseeeeeseeenessseseeeeeeennsssnseeeess 12
526 ILLEGALSTATEEXCEPTIONccoiuuvitiieeiieiiirereeeeeeeeeaereeeeeeeeesaareeeeeeeeesissseeeseeeeessstserseeeeeenesarrreeeees 13
6 THE PARTIALTIMESTAMP 13
7 JOBINFO INTERFACE 14
7.1 JOBID ..ottt e e e e e ettt e e e e e —— et eeeeeaa———— et eeee s e e a—tteeeeesaennares 15
7.2 RESOURCEUSAGEcoiiiiiititiieee ettt ettt e e e e e et tae e e e e s e e sabaaeeeeesessensaaseeeeessessasaseeeeessennnees 15
7.3 HASEXITED ...ttt ettt e e e s e et e et e e e s e esaabaaeeeeesesasnsaaseeeeessassasaseeeessaennnees 15
7.4 EXITSTATUS ...eeeeeeeeeeeeeeeeeeeteee e e eeetaaeeeeeeeseesaaaeeeeeeseesaasaaeeeeesseaasaaeteessesaansasseeeessssnnsassseeeeesansnnnes 15
7.5 LS TN (€N 5521 0 RO 15

drmaa-wg@gridforum.org 2

7.6 TERMINATINGSIGNALuvvvviieieeeiiitiieeeeeeeeeeeiteeeeeeeseesatveeeeesseesstaareeeseeesssssseeeeessssssseeeseesssassnnnes
7.7 HASCOREDUMP.....coiiiiiiictieteeee ettt e e et e e e e e e st et e e e eeeasataareeeeessesnaaeeeeeeessennnees
7.8 AN YA 210) 2% 1 21 OO RRRRRRRRN

8 JOBTEMPLATE INTERFACE
8.2 ACCESSING IMPLEMENTATION-SPECIFIC ATTRIBUTESuuuuuuuuerererererererssnsssssnsssssssessssssssnsnnsennnees
8.3 CONSTANTS .. ceeeteeeeee ettt e e e e e e et e et eeee s e et aaaeeeeessaasaaaeeeeeeseasasaeeeeeesesansaseseeessesansesseeeeessannrreseeeeas
8.4 REMOTECOMMANDiiutiiiieee et ettt e e e e e eeeaaaeeeeeeseesaaaeeteeeseesssaaseeessssassesseeeesssssnrssseeseesssnsnnnees
8.5 ARGS ettt et e e e e e e ————eeeesa e —————teee e e e i ————teeeeeeaa———tteeeeeeaaa——tereeesaannnres
8.6 JOBSUBMISSIONSTATE ...oevvvvtieetieieiieeeeeeeeeeeeeiaeeeeeeeseesnseeeeeesseesssassteesssssssesseeesessasnnsssseseesssnsnnnees
8.7 JOBENVIRONMENTcettiiutitttietteiiiieeeeeeeeeeeeeaateeeeeeseesataeeeeesseessssaseeeessesassesseeeesssasnsssseseesssennnnees
8.8 WORKINGDIRECTORY .vvvvvieeiiiiietieeeeeeeeeeeisteeeeeeeeseesssassesesesesssssssseessesssssessseesssssssssseeesssssssssseeees
8.9 JOBEO ATEGORY ..vvveeiiieiiiiieieeteeee et e eeaeeeeeeeeeeeaaeeeeeeeseessataaeeeeeseesssaaeeeessesasnsasseeeesssansasaseseesssennnnees
8.10 NATIVESPECIFICATIONcoiiiutueiieiieeieeiieeteeeeeeeeeeeaaeeeeesseesssaaeseeseeseassassseesesssssnsseeeeesssessnssesseessssnns
LI S =3 1 | SRR
LI A =3 010 103 3. VN | SRR
813 STARTTIME . ..ciiiiiiiieiiiee ettt ettt e e et e e e e e e e aeeeeeeeseesaaaeeeeessesnasaaeeeeessennsaaneeeeesans
LI S 1012\ 7N Y, § SRR
LI T 1) & 616 SN U SRR
B.160 OUTPUTPATH. ...t ettt e e e e e ettt e e e e s eea et e e e eessesnaaaaeeeeeseesnsaaeeeeeeeans
oI RS 23 24 210) 2 &Ny & OO T SRS
LI T 1011 2 1 51 21PN
.19 TRANSFERFILESeutiiiiiiiiiieeeeee ettt ettt e e e e e et e e e e e s e e aaaeeeeessssnasaaeeeeeseesnnsaaeeeeeeeans
LI I) 27N 0) 5101 2 1LY SRR
8.21 HARDWALLCLOCKTIMELIMITcciiiiiuiiitieiiiieiieeeeeeeeeeeeieeee e e e e s eenaaeeeeeesseenasaeeeeeessesnnsaenseeseeans
8.22 SOFTWALLCLOCKTIMELIMIT ...oooiiiiiiiiiiiiieei et eee e eeeeeae e e e e e e ettt e e e e s eenaaaaeeeeeseesnnsaeeseeseeanns
8.23 HARDRUNDURATIONLIMIT ...ovvviiiiiiiiiieiiiie ettt eeeeeeeeaeee e e e e s eensaaeeeeeesseenasaeeeeeeseesnnsaeeseeesenns
8.24 SOFTRUNDURATIONLIMITuuuiiiiiiiiieiieiieieeeeeeeieeeeeeeeeeeeaeaeeeeeeeseesaaeeeeeessssssnsseeeeeessssnsseeeeeesesnns
8.25 ATTRIBUTEINAMES.....cttiiiiiiieitteteteeeeeeeeieeeeeeeeeeeeeaaaeteeesessasaaeteeeeeseessasseeeeesssssnsseeeeeessessnrreeeeesesanns

9 SESSION INTERFACE
9.1 CONSTANTS . ..ttteteeeeeeeccctte e e e e et eeer et e e e eeeeeetaaeeeeeeeeeetaaeaeeeeeeesasaeseaeseeeaaataaaeeeeeeeaantsrseaeeeeeansrrreeeeas
9.2 INIT . tttreeee e e eeeet ettt e e e e eeeetaa et e eeeeeeetaaaeeeeeeeeeaatssaaeeeeeeeaaassasaeeeeeeassssseeeeeeeasassssaeeseeeeeassssseeeeeeennnnres
9.3 EXIT . .tttreeee e e eeeeeitee et e e e eeeeetaa et e e e eeeeettaaaeeeeeeeeeeaaaaaeseeeeaaassaaeaeeeeeastsaseaeeeeeastasraaeeeeeaanarreeeeeeeeennnres
9.4 CREATEJOBTEMPLATE.......uuvtiiiiiiiiiiiiteeeeeeeeeeittaeeeeeeeeeeiataeeeeeeeeeeetaareeeeeeeseatssreeeseeeeenassreeeeeeeenannres
9.5 DELETEJOBTEMPLATEuuvviiiiiiiiiiiiieeee e e eeeettaeee e e e eeeetae e e e e eeeeataaaeeeeeeesetasreeeeeeeeentssseeeseeeeennnnes
9.6 RUNJOB .ottt ettt e ettt e e et ettt e e e e e e eeeeataeeeeeeeeeeeataareaeeeeeastssseeeeeeeeensssseeeeeeeennneres
9.7 RUNBULKJOBS ...ovvtiiiiiieecie ettt ettt e e ettt e e e e e e et e e e e e e eeeeetasaeeeeeeeeentssaeaeeeeeeesnnres
9.8 CONTROL ..coeeeeeeiiteeeeeeeeeeeete et ee e e e e et taaeeeeeeeeeetaaeaeeeeeeesatsaseseeeeeaestsaseaeeeeeastssseseseeeennsssseeeeeeennannres
9.9 SYNCHRONIZE.....cceeeeeeiiureeteeeeeeieitrreeeeeeeeetttrreeeseeeaaettssseeseseeasitsssssseseeeaatrsseseseeesestsrseeeeeeeanasrrreeeees
Q.10 WAIT oottt e ee et e e e e e e et e e e e e e e eeetaaaeeeeeeeeeraasseaeeeeeeesarssaeeeeeeeaastarseeeeeeeneasrreeeeas
Q.11 JOBPROGRAMSTATUS . ..uvviiiieiieeiitiieee e e eeeeiteeee e e e e eeeeaaaeeeeeeeeeetrreeeeeeeeesiasaseeeeeeeeasssrsseeeeeeeeearrreeeeas
.12 CONTACT ...ettieeeeee e eeeeee e e e e ettt e e e e e e et e aeaeeeeeeetaaaaaeeeeeeesassseaeeeeeeesssssaeeeeeeeaenttsssaeeeeeaessrreeeeas
.13 VERSION ...uuuititiieeeeeeeectiteeeeeeeeeettee e e e e eeeetaaaseaeeeeesetaaaeeeeeeeeesatsseaeeeeeeesasssseeeeeeeasattsssaeeeeeaessrseeenas
Q.14 DRMSINFOuviiiiiiiieeeeeeee ettt e e e e e e e e e e e ettt reeeeeeeeesarasaeeeeeeeaentsaseaeeeeeeensrreeeeas
9.15 DRMAAIMPLEMENTATION.......ccoiutuitieeeeeeiiitneeeeeeeeeeeiarreeeeeeeeesissreeeeeeeeesissssseseeeeeassssseeeeeeeeenssrreeeess

10 ANNEX
10.1 COMPLETE IDL SPECIFICATIONuvviiiiiiiiiiureeeeeeeeeiiureeeeeeeeesisrereeeseeesetseseeeeeeessssssressseeesnssnseseens
10.2 CORRELATION OF DRMAA EXCEPTIONS AND ERROR CODEScccvvvviiriiiiiiiiiiiieieiereeeeeeeeeseeeeeeens
10.3 CORRELATION OF JOBTEMPLATE ATTRIBUTES AND ATTRIBUTE NAME STRINGScocvvvvvvverirerenns

11 SECURITY CONSIDERATIONS

12 REFERENCES

13 CONTRIBUTORS

drmaa-wg@gridforum.org 3

14 ACKNOWLEDGEMENTS 44

15 INTELLECTUAL PROPERTY STATEMENT 44
16 DISCLAIMER 44
17 FULL COPYRIGHT NOTICE 45

1 Introduction

This document gives an IDL description for the DRMAA interface. It arises from the results of a
collaborative effort to bring the Java™ language binding and .NET language binding into
agreement, based on the DRMAA 1.0 specification.

The DRMAA 1.0 specification was written originally with a procedural C-language slant. As
such, several aspects of the DRMAA interface needed to be altered slightly to better fit with
object-oriented languages. Among the aspects that changed are variable and method naming
and the error structure.

Although this document can be seen as stand-alone, it still bases on the concepts defined in the
DRMAA 1.0 specification. The text refers to the respective chapter of the DRMAA standard
whenever it is necessary.

1.1 Notational Conventions

In this document, the following conventions are used:

. IDL language elements and definitions are represented in a fixed-width font.
. References to IDL language elements and definitions are represented in italics.

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,”
“‘SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” are to be interpreted as
described in RFC-2119 [RFC 2119].

The document describes the DRMAA interface semantics with the help of OMG IDL [OMG IDL].
It includes a set of overall rules for the creation of specific language bindings for the given
specification. Specific examples are given for the Java language. These examples are not
normative.

2 General Concepts
21 Design Decisions

An effort has been made to choose design patterns that are not unique to a specific language.
However, in some cases, various languages disagree over some points. In those cases, the
most meritous approach was taken, irrespective of language.

The following text bases on the terminology of OMG IDL. For this reason, all operational
semantics are described in terms of interfaces and not of classes. This concept ensures the
possibility to map the described operational semantics to a variety of object-oriented, and even
procedural, languages. The usage of a class concept depends on the specific language-
mapping rules. The IDL specification assumes that destination languages for a binding typically
support the concepts of exceptions.

If a destination language does not support the notion of exceptions (like ANSI C), the language
binding SHOULD map error conditions to an appropriate consistent concept. A language
binding MAY chose to model exceptions as numeric error code return values, and return values
as additional output parameters of the operation.

drmaa-wg@gridforum.org 4

2.2 IDL language mapping

Language binding documents based on this specification MUST define a mapping between the
IDL constructs used in this specification and their specific language constructs. A language
binding SHOULD NOT rely itself completely on the OMG language mapping documents
available for many programming languages. It must be considered that the OMG mappings
bring a huge overhead of irrelevant CORBA-related mapping rules into the specification.
Therefore it must be carefully decided whether a binding decision reflects a natural and simple
mapping of the intended purpose for the DRMAA interfaces. In most situations it SHOULD be
enough to reuse value type mappings only and to define custom mappings for the reference
types.

The language binding MUST use the described concept mapping in a consistent manner for the
overall specification.

It may be the case that IDL constructs do not map directly to an according language construct.
In this case it MUST be ensured that the according construct in the particular language retains
the intended semantic of the DRMAA interface definition.

Languages without an explicit notion of enumerations MAY map the IDL enumeration values to
constant class members, enabled by the distinct naming of all enumeration values in the
specification.

Some attributes and operation parameters are scoped (“DRMAA::"), in order to avoid naming
clashes in case-insensitive programming languages. Language bindings for case-sensitive
languages SHOULD omit this explicit scoping.

This specification tries to consider the possibility of a Remote Procedure Call scenario in a
DRMAA-conformant language mapping. It SHOULD therefore be ensured that the programming
language type for an IDL valuetype definition supports the serialization and comparison of
valuetype instances. These capabilities SHOULD be accomplished through whatever
mechanism is most natural for the specific programming language.

Java binding example:

IDL Java language
module definition package keyword
interface definition public abstract interface definition
enum definition with enumeration members Enumeration members become Java int

constants in the surrounding interface definition

string type java.lang.String

long type int

long long type long

const type public static final

boolean type boolean

[readonly] attribute type Getter [and setter] methods in JavaBeans™

style, boolean readonly attribute names are

drmaa-wg@gridforum.org 5

prefixed with “get”.

exception type Class definition, derived from
java.lang.Exception

raises clause throws clause
valuetype definition public class definition, may additionally
implement the Cloneable, Serializable, and

Compareable interfaces

factory definition class constructor

The DRMAA IDL definition defines specialized custom types as new value types, in order to
express their intended semantics:

// unbounded native ordered string list

valuetype OrderedStringList sequence<string>;

// unbounded native string list

valuetype StringlList sequence<string>;

// dictionary type, for unbounded key-value pair storage
valuetype Dictionary sequence< sequence<string,2> >;

// amount of time, at least with a resolution to seconds
valuetype TimeAmount long long;

The language-binding author SHOULD replace these type definitions directly with semantically
equal references or value types from the according language. This MAY include the creation of
new complex language types for one or more of the above concepts, depending on the context.

Java binding example:

IDL Java
StringList Java.util.Set
OrderedStringList Java.util.List
TimeAmount long
Dictionary Java.util.Map

3 The DRMAA API Module

The DRMAA interfaces and structures are encapsulated by a naming scope, which avoids
conflicts with other API’s used in the same application.

module DRMAA {
}
Language binding authors MUST map the IDL module encapsulation to an according package

or namespace concept and MAY change the module name according to programming language
conventions.

drmaa-wg@gridforum.org 6

Java binding example:

IDL Java

module DRMAA package org.drmaa

4 Data Types

4.1 JobControlAction enumeration

The JobControlAction enumeration is used as a input parameter type by the control() method in
the Session interface. The meanings of the enumeration values are specified in the description
of the method in section 9.8.

enum JobControlAction {
SUSPEND,
RESUME,
HOLD,
RELEASE,
TERMINATE
}i

4.2 JobProgramState enumeration

The JobProgramState enumeration is used as a input parameter type by the
JjobProgramStatus() method in the Session interface. The meanings of the enumeration values
are specified in the description of the method in section 9.11. A DRMAA implementation is not
required to be able to return all of the job state values in the JobProgramState enumeration. If
a given job state has no representation in the underlying DRMS, the DRMAA implementation
MAY ignore that job state value. All DRMAA implementations MUST, however, define the
JobProgramState enumeration, and the definition MUST include all job state values, including
those for unused job states. An implementation SHOULD NOT return any job state value other
than those defined in the JobProgramState enumeration.

enum JobProgramState {
UNDETERMINED,
QUEUED ACTIVE,
SYSTEM ON_ HOLD,
USER ON_HOLD,
USER_SYSTEM ON HOLD,
RUNNING,
SYSTEM SUSPENDED,
USER_SUSPENDED,
USER_SYSTEM SUSPENDED,
DONE,
FAILED

}i

The status values relate to the DRMAA job state transition model, as shown in Figure 1.

drmaa-wg@gridforum.org 7

 Oueue
.\ Queued Hold

Valuator

| Rejected
.
Running
Running v
‘.____..J

Active
E

.
Figure 1: DRMAA Job State Transition Diagram

F 3

4.3 JobSubmissionState enumeration

The JobSubmissionState enumeration is used as the type of the
JobTemplate:;jobSubmissionState interface attribute. In the context of the job template, the
enumeration values have the following meaning:

e HOLD STATE: The job may be queued, but it is not eligible to run.
e ACTIVE _STATE: The job is eligible to run.

enum JobSubmissionState {
HOL D_S TATE,
ACT IVE_S TATE

}s

4.4 FileTransferMode value type

The FileTransferMode value-type is used by a JobTemplate instance to indicate the value for
the transferFiles attribute. The type contains three attributes which determine the streams that
will be staged in or out.

valuetype FileTransferMode ({
attribute boolean transferInputStream;
attribute boolean transferOutputStream;
attribute boolean transferErrorStream;

}i

4.41 transferlnputStream

This attribute defines whether to transfer an input stream file. If this attribute contains true, the
transferinputStream attribute of the corresponding job template SHALL be treated as the source
from which the input file should be copied.

4.4.2 transferOutputStream

drmaa-wg@gridforum.org 8

This attribute defines whether to transfer an output stream file. If this attribute contains true,
the transferOutputStream attribute of the corresponding job template SHALL be treated as the
destination to which the output file should be copied.

4.4.3 transferErrorStream

This attribute defines whether to transfer an error stream file. If this attribute contains true, the
transferErrorStream attribute of the corresponding job template SHALL be treated as the
destination to which the error file should be copied.

4.5 Version value type

The Version value type is a holding structure for the major and minor version numbers of the
DRMAA implementation as contained in the version attribute of the Session interface. The
string representation (see section 2.2) of a Version instance MUST be of the form
“<major>.<minor>".

valuetype Version {
readonly attribute long major;
readonly attribute long minor;

}i

4.51 major

This attribute SHALL contain the major version number.

4.5.2 minor

This attribute SHALL contain the minor version number.

5 Exceptions

All exceptions in specific bindings MUST contain a possibility to store and read a textual
description of the exception cause for the exception instance.

Language bindings MAY decide to derive all exceptions from given environmental exception
base class(es). Language bindings SHOULD replace exceptions with a semantically equivalent
native runtime environment exception whenever this is appropriate.

exception AlreadyActiveSessionException {string message;};
exception AuthorizationException {string message;};
exception ConflictingAttributeValuesException {string message;};
exception DefaultContactStringException {string message;};
exception DeniedByDrmException {string message;};

exception DrmCommunicationException {string message;};
exception DrmsExitException {string message;};

exception DrmsInitException {string message;};

exception ExitTimeoutException {string message;};

exception HoldInconsistentStateException {string message;};
exception IllegalStateException {string message;};

exception InternalException {string message;};

exception InvalidArgumentException {string message;};
exception InvalidAttributeFormatException {string message;};
exception InvalidAttributeValueException {string message;};
exception InvalidContactStringException {string message;};

drmaa-wg@gridforum.org 9

exception InvalidJobException {string message;};

exception InvalidJobTemplateException {string message;};

exception NoActiveSessionException {string message;};

exception NoDefaultContactStringSelectedException {string message;};
exception OutOfMemoryException {string message;};

exception ReleaselInconsistentStateException {string message;};
exception ResumeInconsistentStateException {string message;};
exception SuspendInconsistentStateException {string message;};
exception TryLaterException {string message;};

exception UnsupportedAttributeException {string message;};

Language bindings MAY decide to introduce a hierarchical ordering of the DRMAA exceptions
through class derivation. In this case it MAY also happen that new exceptions are introduced for
behavior aggregation. In this case, those exceptions SHALL be marked as abstract, to prevent
them from being thrown.

If the language supports the distinction between static (‘checked’) and runtime (‘unchecked’)
exceptions, all but the following exceptions must be represented as checked exception:

. InternalException
° OutOfMemoryException
. InvalidArgumentException

If a destination language does not support the notion of exceptions (like ANSI C), the language
binding SHOULD map error conditions to an appropriate consistent concept. A language
binding MAY chose to model exceptions as numeric error code return values, and return values
as additional output parameter of the operation. The mapping of exceptions to error codes is
presented in Section 10.2. A language binding SHOULD specify numeric values for all DRMAA
error constants.

5.1 AlreadyActiveSessionException

Initialization failed due to existing DRMAA session.

5.2 AuthorizationException

The user is not authorized to perform the given operation.

5.3 ConflictingAttributeValuesException

The value of this attribute conflicts with one or more previously set properties.

5.4 DefaultContactStringException

The DRMAA implementation could not use the default contact string to connect to DRM system.
5.5 DeniedByDrmException

The DRM system rejected the job. The job will never be accepted due to DRM configuration or
job template settings.

drmaa-wg@gridforum.org 10

5.6 DrmCommunicationException

Could not contact DRM system.

5.7 DrmsExitException

A problem was encountered while trying to exit the session.

5.8 DrmslnitException

A problem was encountered while trying to initialize the session.
5.9 ExitTimeoutException

The wait() or synchronize() method call on the Session interface returned before all selected
jobs entered the DONE or FAILED state.

5.10 HoldinconsistentStateException

The job cannot be moved to a HOLD state.

5.11 InternalException

Unexpected or internal DRMAA error, like system call failure, etc.

5.12 InvalidArgumentException

A parameter value is fundamentally invalid, such as being of the wrong type or being null.
5.13 InvalidAttributeFormatException

The value for the job template property is improperly formatted, such as a badly formatted time
stamp.

5.14 InvalidAttributeValueException
The value for the job template property is invalid.
5.15 InvalidContactStringException

The given contact string is not valid.

drmaa-wg@gridforum.org 11

5.16 InvalidJobException
The job specified by the given job id does not exist.
5.17 InvalidJobTemplateException

The job template is not valid. It was either created incorrectly, i.e. not via
Session::createJobTemplate(), or it has already been deleted via Session.:deleteJobTemplate()
method.

5.18 NoActiveSessionException
Method call failed because there is no active session.
5.19 NoDefaultContactStringSelectedException

No defaults contact string was provided or selected. DRMAA requires that the default contact
string is selected when there is more than one default contact string due to multiple DRMAA
implementations being present and available (see also 9.2).

5.20 OutOfMemoryException

This exception can be thrown by any method at any time when the DRMAA implementation has
run out of free memory.

5.21 ReleaselnconsistentStateException

The job is not in a HOLD state, and hence cannot be released.

5.22 ResumelnconsistentStateException

The job is not in a suspended state (i.e. * SUSPENDED), and hence cannot be resumed.
5.23 SuspendinconsistentStateException

The job is not in a state from which it can be suspended.

5.24 TryLaterException

The DRMS rejected the operation, possibly due to excessive load. A retry attempt may
succeed, however.

5.25 UnsupportedAttributeException

The given job template attribute is not supported by the current DRMAA implementation.

drmaa-wg@gridforum.org 12

5.26 lllegalStateException

The Joblnfo instance is not in the correct state for this kind of operation.

6 The PartialTimestamp

The PartialTimestamp type is used by JobTemplate interface instances to represent partially
specified time stamps, as required by the Distributed Resource Management Application API
Specification 1.0. The PartialTimestamp SHOULD be an extension of the native language
date/time representation if possible and reasonable. For this reason, the following text
describes the functional requirements without a specific signature for the type definition. The
IDL definition covers this aspect by specifying a native data type.

native PartialTimestamp;

The PartialTimestamp MUST support the following fields: century (>=19), year (0-99), month (1-
12), date (1-31), hour (0-23), minute (0-59), second (0-61), zone offset hour (-11 - 12), and
zone offset minute (0-59). It MUST support the following essential operations: “get field value”,
“set field value”, “get time as native date/time object”, “convert to string” and “parse from string.”
If possible, these operations SHOULD leverage structure already present in the native date/time
class, even if this leads to a mapping with multiple classes or interfaces. The two field
operations MAY be represented as attributes.

The “get field value” operation MUST return the current value for the given field. The “set field
value” operation MUST set the current value for the given field. The “get time as native
date/time object” operation MUST resolve the partial time to a specific time that is the soonest
possible time that is not in the past, and SHOULD return that specific time as a native date/time
representation. The “convert to string” operation MUST return the partial time represented by
the PartialTimestamp as a string which adheres to the following format:
[[[[CC]IYY/IMM/]DD] hh:mm[:ss] [{-|+}UU:uu], where:

CC is the first two digits of the year [19,]

YY is the last two digits of the year [0,99]

MM is the two digits of the month [01,12]

DD is the two-digit day of the month [01,31]

hh is the two-digit hour of the day [00,23]

mm is the two-digit minute of the day [00,59]

ss is the two-digit second of the minute [00,61]

UU is the two-digit hours since (before) UTC [-11,12]
uu is the two-digit minutes since (before) UTC [0,59]

In order for this operation to be performed, the PartialTimestamp must have no unset field of a
lower order than the highest order set field, with the exception of the second and zone offset
fields. For example, if the year is set, the month, date, hour, and minute must also be set for
this operation to be performed. Failure to meet this criterion MUST result in an
InvalidArgumentException being thrown, or the corresponding error code being returned in
languages which do not support exceptions. The seconds and UTC offset are always optional.
The “parse from string” operation MUST parse a string in the above format to generate a
PartialTimestamp as the return value. If the string is not in the above format, an
InvalidArgumentException or an appropriate language-dependent exception MUST be thrown
or the corresponding error code MUST be returned in languages that do not support exceptions.
If a PartialTimestamp type is resolved to a concrete time before all fields are set, the unset
fields SHALL be filled in using the current time in such a way that the resulting concrete time is
the soonest possible time which agrees with the set fields and is not in the past. A

drmaa-wg@gridforum.org 13

PartialTimestamp type MAY be resolved to a concrete time any number of times. Each
resolution will result in a concrete time that meets the above criteria for the point in time at
which the resolution took place.

The resolving of partial time information MUST be performed according to the following rules:

e If the optional UTC-offset is not specified, the offset associated with the local timezone
SHALL be used.

e If the second is not specified, then it SHALL be treated as zero.

e If the day is not specified, the current day SHALL be used unless the specified hour,
minute and second has already elapsed, in which case the next day SHALL be used.

e If the month is not specified, the current month SHALL be used unless the specified
day, hour, minute and second has already elapsed, in which case the next month
SHALL be used.

e If the year is not specified, the current year SHALL be used unless the specified month,
day, hour, minute and second has already elapsed, in which case the next year SHALL
be used.

e If the century is not specified, the current century SHALL be used unless the specified
year, month, day, hour, minute and second has already elapsed, in which case the next
century SHALL be used.

The PartialTimestamp MAY also support the following four operations: “get field modifier,” “set
field modifier,” “add to field,” and “roll field.” If possible, these operations SHOULD leverage
structure already present in the native language date/time representation. The “get field
modifier” operation MUST return any additional modifiers set for the given field. An additional
modifier is added to the field's value after it has been resolved to a specific time. The “set field
modifier” operation MUST set the additional modifiers for the given field. The “add to field”
operation MUST add a given value to the given field. If supported by the native date/time
representation, this operation SHOULD attempt to resolve out of range field values that may
result from the operation. For example, adding “1” to the date of a PartialTimestamp instance
which is set to January 31*" SHOULD result in the PartialTimestamp being set to February 1%,
If this operation is supported, the “get field modifier” and “set field modifier” operations MUST
also be supported. The “roll field” operation is similar to the “add to field” operation, except that
the operation cannot modify a field of a higher order than the given field. Such modifications
are simply lost. For example, adding “1” to the date of a PartialTimestamp which is set to
January 31%' SHOULD result in the Partial Timestamp being set to January 1%,

The PartialTimestamp MUST also support a notion of unset fields. A special value is assigned
to all fields which have not been explicitly set. This special value MUST be of the same type as
the date/time properties and MAY be the maximum value for that data type.

Language bindings are free to define convenience functions in addition to the functionalities
described here.

7 Joblinfo interface

The information regarding a job's execution history is encapsulated by object instances that
implement the Jobinfo interface. Using the Joblinfo interface , a DRMAA application can
discover information about the resource usage and exit status of a job. The structure of the
Joblinfo interface is as follows:

interface JobInfo {
readonly attribute string jobId;
readonly attribute Dictionary resourceUsage;
readonly attribute boolean hasExited;
readonly attribute long exitStatus;
readonly attribute boolean hasSignaled;

drmaa-wg@gridforum.org 14

readonly attribute string terminatingSignal;
readonly attribute boolean hasCoreDump;
readonly attribute boolean wasAborted;

}i

In languages which do not support the notion of interfaces and objects, the Joblinfo interface
SHOULD be modeled as a series of routines which utilize an opaque job object returned from
the wait() routine.

The following sections explain the meanings of the Job/nfo member attributes.
71 jobld

The identifier for the completed job.

7.2 resourceUsage

This attribute SHALL contain the completed job's resource usage data. If the job did not
produce resource usage data, this attribute SHALL be null. Please refer also to [DRMAA10]
section 3.1.3 for more information about resource usage data semantics.

7.3 hasExited

This attribute SHALL contain true if the job terminated normally. A value of false MAY indicate
that although the job has terminated normally, an exit status is not available, or that it is not
known whether the job terminated normally. In both cases the exitStatus attribute SHALL NOT
contain exit status information. A value of true indicates more detailed diagnosis can be
retrieved from the exitStatus attribute.

7.4 exitStatus

If exited is true, this attribute SHALL contain the operating system exit code of the job. If exited
is false, the getter function for this attribute MUST raise an lllegalStateException.

7.5 hasSignaled

This attribute SHALL contain true if the job terminated due to the receipt of a signal. A value of
false MAY also indicate that although the job has terminated due to the receipt of a signal, the
signal is not available, or that it is not known whether the job terminated due to the receipt of a
signal. In both cases terminatingSignal SHALL NOT provide signal information.

7.6 terminatingSignal

If hasSignaled is true, this attribute SHALL contain a representation of the signal that caused
the termination of the job. For signals declared by POSIX, the symbolic names SHALL be
returned (e.g., SIGABRT, SIGALRM). For signals not declared by POSIX, a DRM-dependent
string SHALL be returned.

If hasSignaled is false, the getter function for this attribute MUST raise an lllegalStateException.

drmaa-wg@gridforum.org 15

7.7 hasCoreDump

If hasSignaled is true, this attribute SHALL contain true if a core image of the terminated job
was created.
If hasSignaled is false, the getter function for this attribute MUST raise an lllegalStateException.

7.8 wasAborted

This attribute SHALL contain true if the job ended before entering the running state.

8 JobTemplate interface

In order to define the attributes associated with a job, a DRMAA application uses the
JobTemplate interface. Instances of such templates are created via the active Session
implementation. A DRMAA application gets a JobTemplate from the active Session instance,
specifies in the template any required job parameters, and the passes the template back to the
DRMAA Session instance when requesting that a job be executed. When finished, the DRMAA
application SHOULD call the Session::deleteJobTemplate() method to allow the underlying
implementation to free any resources bound to the JobTemplate instance. Please refer also to
[DRMAA10] section 3.1.4 to 3.1.6 for more information regarding precedence rules, site-specific
requirements and job evaluation.

A language binding specification MUST model the JobTemplate interface in the following way:

interface JobTemplate{

const string HOME DIRECTORY = "$Sdrmaa hd phS$";
const string WORKING DIRECTORY = "S$drmaa wd phS$";
const string PARAMETRIC INDEX = "$drmaa incr ph$";

attribute string remoteCommand;

attribute OrderedStringList args;

attribute DRMAA: :JobSubmissionState jobSubmissionState;
attribute Dictionary jobEnvironment;
attribute string workingDirectory;

attribute string jobCategory;

attribute string nativeSpecification;
attribute StringList email;

attribute boolean blockEmail;

attribute PartialTimestamp startTime;
attribute string jobName;

attribute string inputPath;

attribute string outputPath;

attribute string errorPath;

attribute boolean joinFiles;

attribute FileTransferMode transferFiles;
attribute PartialTimestamp deadlineTime;
attribute TimeAmount hardWallclockTimeLimit;
attribute TimeAmount softWallClockTimeLimit;
attribute TimeAmount hardRunDurationLimit;
attribute TimeAmount softRunDurationLimit;
readonly attribute StringList attributeNames;

[language-specific operations for implementation-specific attributes]

drmaa-wg@gridforum.org 16

In languages which do not support the notion of interfaces or objects, the job template attributes
SHOULD be modeled as constant parameters to generic getter and setter routines. These
routines SHOULD treat all attribute names and values as strings. In the case of such a
language, the attributeNames attribute SHOULD be modeled as a getAttributeNames() routine
that returns the names of the available attributes as a list of string which can be used with the
generic getter and setter routines. See section 8.1.1 below.

The JobTemplate implementation MUST support the following exceptions for the setter
operations in case there is a concept of exceptions in the programming language:

o InvalidAttribute ValueException — The value is invalid for the job template property, e.g. a
startTime that is in the past.

o ConflictingAfttributeValuesException — the attribute value conflicts with a previously set
attribute value.

For both getter and setter operations, the following exceptions MUST be supported in case
exceptions are part of the programming language:

NoActiveSessionException
DrmCommunicationException
AuthorizationException
OutOfMemoryException
InternalException

In most cases, a DRMAA implementation will require that job templates be created through the
Session::createJobTemplate() method. In those cases, passing a template created other than
via this method to the Session::deleteJobTemplate(), Session::rundob(), or
Session::runBulkJobs() methods MUST result in an InvalidJobTemplateException being thrown
or a corresponding error code being returned if exceptions are not supported.

A JobTemplate instance SHOULD be convertible to a string for printing. This SHOULD be
accomplished through whatever mechanism is most natural for the implementation language.
The resulting string MUST contain the values of all set properties.

Access to scalar attributes (string, Boolean, long) MUST operate in a pass-by-value
mode. An according language binding must ensure that this behavior is always fulfilled. For
non-scalar attributes, the language binding MUST specify a consistent access strategy for all
these attributes — either pass-by-value or pass-by-reference — according to the use cases of
language binding implementations.

In the DRMAA job template concept, there is a distinction between mandatory, optional and
implementation-specific attributes. A language binding implementation MUST include all
DRMAA attributes described here, both required and optional. The setter and getter
implementations for optional attributes MUST in case throw UnsupportedAttributeException.
The service provider implementation SHOULD then override the setters and getters for
supported optional attributes with methods that operate normally. In the case of a destination
language which does not support the notion of interfaces or objects, the generic getter and
setter routines should throw UnsupportedAttributeException when called with the name of an
unknown or unsupported attribute.

8.1.1 Generic getter / setter routines

In the case of a destination language which does not support the notion of interfaces or objects,
the JobTemplate interface SHOULD be modeled by a set of generic setter and getter routines.
These generic routines are as follows:

string getAttribute (string name)

drmaa-wg@gridforum.org 17

raises (DrmCommunicationException,
AuthorizationException,
NoActiveSessionException,
OutOfMemoryException,
InternalException,
UnsupportedAttributeException) ;

}s

This method SHALL return the string value of the specified attribute. The language binding
specification SHOULD consistently specify the string representation for non-string data types.
Valid input values are the strings returned by the getAttributeNames() operation. An invalid
attribute name leads to an UnsupportedAttribute Exception.

stringlist getVectorAttribute (string name)
raises (DrmCommunicationException,
AuthorizationException,
NoActiveSessionkException,
OutOfMemoryException,
InternalException,
UnsupportedAttributeException) ;

}i

This method SHALL return the list of string values of the specified vector attribute. A vector
attribute is one which is prefixed with “v_" in the table in section 10.3. The language binding
specification SHOULD consistently specify the string representation for non-string vector
elements. Valid input values are the strings returned by the getAttributeNames() operation. An
invalid attribute name leads to an UnsupportedAttribute Exception.

void setAttribute(string name, string value)
raises (DrmCommunicationException,

UnsupportedAttributeException,
InvalidAttributeValueException,
AuthorizationException,
NoActiveSessionException,
OutOfMemoryException,
InternalException) ;

}i

This method SHALL change the value of the specified attribute to the given value. Valid input
values for the name parameter are the strings returned by the getAttributeNames() operation.
An invalid attribute name leads to an UnsupportedAttributeException. An invalid value for a
particular attribute leads to an InvalidAttributeValueException. The language binding
specification SHOULD consistently specify the string representation for non-string data types.

void setVectorAttribute (string name, stringlist value)
raises (DrmCommunicationException,

UnsupportedAttributeException,
InvalidAttributeValueException,
AuthorizationException,
NoActiveSessionException,
OutOfMemoryException,
InternalException) ;

}i

This method SHALL replace the list of values of the specified vector attribute to the given list of
values. A vector attribute is one which is prefixed with “v_” in the table in section 10.3. Valid
input values for the name parameter are the strings returned by the getAttributeNames()
operation. An invalid attribute name leads to an UnsupportedAttributeException. An invalid

drmaa-wg@gridforum.org 18

value for a particular attribute leads to an InvalidAttribute ValueException. The language binding
specification SHOULD consistently specify the string representation for non-string vector
elements.

If a language binding uses this generic getter / setter approach, then it MUST enforce the usage
of the attribute names specification from Section 10.3. for all implementations, and all attributes
listed in section 10.3 MUST be implemented.

8.2 Accessing Implementation-specific Attributes

A language binding MUST provide a means for accessing implementation-specific attributes, as
the getters and setters for such attributes are not defined by the JobTemplate interface. This
access method MUST be consistent for all attributes and SHOULD be clearly described in the
language binding specification. Some destination languages MAY enable more than one
access mechanism.

Some common approaches are:

8.2.1 Introspection approach

In order to access the getters and setters for implementation-specific attributes, the developer
must use the destination language's introspection mechanisms to locate and then call the
attributes' getters and setters at run time. In such a case, the list of attribute names given by
the attributeNames attribute MUST be names which are meaningful to the destination
language's introspection mechanism.

This approach makes it possible to write applications which are completely portable across
binding implementations, including previously unknown binding implementations assuming that
the naming of implementation-specific attributes is consistent and/or predictable. A significant
disadvantage to this approach is the complexity or writing fully dynamic, introspection-based
application logic.

8.2.2 Dynamic Loader Approach

In languages which support dynamic class loading, access to implementation-specific attributes
can be encapsulated in classes dedicated to accessing the job template attributes of a specific
binding implementation. After determining the binding implementation in use, an application in
such a language could dynamically load a class which is capable of setting the implementation-
specific attributes of the job template.

An advantage of this approach is that within the scope of the dynamically loaded class, the job
template may be safely cast to the implementation type without creating a run-time dependency
on the implementation class. Within the class access to the job template attributes is done
directly using the job template implementation's declared getters and setters. A disadvantage is
that such a class is needed for each binding implementation to be supported, and each such
class is limited to operating only on that specific binding implementation. Another disadvantage
is that it creates a compile-time dependency on all supported binding implementations, i.e. all
supported binding implementations must be available at the time the application is compiled.

8.2.3 Discouraged approaches

The direct casting of a job template to the job template implementation class without the use of
dynamic class loading SHOULD NOT be used. Such casting, while enabling direct access to all
job template attribute getters and setters, creates a compile-time and run-time dependency on
all supported binding implementations, i.e. such an application must be bundled with all binding
implementations, even if it will only be run on one of them.

Also the combination of job template attribute getters and setters with generic getters and
setters, where either set of accessors provides access to only a subset of the job template

drmaa-wg@gridforum.org 19

implementations attributes, SHOULD NOT be used. A DRMAA binding MUST provide
consistent attribute access, with support for all attribute types (required, optional and
implementation-specific) in only one language-specific method.

8.3 Constants

The JobTemplate interface defines a set of constants which are used in the context of some of
the attributes:

const string HOME DIRECTORY = "$drmaa hd phs$";
const string WORKING DIRECTORY = "$drmaa wd ph$";
const string PARAMETRIC INDEX = "$drmaa_ incr phS";

The HOME DIRECTORY constant is a place holder used to represent the user's home
directory when building paths for the workingDirectory, inputPath, outputPath, and errorPath
attributes.

The WORKING_DIRECTORY constant is a place holder used to represent the current working
directory when building paths for the inputPath, outputPath, and errorPath attributes.

The PARAMETRIC_INDEX constant is a place holder used to represent the id of the current
parametric job subtask when building paths for the workingDirectory, inputPath, outputPath, and
errorPath attributes.

8.4 remoteCommand

The command that should be executed on the remote host. In case this parameter contains
path information, it MUST be seen as relative to the execution host file system and is therefore
evaluated there. The attribute value SHOULD NOT relate to binary file management or file
staging activities.

8.5 args

The list of command-line arguments for the job to be executed.

8.6 jobSubmissionState

Defines the state of the job at submission time. For more information see section 4.3.
8.7 jobEnvironment

The environment values that define the remote environment. The values MUST override the
remote environment values if there is a collision. If this is not possible, the behavior is
implementation dependent.

8.8 workingDirectory

This attribute specifies the directory where the job is executed. If the attribute is not set, the
behavior is is implementation dependent. The attribute value MUST be evaluated relative to the
execution host's file system. The attribute value MAY contain the HOME_DIRECTORY or
PARAMETRIC_INDEX constant values as placeholders. A HOME_DIRECTORY placeholder at

drmaa-wg@gridforum.org 20

the begin denotes the remaining portion of the attribute value as a relative directory path
resolved relative to the job users home directory at the execution host. The
PARAMETRIC_INDEX placeholder MAY be used at any position within the attribute value in the
case of parametric job templates and SHALL be substituted by the underlying DRM system with
the parametric jobs' index.

The workingDirectory MUST be specified in a syntax that is common at the host

where the job is executed.

If the attribute is set and no placeholder is used, an absolute directory specification is expected.
If the attribute is set and the job was submitted successfully and the directory does not exist, the
job MUST enter the state, JobProgramState.FAILED.

8.9 jobCategory

An implementation-defined string specifying how to resolve site-specific resources and/or
policies. Site administrators MAY create a job category suitable for an application to be
dispatched by the DRMS; the associated category name SHALL be specified as a job
submission attribute. The DRMAA implementation MAY then use the category name to manage
site-specific resource and functional requirements of jobs in the category. Such requirements
need to be configurable by the site operating a DRMS and deploying an application on top of it.
More information can be found in section 2.4.1 of the DRMAA 1.0 specification document.

8.10 nativeSpecification

An implementation-defined string that is passed by the end user to DRMAA to specify
site-specific resources and/or policies.

As far as the DRMAA interface specification is concerned, the native specification is an
implementation-defined string and is interpreted by each DRMAA library. One MAY use the job
category and the native specification with the same job submission for policy specification. In
this case, the DRMAA library is assumed to be capable of merging the outcome of the two
policy

sources in a reasonable way.

The native specification MAY be used without the requirement to maintain job categories,

and submit options MAY be specified directly.

More information can be found in section 2.4.2 of the DRMAA 1.0 specification document.

8.11 email
A list of email addresses that is used to report the job completion and status.
8.12 blockEmail

This Boolean parameter decides whether the sending of email is blocked by default or not,
regardless of the DRMS setting. If the parameter is TRUE, the sending of email SHALL be
blocked regardless of the DRMS setting. If the value is FALSE, the sending of email SHALL be
determined by the DRMS setting.

8.13 startTime

This attribute specifies the earliest time when the job MAY be eligible to be run.

drmaa-wg@gridforum.org 21

8.14 jobName

A job name SHALL be comprised of alphanumeric and ' ' characters.The DRMAA
implementation MAY truncate any client-provided job name to an implementation-defined length
that is at least 31 characters.

8.15 inputPath

Specifies the job's standard input as a path to a file. If this property is not explicitly set in the job
template, the job is started with an empty input stream, unless the job category, native
specification, or a DRMS setting causes a source for the input stream to be set. If this attribute
is set, it specifies the network path for the job's input stream file in the form:

[hostname] : file path

If the transferFiles job template attribute is supported and has a value where the
File TransferMode::inputStream attribute set to true, the input file SHOULD be fetched by the
underlying DRM system from the specified host, or from the submit host if no hostname

was specified.

If the ftransferFiles job template attribute is not supported or its value's
File TransferMode::inputStream is set to false, then the input file is always expected at the host
where the job is executed, irrespective of whether a hostname was specified.

The PARAMETRIC_INDEX placeholder can be used at any position for parametric job
templates and SHALL be substituted by the underlying DRM system with the parametric job's
index.

A HOME_DIRECTORY placeholder at the beginning of the attribute value denotes the
remaining portion as a relative file specification resolved relative to the job's user's home
directory at the host where the file is located.

A WORKING_DIRECTORY placeholder at the beginning of the attribute value denotes the
remaining portion as a relative file specification resolved relative to the job's working directory at
the host where the file is located.

The inputPath MUST be specified in a syntax that is common at the host where the file is
located.

If set, and the job was successfully submitted, and the file can't be read, the job enters the
state, JobProgramState. FAILED.

8.16 outputPath

Specifies how to direct the job's standard output to a file. If this attribute is not explicitly set in
the job template, the destination of the job's output stream is not defined, unless the job
category, native specification, or a DRMS setting causes a destination for the output stream to
be set. If this attribute is set, it specifies the network path of the job's output stream in the form:

[hostname] : file path

If the ftransferFiles job template attribute is supported and its value's
File TransferMode::outputStream attribute is set to true, the output file SHALL be transferred by
the underlying DRM system to the specified host or to the submit host if no hostname is
specified.

If the ftransferFiles job template attribute is not supported or its value's
File TransferMode::outputStream attribute is set to false, the output file SHALL be kept at the
host where the job is executed, irrespective of whether a hostname was specified.

All output sent to the job's standard output stream SHALL be appended to that file. If the file
does not exist at the time the job is executed, the file SHALL first be created.

drmaa-wg@gridforum.org 22

The PARAMETRIC_INDEX placeholder can be used at any position with parametric job
templates and SHALL be substituted by the underlying DRM system with the parametric job's
index.

A HOME_DIRECTORY placeholder at the beginning denotes the remaining portion as a relative
file specification resolved relative to the job users home directory at the host where the file is
located.

A WORKING_DIRECTORY placeholder at the beginning denotes the remaining portion as a
relative file specification resolved relative to the jobs working directory at the host where the file
is located.

The outputPath MUST be specified in a syntax that is common at the host where the file is
located. If set and the job was successfully submitted and the file can't be written before
execution the job MUST enter the state, JobProgramState. FAILED.

8.17 errorPath

Specifies how to direct the jobs’ standard error to a file.

If not explicitly set in the job template, the destination of the job's error stream is not defined
unless the job category, native specification, or a DRMS setting causes a destination for the
error stream to be set. If this attribute is set, it specifies the network path of the jobs error
stream file in the form:

[hostname] : file path

If the transferFiles job template attribute is supported and it's value's
File TransferMode::errorStream attribute is set to true, the error file SHALL be transferred by
the underlying DRM system to the specified host or to the submit host if no hostname is
specified.

If the transferFiles job template attribute is not supported or it's value's
File TransferMode::errorStream is set to false, the error file is always kept at the host where the
job is executed irrespective of whether a hostname was specified.

All output sent to the job's standard error stream SHALL be appended to that file. If the file
does not exist at the time the job is executed, the file SHALL first be created.

The PARAMETRIC_INDEX placeholder can be used at any position for parametric job
templates and SHALL be substituted by the underlying DRM system with the parametric jobs'
index.

A HOME_DIRECTORY placeholder at the beginning denotes the remaining portion as a relative
file specification, resolved relative to the job users home directory at the host where the file is
located.

A WORKING_DIRECTORY placeholder at the beginning denotes the remaining portion as a
relative file specification resolved relative to the jobs working directory at the host where the file
is located.

The errorPath MUST be specified in a syntax that is common at the host where the file is
located.

If set and the job was successfully submitted and the file can't be written before execution, the
job enters the state, JobProgramState. FATLED.

8.18 joinFiles

Specifies whether the error stream should be intermixed with the output stream. If not explicitly
set in the job template, this attribute defaults to false. If this attribute is set to true, the underlying
DRM system SHALL ignore the value of the errorPath attribute and intermix the standard error
stream with the standard output stream as specified by the outputPath.

drmaa-wg@gridforum.org 23

8.19 transferFiles

Specifies how to transfer files between hosts.

If this attribute is not explicitly set in the job template, the effect is the same as setting the
property to a FileTransferMode instance with all members setto false.

This attribute works in conjunction with the inputPath, outputPath and errorPath attributes.

This attribute is optional. An implementation MUST throw an UnsupportedAttributeException if
this attribute is not supported.

8.20 deadlineTime

Specifies a deadline after which the DRMS will abort or terminate the job.

This attribute is optional. An implementation MUST throw an UnsupportedAttributeException if
this attribute is not supported.

8.21 hardWallclockTimeLimit

This attribute specifies when the job's wall clock time limit has been exceeded. An
implementation SHALL terminate a job that has exceeded its wall clock time limit. Suspended
time SHALL also be counted towards this limit.

This attribute is optional. In case an implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

8.22 softWallClockTimeLimit

This attribute specifies an estimate as to how much wall clock time the job will need to
complete. Note that the suspended time is also counted towards this estimate. This attribute is
intended to assist the scheduler. If the time specified is insufficient, the implementation MAY
impose a scheduling penalty.

This attribute is optional. In case an implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

8.23 hardRunDurationLimit

This attribute specifies how long the job MAY be in a running state before its limit has been
exceeded, and therefore is terminated by the DRMS.

This attribute is optional. In case an implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

8.24 softRunDurationLimit

This attribute specifies an estimate as to how long the job will need to remain in a running state
to complete. This attribute is intended to assist the scheduler. If the time specified is insufficient,
the implementation MAY impose a scheduling penalty.

drmaa-wg@gridforum.org 24

This attribute is optional. In case an implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

8.25 attributeNames

This read-only attribute specifies the list of supported attribute names. This list includes
supported DRMAA reserved attribute names (both required and optional) and implementation-
specific attribute names. The listed attribute name MUST be of a format that is meaningful to
the destination language for use in introspection, if supported, or with the getAttribute() and
setAttribute() methods if introspection is not supported. See 10.3 for a given names of the job
template attributes.

9 Session interface

The following chapter explains the set of constants, methods and attributes defined in the
Session interface. Please consult [DRMAA10] section 3.1.2 for further details about the DRMAA
session concept.

interface Sessionf{

9.1 Constants

The Session interface defines a set of constant values, which are used in the context of several
interface functions.

const long long TIMEOUT WAIT FOREVER = -1;

const long long TIMEOUT NO WAIT = O;

const string JOB IDS SESSION ANY = "DRMAA JOB IDS SESSION ANY";
const string JOB IDS SESSION ALL = "DRMAA JOB IDS SESSION ALL";

The TIMEOUT_WAIT_FOREVER constant is used with the wait() and synchronize() methods to
indicate that a method call should not return until the given job or jobs have entered the DONE
or FAILED state.

The TIMEOUT _NO_WAIT constant is used with the wait() and synchronize() methods to
indicate that a method call should return immediately if the given job or jobs have not yet
entered the DONE or FAILED state.

The JOB IDS SESSION_ANY constant is used with the wait() method to indicate that a
method call may operate on any job currently in the RUNNING state in the session.

The JOB_IDS_SESSION_ALL constant is used with the control() and synchronize() methods to
indicate that a method call should operate on all jobs in the session at submission time, minus
any jobs that go out of scope during the run time of the operation. For example: If a job was in
the session at the time of calling synchronize(JOB_IDS_SESSION_ALL), and it's gets reaped
during the operation, the overall call will not fail. A call with JOB_IDS_SESSION_ALL to an
empty session SHALL result in a successful call. In case that a call with
JOB _IDS SESSION_ALL fails for a partial set of the jobs in the session, the implementation
SHALL throw an InternalException. The error text of the exception should explain the problem
in detail and may give an idea of the current status of the session.

drmaa-wg@gridforum.org 25

9.2 init

The init() method MUST do whatever work is required to initialize a DRMAA session for use.
The contactString parameter is an implementation-dependent string that may be used to specify
which DRM system to use. This method must be called before any other DRMAA calls, except
for the getter functions of the contact, drmsinfo, and drmaalmplementation attributes defined in
the Session interface.

If contact is null or emtpy, the default DRM system SHOULD be used, provided there is only
one DRMS available. If contact is null or empty, and more than one DRMAA implementation
is available, init() SHALL throw a NoDefaultContactStringSelectedException or return a
corresponding error code if exceptions aren't supported.

init() SHOULD be called only once, by only one of the threads. The main thread is
recommended. A call to init() by another thread or additional calls to init() by the same thread
SHOULD throw an AlreadyActiveSessionException or return a corresponding error code if
exceptions are not supported.

In the case that a DRMAA library implementation needs to perform non-thread-safe operations
(like getHostByName() C library call), it SHOULD perform them in the implementation of the
init() operation, in order to ensure thread-safe operations for all other DRMAA methods.

void init (in string contactString)
raises (DrmsInitException,

InvalidContactStringException,
AlreadyActiveSessionException,
DefaultContactStringException,
NoDefaultContactStringSelectedException,
OutOfMemoryException,
DrmCommunicationException,
AuthorizationException,
InvalidArgumentException,
InternalException) ;

Parameters

contactString - implementation-dependent string that may be used to specify which DRM
system to use. If null or empty, the DRMAA implementation will select the default DRM
system if there is only one DRMS available.

Exceptions
e DrmslnitException — failed while initializing the session.
¢ InvalidContactStringException — the contact parameter is invalid.
e AlreadyActiveSessionException — the session has already been initialized.
e DefaultContactStringException — the contact parameter is null or empty and the

default contact string could not be used to connect to the DRMS.
¢ NoDefaultContactStringSelectedException — the contact parameter is null or empty
and more than one DRMS is available.

e OutOfMemoryException — the DRMAA implementation does not have enough free
memory to perform the operation.

e DrmCommunicationException — the DRMS could not be contacted for this request.
AuthorizationException — the user does not have permission to perform this action.
InvalidArgumentException — an argument value is invalid.

InternalException — an error has occurred in the DRMAA implementation.

drmaa-wg@gridforum.org 26

9.3 exit

The exit() method MUST do whatever work is required to disengage from the DRM

system and allow the DRMAA implementation to perform any necessary internal cleanup. This
method ends the current DRMAA session SHALL NOT affect any jobs (e.g., queued and
running jobs remain queued and running). Any job template instances which have not yet been
deleted become invalid after exit() is called, even after a subsequent call to init(). exit()
SHOULD be called only once, by only one of the threads. Additional calls to exit() beyond the
first SHALL throw a NoActiveSessionException or return a corresponding error code if
exceptions aren't supported.

void exit ()
raises (DrmsExitException,
NoActiveSessionkException,
DrmCommunicationException,
AuthorizationException,
OutOfMemoryException,
InternalException) ;

Exceptions

o DrmsEXxitException — failed while exiting the session.

o NoActiveSessionException — the session has not been initialized or exit() has already
been called

e DrmCommunicationException — the DRMS could not be contacted for this request.

« AuthorizationException — the user does not have permission to perform this action.

o OutOfMemoryException — the DRMAA implementation does not have enough free
memory to perform the operation.

e InternalException — an error has occurred in the DRMAA implementation.

9.4 createJobTemplate

The createJobTemplate() method SHALL return a new JobTemplate instance. The job template
is used to set the defining characteristics for jobs to be submitted. Once the job template has
been created, it should also be deleted (via deleteJobTemplate()) when no longer needed.
Failure to do so may result in a memory leak.

JobTemplate createdJobTemplate ()
raises (DrmCommunicationkException,
NoActiveSessionkException,
OutOfMemoryException,
AuthorizationException,
InternalException) ;

Returns
The createJobTemplate() method SHALL return a blank JobTemplate instance.

Exceptions

e DrmCommunicationException — unable to communicate with the DRMS
o NoActiveSessionException — the session has not been initialized or exit() has already
been called

drmaa-wg@gridforum.org 27

o OutOfMemoryException — the DRMAA implementation does not have enough free
memory to perform the operation.

 AuthorizationException — the user does not have permission to perform this action.

e InternalException — an error has occurred in the DRMAA implementation.

9.5 deleteJobTemplate

The deleteJobTemplate() method is used to deallocate a job template, and SHALL perform all
necessary steps required to free all memory associated with the given JobTemplate instance.

In languages where memory is not freed explicitly, e.g. languages that use garbage collectors,
this method SHALL perform all necessary steps required to prepare this job template to be
freed. In languages where finalizers are supported, the implementation of this method MAY be
empty.

This method SHALL have no effect on running jobs. This method MUST only work on
JobTemplate instances that were created with the createJobTemplate() method and have not
previously been deleted with the deleteJobTemplate() method and MUST otherwise throw an
InvalidJobTemplateException.

void deleteJobTemplate (in DRMAA: :JobTemplate jobTemplate)

raises (DrmCommunicationkException,
NoActiveSessionException,
OutOfMemoryException,
AuthorizationException,
InvalidArgumentException,
InvalidJobTemplateException,
InternalException) ;

Parameters

jobTemplate - the JobTemplate instance to delete.

Exceptions

e DrmCommunicationException — unable to communicate with the DRMS.

o NoActiveSessionException — the session has not been initialized or exit() has already
been called.

e OutOfMemoryException — the DRMAA implementation does not have enough free
memory to perform the operation.

 AuthorizationException — the user does not have permission to perform this action.

e InvalidArgumentException — the argument value is invalid.

e InvalidJobTemplateException — the given job template was not created with
createJobTemplate() or has already been deleted .

« InternalException — an error has occurred in the DRMAA implementation.

9.6 runJob

The rundob() method SHALL submit a job with attributes defined in the job template given as a
parameter. The returned job identifier SHOULD be a string identical to that returned from the
underlying DRM system. This method MUST only work on JobTemplate instances that were
created with the createJobTemplate() method and have not previously been deleted with the
deleteJobTemplate() method and MUST otherwise throw an InvalidJob TemplateException.

string rundob (in DRMAA: :JobTemplate jobTemplate)

drmaa-wg@gridforum.org 28

raises (TrylaterException,
DeniedByDrmException,
DrmCommunicationException,
AuthorizationException,
InvalidJobTemplateException,
NoActiveSessionkException,
OutOfMemoryException,
InvalidArgumentException,
InternalException) ;

Parameters

jobTemplate - the job template to be used to create the job.

Returns

The rundob() method SHOULD return a job identifier string identical to that returned from the
underlying DRM system.

Exceptions

o TryLaterException — the request could not be processed due to excessive system load.

e DeniedByDrmException — the DRMS rejected the job. The job will never be accepted
due to job template or DRMS configuration settings.

e DrmCommunicationException — unable to communicate with the DRMS.

e InvalidJobTemplateException — the given job template was not created with
createJobTemplate() or has already been deleted.

 AuthorizationException — the user does not have permission to submit jobs.

o NoActiveSessionException — the session has not been initialized or exit() has already
been called.

o OutOfMemoryException — the DRMAA implementation does not have enough free
memory to perform the operation.

e InvalidArgumentException — the argument value is invalid.

e InternalException — an error has occurred in the DRMAA implementation.

9.7 runBulkJobs

The runBulkJobs() method SHALL submit a set of parametric jobs, dependent on the implied
loop index, each with attributes defined in the given job template. Each job in the set is identical
except for its index. The first parametric job has an index equal to beginindex. The next job has
an index equal to beginindex + step, and so on. The last job has an index equal to beginindex
+ n * step, where n is equal to (endIndex — beginindex) | step. Note that the value of the last
job's index may not be equal to endindex if the difference between beginindex and endindex is
not evenly divisible by step. The smallest valid value for beginindex is 1. The largest valid
value for endindex is language dependent. The beginindex value must be less than or equal to
the endIndex value, and only positive index numbers are allowed. The index number can be
determined by the job in an implementation-specific fashion. The returned job identifiers
SHOULD be Strings identical to those returned from the underlying DRM system.

The JobTemplate interface defines a PARAMETRIC INDEX placeholder for use in specifying
paths. This placeholder is used to represent the individual identifiers of the tasks submitted
through this method.

drmaa-wg@gridforum.org 29

This method MUST only work on JobTemplate instances that were created by the
createJobTemplate() method and have not previously been deleted by the deleteJobTemplate()
or exit() method and MUST otherwise throw an InvalidJob TemplateException.

StringList runBulkJobs (in DRMAA: :JobTemplate jobTemplate,

in long beginIndex,

in long endIndex,

in long step)

raises (TrylLaterException,

DeniedByDrmException,
DrmCommunicationException,
AuthorizationException,
InvalidJobTemplateException,
NoActiveSessionException,
OutOfMemoryException,
InvalidArgumentException,
InternalException) ;

Parameters

jobTemplate - the job template to be used to create the job.
beginIndex - the starting value for the loop index.

endIndex - the terminating value for the loop index.

step - the value by which to increment the loop index each iteration.

Returns

The runBulkJobs() method SHOULD return a list of job identifier Strings identical to that
returned by the underlying DRM system

Exceptions

« TryLaterException — the request could not be processed due to excessive system load.

e DeniedByDrmException — the DRMS rejected the job. The job will never be accepted
due to job template or DRMS configuration settings.

e DrmCommunicationException — unable to communicate with the DRMS.

e InvalidJobTemplateException — the given job template was not created with
createJobTemplate() or has already been deleted.

o AuthorizationException — the user does not have permission to submit jobs.

o NoActiveSessionException — the session has not been initialized or exit() has already
been called.

o OutOfMemoryException — the DRMAA implementation does not have enough free
memory to perform the operation.

e InvalidArgumentException — an argument value is invalid.

« InternalException — an error has occurred in the DRMAA implementation.

9.8 control

The control() method SHALL hold, release, suspend, resume, or kill the job identified by
jobName respective to the operation parameter. The jobName parameter can be
JOB_IDS_SESSION_ALL (see 9.1) to act on all jobs in the session.

drmaa-wg@gridforum.org 30

To avoid thread races in multi-threaded applications, the DRMAA implementation user should
explicitly synchronize this call with any other job submission calls or control calls that may
change the number of remote jobs.

The legal values for operation and their meanings SHALL be:

e JobControlAction: : SUSPEND: stop the job,

e JobControlAction: :RESUME: (re)start the job

e JobControlAction: : HOLD: put the job on-hold,

e JobControlAction: :RELEASE: release the hold on the job, and
e JobControlAction: : TERMINATE: kill the job.

This method SHALL return once the action has been acknowledged by the DRM system, but
MAY return before the action has been completed.

Some DRMAA implementations MAY allow this method to be used to control jobs submitted
externally to the DRMAA session, such as jobs submitted by other DRMAA sessions in other
DRMAA implementations or jobs submitted via native utilities.

void control(in string jobName,
in JobControlAction operation)
raises (DrmCommunicationkException,
AuthorizationException,
ResumeInconsistentStateException,
SuspendInconsistentStateException,
HoldInconsistentStateException,
ReleaseInconsistentStateException,
InvalidJobException,
NoActiveSessionException,
OutOfMemoryException,
InvalidArgumentException,
InternalException) ;

Parameters

jobName - The string id of the job to control.
operation - the control action to be taken.

Exceptions

e DrmCommunicationException — unable to communicate with the DRMS.

« AuthorizationException — the user does not have permission to modify jobs.

o ResumelnconsistentStateException — the job is not in a state from which is can be
resumed.

» SuspendlInconsistentStateException — the job is not in a state from which is can be
suspended.

« HoldInconsistentStateException — the job is not in a state from which is can be held.

» ReleaselnconsistentStateException — the job is not in a state from which is can be
released.

« InvalidJobException — the job id does not represent a valid job.

o NoActiveSessionException — the session has not been initialized or exit() has already
been called.

o OutOfMemoryException — the DRMAA implementation does not have enough free
memory to perform the operation.

e InvalidArgumentException — an argument value is invalid.

drmaa-wg@gridforum.org 31

e InternalException — an error has occurred in the DRMAA implementation.

9.9 synchronize

This method SHALL wait until all jobs specified by jobList have finished execution. The jobList
parameter can be JOB_IDS_SESSION_ALL (see 9.1) to act on all jobs in the session.

To avoid thread race conditions in multi-threaded applications, the DRMAA implementation user
should explicitly synchronize this call with any other job submission or control calls that may
change the number of remote jobs.

To prevent blocking indefinitely in this call, the caller may use a timeout specifying how many
seconds to block in this call. The constant value TIMEOUT WAIT FOREVER may be specified
to wait indefinitely for a result. The constant value TIMEOUT NO WAIT may be specified to
return immediately. If the call exits before the timeout has elapsed, all the jobs have been
waited on or there was an interrupt. If the invocation exits on timeout, an ExitTimeoutException
SHALL be thrown or a corresponding error code returned if exceptions aren't supported. The
caller should check system time before and after this call in order to be sure of how much time
has passed.

If at any time during the call to synchronize() no jobs are active in the session, the call to
synchronize() will return immediately.

The dispose parameter specifies how to treat the reaping of the remote job's internal data
record, which includes a record of the job's consumption of system resources during its
execution and other statistical information. If set to true, the DRM SHALL dispose of the job's
data record. If set to false, the data record SHALL be left for future access via the wait()
method. Because a DRMAA implementation is not required to retain information about jobs
which have been reaped, the routine is not required to, but MAY distinguish between non-
existent and reaped jobs. If the routine successfully validates a job ID for an already reaped job,
it MAY return successfully without any error.

void synchronize(1in StringList joblList,
in long long timeout,
in boolean dispose)
raises (DrmCommunicationkException,

AuthorizationException,
ExitTimeoutException,
InvalidJobException,
NoActiveSessionkException,
OutOfMemoryException,
InvalidArgumentException,
InternalException);

Parameters

jobList - the list of names for the jobs to synchronize.
timeout - the maximum number of seconds to wait.
dispose - specifies how to treat reaping information.

Exceptions

o DrmCommunicationException — unable to communicate with the DRMS.
« AuthorizationException — the user does not have permission to synchronize against jobs.
« ExitTimeoutException — the call was interrupted before all given jobs finished.

drmaa-wg@gridforum.org 32

« InvalidJobException — the job id does not represent a valid job.

* NoActiveSessionException — the session has not been initialized or exit() has already
been called.

o OutOfMemoryException — the DRMAA implementation does not have enough free
memory to perform the operation.

e InvalidArgumentException — an argument value is invalid.

« InternalException — an error has occurred in the DRMAA implementation.

9.10 wait

This method SHALL wait for a job with jobName to finish execution or fail. If
JOB_IDS SESSION ANY is provided as the jobName, this method SHALL wait for any job
submitted during this DRMAA session up to the moment wait() is called. At any time during a
call to wait() with JOB_IDS_SESSION_ANY as the jobName parameter, if no jobs are active in
the session, the call to wait() SHALL fail, throwing an /nvalidJobException. This method is
modeled on the wait3 POSIX routine. Only one invocation of the wait() method for a given job
id MAY succeed. The others MUST throw an InvalidJobException.

The timeout value SHALL be used to specify the desired behavior when a result is not
immediately available. The constant value TIMEOUT WAIT FOREVER may be specified to wait
indefinitely for a result. The constant value TIMEOUT NO WAIT may be specified to return
immediately. Alternatively, a number of seconds may be specified to indicate how long to wait
for a result to become available.

If the call exits before timeout seconds, either the job has been waited on successfully or there
was an abortion or termination of the job. If the invocation exits on timeout, an
ExitTimeoutException SHALL be thrown or a corresponding error code returned if exceptions
aren't supported. The caller should check system time before and after this call in order to be
sure how much time has passed.

The method SHALL reap job data records on a successful call, so any subsequent calls to
wait() SHALL fail, throwing an InvalidJobException, meaning that the job's data record has been
already been reaped. This exception is the same as if the job were unknown. (The only case
where wait() MAY be successfully called on a single job more than once is when the previous
call to wait() timed out before the job finished.)

In a multi-threaded environment with a waif() call using JOB IDS SESSION ANY, only the
active thread gets the status of the finished or failed job in that case, while the other threads
continue waiting. If there are no more running or completed jobs left in the session, all
remaining waiting threads SHOULD fail with an /InvalidJobException.

If thread A is waiting for a specific job, and another thread, thread B, waiting for that same job or
with JOB_IDS_SESSION_ANY, receives notification that the job has finished, thread A
SHOULD fail with an InvalidJobException. At any time during a call to waif() with
JOB _IDS _SESSION_ANY as the jobName parameter, if no jobs are active in the session, the
call to wait() SHALL fail, throwing an InvalidJobException.

When successful, the resource usage information for the job SHALL be provided as a
Dictionary of usage parameter names and their values in the returned job info. The values
contain the amount of resources consumed by the job and are implementation defined. If the
resource usage information is unavailable, the provided Dictionary SHOULD be empty or null.

If the destination language does not support the notion of interfaces or objects, the wait() call
SHOULD return an opaque data structure which contains the job exit information or references

drmaa-wg@gridforum.org 33

to the job exit information. The opaque data structure is decoded using the routines which
model the Joblnfo interface.

JobInfo wait(in string jobName,
in long long timeout)
raises (DrmCommunicationException,

AuthorizationException,
ExitTimeoutException,
InvalidJobException,
NoActiveSessionkException,
OutOfMemoryException,
InvalidArgumentException,
InternalException);

Parameters

jobName - the id of the job for which to wait.
timeout - the maximum number of seconds to wait.

Returns

This method SHALL return the resource usage and status information as JoblInfo instance.

Exceptions

e« DrmCommunicationException — unable to communicate with the DRMS.
 AuthorizationException — the user does not have permission to wait for a job.
o ExitTimeoutException — the call was interrupted before the given job finished.
« InvalidJobException — the job id does not represent a valid job.

o NoActiveSessionException — the session has not been initialized or exit() has already
been called.

o OutOfMemoryException — the DRMAA implementation does not have enough free
memory to perform the operation.

e InvalidArgumentException — an argument value is invalid.

e InternalException — an error has occurred in the DRMAA implementation.

9.11 jobProgramStatus

The jobProgramStatus() method SHALL return the program status of the job identified by
JjobName. The possible values returned from this method are:

e JobProgramState:UNDETERMINED: job status cannot be determined,

e JobProgramState:QUEUED ACTIVE: job is queued and waiting to be scheduled,

e JobProgramState:SYSTEM ON HOLD: job has been placed on hold by the system or
the administrator,

e JobProgramState:USER ON HOLD: job has been placed on hold by a user,

e JobProgramState:USER SYSTEM ON HOLD: job has been placed on hold by both the
system or administrator and a user,

e JobProgramState:RUNNING: job has been scheduled and is running,

drmaa-wg@gridforum.org 34

e JobProgramState:SYSTEM SUSPENDED: job has been suspended by the system or
administrator,

e JobProgramState:USER SUSPENDED: job has been suspended by a user,

e JobProgramState:USER SYSTEM SUSPENDED: job has been suspended by both the
system or administrator and a user,

e JobProgramState:DONE: job finished normally, and

e JobProgramState:FAILED: job exited abnormally before finishing.

The DRMAA implementation MUST always get the status of the job from the DRM system
unless the status has already been determined to be FATLED or DONE and the status has been
successfully cached. Terminated jobs SHALL return a FATLED status. It is up to the
implementation to determine whether this method is capable of operating on jobs submitted
outside of the current DRMAA session.

JobProgramState jobProgramStatus (in string jobName)

raises (DrmCommunicationException,
AuthorizationException,
InvalidJobException,
NoActiveSessionkException,
OutOfMemoryException,
InvalidArgumentException,
InternalException) ;

Parameters

jobName - the id of the job whose status is to be retrieved.

Returns

The jobProgramStatus() method SHALL return the program status.

Exceptions

e« DrmCommunicationException — unable to communicate with the DRMS.
o AuthorizationException — the user does not have permission to query for a job's status.
« InvalidJobException — the job id does not represent a valid job.

o NoActiveSessionException — the session has not been initialized or exit() has already
been called.

o OutOfMemoryException — the DRMAA implementation does not have enough free
memory to perform the operation.

e InvalidArgumentException — an argument value is invalid.

e InternalException — an error has occurred in the DRMAA implementation.

9.12 contact

If this attribute is read before the first call to the init() method, then it SHALL return a string
containing a comma-delimited list of default DRMAA implementation contacts strings. A contact
string represents a specific installation of a specific DRM system, e.g. a Condor central
manager machine at a given IP address or a Sun Grid Engine ‘root’ and ‘cell’.

If the value of the attribute is queried after a successful call to init(), this attribute SHALL contain
the contact string for the DRM system to which the session is attached.

drmaa-wg@gridforum.org 35

The returned Strings are always implementation dependent and SHOULD NOT be interpreted
by the application.

readonly attribute string contact;
9.13 version

This attribute SHALL contain a Version instance containing the major and minor version
numbers of the DRMAA library. This attribute may not be read before init() has been called.

readonly attribute DRMAA::Version version;

9.14 drmsinfo

If the value of this attribute is read before the first successful call to the init() method, this
attribute SHALL return a string containing a comma-delimited list of DRM system identifiers. A
DRM system identifier denotes a specific type of DRM system, e.g. Sun Grid Engine.

If the value is read after init(), this attribute SHALL contain the selected DRM system identifier.
The Strings are implementation dependent and SHOULD NOT be interpreted by the
application.

readonly attribute string drmsInfo;

9.15 drmaalmplementation

If the value of this attribute is read before the first successful call to init(), this attribute SHALL
return a string containing a comma-delimited list of DRMAA implementations. A DRMAA
implementation string denotes a specific version of a DRM system, e.g. Condor v6.6.

If read after init(), this attribute SHALL contain the selected DRMAA implementation.

The returned Strings are implementation dependent and SHOULD NOT be interpreted by the
application.

readonly attribute string drmaalmplementation;

drmaa-wg@gridforum.org 36

10 Annex

10.1 Complete IDL specification

module DRMAA {
// unbounded native ordered string list
valuetype OrderedStringList sequence<string>;
// unbounded native string list
valuetype StringList sequence<string>;
// dictionary type, for unbounded key-value pair storage
valuetype Dictionary sequence< sequence<string,2> >;
// amount of time, at least with a resolution to seconds
valuetype TimeAmount long long;
enum JobControlAction ({
SUSPEND,
RESUME,
HOLD,
RELEASE,
TERMINATE
}i
enum JobProgramState {
UNDETERMINED,
QUEUED ACTIVE,
SYSTEM ON_HOLD,
USER_ON_HOLD,
USER_SYSTEM ON_HOLD,
RUNNING,
SYSTEM SUSPENDED,
USER_SUSPENDED,
USER_SYSTEM SUSPENDED,
DONE,
FAILED
}i

enum JobSubmissionState {
HOLD STATE,
ACTIVE STATE

}i
valuetype FileTransferMode {

attribute boolean transferInputStream;

attribute boolean transferOutputStream;

attribute boolean transferErrorStream;
bi
valuetype Version {

readonly attribute long major;

readonly attribute long minor;
bi
exception AlreadyActiveSessionException {string message;};
exception AuthorizationException {string message;};
exception ConflictingAttributeValuesException {string message;};
exception DefaultContactStringException {string message;};
exception DeniedByDrmException {string message;};
exception DrmCommunicationException {string message;};
exception DrmsExitException {string message;};
exception DrmsInitException {string message;};
exception ExitTimeoutException {string message;};
exception HoldInconsistentStateException {string message;};

drmaa-wg@gridforum.org 37

exception
exception
exception
exception
exception
exception
exception
exception

IllegalStateException {string message;};
InternalException {string message;};
InvalidArgumentException {string message;};
InvalidAttributeFormatException {string message;};
InvalidAttributeValueException {string message;};
InvalidContactStringException {string message;};
InvalidJobException {string message;};
InvalidJobTemplateException {string message;};

NoActiveSessionException {string message;};

NoDefaultContactStringSelectedException {string message;};

OutOfMemoryException {string message;};

ReleaselnconsistentStateException {string message;};

ResumeInconsistentStateException {string message;};

SuspendInconsistentStateException {string message;};

exception TrylLaterException {string message;};

exception UnsupportedAttributeException {string message;};

native PartialTimestamp;

interface JobInfo ({
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute

exception
exception
exception
exception
exception
exception

string jobId;

Dictionary resourceUsage;
boolean hasExited;

long exitStatus;

boolean hasSignaled;
string terminatingSignal;
boolean hasCoreDump;
boolean wasAborted;

}i
interface JobTemplate{

const string HOME DIRECTORY = "$drmaa hd ph$";

const string WORKING DIRECTORY = "$drmaa wd ph$";
const string PARAMETRIC INDEX = "$drmaa incr phS$";
attribute string remoteCommand;

attribute
attribute

OrderedStringlList args;
DRMAA: : JobSubmissionState jobSubmissionState;

attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute

Dictionary JjobEnvironment;

string workingDirectory;

string jobCategory;

string nativeSpecification;
StringlList email;

boolean blockEmail;
PartialTimestamp startTime;

string jobName;

string inputPath;

string outputPath;

string errorPath;

boolean joinFiles;
FileTransferMode transferFiles;
PartialTimestamp deadlineTime;
TimeAmount hardWallclockTimeLimit;
TimeAmount softWallClockTimeLimit;
TimeAmount hardRunDurationLimit;
TimeAmount softRunDurationLimit;

readonly attribute StringList attributeNames;

[language-specific operations for implementation-specific attributes]

interface Session{
const long long TIMEOUT WAIT FOREVER =

_1,-

const long long TIMEOUT NO WAIT = 0;

drmaa-wg@gridforum.org

38

const string JOB IDS SESSION ANY "DRMAA JOB IDS SESSION ANY";
const string JOB IDS SESSION ALL = "DRMAA JOB IDS SESSION ALL";
void init(in string contactString)
raises (DrmsInitException,
InvalidContactStringException,
AlreadyActiveSessionException,
DefaultContactStringException,
NoDefaultContactStringSelectedException,
OutOfMemoryException,
DrmCommunicationException,
AuthorizationException,
InvalidArgumentException,
InternalException) ;
void exit ()
raises (DrmsExitException,
NoActiveSessionkException,
DrmCommunicationException,
AuthorizationException,
OutOfMemoryException,
InternalException) ;
JobTemplate createdJobTemplate ()
raises (DrmCommunicationException,
NoActiveSessionException,
OutOfMemoryException,
AuthorizationException,
InternalException) ;
void deleteJobTemplate (in DRMAA: :JobTemplate jobTemplate)
raises (DrmCommunicationkException,
NoActiveSessionException,
OutOfMemoryException,
AuthorizationException,
InvalidArgumentException,
InvalidJobTemplateException,
InternalException) ;
string rundob (in DRMAA: :JobTemplate jobTemplate)
raises (TrylLaterException,
DeniedByDrmException,
DrmCommunicationException,
AuthorizationException,
InvalidJobTemplateException,
NoActiveSessionException,
OutOfMemoryException,
InvalidArgumentException,
InternalException) ;
StringList runBulkJobs (in DRMAA: :JobTemplate jobTemplate,
in long beginIndex,
in long endIndex,
in long step)
raises (TrylLaterException,
DeniedByDrmException,
DrmCommunicationException,
AuthorizationException,
InvalidJobTemplateException,
NoActiveSessionException,
OutOfMemoryException,
InvalidArgumentException,
InternalException) ;
void control(in string jobName,
in JobControlAction operation)

drmaa-wg@gridforum.org 39

raises (DrmCommunicationkException,
AuthorizationException,
ResumelInconsistentStateException,
SuspendInconsistentStateException,
HoldInconsistentStateException,
ReleaseInconsistentStateException,
InvalidJobException,
NoActiveSessionkException,
OutOfMemoryException,
InvalidArgumentException,
InternalException) ;

void synchronize(in StringList joblList,
in long long timeout,
in boolean dispose)
raises (DrmCommunicationException,
AuthorizationException,
ExitTimeoutException,
InvalidJobException,
NoActiveSessionException,
OutOfMemoryException,
InvalidArgumentException,
InternalException) ;
JobInfo wait(in string jobName,
in long long timeout)
raises (DrmCommunicationkException,

AuthorizationException,
ExitTimeoutException,
InvalidJobException,
NoActiveSessionException,
OutOfMemoryException,
InvalidArgumentException,
InternalException) ;

JobProgramState jobProgramStatus (in string jobName)
raises (DrmCommunicationException,

AuthorizationException,
InvalidJobException,
NoActiveSessionException,
OutOfMemoryException,
InvalidArgumentException,
InternalException);

readonly attribute string contact;

readonly attribute DRMAA::Version version;

readonly attribute string drmsInfo;

readonly attribute string drmaalmplementation;

drmaa-wg@gridforum.org 40

}s

10.2 Correlation of DRMAA exceptions and error codes
The following table shows how exceptions can map to error codes, similar to the definition in the
Distributed Resource Management Application API Specification 1.0 [DRMAA10].

Error Code Name (DRMAA_ERRNO _...) Exception Name

SUCCESS

INTERNAL_ERROR
DRM_COMMUNICATION_FAILURE
AUTH_FAILURE
INVALID_ARGUMENT
NO_ACTIVE_SESSION
NO_MEMORY
INVALID_CONTACT_STRING
DEFAULT_CONTACT_STRING_ERROR
DRMS_INIT_FAILED
ALREADY_ACTIVE_SESSION
DRMS_EXIT_ERROR
INVALID_ATTRIBUTE_FORMAT
INVALID_ATTRIBUTE_VALUE
CONFLICTING_ATTRIBUTE_VALUES
TRY_LATER

DENIED_BY_DRM

INVALID_JOB

Not needed

InternalException
DrmCommunicationException
AuthorizationException
InvalidArgumentException
NoActiveSessionException
OutOfMemoryException
InvalidContactStringException
DefaultContactStringException
DrmsinitException
AlreadyActiveSessionException
DrmsEXxitException
InvalidAttributeFormatException

InvalidAttributeValueException

ConflictingAttributeValuesException

TryLaterException
DeniedByDrmException

InvalidJobException

RESUME_INCONSISTENT_STATE ResumelnconsistentStateException

SUSPEND_INCONSISTENT_STATE SuspendinconsistentStateException

HOLD_INCONSISTENT_STATE HoldInconsistentStateException

RELEASE_INCONSISTENT_STATE ReleaselnconsistentStateException

EXIT_TIMEOUT ExitTimeoutException

drmaa-wg@gridforum.org 41

Error Code Name (DRMAA_ERRNO _...) Exception Name

NO_RUSAGE Not needed
INVALID JOB_TEMPLATE InvalidJobTemplateException
UNSUPPORTED_ATTRIBUTE UnsupportedAttributeException

The DRMAA_ERRNO_SUCCESS code reflects a successful operation call, if a language
bindingg models the error codes as operation return values. The
DRMAA ERRNO_NO_RUSAGE is used to indicate that the target of a wait() call has exited
without providing resource usage information in languages which do no support the notion of
interfaces or objects. See section 9.

In comparison to [DRMAA10], this specification introduces two new error conditions. The
InvalidJobTemplateException is used to indicate that the job template instance currently being
used is not valid. This may be, for example, because it has already been deleted via
Session::deleteJobTemplate(). The UnsupportedAttributeException is used to indicate that for
the current DRMAA implementation the accessed attribute of a job template is unsupported.

10.3 Correlation of JobTemplate attributes and attribute name strings

The following table shows the string names for the attributes in the JobTemplate interface. The
string names are needed as input parameter for the JobTemplate.getAttribute() and
JobTemplate.setAttribute() operations (see Section 8.1.1. Following the [DRMAA10] semantics,
JobTemplate attributes with a complex type are prefixed by “v_" (vector attribute).

String Name JobTemplate Attribute
“remote_command” JobTemplate.remoteCommand
“v_argv’ JobTemplate.args
“js_state” JobTemplate.jobSubmissionState
“v_env” JobTemplate.jobEnvironment
“wd” JobTemplate.workingDirectory
“job_category” JobTemplate.jobCategory
“native_specification” JobTemplate.nativeSpecification
“v_email” JobTemplate.email
“block_email” JobTemplate.blockEmail
“start_time” JobTemplate.startTime
“‘job_name” JobTemplate.jobName
“input_path” JobTemplate.inputPath

drmaa-wg@gridforum.org 42

String Name JobTemplate Attribute

“output_path” JobTemplate.outputPath

“error_path” JobTemplate.errorPath

“join_files” JobTemplate.joinFiles

“transfer_files” JobTemplate.transferFiles
“‘deadline_time” JobTemplate.deadlineTime
“‘wct_hlimit” JobTemplate.hardWallclockTimeLimit
‘wet_slimit” JobTemplate.softWallclockTimeLimit
“run_duration_hlimit” JobTemplate.hardRunDurationLimit
“run_duration_slimit” JobTemplate.softRunDurationLimit

11 Security Considerations

Security issues are not discussed in this document. The scheduling scenario described here
assumes that security is handled at the point of job authorization/execution on a particular
resource.

12 References

[OMG IDL] Object Management Group. Common Object Request Broker Architecture: Core
Specification, Chapter 3, March 2004

[RFC 2119] S. Bradner. RFC 2119 — Key words for use in RFCs to Indicate Requirement
Levels, March 1997

[DRMAA10] Hrabri Rajic et.al. Distributed Resource Management Application API Specification
1.0 (GFD.022). June 2004

13 Contributors

Roger Brobst
rbrobst@cadence.com
Cadence Design Systems, Inc
555 River Oaks Parkway

San Jose, CA 95134

Andreas Haas
andreas.haas@sun.com
Sun Microsystems GmbH
Dr.-Leo-Ritter-Str. 7
D-93049 Regensburg
Germany

Hrabri L. Rajic

drmaa-wg@gridforum.org 43

hrabri.rajic@intel.com
Intel Americas Inc.
1906 Fox Drive
Champaign, IL 61820

Daniel Templeton
dan.templeton@sun.com

Sun Microsystems

18 Network Circle, UMPK18-117
Menlo Park, CA 94025

Peter Troger
peter.troeger@hpi.uni-potsdam.de
Hasso-Plattner-Institute at
University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3
D-14482 Potsdam

Germany

14 Acknowledgements

We are grateful to numerous colleagues for support and discussions on the topics covered in
this document, in particular (in alphabetical order, with apologies to anybody we've missed)
Guillaume Alleon, Ali Anjomshoaa, Ed Baskerville, Harald Béhme, Matthieu Cargnelli, Karl
Czajkowski, Paul Foley, Nicholas Geib, Becky Gietzel, Ancor Gonzalez Sosa, Tim Harsch, Greg
Hewgill, Rayson Ho, Eduardo Huedo, Dieter Kranzmdiiller, Peter G. Lane, Miron Livny, Ignacio
M. Llorente, Martin v. Léwis, Andre Merzky, Ruben S. Montero, Greg Newby, Steven
Newhouse, Michael Primeaux, Greg Quinn, Martin Sarachu, Jennifer Schopf, Enrico Sirola,
Chris Smith, Douglas Thain, Jose R. Valverde, and Peter Zhu.

15 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described
in this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights.
Copies of claims of rights made available for publication and any assurances of licenses to be
made available, or the result of an attempt made to obtain a general license or permission for
the use of such proprietary rights by implementers or users of this specification can be obtained
from the OGF Secretariat.

The OGEF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the OGF Executive Director.

16Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the
OGF disclaims all warranties, express or implied, including but not limited to any warranty that
the use of the information herein will not infringe any rights or any implied warranties of
merchantability or fitness for a particular purpose.

drmaa-wg@gridforum.org 44

17 Full Copyright Notice

Copyright (C) Open Grid Forum (2005 - 2007). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be prepared,
copied, published and distributed, in whole or in part, without restriction of any kind, provided
that the above copyright notice and this paragraph are included on all such copies and
derivative works.

However, this document itself may not be modified in any way, such as by removing the
copyright notice or references to the OGF or other organizations, except as needed for the
purpose of developing Grid Recommendations in which case the procedures for copyrights
defined in the OGF Document process must be followed, or as required to translate it into
languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its
successors or assignees.

drmaa-wg@gridforum.org 45

