1

10

11

12

13

14

15

16

17

18

19

20

21

GWD-R Peter Troger, Hasso-Plattner-Institute
DRMAA-WG (Corresponding Author)
drmaa-wgQogf.org Roger Brobst, Cadence Design Systems
Daniel Gruber, Univa

Mariusz Mamoniski, PSNC

Daniel Templeton, Cloudera

July 2011

Distributed Resource Management Application APl Version 2
(DRMAA) - Draft 8

Status of This Document

Group Working Draft Recommendation (GWD-R)

(See footnotc)l

Obsoletes

This document obsoletes GFD-R.022 [8], GFD-R-P.130 [10], and GWD-R.133 [9].

Document Change History

| Date Notes

Copyright Notice

Copyright (© Open Grid Forum (2005-2011). Some Rights Reserved. Distribution is unlimited.

Trademark

All company, product or service names referenced in this document are used for identification purposes only
and may be trademarks of their respective owners.

Abstract

This document describes the Distributed Resource Management Application API Version 2 (DRMAA). It
defines a generalized API to Distributed Resource Management (DRM) systems in order to facilitate the
development of portable application programs and high-level libraries.

The intended audience for this specification are DRMAA language binding designers, DRM system vendors,
high-level API designers and meta-scheduler architects. End users are expected to rely on product-specific
documentation for the DRMAA API implementation in their particular programming language.

1 This is the non-normative annotated version of the specification with line numbers. It includes historical information
concerning the content and why features were included or discarded by the working group. It also emphasizes the consequences
of some aspects that may not be immediately apparent. This document in only intended for internal working group discussions.

drmaa-wgQogf.org 1

mailto:drmaa-wg@ogf.org
http://www.drmaa.org/
http://www.drmaa.org/
mailto:drmaa-wg@ogf.org

22

23

24

25

26

27

28

GWD-R July 2011

Notational Conventions

In this document, IDL language elements and definitions are represented in a fixed-width font.

The key words “MUST” “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described
in RFC 2119 [2].

Memory quantities are expressed in kilobyte (KB). 1 kilobyte equals 1024 bytes.

Parts of this document are only normative for DRMAA language binding specifications. These sections are
graphically marked as shaded box.

(See footnote)

2The usage of kikibyte as memory quantity unit, as well as the usage of bytes as in JSDL, was rejected by the group (conf
call Apr. 13th 2011)

drmaa-wgQogf.org 2

mailto:drmaa-wg@ogf.org

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

GWD-R July 2011

Contents
1 Introduction L L e e e 5
1.1 Basicconcepts e 5
1.2 Slots and Queues, 6
1.3 Language Bindings 6
1.4 Job Categories 7
1.5 Multithreading e 8
2 Namespace. L 8
3 Common Type Definitions e 8
4 Enumerations e e e e e e e 10
4.1 OperatingSystem enumeration e 10
4.2 CpuArchitecture enumeration e 11
4.3 ResourceLimitType enumeration Lo 12
4.4 JobTemplatePlaceholder enumeration 13
45 DrmaaCapability 14
5 Extensible Data Structures e 15
5.1 Queuelnfo structure 15
5.2 Version structure L L e 16
5.3 Machinelnfo structure L L 16
5.4 Slotinfo structure e e e 18
5.5 Joblnfo structure e 18
5.6 ReservationInfo structure L 22
5.7 JobTemplate structure. L L 23
5.8 ReservationTemplate structure e 31
5.9 DrmaaReflective Interface 35
6 Common Exceptions L e 36
7 The DRMAA Session Concept o 0 i i i e e 38
7.1 SessionManager Interface L e 38
8 Working with Jobs L e 42
8.1 The DRMAA State Model e 42
8.2 JobSession Interface e 44
8.3 DrmaaCallback Interface 47
8.4 JoblInterface e 48
8.5 JobArray Interface L 50
8.6 The DRMAA_INDEX_VAR environment variable 52
9 Working with Advance Reservation L 52
9.1 ReservationSession Interface L 53
9.2 Reservation Interface L 54
10 Monitoring the DRM System 55
10.1 MonitoringSession Interface 55
11 Complete DRMAA IDL Specification o 57
12 Security Considerations L e e 62
13 Contributors L e 63
14 Intellectual Property Statement 64

drmaa-wgQogf.org 3

mailto:drmaa-wg@ogf.org

73

74

75

GWD-R July 2011

15 Disclaimer 64
16 Full Copyright Notice o e 65
17 References 65

drmaa-wgQogf.org 4

mailto:drmaa-wg@ogf.org

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

GWD-R July 2011

1 Introduction

The Distributed Resource Management Application API Version 2 (DRMAA) specification defines an inter-
face for tightly coupled, but still portable access by abstracting the fundamental functions available in the
majority of DRM systems. The scope is limited to job submission, job control, reservation management, and
retrieval of job and machine monitoring information.

This document acts as root specification for the abstract API concepts and the behavioral rules of a DRMAA-
compliant implementation. The programming language representation of the API is defined by a separate
language binding specification.

There are other relevant OGF standards in the area of job submission and monitoring. An in-depth compar-
ison and positioning of the obsoleted first version of the DRMAA [9] specification was provided by another
publication [11]. This document was created in close collaboration with the OGF SAGA and the OGF OCCI
working group.

First-time readers are recommended to complete reading this section. After that, they should jump to Section
7 for getting an overview of the supported functionality in DRMAA. Section 11 can be always consulted in
parallel for a global overview on the API layout.

1.1 Basic concepts

The DRMAA specification is based on the following stakeholders:

e Distributed resource management system / DRM system / DRMS: Any system that supports the con-
cept of distributing computational tasks on execution resources through the help of a central scheduling
entity. Examples are multi-processor systems controlled by a operating system scheduler, cluster sys-
tems with multiple machines controlled by a central scheduler software, grid systems, or cloud systems
with a job concept.

e (DRMAA) implementation / (DRMAA) library: The implementation of a DRMAA language binding
specification, with the functional behavior as described in this document. The resulting artifact is
expected to target one DRM system.

o (DRMAA-based) application: Software that utilizes the DRMAA implementation for gaining access to
one or multiple DRM systems in a standardized way.

e Submission host: A resource in the DRM system that runs the DRMAA-based application. A submis-
sion host MAY also be able to act as execution host.

e Fxecution host: A resource in the DRM system that can run a submitted job.

e Job: A computational activity submitted by the DRMAA-based application to a DRM system, with
the help of the DRMAA implementation. A job is expected to run as one or many operating system
processes on one or many execution hosts.

Table 1 defines the conceptual mapping of DRMAA to the GLUE 2.0 Information model [1]. Since the
DRMAA API design is derived from existing DRM system functionality and terminology, not all GLUE
concepts are applicable here, such as the expression of ID’s as URI’s, the SI metric model, the representation
of date information, or the endpoint concept.

drmaa-wgQogf.org 5

mailto:drmaa-wg@ogf.org

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

GWD-R July 2011

DRMAA Reference GLUE 2.0 Reference [1]
DRM system Section 1.1 Manager Section 5.9
Execution host Section 1.1 ExecutionEnvironment + ComputingManager | Section 6.4 / 6.6
Socket Section 5.3.3 Physical CPU Section 6

Core Section 5.3.4 Logical CPU Section 6

Job Section 1.1 ComputingActivity Section 6.9

Job category Section 1.4 ApplicationEnvironment Section 6.7
UNSET value Section 1.3 Placeholder values for unknown data Appendix A

Table 1: Mapping of DRMAA concepts to GLUE 2.0

1.2 Slots and Queues

Similar to GLUE, DRMAA supports the notion of slots and queues as resources of a DRM system. A
DRMAA application can request them in advance reservation and job submission. However, slots and
queues SHALL be opaque concepts from the viewpoint of a DRMAA implementation, meaning that the
requirements given by the application are just passed through to the DRM system. This is reasoned by the
large variation in interpreting that concepts in the different DRM systems, which makes it impossible to
define a common understanding on the level of the DRMAA API.

(See footnotc)3
1.3 Language Bindings

The interface semantics are described with the OMG Interface Definition Language (IDL) [5] syntax. Based
on this language-agnostic specification, language binding standards have to be designed that map the abstract
concepts into a library interface for a particular programming language (e.g. C, Java, Python). While this
document has the responsibility to ensure consistent API semantics for all possible DRMAA implementations,
the language binding has the responsibility to ensure source-code portability for DRMAA applications on
different DRM systems.

An effort has been made to choose an API layout that is not unique to a particular language. However, in
some cases, various languages disagree over some points. In those cases, the most meritous approach was
taken, irrespective of language.

A language binding specification derived from this document MUST define a mapping between the IDL

3 As one example, queues can be either treated as representation of execution hosts (Sun Grid Engine) or as central waiting
line located at the scheduler (LSF). Slots have a meaning in GLUE, but we intentionally stick with the opaque concept approach.

drmaa-wgQogf.org 6

mailto:drmaa-wg@ogf.org

131

132

133

134

135

136

137

138

139

140

141

142

143

GWD-R July 2011

constructs and the constructs of its targeted programming language. The focus MUST be on source code
portability for the DRMA A-based application in the particular language.

A language binding SHOULD NOT rely completely on the OMG IDL language mapping standards available
for many programming languages, since they have a significant overhead of CORBA-related mapping rules
that are not relevant here. The language binding MUST use its initially defined type system mapping in a
consistent manner for the complete API layout.

Due to the usage of IDL, all method groups for a particular purpose (e.g. job control) are described in terms
of interfaces, and not classes. Language bindings MAY map the DRMAA IDL interfaces to classes.

It may be the case that IDL constructs do not map directly to any language construct. In this case it MUST
be ensured that the chosen mapping retains the intended semantic of the DRMAA interface definition.

Access to scalar attributes (string, boolean, long) MUST operate in a pass-by-value mode. For non-
scalar attributes, the language binding MUST specify a consistent access strategy for all these attributes,
for example pass-by-value or pass-by-reference.

This specification tries to consider the possibility of a Remote Procedure Call (RPC) scenario in a DRMAA-
conformant language binding. It SHOULD therefore be ensured that the programming language type for an
IDL struct definition supports serialization and the comparison of instances. These capabilities should be
accomplished through whatever mechanism is most natural for the programming language.

A language binding MUST define a way to declare an invalid value (UNSET). In case, a definition per data
type needs to be provided. Evaluating an UNSET boolean value MUST result in a negative result, e.g. for
JobTemplate: :emailOnStarted. Invalid strings MAY be modelled according to the GLUE 2.0 scheme [1],
were an UNSET string contains the value “UNDEFINEDVALUE”. Invalid integers MAY be also modelled
according to GLUE 2.0 scheme, were an UNSET integer is expressed as “all nines”.

(See footnote)

1.4 Job Categories

DRMAA facilitates writing DRM-enabled applications even though the deployment properties, in particular
the configuration of the DRMS, cannot be known in advance. This is realized by a set of standardized
attributes that can be specified for job submission or advance reservation.

One of these attributes is the job category, which allows to give an indication about the nature of the job at
execution time. Examples are parallel MPI jobs, OpenMP jobs, jobs targeting specific accelerator hardware,
or jobs demanding managed runtime environments (e.g. Java).

Job categories typically map to site-specific reservation or submission options. Each category expresses a
particular type of job execution that demands site-specific configuration such as path settings, environment
variables, or application starters. This mapping to site-specific conditions SHOULD take place at submission
time of the job or advance reservation.

A non-normative recommendation of category names is maintained at:

4 The concept of a UNSET value was decided on a conf call (Aug 25th 2010). Boolean in C can use custom enumeration
(TRUE, FALSE, INVALID) or pointer to static values. A numerical UNSET in C should use a magic number, since all long
attributes are unsigned, it could be MIN_INT. With Python, just use None. For Java, Dan has an idea.

drmaa-wgQogf.org 7

mailto:drmaa-wg@ogf.org

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

GWD-R July 2011

http://www.drmaa.org/jobcategories/

Implementations SHOULD use these recommended names. In case the name is not taken from this list, it
should be self-explanatory for the user to make her understand the implications on job execution.

Implementations MAY provide a library configuration facility, which allows a site administrator to link job
category names with specific product- and site-specific configuration options.

The order of precedence between the job category and other attributes is implementation-specific. It is
RECOMMENDED to overrule explicit job / reservation settings with the implicit settings resulting from a
conflicting job category.

For bulk job submissions, the category is expected to be valid for each of the jobs created.

(See footnote)

1.5 Multithreading

High-level APIs such as SAGA [4] are expected to utilize DRMAA for their own asynchronous operation,
based on the assumption that re-entrancy is supported by the DRMAA implementation. For this reason,
implementations SHOULD ensure the proper functioning of the library in case of re-entrant library calls with-
out any explicit synchronization among the application threads. DRMAA implementers should document
their level of thread safety.

2 Namespace
The DRMAA interfaces and structures are encapsulated by a naming scope, to avoid conflicts with other
APIs used in the same application.

module DRMAA2 {

A language binding MUST map the IDL module encapsulation to an according package or namespace
concept. It MAY change the module name according to programming language conventions.

6
(See footnote)

3 Common Type Definitions

The abstract DRMA A specification defines some custom types to express special value semantics not available
in original IDL:

typedef sequence<string> OrderedStringlist;
typedef sequence<string> Stringlist;
typedef sequence<Job> JobList;

typedef sequence<QueuelInfo> QueuelInfolist;

5There was a discussion on supporting the specification of multiple categories at the same time. Since this would put more
burden on the implementation in terms of conflict resolving, we avoided that intentionally. This allows to map categories simply
to some additional job submission command line arguments, similar to the old nativeSpecification thing.

6 Comparison to DRMAA v1.0: The IDL module name was change to DRMAA2, in order to intentionally break backward
compatibility of the interface.

drmaa-wgQogf.org 8

http://www.drmaa.org/jobcategories/
mailto:drmaa-wg@ogf.org

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

GWD-R July 2011

typedef sequence<MachineInfo> MachineInfolist;
typedef sequence<SlotInfo> OrderedSlotInfolist;
typedef sequence<Reservation> ReservationList;
typedef sequence< sequence<string,2> > Dictionary;
typedef string AbsoluteTime;

typedef long long TimeAmount;

native ZERO_TIME;

native INFINITE_TIME;

native NOW;

OrderedStringList: An unbounded list of strings, which supports element insertion, element deletion, and
iteration over elements while keeping an element order.

StringList: An unbounded list of strings, without any demand on element order.

JobList: An unbounded list of Job instances, without any demand on element order.

QueuelnfoList: An unbounded list of QueueInfo instances, without any demand on element order.

MachinelnfoList: An unbounded list of MachineInfo instances, without any demand on element order.

OrderedSlotInfoList: An unbounded list of SlotInfo instances, which supports element insertion, element
deletion, and iteration over elements while keeping an element order.

ReservationList: An unbounded list of Reservation instances, without any demand on element order.

Dictionary: An unbounded dictionary type for storing key-value pairs, without any demand on element
order.

AbsoluteTime: Expression of a point in time, with a resolution at least to seconds.
TimeAmount: Expression of an amount of time, with a resolution at least to seconds.
ZERO_TIME: A constant value of type TimeAmount that expresses a zero amount of time.
INFINITE _TIME: A constant value of type TimeAmount that expresses an infinite amount of time.

NOW: A constant value of type AbsoluteTime that represents the point in time at which it is evaluated
by some function.

A language binding MUST replace these type definitions with semantically equal reference or value types
in the according language. This MAY include the creation of new complex language types for one or more
of the above concepts. The language binding MUST define a mechanism for obtaining the RFC822 string
representation from a given AbsoluteTime or TimeAmount instance.

7
(See footnote)

7 The PartialTimestamp functionality from DRMAA 1.0 was completely removed. Absolute date and time values are now
expressed as RFC822 conformant data items with stringification support (conf. call Mar 31st 2009). String list for job identifiers
are replaced by Job object lists (F2F meeting July 2009)

drmaa-wgQogf.org 9

mailto:drmaa-wg@ogf.org

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

GWD-R July 2011

4 Enumerations

Some methods and attributes in DRMAA expect enumeration constants as input. The specified enumerations
SHOULD NOT be extended by an implementation or language binding.

Language bindings SHOULD define numerical values for all enumeration members.

(See footnote)

4.1 OperatingSystem enumeration

DRMAA supports the identification or demanding of an operating system installation on execution hosts.
The enumeration defines a set of standardized identifiers for operating system types. The list is a shortened
version of the according CIM Schema [7]. It includes only operating systems that are supported by the
majority of DRM systems available at the time of writing:

enum OperatingSystem {
AIX, BSD, LINUX, HPUX, IRIX, MACOS, SUNOS, TRUE64, UNIXWARE, WIN,
WINNT, OTHER_O0S};
AIX: AIX Unix by IBM.
BSD: All operating system distributions based on the BSD kernel.
LINUX: All operating system distributions based on the Linux kernel.
HPUX: HP-UX Unix by Hewlett-Packard.
IRIX: The IRIX operating system by SGI.
MACOS: The MAC OS X operating system by Apple.
SUNOS: SunOS or Solaris operating system by Sun / Oracle.
TRUEG64: True64 Unix by Hewlett-Packard, or DEC Digital Unix, or DEC OSF/1 AXP.
UNIXWARE: UnixWare system by SCO group.
WIN: Windows 95, Windows 98, Windows ME.
WINNT: Microsoft Windows operating systems based on the NT kernel
OTHER _OS: An operating system type not specified in this list.

Implementations SHOULD NOT add new operating system identifiers to this enumeration, even if they are
supported by the underlying DRM system.

The operating system information is only useful in conjunction with version information (see Section 5.2),
which reflects the reporting approach taken in most DRM systems. Examples:

e The Apple MacOS X operating system commonly denoted as “Snow Leopard” would be reported as
“MACOS” with the version structure [“10”,“6”]

8Enumeration member value definitions are expected from the binding in order to foster binary portability of DRMA A-based
applications.

drmaa-wgQogf.org 10

mailto:drmaa-wg@ogf.org

229

230

231

232

233

234

235

236

GWD-R

July 2011

e The Microsoft Windows 7 operating system would be reported as “WINNT” with the version infor-
mation [“67,“1”], which is the internal version number reported by the Windows API.

e All Linux distributions would be reported as operating system type “LINUX” with the major revision
of the kernel, such as [“2”,“6”].

e The Solaris operating system is reported as “SUNOS”, together with the internal version number, e.g.

[“57,%107] for Solaris 10.

The DRMAA OperatingSystem enumeration can be mapped to other high-level specifications. Table 2 gives
a non-normative set of examples.

DRMAA OperatingSystem

JSDL jsdl:0peratingSystemTypeEnumeration

GLUE v2.0

HPUX
LINUX
IRIX
TRUE64
MACOS
SUNOS
WIN
WINNT
AIX
UNIXWARE
BSD

HPUX

LINUX

IRIX

Tru64_UNIX, OSF

MACOS

SunOS, SOLARIS

WIN95, WIN98, Windows_R_Me
WINNT, Windows_2000, Windows_XP
AIX

SCO_UnixWare, SCO_OpenServer
BSDUNIX, FreeBSD, NetBSD, OpenBSD

OSFamily_t:linux

OSFamily_t:macosx
OSFamily_t:solaris
OSFamily_t:windows
OSFamily_t:windows
OSName_t:aix

Table 2: Mapping example for the DRMAA OperatingSystem enumeration

»r 4.2 CpuArchitecture enumeration

2s DRMAA supports identifying the processor instruction set architecture on execution hosts. The
20 CpuArchitecture enumeration is used as data type in job submission, advance reservation and system
20 monitoring. It defines a set of standardized identifiers for processor architecture families. The list is a short-
a1 ened version of the according CIM Schema [7], It includes only processor families that are supported by the
22 majority of DRM systems available at the time of writing:

23 enum CpuArchitecture {
244 ALPHA, ARM, CELL, PARISC, X86, X64, IA64, MIPS, PPC, PPC64,
245 SPARC, SPARC64, OTHER_CPUZ;

26 ALPHA: The DEC Alpha / Alpha AXP processor architecture.

a7 ARM: The ARM processor architecture.

us CELL: The Cell processor architecture.

29 PARISC: The PA-RISC processor architecture.

0 X86: The IA-32 line of the X86 processor architecture family, with 32bit support only.
1 X64: The X86-64 line of the X86 processor architecture family, with 64bit support.

» IA64: The Itanium processor architecture.

drmaa-wgQogf.org 11

mailto:drmaa-wg@ogf.org

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

GWD-R July 2011

MIPS: The MIPS processor architecture.

PPC: The PowerPC processor architecture, all models with 32bit support only.
PPC64: The PowerPC processor architecture, all models with 64bit support.
SPARC: The SPARC processor architecture, all models with 32bit support only.
SPARCG64: The SPARC processor architecture, all models with 64bit support.
OTHER _CPU: A processor architecture not specified in this list.

The DRMAA CpuArchitecture enumeration can be mapped to other high-level APIs. Table 3 gives a
non-normative set of examples.

The reporting and job configuration for processor architectures SHOULD operate on a “as-is” base, if sup-
ported by the DRM system. This means that the reported architecture should reflect the current operation
mode of the processor with the running operating system. For example, X64 processors executing a 32-bit
operating system should be reported as X86 processor.

(See footnote)

DRMAA CpuArchitecture | JSDL jsdl:ProcessorArchitectureEnumeration | GLUE v2.0
ALPHA other
ARM arm
CELL other
PARISC parisc
X86 x86_32 Platform_t:i386
X64 x86_64 Platform_t:amd64
[A64 iab64 Platform_t:itanium
MIPS mips
PPC powerpc Platform_t:powerpc
PPC64 powerpc Platform_t:powerpc
SPARC sparc Platform_t:sparc
SPARC64 sparc Platform_t:sparc

Table 3: Mapping example for DRMAA CpuArchitecture enumeration

4.3 ResourceLimitType enumeration

Modern DRM systems expose resource constraint capabilities from the operating system also for jobs. The
ResourceLimitType enumeration represents the most common setrlimit parameters [6] supported in DRM
systems. In general, resource limitations aim at the level of jobs. If a job is instantiated as multiple processes,
the behavior is implementation-specific.

1
(See footnote)

9This kind of reporting is the only one that makes sense from the application point of view.

10 The June 2011 face-to-face meeting had hard discussion on the relation between operating system processes, jobs, and
slots. It was decided that slot is a truly opaque concept, which means that you cannot do resource contraints on something that
is implementation-specific. Therefore, the spec semantics must focus on jobs only, and leave the interpretation to the DRM
system / DRMAA implementation.This leads to some intentional fuzzying of descriptions for ResourceLimitType members.

drmaa-wgQogf.org 12

mailto:drmaa-wg@ogf.org

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

GWD-R July 2011

enum ResourcelLimitType {
CORE_FILE_SIZE, CPU_TIME, DATA_SEG_SIZE, FILE_SIZE, OPEN_FILES,
STACK_SIZE, VIRTUAL_MEMORY, WALLCLOCK_TIME };

CORE_FILE_SIZE: The maximum size of the core dump file created on fatal errors of the job, in kilobyte.
Setting this value to zero SHOULD disable the creation of core dump files on the execution host.

CPU_TIME: The maximum time in seconds the job is allowed to perform computations. The value
SHOULD be interpreted as sum for all processes belonging to the job. This value MUST only include
time the job is spending in JobState: :RUNNING (see Section 8.1).

DATA _SEG _SIZE: The maximum amount of memory the job can allocate on the heap e.g. for object
creation, in kilobyte.

FILE_SIZE: The maximum file size the job can generate, in kilobyte.
OPEN_FILES: The maximum number of file descriptors the job is allowed to have open at the same time.

STACK _SIZE: The maximum amount of memory the job can allocate on the stack, e.g. for local variables,
in kilobyte.

VIRTUAL_MEMORY: The maximum amount of memory the job is allowed to allocate, in kilobyte.

WALLCLOCK_TIME: The maximum wall clock time in seconds that all processes of a job are allowed
to exist. The time amount MUST include the time spent in RUNNING state, and MAY also include
the time spent in SUSPENDED state (see Section 8.1). The limit value MAY also be used for job
scheduling decisions by the DRM system or the implementation.

(See footnote)ll

4.4 JobTemplatePlaceholder enumeration

The JobTemplatePlaceholder enumeration defines constant macros to be used in string attributes of a
JobTemplate instance (see Section 5.7).

enum JobTemplatePlaceholder {
HOME_DIRECTORY , WORKING_DIRECTORY ,PARAMETRIC_INDEX };

A HOME_DIRECTORY placeholder SHOULD be only allowed at the beginning of a JobTemplate attribute value.
It denotes the remaining portion as a directory / file path resolved relative to the job users home directory
on the execution host.

A WORKING_DIRECTORY placeholder SHOULD be only allowed at the beginning of a JobTemplate attribute
value. It denotes the remaining portion as a directory / file path resolved relative to the jobs working
directory on the execution host.

The PARAMETRIC_INDEX placeholder SHOULD be usable at any position within an attribute value that sup-
ports place holders. It SHALL be substituted by the parametric job index when JobSession: :runBulkJobs

11 “Pipe size” was not added, since there is no use case in DRM systems with a job concept. “Max user processes” was
omitted because it operates on the notion of users, which is not an explicit concept in DRMAA.

The understanding of wall clock time and CPU time was decided in the Apr 6th and 13th 2011 and June 29th 2011 conf call.
Condor and Grid Engine also add SUSPEND time to wallclock time, but LSF does not.

drmaa-wgQogf.org 13

mailto:drmaa-wg@ogf.org

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

GWD-R July 2011

is called (see Section 8.2.7). If the job template is used for a JobSession:runJob call, PARAMETRIC_INDEX
SHOULD be substituted with a constant implementation-specific value.

(See footnote)12

4.5 DrmaaCapability

The DrmaaCapability enumeration expresses DRMAA features and data attributes that may or may not
be supported by a particular implementation. Applications are expected to check the availability of optional
capabilities through the SessionManager: : supports method (see Section 7.1.5).

enum DrmaaCapability {
ADVANCE_RESERVATION, RESERVE_SLOTS, CALLBACK, BULK_JOBS_MAXPARALLEL,
JT_EMAIL, JT_STAGING, JT_DEADLINE, JT_MAXSLOTS, JT_ACCOUNTINGID,
RT_STARTNOW, RT_DURATION, RT_MACHINEOS, RT_MACHINEARCH
s

ADVANCE_RESERVATION: Indicates that the implementation supports advance reservation through
the interfaces (ReservationSession and Reservation).

RESERVE_SLOTS: Indicates that the advance reservation functionality is targeting slots. If this capa-
bility is not given, the advance reservation is targeting whole machines as granularity level.

CALLBACK: Indicates that the implementation supports event notification through a DrmaaCallback
interface in the application.

BULK_JOBS_MAXPARALLEL: Indicates that the maxParallel parameter in the
JobSession: :runBulkJobs method is considered and supported by the implementation.

JT_EMAIL: Indicates that the optional email, emailOnStarted, and emailOnTerminated attributes in
job templates are supported by the implementation.

JT_STAGING: Indicates that the optional JobTemplate: :stageInFiles and
JobTemplate: :stageOutFiles attributes are supported by the implementation.

JT_DEADLINE: Indicates that the optional JobTemplate: :deadlineTime attribute is supported by the
implementation.

JT_MAXSLOTS: Indicates that the optional JobTemplate::maxSlots attribute is supported by the
implementation.

JT_ACCOUNTINGID: Indicates that the optional JobTemplate: :accountingId attribute is supported
by the implementation.

RT_STARTNOW: Indicates that the ReservationTemplate: :startTime attribute accepts the NOW value.

RT_DURATION: Indicates that the optional ReservationTemplate: :duration attribute is supported
by the implementation.

RT_MACHINEOS: Indicates that the optional ReservationTemplate::machineOS attribute is sup-
ported by the implementation.

12 Placeholders for other job template attributes were rejected, in order to avoid circular dependencies (Conf. call Oct 20th
2010). Any extended semantic of placeholders in comparison to DRMAA1 was rejected, since the support in the DRM system
didn’t change. (conf call Apr. 20th 2011)

drmaa-wgQogf.org 14

mailto:drmaa-wg@ogf.org

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

GWD-R July 2011

RT_MACHINEARCH: Indicates that the optional ReservationTemplate: :machineArch attribute is
supported by the implementation.

5 Extensible Data Structures

DRMAA defines a set of data structures commonly used in the API to express information for and from
the DRM system. A DRMAA implementation MAY extend these structures with implementation-specific
attributes. Behavioral aspects of such extended attributes are out of scope for DRMAA. Implementations
MAY even ignore the attribute values in some situations.

A language binding MUST define a consistent mechanism to realize implementation-specific structure ex-
tension, without breaking the portability of DRMA A-based applications that rely on the original version of
the structure. Object oriented languages MAY use inheritance mechanisms for this purpose. Instances of
extended structures SHALL still be treated in a “call-by-value” fashion.

Implementations SHALL only extend data structures in the way specified by the language binding. The
introspection of supported implementation-specific attributes is offered by the DrmaaReflective interface
(see Section 5.9). Implementations SHOULD also support native introspection functionalities if defined by
the language binding.

Language bindings MAY define how the native introspection capabilities of a language or it’s runtime envi-

ronment can be used. These mechanisms MUST work in parallel to the DrmaaReflective interface.

(See footnote) 13

5.1 Queuelnfo structure

DRMAA defines queues as opaque concept for an implementation, which allows different mappings to DRMS
concepts (see Section 1.2). The DRMAA QueuelInfo struct therefore contains only the name of the queue,
but can be extended by the implementation as described above. All such structure instances are read-only.

struct QueuelInfo {
string name;

};

5.1.1 name

This attribute contains the name of the queue as reported by the DRM system. The format of the queue
name is implementation-specific. The naming scheme SHOULD be consistent for all instances.

13 Comparison to DRMAA 1.0: The binding of job template attribute names and exception names to strings was removed.
Language bindings have to define their own mapping, if needed.

One example for native language introspection support could be attributes.

There was a discussion to remove the attribute ignorance possibility for implementations, in order to have a defined error
when unknown attributes are used. This was rejected on the Apr. 13th conf call, since applications do not need the error as
indication for missing attribute support. Instead, they should use the given introspection capabilities.

drmaa-wgQogf.org 15

mailto:drmaa-wg@ogf.org

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

GWD-R July 2011

5.2 Version structure

The Version structure denotes versioning information for an operating system, DRM system, or DRMAA
implementation.

struct Version {
string major;
string minor;

};

Both the major and the minor part are expressed as strings, in order to allow extensions with character
combinations such as “rev”. Original version strings containing a dot, e.g. Linux “2.6”, SHOULD be
interpreted as having the major part before the dot, and the minor part after the dot. The dot character

SHOULD NOT be added to the Version attributes.

Implementations SHOULD NOT extend this structure with implementation-specific attributes.

(See footnote) 14

5.3 Machinelnfo structure

The MachineInfo structure describes the properties of a particular execution host in the DRM system. It
contains read-only information. An implementation or its DRM system MAY restrict jobs in their resource
utilization even below the limits described in the MachineInfo structure. The limits given here MAY be
imposed by the hardware configuration, or MAY be be imposed by DRM system policies.

struct MachineInfo {
string name;
boolean available;
long sockets;
long coresPerSocket;
long threadsPerCore;
double 1load;
long physMemory;
long virtMemory;
OperatingSystem machine0S;
Version machineOSVersion;
CpuArchitecture machineArch;

};

5.3.1 name

This attribute describes the name of the machine as reported by the DRM system. The format of the
machine name is implementation-specific, but MAY be a DNS host name. The naming scheme SHOULD be
consistent among all machine struct instances.

14 We could see no use case in doing implementation-specific extensions here, so this structure is not considered in DrmaaRe-
flective. Another reason is that versioning information may be used for control flow decisions. Therefore, it should be portable
in any case.

drmaa-wgQogf.org 16

mailto:drmaa-wg@ogf.org

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

GWD-R July 2011

5.3.2 available

This attribute expresses the usability of the machine for job execution at the time of querying. The value of
this attribute SHALL NOT influence the validity of job templates referencing MachineInfo instances. DRM
systems and their DRMAA implementation MAY allow to submit jobs intended for machines unavailable at
this time.

(See footnote)15

5.3.3 sockets

This attribute describes the number of processor sockets (CPUs) usable for jobs on the machine. The at-
tribute value MUST be greater than 0. In the case where the correct value is unknown to the implementation,
the value MUST be set to 1.

5.3.4 coresPerSocket

This attribute describes the number of cores per socket usable for jobs on the machine. The attribute value
MUST be greater than 0. In case where the correct value is unknown to the implementation, the value
MUST be set to 1.

5.3.5 threadsPerCore

This attribute describes the number of threads that can be executed in parallel by a job’s process on one core
in the machine. The attribute value MUST be greater than 0. In case where the correct value is unknown
to the implementation, the value MUST be set to 1.

5.3.6 load

This attributes describes the 1-minute average load on the given machine. Implementations MAY use the
same mechanism as the Unix uptime command. The value has only informative character, and should not
be utilized by end user applications for job scheduling purposes. An implementation MAY provide delayed
or averaged data here, if necessary due to implementation issues. The implementation strategy on non-Unix
systems is undefined.

(See footnote) 10

5.3.7 physMemory

This attribute describes the amount of physical memory in kilobyte installed in this machine.
5.3.8 virtMemory

This attribute describes the amount of virtual memory in kilobyte available for a job executing on this
machine. The virtual memory SHOULD be defined as the sum of physical memory installed, plus the
configured swap space for the operating system. The value is expected to be used as indicator whether or not
an application is able to get its memory allocation needs fulfilled on a particular machine. Implementations

15These jobs are expected to be queued until the machine becomes available again.
161n July 2011, there was a short debate on the list if this value should be normalized by the library to {0,1;. It was rejected,
since DRMAA should just forward given information from the DRM / OS, for which the maximum value is typically not known.

drmaa-wgQogf.org 17

mailto:drmaa-wg@ogf.org

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

GWD-R July 2011

SHOULD derive this value directly from operating system information, without further consideration of
additional memory allocation restrictions, such as address space ranges or already running processes.

5.3.9 machineOS

This attribute describes the operating system installed on the machine, with values as specified in Section
4.1.

5.3.10 machineOSVersion
This attribute describes the operating system version on the machine, with values as specified in Section 4.1.
5.3.11 machineArch

This attribute describes the instruction set architecture of the machine, with values as specified in Section
4.2,

5.4 SlotInfo structure

DRMAA defines slots as opaque concept for an implementation, which allows different mappings to DRMS
concepts (see Section 1.2). The DRMAA SlotInfo structure describes the amount of reserved slots on a
machine. Implementations SHALL NOT extend this structure with implementation-specific attributes. All
such structure instances are read-only.

1
(See footnote)

struct SlotInfo {
string machineName;
string slots;

};

5.4.1 machineName

The name of the machine. Strings returned here SHOULD be equal to the MachineInfo: :name attribute in
the matching MachineInfo instance.

5.4.2 slots

The number of slots reserved on the given machine. Depending on the intepretation of slots in the imple-
mentation, this value MAY be always one.

5.5 Joblnfo structure

The JobInfo structure provides detailed information about the characteristics of a (bulk) job.

struct JobInfo {
string jobld;
long exitStatus;

17 We could see no use case in realizing implementation-specific extensions here, so this structure is not considered in
DrmaaReflective.

drmaa-wgQogf.org 18

mailto:drmaa-wg@ogf.org

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

GWD-R July 2011

string terminatingSignal;
string annotation;

JobState jobState;

any jobSubState;
OrderedSlotInfolist allocatedMachines;
string submissionMachine;
string jobOwner;

long slots;

string queueName;

TimeAmount wallclockTime;
long cpuTime;

AbsoluteTime submissionTime;
AbsoluteTime dispatchTime;
AbsoluteTime finishTime;

};

It is used in two occasions - first for the representation of information about a single job, and second as filter
expression when retrieving a list of jobs.

In both usage scenarios, the structure information has to be understood as snapshot of the live DRM system.
Multiple values being set in one structure instance should be interpreted as “occurring at the same time”.
In real implementations, some granularity limits must be assumed - for example, the wallclockTime and
the cpuTime attributes might hold values that were measured with a very small delay one after each other.

In the filtering case, the value UNSET for an attribute MUST express wildcard semantics, meaning that this
part of JobInfo is ignored for filtering.

DRMAA makes no assumption on the JobInfo availability for jobs in a a “Terminated” state (see Section
8.1). Implementations SHOULD allow to fetch information about such jobs, complete or incomplete, for
a reasonable amount of time. For such terminated jobs, implementations MAY also decide to return only
partially filled JobInfo instances.

(See footnote)

For additional DRMS-specific information, the JobInfo structure MAY be extended by the DRMAA imple-
mentation (see Section 5).

1
(See footnote)

55.1 jobld

For monitoring: Reports the stringified job identifier assigned to the job by the DRM system.

18We want to tackle performance restrictions in the communication with the DRM system by this.

19 Tn comparison to DRMAA 1.0, the JobInfo value type was heavily extended for providing more information (solves issue
#2827). Joblnfo::hasCoreDump is no longer supported, since the information is useless without according core file staging
support, which is not implementable in a portable way. (conf. call Jun 9th 2010) resourceUsage is no longer supported, since
this should be modelled with implementation-specific attributes (conf call Apr 13th 2011).

Some DRM systems (SGE / Condor at least) support the automated modification of job template attributes after submission,
and therefore allow to fetch the true job template attributes at run-time from the job. The monitoring for such data was
intentionally not included in DRMAA (mailing list July 2010).

A comment attribute was rejected (conf call May 11th).

Several conf. calls in 2011 ended up in the conclusion that data reaping cannot be clarified by DRMAA. There are too many
completely different use cases in local and distributed systems.

drmaa-wgQogf.org 19

mailto:drmaa-wg@ogf.org

493

494

495

496

497

498

499

500

501

502

503

504

505

506

508

509

510

511

512

513

514

515

516

517

518

519

GWD-R July 2011

For filtering: Returns the job with the chosen job identifier.
5.5.2 exitStatus

For monitoring: The process exit status of the job, as reported by the operating system on the execution host.
The value MAY be UNSET. If the job contains of multiple processes, the behavior is implementation-specific.

For filtering: Return the jobs with the given exitStatus value.
(See footnotc)ZO

(See footnote)zl

5.5.3 terminatingSignal

For monitoring: This attribute describes the UNIX signal that reasoned the end of the job. Implementations
should document the extent to which they can gather such information in the particular DRM system.

For filtering: Returns the jobs with the given terminatingSignal value.
5.5.4 annotation

For monitoring: Gives a human-readable annotation describing why the job is in its current state or sub-state.
Implementations MAY decide to offer such description only in specific cases, so it MAY also be UNSET.

For filtering: This attribute is ignored for filtering.
5.5.5 jobState

For monitoring: This attribute reports the jobs current state according to the DRMAA job state model (see
Section 8.1).

For filtering: Returns all jobs in the specified state. If the given state is emulated by the implementation
(see Section 8.1), the implementation SHOULD raise an InvalidArgumentException explaining that this
filter can never match.

5.5.6 jobSubState

For monitoring: This attribute reports the current implementation-specific sub-state for this job (see Section
8.1).

For filtering: Returns all jobs in the specified sub-state. If the given sub-state is not supported by the
implementation, it MAY raise an InvalidArgumentException explaining that this filter can never match.

(See footnote)22

20 Jobs without exit status information should be filtered out by asking for the appropriate states.

21 June 29th 2011 conf call decided to explicitely decline any relationship between job status and exit code, since there is no
common behavior in DRM systems. For this reason, exit status is allowed to be UNSET, without giving any further reasons.
It is, however, expected that many implementations will put this on UNSET in the non-terminal job states.

22 As the jobSubState is an opaque object, any invalid usage may lead to a crash of the library. For this reason, the JUne 29th
2011 conf call decided to use only MAY here, in order to reflect the potentially missing reflection capabilities in the languages.

drmaa-wgQogf.org 20

mailto:drmaa-wg@ogf.org

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

GWD-R July 2011

5.5.7 allocatedMachines

This attribute expresses a set of machines that is utilized for job execution. Each SlotInfo instance in the
attribute value describes the utilization of a particular execution host, and of a set of slots related to this
host.

Implementations MAY decide to give the ordering of machine names a particular meaning, for example
putting the master node of a parallel job at first position. This decision should be documented for the user.

For monitoring: The attribute lists the machines and the slot count per machine allocated for the job. The
slot count value MAY be UNSET. The machine name value MUST be set.

For filtering: Returns all jobs that fulfill the following condition: The job is executed on a superset of the
given list of machines, and got at least the given number of slots on the particular machine. The slots value
per machine MUST be allowed to have an UNSET value. In this case, only the machine condition SHALL be
checked.

5.5.8 submissionMachine

This attribute provides the name of the submission host for this job. The machine name SHOULD be equal
to the according MachineInfo: :name attribute in monitoring data.

For monitoring: This attribute reports the machine from which this job was submitted.

For filtering: Returns the set of jobs that were submitted from the specified machine.
5.5.9 jobOwner

For monitoring: This attribute reports the job owner as recorded in the DRM system.

For filtering: Returns all jobs owned by the specified user.
5.5.10 slots

For monitoring: This attribute reports the number slots that were allocated for the job. The value SHOULD
be in between JobTemplate: :minSlots and JobTemplate: :maxSlots.

For filtering: Return all jobs with the specified number of reserved slots.
5.5.11 queueName

For monitoring: This attribute reports the name of the queue in which the job was queued or started (see
Section 1.2).

For filtering: Returns all jobs that were queued or started in the queue with the specified name.
5.5.12 wallclockTime

For monitoring: The accumulated wall clock time, with the semantics as defined in Section 4.3.

For filtering: Returns all jobs that have consumed at least the specified amount of wall clock time.

drmaa-wgQogf.org 21

mailto:drmaa-wg@ogf.org

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

GWD-R July 2011

5.5.13 cpuTime

For monitoring: The accumulated CPU time, with the semantics as defined in Section 4.3.

For filtering: Returns all jobs that have consumed at least the specified amount of CPU time.
5.5.14 submissionTime

For monitoring: This attribute reports the time at which the job was submitted. Implementations SHOULD
use the submission time recorded by the DRM system, if available.

For filtering: Returns all jobs that were submitted at or after the specified submission time.
5.5.15 dispatchTime

For monitoring: The time the job first entered a “Started” state (see Section 8.1). On job restart or re-
scheduling, this value does not change.

For filtering: Returns all jobs that entered a “Started” state at or after the specified dispatch time.
5.5.16 finishTime

For monitoring: The time the job first entered a “Terminated” state (see Section 8.1).

For filtering: Returns all jobs that entered a “Terminated” state at or after the specified finish time.

5.6 ReservationInfo structure

The structure provides information about an existing advance reservation, as reported by the DRM system.

struct ReservationInfo {
string reservationId;
string reservationName;
AbsoluteTime reservedStartTime;
AbsoluteTime reservedEndTime;
Stringlist usersACL;
long reservedSlots;
OrderedSlotInfolist reservedMachines;

};

The structure is used for the expression of information about a single advance reservation. Information
provided in this structure SHOULD NOT change over the reservation lifetime. However, implementations
MAY reflect the altering of advance reservations outside of DRMAA sessions.

For additional DRMS-specific information, the ReservationInfo structure MAY be extended by the imple-
mentation (see Section 5).

5.6.1 reservationld

Returns the stringified identifier assigned to the advance reservation by the DRM system.

drmaa-wgQogf.org 22

mailto:drmaa-wg@ogf.org

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

GWD-R July 2011

5.6.2 reservationName

This attribute describes the reservation name that was stored by the implementation or the DRM sys-
tem for the reservation. It SHOULD be derived from the reservationName attribute in the originating
ReservationTemplate.

5.6.3 reservedStartTime

This attribute describes the start time for the reservation. If the value is UNSET, it expresses an unrestricted
start time (i.e., minus infinity) for this reservation.

5.6.4 reservedEndTime

This attribute describes the end time for the reservation. If the value is UNSET, the behavior is
implementation-specific.

(See footnote)23

5.6.5 usersACL

The list of the users that are permitted to submit jobs to the reservation. The formatting of user identi-
ties is implementation-specific, but SHOULD be consistent with the user information representation in job
templates and reservation templates.

5.6.6 reservedSlots

This attribute describes the number of slots reserved by the DRM system. The value SHOULD range in
between ReservationTemplate: :minSlots and ReservationTemplate: :maxSlots.

5.6.7 reservedMachines

This attribute describes the set of machines that were reserved under the conditions described in the according
reservation template. Each SlotInfo instance in this list describes the reservation of a particular machine
and of a set of slots related to this machine. The sum of all slot counts in the sequence SHOULD be equal
to ReservationInfo: :reservedSlots.

5.7 JobTemplate structure

A DRMAA application uses the JobTemplate structure to define characteristics of a job submission. The
template instance is passed to the DRMAA JobSession instance when job execution is requested.

struct JobTemplate {
string remoteCommand;
OrderedStringlist args;
boolean submitAsHold;
boolean rerunnable;
Dictionary jobEnvironment;
string workingDirectory;
string jobCategory;

23Mai 18th 2011 conf call rejected to treat UNSET as unrestricted end time (i.e. “plus infinity”) here.

drmaa-wgQogf.org 23

mailto:drmaa-wg@ogf.org

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

GWD-R July 2011

Stringlist email;

boolean emailOnStarted;
boolean emailOnTerminated;
string jobName;

string inputPath;

string outputPath;

string errorPath;

boolean joinFiles;

string reservationId;
string queueName;

long minSlots;

long maxSlots;

long priority;
OrderedStringlList candidateMachines;
long minPhysMemory;
OperatingSystem machine0S;
CpuArchitecture machineArch;
AbsoluteTime startTime;
AbsoluteTime deadlineTime;
Dictionary stagelnFiles;
Dictionary stageOutFiles;
Dictionary resourcelimits;
string accountingld;

};

Implementations MUST set all attribute values to UNSET on struct allocation. This ensures that both the
DRMAA application and the library implementation can determine untouched attribute members. If not
described differently in the following sections, all attributes SHOULD be allowed to have the UNSET value
on job submission.

The initialization to UNSET SHOULD be realized without additional methods in the DRMAA interface, if
possible. The according approach MUST be specified by the language binding.

The DRMAA job template concept makes a distinction between mandatory and optional attributes. Manda-
tory attributes MUST be supported by the implementation in the sense that they are evaluated on job
submission. Optional attributes MAY be evaluated on job submission, but MUST be provided as part of the
JobTemplate structure in the implementation. If an unsupported optional attribute has a value different to
UNSET, the job submission MUST fail with a UnsupportedAttributeException. DRMAA applications are
expected to check for the availability of optional attributes before using them (see Section 4.5).

An implementation MUST support JobTemplatePlaceholder placeholders at the occasions defined in this
specification. They MAY also allow their usage in other attributes.

A language binding specification SHOULD define how a JobTemplate instance is convertible to a string
for printing, through whatever mechanism is most natural for the implementation language. The resulting
string MUST contain the values of all set properties.

drmaa-wgQogf.org 24

mailto:drmaa-wg@ogf.org

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

GWD-R July 2011

24

(See footnote)
5.7.1 remoteCommand

This attribute describes the command to be executed on the remote host. In case this parameter contains
path information, it MUST be interpreted as relative to the execution host file system. The implementation
SHOULD NOT use the value of this attribute to trigger file staging activities. Instead, the file staging should
be performed by the application explicitly.

The behavior of the implementation with an UNSET value in this attribute is undefined.

The support for this attribute is mandatory.
5.7.2 args

This attribute contains the list of command-line arguments for the job(s) to be executed.

The support for this attribute is mandatory.
5.7.3 submitAsHold

This attribute defines if the job(s) should have QUEUED or QUEUED_HELD (see Section 8.1) as initial state after
submission. Since the boolean UNSET value defaults to False, jobs are submitted as non-held if this attribute
is not set.

The support for this attribute is mandatory.
5.7.4 rerunnable

This flag indicates if the submitted job(s) can safely be restarted by the DRM system, for example on
node failure or some other re-scheduling event. Since the boolean UNSET value defaults to False, jobs are
submitted as not rerunnable if this attribute is not set. This attribute SHOULD NOT be used to let the
application denote the checkpointability of a job.

The support for this attribute is mandatory.

(See footnote)25

24 Comparison to DRMAA 1.0: JobTemplate is now a value type, meaning that it maps to a struct in C. This removes the
need for DRMAA-defined methods for construction and destruction of job templates. An eventual RPC scenario for DRMAA
gets easier with this approach, since it is closer to the JSDL concept of a job description document.

Supported string placeholders for job template attributes are now listed in the JobTemplatePlaceholder enumeration, and
must be filled with values by the language binding. Invalid job template settings are now only detected on job submission, not
when the attribute is set.

DRMAA1 supported the utilization of new DRM features through an old DRMAA implementation, based on the
nativeSpecification field. A conf call (Jul 14th 2010) voted for dropping this intentionally. Implementations should use
according implementation-specific attributes for this.

GridEngine does not support to request a number of slots per machine - of course in a default installation, since you can do
everything in GridEngine ... This is the reason for not having such an attribute.

25 The differentiation between rerunnable and checkpointable was decided on a conf call (Aug 25th 2010). Checkpointability
indication was intentionally left out, since there is no common understanding in the DRM systems (conf call Apr. 27th, 2011).

drmaa-wgQogf.org 25

mailto:drmaa-wg@ogf.org

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

GWD-R July 2011

5.7.5 jobEnvironment

This attribute holds the environment variable settings to be configured on the execution machine(s). The
values SHOULD override the execution host environment settings.

The support for this attribute is mandatory.
5.7.6 workingDirectory

This attribute specifies the directory where the job or the bulk jobs are executed. If the attribute
value is UNSET, the behavior is undefined. If set, the attribute value MUST be evaluated relative to
the file system on the execution host. The attribute value MUST be allowed to contain either the
JobTemplatePlaceholder: : HOME_DIRECTORY or the JobTemplatePlaceholder: : PARAMETRIC_INDEX place-
holder (see Section 4.4).

The workingDirectory attribute should be specified by the application in a syntax that is common at the
host where the job is executed. Implementations MAY perform according validity checks on job submission.
If the attribute is set and no placeholder is used, an absolute directory specification is expected. If the
attribute is set and the job was submitted successfully and the directory does not exist on the execution
host, the job MUST enter the state JobState: :FAILED.

The support for this attribute is mandatory.
5.7.7 jobCategory

This attribute defines the job category to be used (see Section 1.4). A valid input SHOULD be one of
the strings in JobSession: :jobCategories (see Section 8.2.3), otherwise an InvalidArgumentException
SHOULD be raised.

The support for this attribute is mandatory.
5.7.8 email

This attribute defines a list of email addresses that SHOULD be used when the DRM system sends status
notifications. Content and formatting of the emails are defined by the implementation or the DRM system.
If the attribute value is UNSET, no emails SHOULD be sent to the user running the job(s), even if the DRM
system default behavior is different.

The support for this attribute is optional, expressed by the DrmaaCapability: :JT_EMAIL flag. If an imple-
mentation cannot configure the email notification functionality of the DRM system, or if the DRM system

has no such functionality, the attribute SHOULD NOT be supported in the implementation.
26

(See footnote)

5.7.9 emailOnStarted / emailOnTerminated

The emailOnStarted flag indicates if the given email address(es) SHOULD get a notification when the job
(or any of the bulk jobs) entered one of the “Started” states. emailOnTerminated fulfills the same purpose

for the ” Terminated” states. Since the boolean UNSET value defaults to False, the notification about state
changes SHOULD NOT be sent if the attribute is not set.

26 The blockEmail attribute in the JobTemplate was replaced by the UNSET semantic for the email addresses. (conf. call
July 28th 2010). This became an optional attribute, since we mandate the ’switch off’ semantic in case of UNSET.

drmaa-wgQogf.org 26

mailto:drmaa-wg@ogf.org

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

GWD-R July 2011

The support for these attributes is optional, expressed by the DrmaaCapability: :JT_EMAIL flag.
5.7.10 jobName

The job name attribute allows the specification of an additional non-unique string identifier for the job(s).
The implementation MAY truncate any client-provided job name to an implementation-defined length.

The support for this attribute is mandatory.
5.7.11 inputPath / outputPath / errorPath

This attribute specifies standard input / output / error stream of the job as file path. If the attribute value
is UNSET, the behavior is undefined. If set, the attribute value MUST be evaluated relative to the file system
of the execution host. Implementations MAY perform validity checks for the path syntax on job submission.
The attribute value MUST be allowed to contain any of the JobTemplatePlaceholder placeholders (see
Section 4.4). If the attribute is set and no placeholder is used, an absolute file path specification is expected.

If the outputPath or errorPath file does not exist at the time of job execution start, the file SHALL
automatically be created. An existing outputPath or errorPath file SHALL be opened in append mode.

If the attribute is set and the job was submitted successfully and the file cannot be created / read / written
on the execution host, the job MUST enter the state JobState: :FAILED.

The support for this attribute is mandatory.
5.7.12 joinFiles

Specifies whether the error stream should be intermixed with the output stream. Since the boolean UNSET
value defaults to False, intermixing SHALL NOT happen if the attribute is not set.

If this attribute is set to True, the implementation SHALL ignore the value of the errorPath attribute and
intermix the standard error stream with the standard output stream as specified by the outputPath.

The support for this attribute is mandatory.
5.7.13 reservationld

Specifies the identifier of the existing advance reservation to be associated with the job(s). The application is
expected to generate this ID by creating an advance reservation through the ReservationSession interface.
The resulting reservationId (see Section 9.2.1) then acts as valid input for this job template attribute.
Implementations MAY support a reservation identifier from non-DRMAA information sources as valid in-
put. The behavior on conflicting settings between the job template and the granted advance reservation is
undefined.

The support for this attribute is mandatory.
5.7.14 queueName

This attribute specifies the name of the queue the job(s) should be submitted to. In case this attribute value
is UNSET, the implementation SHOULD use the DRM systems default queue. If no default queue is defined
or if the given queue name is not valid, the job submission MUST lead to an InvalidArgumentException.

drmaa-wgQogf.org 27

mailto:drmaa-wg@ogf.org

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

GWD-R July 2011

The MonitoringSession::getAllQueues method (see Section 10.1) supports the determination of valid
queue names. Implementations SHOULD allow at least these queue names to be used in the queueName
attribute. Implementations MAY also support queue names from non-DRMAA information sources as valid
input.

If MonitoringSession: :getAllQueues returns an empty list, this attribute MUST be only allowed to have
the value UNSET.

Since the meaning of “queues” is implementation-specific, there is no DRMAA-defined effect when using
this attribute. Implementations therefore should document the effects of this attribute in their targeted
environment.

The support for this attribute is mandatory.

2
(See footnote)

5.7.15 minSlots

This attribute expresses the minimum number of slots requested per job (see also Section 1.2). If the value
of minSlots is UNSET, it SHOULD default to 1.

Implementations MAY interpret the slot count as number of concurrent processes being allowed to run.
If this interpretation is taken, and minSlots is greater than 1, than the jobCategory SHOULD also be
demanded on job submission, in order to express the nature of the intended parallel job execution.

The support for this attribute is mandatory.

(See footnote)28

5.7.16 maxSlots

This attribute expresses the maximum number of slots requested per job (see also Section 1.2). If the value
of maxSlots is UNSET, it SHOULD default to the value of minSlots.

Implementations MAY interpret the slot count as number of concurrent processes being allowed to run.
If this interpretation is taken, and maxSlots is greater than 1, than the jobCategory SHOULD also be
demanded on job submission, in order to express the nature of the intended parallel job execution.

The support for this attribute is optional, as indicated by the DrmaaCapability: :JT_MAXSLOTS flag.

(See footnotc)29 .

5.7.17 priority

This attribute specifies the scheduling priority for the job. The interpretation of the given value is
implementation-specific.

The support for this attribute is mandatory.

27 As one example, requesting a number of slots for a job in one queue has no implication on the number of utilized machines
at run-time.

28The hint regarding number of concurrent processes intentionally does not speak about processes per host - this would create
semantics for our opaque slot concept.

29Torque does not support maxSlots on job submission, conf call on May 11th decided to keep it as optional feature. Expected
use cases are billing limitations and parallel job scalability considerations

drmaa-wgQogf.org 28

mailto:drmaa-wg@ogf.org

776

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

GWD-R July 2011

5.7.18 candidateMachines

Requests that the job(s) should run on this set or any subset (with minimum size of 1) of the given machines.
If the attribute value is UNSET, it should default to the result of the MonitoringSession: :getAllMachines
method. If the resource demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised
on job submission time. If the problem can only be detected after job submission, the job should enter
JobState: :FAILED.

The support for this attribute is mandatory.
5.7.19 minPhysMemory

This attribute denotes the minimum amount of physical memory in kilobyte that should be available for the
job. If the job gets more than one slot, the interpretation of this value is implementation-specific. If this
resource demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised at job submission
time. If the problem can only be detected after job submission, the job SHOULD enter JobState: : FAILED
accordingly.

The support for this attribute is mandatory.
5.7.20 machineQS

This attribute denotes the expected operating system type on the / all execution host(s). If this resource de-
mand cannot be fulfilled, an InvalidArgumentException SHOULD be raised on job submission time. If the
problem can only be detected after job submission, the job SHOULD enter JobState: : FAILED accordingly.

The support for this attribute is mandatory.

0

3
(See footnote)

5.7.21 machineArch

This attribute denotes the expected machine architecture on the / all execution host(s). If this resource
demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised on job submission time. If
the problem can only be detected after job submission, the job should enter JobState: :FAILED.

The support for this attribute is mandatory.
5.7.22 startTime

This attribute specifies the earliest time when the job may be eligible to be run.

The support for this attribute is mandatory.
5.7.23 deadlineTime

Specifies a deadline after which the implementation or the DRM system SHOULD change the job state to
any of the “Terminated” states (see Section 8.1).

The support for this attribute is optional, as expressed by the DrmaaCapability: : JT_DEADLINE.

30 Requesting a specific operating system version beyond the type is not supported by the majority of DRM systems (conf
call Jul 28th 2010)

drmaa-wgQogf.org 29

mailto:drmaa-wg@ogf.org

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

GWD-R July 2011

5.7.24 stagelnFiles / stageOutFiles

This attribute specifies what files should be transferred (staged) as part of the job execution. The data
staging operation MUST be a copy operation between the submission host and a execution host. File
transfers between execution hosts are not covered by DRMAA.

The attribute value is formulated as dictionary. For each key-value pair in the dictionary, the key defines
the source path of one file or directory, and the value defines the destination path of one file or directory
for the copy operation. For stageInFiles, the submission host acts as source, and the execution host
act as destination. For stageOutFiles, the execution host acts as source, and the submission host act as
destination.

All values MUST be evaluated relative to the file system on the host in a syntax that is common at that
host. Implementations MAY perform according validity checks on job submission. Paths on the execution
host MUST be allowed to contain any of the JobTemplatePlaceholder placeholders. Paths on the submis-
sion host MUST be allowed to contain the JobTemplatePlaceholder: : PARAMETRIC_INDEX placeholder (see
Section 4.4). If no placeholder is used, an absolute path specification on the particular host SHOULD be
assumed by the implementation.

Relative path specifications for the submission host should be interpreted starting from the current working
directory of the DRMAA application at the time of job submission. The behavior for relative path specifica-
tions on the execution is implementation-specific. Implementations MAY use JobTemplate::workingDirectory,
if defined, as starting point on the execution host.

Jobs SHOULD NOT enter JobState: :DONE unless all staging operations are finished. The behavior in
case of missing files is implementation-specific. The support for wildcard operators in path specifications is
implementation-specific. Any kind of recursive or non-recursive copying behavior is implementation-specific.

If the job category (see Section 1.4) implies a parallel job (e.g., MPI), the copy operation SHOULD target
the execution host of the parallel job master as destination. A job category MAY also trigger file distribution
to other hosts participating in the job execution.

The support for this attribute is optional, expressed by the DrmaaCapability: : JT_STAGING flag.

(See footnotc)sl
5.7.25 resourcelLimits

This attribute specifies the limits on resource utilization of the job(s) on the execution host(s). The valid
dictionary keys and their value semantics are defined in Section 4.3.

The following resource restrictions should operate as soft limit, meaning that exceeding the limit SHOULD
NOT influence the job state from a DRMAA perspective:

e CORE_FILE_SIZE
e DATA_SEG_SIZE
e FILE_SIZE

31 Comparison to DRMAA 1.0: New job template attributes for file transfers were introduced. They allow to express a set
of file staging activities, similar to the approach in LSF and SAGA. They replace the old transferFiles attribute, the according
FileTransferMode data structure and the special host definition syntax in inputPath / outputPath / errorPath (different conf.
calls, SAGA F2F meeting, solves issue #5876)

drmaa-wgQogf.org 30

mailto:drmaa-wg@ogf.org

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

GWD-R July 2011

e OPEN_FILES
e STACK_SIZE
e VIRTUAL_MEMORY

The following resource restrictions should operate as hard limit, meaning that exceeding the limit MAY
terminate the job. The termination MAY be performed by the DRM system. It MAY also be done by the
job itself if it reacts on a signal from the DRM system or the execution host operating system:

e CPU_TIME
e WALLCLOCK_TIME

The support for this attribute is mandatory. If only a subset of the attributes from ResourceLimitType
is supported by the implementation, and some of the unsupported attributes are used, the job submission
SHOULD raise an InvalidArgumentException expressing the fact that resource limits are supported in
general.

Conflicts of these attribute values with any other job template attribute or with referenced advance reser-
vations are handled in an implementation-specific manner. Implementations SHOULD try to delegate the
decision about parameter combination validity to the DRM system, in order to ensure similar semantics in
different DRMAA implementations for this system.

(See footnote)32

5.7.26 accountingld

This attribute denotes a string that can be used by the DRM system for job accounting purposes. Implemen-
tations SHOULD NOT utilize this information as authentication token, but only as untested identification
information in addition to the implementation-specific authentication (see Section 12).

The support for this attribute is optional, as described by the DrmaaCapability::JT_ACCOUNTINGID flag.

5.8 ReservationTemplate structure

In order to define the characteristics of a reported advance reservation, the DRMAA application creates an
ReservationTemplate instance and submits it through the ReservationSession methods.

struct ReservationTemplate {
string reservationName;
AbsoluteTime startTime;
AbsoluteTime endTime;
TimeAmount duration;
long minSlots;

32 In comparison to DRMAA 1.0, resource usage limitations can now be expressed by two dictionaries and an according
standardized set of valid dictionary keys (LimitType). The idea is to allow a direct mapping to ulimit(3) semantics, which are
supported by the majority of DRM system today. A separate run duration limit is no longer needed, since this is covered by
the new CPU_TIME limit parameter. (conf. call Jun 9th 2010).

This distinguishing between different reactions on limit violation was restricted to the job entering, or not entering, the
FAILED state. All further effects (e.g., no more open() calls possible) are out of scope for DRMAA, since they relate to
operating system behavior on execution host (conf call May 4th 2011).

The attribute is mandatory, since the missing general support for resource limits can be simply expressed by raising Invali-
dArgumentException for all types.

drmaa-wgQogf.org 31

mailto:drmaa-wg@ogf.org

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

GWD-R July 2011

long maxSlots;

string jobCategory;

Stringlist usersACL;
OrderedStringlList candidateMachines;
long minPhysMemory;

OperatingSystem machine0S;
CpuArchitecture machineArch;

};

Similar to the JobTemplate concept (see Section 5.7), there is a distinction between mandatory and optional
attributes in the ReservationTemplate. Mandatory attributes MUST be supported by the implementation
in the sense that they are evaluated in a ReservationSession: :requestReservation method call. Optional
attributes MAY NOT be evaluated by the particular implementation, but MUST be provided as part of the
ReservationTemplate structure in the implementation. If an optional attribute is not evaluated, but has a
value different to UNSET, the method call to ReservationSession: :requestReservation MUST fail with
an UnsupportedAttributeException.

Implementations MUST set all attribute values to UNSET on struct allocation. This ensures that both the

DRMAA application and the library implementation can determine untouched attribute members.

A language binding specification SHOULD model the ReservationTemplate representation the same way as
the JobTemplate interface, and therefore MUST specify the realization of implementation-specific attributes,
printing, and the initialization to UNSET.

5.8.1 reservationName

A human-readable reservation name. The implementation MAY truncate or alter any application-provided
name in order to adjust it to DRMS-specific constraints. The name of the reservation SHALL be automati-
cally defined by the implementation if this attribute is UNSET.

The support for this attribute is mandatory.
5.8.2 startTime / endTime / duration

The time frame in which resources should be reserved. Table 4 explains the different possible parameter
combinations and their semantic.

The support for startTime and endTime is mandatory. The support for duration is optional, as described
by the DrmaaCapability: :RT_DURATION flag. Implementations that do not support the described ”sliding
window” approach for the SET / SET / SET case SHOULD express this by NOT supporting the duration
attribute.

Implementations MAY support startTime to have the constant value NOW (see Section 3), which expresses
that the reservation should start at the time of reservation template approval in the DRM system. The
support for this feature is declared by the DrmaaCapability: :RT_STARTNOW flag.

5.8.3 minSlots

This attribute expresses the minimum number of slots requested per job (see also Section 1.2). If the value
of minSlots is UNSET, it SHOULD default to 1.

drmaa-wgQogf.org 32

mailto:drmaa-wg@ogf.org

909

910

911

912

913

914

915

916

917

918

919

920

921

GWD-R July 2011

startTime | endTime | duration | Description

UNSET UNSET UNSET Invalid, SHALL leave to an InvalidArgumentException.
Set UNSET UNSET Invalid, SHALL leave to an InvalidArgumentException.
UNSET Set UNSET Invalid, SHALL leave to an InvalidArgumentException.
Set Set UNSET Attempt to reserve resources in the specified time frame.
UNSET UNSET Set Attempt to reserve resources at least for the time amount given in
duration.
Set UNSET Set Implies endTime = startTime + duration
UNSET Set Set Implies startTime = endTime - duration
Set Set Set If endTime - startTime is larger than duration, perform a reser-

vation attempt where the demanded duration is fulfilled at the
earliest point in time after startTime, and without extending
endTime ("sliding window” approach). If endTime - startTime
is smaller than duration, the reservation attempt SHALL leave
to an InvalidArgumentException. If endTime - startTime and

duration are equal, duration SHALL be ignored.

Table 4: Parameter combinations for the advance reservation time frame. If duration is not supported, it
should be treated as UNSET.

Implementations MAY interpret the slot count as number of concurrent processes being allowed to run.
If this interpretation is taken, and minSlots is greater than 1, than the jobCategory SHOULD also be
demanded on job submission, in order to express the nature of the intended parallel job execution.

The support for this attribute is mandatory.

(See footnotc)33

5.8.4 maxSlots

This attribute expresses the maximum number of slots requested per job (see also Section 1.2). If the value
of maxSlots is UNSET, it SHOULD default to the value of minSlots.

Implementations MAY interpret the slot count as number of concurrent processes being allowed to run. If
this interpretation is taken, and maxSlots is greater than 1, than the jobCategory MAY also be demanded
on job submission, in order to express the nature of the intended parallel job execution.

The support for this attribute is mandatory.

(See footnote)34

33The hint regarding number of concurrent processes intentionally does not speak about processes per host - this would create
semantics for our opaque slot concept.

34Conf call June 29th 2011: For maxSlots 4 1, the demand for a job category is intentionally only MAY. This is reasoned by
the fact that in most DRM systems, advance reservation is a concept that is independent to the jobs that are later used in this
reservation. So you are just requesting just some container, and you do not have to specify at this moment what kind of jobs
do you want to run using this reservation (e.g. OpenMP, OpenMPI, MPICH). However, some systems need that information,
so we leave it to the implementation how to deal with that.

drmaa-wgQogf.org 33

mailto:drmaa-wg@ogf.org

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

GWD-R July 2011

5.8.5 jobCategory

This attribute defines the job category to be used (see Section 1.4). A valid input SHOULD be one of
the strings in JobSession::jobCategories (see Section 8.2.3), otherwise an InvalidArgumentException
SHOULD be raised.

The support for this attribute is mandatory.
5.8.6 usersACL

The list of the users that would be permitted to submit jobs to the created reservation. If the attribute value
is UNSET, it should default to the user running the application.

The support for this attribute is mandatory.
5.8.7 candidateMachines

Requests that the reservation SHALL be created for the given set of machines. Implementations and their
DRM system MAY decide to reserve only a subset of the given machines. If this attribute is not specified,
it should default to the result of MonitoringSession::getAllMachines (see Section 10.1).

The support for this attribute is mandatory.

(See footnote)S
5.8.8 minPhysMemory

Requests that the reservation SHALL be created with machines that have at least the given amount of
physical memory in kilobyte. Implementations MAY interpret this attribute value as filter for candidate
machines, or as memory reservation demand on a shared execution resource.

The support for this attribute is mandatory.

(See footnote)36

5.8.9 machineOS

Requests that the reservation must be created with machines that have the given type of operating system,
regardless of its version, with semantics as specified in Section 4.1.

The support for this attribute is optional, the availability is indicated by the
DrmaaCapability: :RT_MACHINEOS flag.

(See footnotc)37

35May 18th 2011 conf call identified the subset reservation feature to be only available in some of the systems, so it is no
promise here.

36May 18th 2011 conf call identified the different understandings of memory reservation.

3"May 18th 2011 conf call identified support in DRM systems to be mainly given by additional configuration only.

drmaa-wgQogf.org 34

mailto:drmaa-wg@ogf.org

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

GWD-R July 2011

5.8.10 machineArch

Requests that the reservation must be created for machines that have the given instruction set architecture,
with semantics as specified in Section 4.2.

The support for this attribute is
DrmaaCapability: :RT_MACHINEARCH flag.

optional, the availability is indicated by the

(See footnote)

5.9 DrmaaReflective Interface

The DrmaaReflective interface allows an application to determine the set of supported implementation-
specific attributes. It also standardizes the read / write access to such attributes when their existence is
determined at run-time by the application.

For the second class of non-mandatory attributes, the optional ones, applications are expected to use the
DRMAA capabiliy feature (see Section 4.5).

interface DrmaaReflective {
readonly attribute StringList
readonly attribute StringList
readonly attribute StringList
readonly attribute Stringlist

jobTemplateImplSpec;
jobInfoImplSpec;
reservationTemplateImplSpec;
reservationInfolImplSpec;

readonly
readonly
readonly

attribute
attribute
attribute

Stringlist
Stringlist
StringlList

queueInfoImplSpec;
machineInfoImplSpec;
notificationImplSpec;

string getInstanceValue(in any instance, in string name);
void setInstanceValue(in any instance, in string name, in string value);
string describeAttribute(in any instance, in string name);

};

5.9.1 jobTemplatelmplSpec

This attribute provides the list of supported implementation-specific JobTemplate attributes.
5.9.2 jobInfolmplSpec

This attribute provides the list of supported implementation-specific JobInfo attributes.
5.9.3 reservationTemplatelmplSpec

This attribute provides the list of supported implementation-specific ReservationTemplate attributes.
5.9.4

reservationInfolmplSpec

This attribute provides the list of supported implementation-specific ReservationInfo attributes.

38May 18th 2011 conf call identified support in DRM systems to be mainly given by additional configuration only.

drmaa-wgQogf.org 35

mailto:drmaa-wg@ogf.org

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

GWD-R July 2011

5.9.5 queuelnfolmplSpec

This attribute provides the list of supported implementation-specific QueueInfo attributes.
5.9.6 machinelnfolmplSpec

This attribute provides the list of supported implementation-specific MachineInfo attributes.
5.9.7 notificationlmplSpec

This attribute provides the list of supported implementation-specific DrmaaNotification attributes.

5.9.8 getlnstanceValue

This method allows to retrieve the attribute value for name from the structure instance referenced in the
instance parameter. The return value is the stringified current attribute value.
5.9.9 setlnstanceValue

This method allows to set the attribute name to value in the structure instance referenced in the instance
parameter. In case the conversion from string input into the native attribute type leads to an error,
InvalidArgumentException SHALL be thrown.

5.9.10 describeAttribute

This method returns a human-readable description of an attributes purpose, for the attribute referenced by
name and instance. The content and language of the result value is implementation-specific.

6 Common Exceptions

The exception model specifies error information that MAY be returned by a DRMAA implementation on
method calls. Implementations MAY also wrap DRMS-specific error conditions in DRMAA exceptions.

exception
exception
exception
exception
exception
exception
exception
exception
exception
exception
exception
exception

DeniedByDrmsException {string message;};
DrmCommunicationException {string message;l};
TryLaterException {string message;};
SessionManagementException {string message;l};
TimeoutException {string message;};
InternalException {string message;l};
InvalidArgumentException {string message;};
InvalidSessionException {string message;};
InvalidStateException {string message;1};
OutOfResourceException {string message;};
UnsupportedAttributeException {string message;};
UnsupportedOperationException {string message;};

The exceptions have the following general meaning, if not specified otherwise in a method description:

DeniedByDrmsException: The DRM system rejected the operation due to security issues.

drmaa-wgQogf.org 36

mailto:drmaa-wg@ogf.org

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

GWD-R July 2011

DrmCommunicationException: The DRMAA implementation could not contact the DRM system. The
problem source is unknown to the implementation, so it is unknown if the problem is transient or not.

TryLaterException: The DRMAA implementation detected a transient problem while performing the
operation, for example due to excessive load. The application is recommended to retry the operation.

TimeoutException: The timeout given in one the waiting functions was reached without successfully
finishing the waiting attempt.

InternalException: An unexpected or internal error occurred in the DRMAA library, for example a system
call failure. It is unknown if the problem is transient or not.

InvalidArgumentException: From the viewpoint of the DRMAA library, an input parameter for the
particular method call is invalid or inappropriate. If the parameter is a structure, the exception
description SHOULD contain the name(s) of the problematic structure attribute(s).

InvalidSessionException: The session used for the method call is not valid, for example since the session
was closed before.

InvalidStateException: The operation is not allowed in the current state of the job.

OutOfResourceException: The implementation has run out of operating system resources, such as
buffers, main memory, or disk space.

UnsupportedAttributeException: The optional attribute is not supported by this DRMAA implemen-
tation.

UnsupportedOperationException: The method is not supported by this DRMAA implementation.

The DRMAA specification assumes that programming languages targeted by language bindings typically
support the concept of exceptions. If a destination language does not support them (like ANSI C), the
language binding specification SHOULD map error reporting to an appropriate alternative concept.

A language binding MAY chose to model exceptions as numeric error codes. In this case, the language
binding specification SHOULD specify numeric values for all DRMAA error constants.

The representation of exceptions in the language binding MUST support a possibility to express an additional
error cause as textual description. This is intended as specialization of the general error information.

Object-oriented language bindings MAY decide to derive all exception classes from one or multiple base
classes, in order to support generic catch clauses.

Language bindings MAY decide to introduce a hierarchical ordering of DRMAA exceptions based on class
derivation. In this case, any new exceptions added for aggregation purposes SHOULD be prevented from
being thrown, for example by marking them as abstract.

Language bindings SHOULD replace a DRMAA exception by some semantically equivalent native exception
from the application runtime environment, if available.

The UnsupportedAttributeException may either be raised by a setter function for an attribute, or by the
job submission function. This depends on the language binding design. A consistent decision for either one
or the other approach MUST be declared by the language binding specification.

drmaa-wgQogf.org 37

mailto:drmaa-wg@ogf.org

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

GWD-R July 2011

39

(See footnote)

7 The DRMAA Session Concept

DRMAA relies on a session concept for most parts of the API, in order to support the persistency of job
and advance reservation information in multiple runs of short-lived applications. Typical examples are job
submission portals or command-line tools. The session concept also allows implementations to perform DRM
system attach / detach action at dedicated points in the application control flow.

7.1 SessionManager Interface

interface SessionManager{
readonly attribute string drmsName;
readonly attribute Version drmsVersion;
readonly attribute string drmaaName;
readonly attribute Version drmaaVersion;
boolean supports(in DrmaaCapability capability);
JobSession createJobSession(in string sessionName,
in string contact);
ReservationSession createReservationSession(in string sessionName,
in string contact);
JobSession openJobSession(in string sessionName);
ReservationSession openReservationSession(in string sessionName);
MonitoringSession openMonitoringSession (in string contact);
void closeJobSession(in JobSession s);
void closeReservationSession(in ReservationSession s);
void closeMonitoringSession(in MonitoringSession s);
void destroyJobSession(in string sessionName);
void destroyReservationSession(in string sessionName);
StringlList getJobSessionNames () ;
Stringlist getReservationSessionNames ();
void registerEventNotification(in DrmaaCallback callback);

};

The SessionManager interface is the main interface of a DRMAA implementation for establishing commu-
nication with the DRM system. By the help of this interface, sessions for job management, monitoring,
and/or reservation management can be maintained.

Job and reservation sessions maintain persistent state information (about jobs and reservations created)
between application runs. State data SHOULD be persisted in the DRMS itself. If this is not supported,
the DRMAA implementation MUST realize the persistency. The data SHOULD be saved when the session
is closed by the according method in the SessionManager interface.

The state information SHOULD be kept until the job or reservation session is explicitly reaped by the
according destroy method in the SessionManager interface. If an implementation runs out of resources

39 Comparison to DRMAA 1.0: The InconsistentStateException was removed, since it is semantically equal to the In-
validStateException (conf. call Jan 7th 2010) The former HoldInconsistentStateException, ReleaseInconsistentStateException,
ResumelnconsistentStateException, and SuspendInconsistentStateException from DRMAA v1.0 are now expressed as single
InvalidStateException with different meaning per raising method. (F2F meeting July 2009)

drmaa-wgQogf.org 38

mailto:drmaa-wg@ogf.org

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

GWD-R July 2011

for storing session information, the closing function SHOULD throw an OutOfResourceException. If an
application ends without closing the session properly, the behavior is unspecified.

The contact parameter in some of the interface methods SHALL allow the application to specify which
DRM system instance to use. A contact string represents a specific installation of a specific DRM system,
e.g., a Condor central manager machine at a given IP address, or a Grid Engine ‘root’ and ‘cell’. Contact
strings are always implementation-specific and therefore opaque to the application. If contact has the value
UNSET, a default DRM system SHOULD be contacted. The manual configuration or automated detection of
a default contact string is implementation-specific.

The re-opening of a session MUST work on the machine where the session was originally created. Imple-
mentations MAY also offer to re-open the session on another machine, if the state information is accessible.

An implementation MUST allow the application to have multiple open sessions of the same or different type
at the same time. This includes the proper coordination of parallel calls to session methods that share state
information.

A SessionManager instance SHALL be available as singleton at DRMAA application start. Language

bindings MAY realize this by mapping the session manager methods to global functions.

(See footnote)40

7.1.1 drmsName

A read-only system identifier denoting the DRM system targeted by the implementation, e.g., “LSF” or
“GridWay”. Implementations SHOULD NOT make versioning information of the particular DRM system a
part of this attribute value.

The value is only intended as informative output for application users.
7.1.2 drmsVersion

This attribute provides the DRM-system specific version information.

The value is only intended as informative output for application users.
7.1.3 drmaaName

This attribute contains a string identifying the vendor of the DRMAA implementation.

The value is only intended as informative output for application users.

40 Comparison to DRMAA 1.0: The concept of a factory from GFD.130 was removed (solves issue #6276). Version 2.0 of
DRMAA supports restartable sessions by the newly introduced SessionManager interface. It allows creating multiple concurrent
sessions for job submission (solves issue #2821), which can be restarted by their generated session name (solves issue #2820).
Session.init() and Session.exit() functionalities are moved to the according session creation and closing routines. The descriptions
were fixed accordingly (solves issue #2822). The AlreadyActiveSession error was removed. (F2F meeting July 2009) The
drmaalmplementation attribute from DRMAA 1.0 was removed, since it was redundant to the drmsInfo attribute. This one is
now available in the new SessionManager interface. (F2F meeting July 2009).

drmaa-wgQogf.org 39

mailto:drmaa-wg@ogf.org

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

GWD-R July 2011

7.1.4 drmaaVersion

This attribute provides the minor / major version number information for the DRMAA implementation.
The major version number MUST be the constant value “2”, the minor version number SHOULD be used
by the DRMAA implementation for expressing its own versioning information.

7.1.5 supports

This method allows to test if the DRMAA implementation supports a feature specified as optional. The
allowed input values are specified in the DrmaaCapability enumeration (see Section 4.5). This method
SHOULD throw no exceptions.

7.1.6 createJobSession / createReservationSession

The method creates a new job / reservation session instance. On successful completion of this method, the
necessary initialization for making the session usable MUST be completed. Examples are the connection
establishment from the DRMAA library to the DRM system, or the prefetching of information from non-
thread-safe operating system calls.

The sessionName parameter denotes a unique name to be used for the new session. If a session with such a
name already exists, the method MUST throw an InvalidArgumentException. In all other cases, including
if the provided name has the value UNSET, a new session MUST be created with a unique name generated
by the implementation.

If the DRM system does not support advance reservation, than createReservationSession SHALL throw
an UnsupportedOperationException.

7.1.7 openJobSession / openReservationSession

The method is used to open a persisted JobSession or ReservationSession instance that has previously
been created under the given sessionName. The implementation MUST support the case that the session
have been created by the same application or by a different application running on the same machine. The
implementation MAY support the case that the session was created or updated on a different machine. If
no session with the given sessionName exists, an InvalidArgumentException MUST be raised.

If the session referenced by sessionName is already opened, implementations MAY return this job or reser-
vation session instance.

If the DRM system does not support advance reservation, openReservationSession SHALL throw an
UnsupportedOperationException.

7.1.8 openMonitoringSession

The method opens a stateless MonitoringSession instance for fetching information about the DRM system.
On successful completion of this method, the necessary initialization for making the session usable MUST
be completed. One example is the connection establishment from the DRMAA library to the DRM system.

7.1.9 closeJobSession / closeReservationSession / closeMonitoringSession

The method MUST perform the necessary action to disengage from the DRM system. It SHOULD be callable
only once, by only one of the application threads. This SHOULD be ensured by the library implementation.

drmaa-wgQogf.org 40

mailto:drmaa-wg@ogf.org

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

GWD-R July 2011

Additional calls beyond the first one SHOULD lead to a InvalidSessionException error notification.

For JobSession or ReservationSession instances, the according state information MUST be saved to some
stable storage before the method returns. This method SHALL NOT affect any jobs or reservations in the
session (e.g., queued and running jobs remain queued and running).

If the DRM system does not support advance reservation, closeReservationSession SHALL throw an
UnsupportedOperationException.

A language binding MAY define implicit calls to closeJobSession, closeReservationSession, or
closeMonitoringSession, for example when session objects are destroyed. It MAY also add a close
method to JobSession, ReservationSession, or MonitoringSession with the same functionality as de-
scribed here. However, the SessionManager still MUST contain all methods as described in this specfication.

(See footnote)4
7.1.10 destroyJobSession / destroyReservationSession

The method MUST do whatever work is required to reap persistent or cached state information for the
given session name. It is intended to be used when no session instance with this particular name is open.
If session instances for the given name exist, they MUST become invalid after this method was finished
successfully. Invalid sessions MUST throw InvalidSessionException on every attempt of utilization. This
method SHALL NOT affect any jobs or reservations in the session, e.g., queued and running jobs remain
queued and running.

If the DRM system does not support advance reservation, destroyReservationSession SHALL throw an
UnsupportedOperationException.

7.1.11 getJobSessionNames

This method returns a list of JobSession names that are valid input for the openJobSession method.

(See fuotnute)42
7.1.12 getReservationSessionNames

This method returns a list of ReservationSession names that are valid input for the
openReservationSession method.

If the DRM system does not support advance reservation, the method SHALL always throw an
UnsupportedOperationException.

(See footnote)43
7.1.13 registerEventNotification

This method is used to register a DrmaaCallback interface (see Section 8.3) offered by the DRMAA-based
application, which can be called by the implementation. If the callback functionality is not supported by the

41Conf call June 29th 2011: The closing of stateless monitoring sessions was intentionally kept, in order to allow an orderly
shut down of the monitoring connection.

42 June 29th 2011 conf call decided to make the method names explicit enough to see the return type.

43 June 29th 2011 conf call decided to make the method names explicit enough to see the return type.

drmaa-wgQogf.org 41

mailto:drmaa-wg@ogf.org

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

GWD-R July 2011

DRMAA implementation, this method SHALL raise an UnsupportedOperationException. Implementation
can check for the support through the DrmaaCapability: : CALLBACK flag (see Section 4.5). Implementations
with callback support SHOULD allow to perform multiple registration calls that just update the callback
target.

If the argument of the method call is UNSET, the currently registered callback MUST be unregistered. After
such a method call returned, no more events SHALL be delivered to the application. If no callback target is
registered, such a method call SHOULD return immediately without an error.

A language binding specification MUST define how the reference to an interface-compliant method can be
given as argument to this method. It MUST also clarify how to pass an UNSET callback method reference.

8 Working with Jobs

A DRMAA job represents a single computational activity that is executed by the DRM system. There
are three relevant method sets for working with jobs: The JobSession interface represents all control and
monitoring functions available for jobs. The Job interface represents the common control functionality for
one existing job. Sets of jobs resulting from a bulk submission are controllable as a whole by the JobArray
interface.

8.1 The DRMAA State Model

DRMAA defines the following states for jobs:

enum JobState {
UNDETERMINED , QUEUED, QUEUED_HELD, RUNNING, SUSPENDED, REQUEUED,
REQUEUED_HELD, DONE, FAILED};

UNDETERMINED: The job status cannot be determined. This is a permanent issue, not being solvable
by asking again for the job state.
QUEUED: The job is queued for being scheduled and executed.

QUEUED _HELD: The job has been placed on hold by the system, the administrator, or the submitting
user.

RUNNING: The job is running on an execution host.
SUSPENDED: The job has been suspended by the user, the system or the administrator.
REQUEUED: The job was re-queued by the DRM system, and is eligible to run.

REQUEUED _HELD: The job was re-queued by the DRM system, and is currently placed on hold by the
system, the administrator, or the submitting user.

DONE: The job finished without an error.
FAILED: The job exited abnormally before finishing.

If a DRMAA job state has no representation in the underlying DRMS, the DRMAA implementation MAY
never report that job state value. However, all DRMAA implementations MUST provide the JobState

drmaa-wgQogf.org 42

mailto:drmaa-wg@ogf.org

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

GWD-R July 2011

enumeration as given here. An implementation SHOULD NOT return any job state value other than those
defined in the JobState enumeration.

The status values relate to the DRMAA job state transition model, as shown in Figure 1.

runJob()
runBulkJobs()

Y
Queued Started Terminated

SUSPENDED

QUEUED > RUNNING > DONE

QUEUED_HELD

i

REQUEUED

b
b

REQUEUED_HELD

 —
M—— FAILED)

v

UNDETERMINED)

Figure 1: DRMAA Job State Transition Model

|

The transition diagram in Figure 1 expresses the classification of possible job states into “Queued”, “Started”,
and “Terminated”. The “Terminated” class of states is final, meaning that no further state transition is
allowed.

Implementations SHALL NOT introduce other job transitions (e.g., from RUNNING to QUEUED) beside the ones
stated in Figure 1, even if they might happen in the underlying DRM system. In this case, implementations
MAY emulate the necessary intermediate steps for the DRMA A-based application.

When an application requests job state information, the implementation SHOULD also provide the
jobSubState value (see Section 5.5.6) to explain DRM-specific details about the job state. The value
of this attribute is implementation-specific, but should be documented properly. Examples are extra states
for staging phases or details on the hold reason. Implementations SHOULD define a DRMS-specific data
structure for the sub-state information that can be converted to / from the data type defined by the language
binding.

The IDL definition declares the jobSubState attribute as type any, expressing the fact that the language

drmaa-wgQogf.org 43

mailto:drmaa-wg@ogf.org

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

GWD-R July 2011
binding MUST map the data type to a generic language type (e.g., void*, Object) that keeps source code
portability across DRMAA implementations, and accepts an UNSET value.

The DRMAA job state model can be mapped to other high-level API state models. Table 5 gives a non-
normative set of examples.

DRMAA JobState SAGA JobState [4] OGSA-BES Job State [3]
UNDETERMINED N/A N/A

QUEUED Running Pending (Queued)
QUEUED_HELD Running Pending (Queued)
RUNNING Running Running (Executing)
SUSPENDED Suspended Running (Suspended)
REQUEUED Running Running (Queued)
REQUEUED_HELD Running Running (Queued)
DONE Done Finished

FAILED Cancelled, Failed Cancelled, Failed

Table 5: Example Mapping of DRMAA Job States

(See footnote)

8.2 JobSession Interface

A job session instance acts as container for job instances controlled through the DRMAA API. The session
methods support the submission of new jobs and the monitoring of existing jobs. The relationship between
jobs and their session MUST be persisted, as described in Section 7.1.

interface JobSession {
readonly attribute string contact;
readonly attribute string sessionName;
readonly attribute StringList jobCategories;
JobList getJobs(in JobInfo filter);
JobArray getJobArray(in string jobArrayId);
Job runJob(in JobTemplate jobTemplate);
JobArray runBulkJobs(

in JobTemplate jobTemplate,

44 Comparison to DRMAA 1.0:

The differentiation between the system hold, user hold, and system / user hold job states was removed (conf. call Jan
20th 2009). There is only one hold state now. A job can now change its state from one of the SUSPENDED states to the
QUEUED_ACTIVE state (conf. call Jan 20th 2009, solves issue #2788). The job state UNDETERMINED is now clearer
defined. It expressed a permanent issue, meaning that the job state will not change by just waiting. Temporary problems in
the detection of the job state are now expressed by the TryLaterException (conf. call Feb 5th 2009, solves issue #2783). The
description of the FAILED state was extended to support a more specific differentiation between different job failure reasons.
The new subState feature allows the DRMAA implementation to provide better information, if available. There was no portable
way of standardizing extended failure information in a better way. (conf. call May 12th 2009, solves issue #5875) The different
suspend job states from DRMAA1 (user suspended, system suspended, user / system suspended) are now combined into one
suspend state. DRM systems with the need to express the different suspend reasons can use the new sub-state feature (conf.
call Mar 5th 2010).

REQUEUED and REQUEUED_HELD maps to RUNNING in BES, since BES does not allow a transition between Running
and Pending (mailing list, APr. 2011)

drmaa-wgQogf.org 44

mailto:drmaa-wg@ogf.org

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

GWD-R July 2011

in long beginlIndex,

in long endIndex,

in long step,

in long maxParallel);
Job waitAnyStarted(in JobList jobs, in TimeAmount timeout);
Job waitAnyTerminated (in JobList jobs, in TimeAmount timeout);

};
(See footnote)45

8.2.1 contact

This attribute reports the contact value that was used in the SessionManager: :createJobSession call
for this instance (see Section 7.1). If no value was originally provided, the default contact string from the
implementation MUST be returned. This attribute is read-only.

8.2.2 sessionName

This attribute reports the session name, a value that resulted from the SessionManager: : createJobSession
or SessionManager: :openJobSession call for this instance (see Section 7.1). This attribute is read-only.

8.2.3 jobCategories

This method provides the list of valid job category names which can be used for the jobCategory attribute
in a JobTemplate instance. Further details about job categories are described in Section 1.4.

8.2.4 getlobs

This method returns the set of jobs that belong to the job session. The filter parameter allows to choose
a subset of the session jobs as return value. The semantics of the filter argument are explained in Section
5.5. If no job matches or the session has no jobs attached, the method MUST return an empty set. If filter
is UNSET, all session jobs MUST be returned.

Time-dependent effects of this method, such as jobs no longer matching to filter criteria on evaluation time,
are implementation-specific. The purpose of the filter parameter is to keep scalability with a large number
of jobs per session. Applications therefore must consider the possibly changed state of jobs during their
evaluation of the method result.

45 Comparison to DRMAA 1.0: The original separation between synchronize() and wait() was replaced by a complete new
synchronization semantic in the API. DRMAA2 has now two methods, waitStarted() and waitTerminated(). The first waits
for any state that expresses that the job was started, the second for any terminal status. Both methods are available on
session level (wait for any of the given jobs to start / end) or on single job level (solves issue #5880 and #2838). The function
returns always a Job object, in order to allow chaining, e.g. job.wait(JobStatus. RUNNING).hold(). The session-level functions
implement the old DRMAA wait(SESSION_ANY). The old synchronize() semantics are no longer directly supported - instead,
the DRMAA application should use a looped Job.wait... / JobSession.waitAny... call. The result is a more condensed and
responsive API, were the application can decide to keep the user informed during synchronization on a set of jobs. DRMAA
library implementations should also become easier to design, since the danger of multithreading side effects inside the DRMAA
API is reduced by this change. As a side effect, JOB_IDS_SESSION_ANY and JOB_IDS_SESSION_ALL are no longer needed.
The special consideration of a partial failures during SESSION_ALL wait activities is also no longer necessary (F2F meeting
July 2009). The JobSession now allows to fetch also information about jobs that were not submitted through DRMAA (conf.
call June 23th 2010).

drmaa-wgQogf.org 45

mailto:drmaa-wg@ogf.org

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

GWD-R July 2011

6

4
(See footnote)

8.2.5 getJobArray

This method returns the JobArray instance with the given ID. If the session does not / no longer contain
the according job array, InvalidArgumentException SHALL be thrown.

4
(See footnote)

8.2.6 runJob

The runJob method submits a job with the attributes defined in the given job template instance. The
method returns a Job object that represents the job in the underlying DRM system. Depending on the job
template settings, submission attempts may be rejected with an InvalidArgumentException. The error
details SHOULD provide further information about the attribute(s) responsible for the rejection.

When this method returns a valid Job instance, the following conditions SHOULD be fulfilled:
e The job is part of the persistent state of the job session.

e All non-DRMAA and DRMAA interfaces to the DRM system report the job as being submitted to
the DRM system.

e The job has one of the DRMAA job states.
8.2.7 runBulkJobs

The runBulkJobs method creates a set of parametric jobs, each with attributes as defined in the given job
template instance. Each job in the set has the same attributes, except for the job template attributes that
include the JobTemplatePlaceholder: :PARAMETRIC_INDEX macro (see Section 4.4).

If any of the resulting parametric job templates is not accepted by the DRM system, the method call MUST
raise an InvalidArgumentException. No job from the set SHOULD be submitted in this case.

The first job in the set has an index equal to the beginIndex parameter of the method call. The smallest
valid value for beginIndex is 1. The next job has an index equal to beginIndex + step, and so on. The last
job has an index equal to beginIndex + n * step, where n is equal to(endIndex - beginIndex) / step.
The index of the last job may not be equal to endIndex if the difference between beginIndex and endIndex
is not evenly divisible by step. The beginIndex value must be less than or equal to endIndex, and only
positive index numbers are allowed, otherwise the method SHOULD raise an InvalidArgumentException.

Jobs can determine their index number at run time by the mechanism described in Section 8.6.

The maxParallel parameter allows to specify how many of the bulk job’s instances are allowed to run in
parallel on the utilized resources. Implementations MAY consider this value if the DRM system supports such
functionality, otherwise the parameter MUST be silently ignored. If given, the support MUST be expressed
by the DrmaaCapability: : BULK_JOBS_MAXPARALLEL capability flag (see Section 4.5). If the parameter value
is UNSET, no limit SHOULD be applied.

46We are aware of the fact that the automated reaping of terminated jobs in some DRM systems might change this methods
result. However, there was no way to demand some standardized behavior for that.

47 June 2011 conf. call decided to not support JobArray filtering in the session at this point. The face-to-face meeting in
June 2011 identified that DRM systems typically do not support the identification of bulk jobs in the system, so it would be
hard to implement the according reporting function.

drmaa-wgQogf.org 46

mailto:drmaa-wg@ogf.org

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

GWD-R July 2011

The runBulkJobs method returns a JobArray (see Section 8.5) instance that represents the set of Job
objects created by the method call under a common array identity. For each of the jobs in the array, the
same conditions as for the result of runJob SHOULD apply.

The largest (syntactically) allowed value for endIndex MUST be defined by the language binding.

Further restrictions on the maximum endIndex MAY be implied by the implementation.

(See footnote)48

8.2.8 waitAnyStarted / waitAnyTerminated

The waitAnyStarted method blocks until any of the jobs referenced in the jobs parameter entered one of
the “Started” states. The waitAnyTerminated method blocks until any of the jobs referenced in the jobs
parameter entered one of the “Terminated” states (see Section 8.1). If the input list contains jobs that are
not part of the session, the method SHALL fail with an InvalidArgumentException.

The timeout argument specifies the desired waiting time for the state change. The constant value
INFINITE_TIME MUST be supported to get an indefinite waiting time. The constant value ZERO_TIME
MUST be supported to express that the method call SHALL return immediately. A number of seconds
can be specified to indicate the maximum waiting time . If the method call returns because of timeout, an
TimeoutException SHALL be raised.

An application waiting for some condition to happen in all jobs of a set is expected to perform looped calls
of these waiting functions.

4
(See footnote)

8.3 DrmaaCallback Interface

The DrmaaCallback interface allows the DRMAA library or the DRM system to inform the application
about relevant events in an asynchronous fashion. One expected use case is continuous monitoring of job
state transitions. The implementation MAY decide to not deliver all events occurring in the DRM system.
The support for such callback functionality is optional, indicated by the DrmaaCallback: :CALLBACK flag.
Also, all implementations MUST define the DrmaaCallback interface type as given in the language binding,
regardless of the support for these functions.

interface DrmaaCallback {
void notify(in DrmaaNotification notification);

};

48 There was a discussion (mailing list Jan 2011) about having specialized job templates for bulk submission, with support
for the start / end index and a slots limit. We rejected that, since job templates are intended for re-usage.

The May 4th 2011 conf call identified Grid Engine, Torque and LSF as the only systems having support for maxParallel. The
feature was determined as critical enough for still adding it, therefore the ignorance rule and the MAY semantics are applied.

49 People typically ask for the waitAll..() counterparts of these functions. Since they are so easy to implement in the
application itself, we could not see any benefit in adding them. Due to their intended long-blocking operation, the DRM system
would no be able to offer any better (meaning much faster) implementation to be wrapped by DRMAA.

A section on synchronization of multi-threaded parallel wait calls was removed. This would complicate DRMAA implementa-
tions, since synchronization does not map to the obvious state polling approach. An optimization like this would be classically
a task of application-oriented APIs - so, Andre has to solve it.

drmaa-wgQogf.org 47

mailto:drmaa-wg@ogf.org

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

GWD-R July 2011

struct DrmaaNotification {
DrmaaEvent event;
string jobld;
string sessionName;
JobState jobState;

}s

enum DrmaaEvent {
NEW_STATE, MIGRATED, ATTRIBUTE_CHANGE
};

The application implements a DrmaaCallback interface as pre-condition for using this functionality. This
interface is registered through the SessionManager::registerEventNotification method (see Section
7.1). On notification, the implementation or the DRM system pass a DrmaaNotification instance to the
application. Implementations MAY extend this structure for further information (see Section 5). All given
information SHOULD be valid at least at the time of notification generation.

The DrmaaNotification::jobState attribute expresses the state of the job at the time of notification
generation.

The DrmaaEvent enumeration defines standard event types for notification:
NEW_STATE The job entered a new state, which is described in the jobState attribute.

MIGRATED The job was migrated to another execution host, and is now in the state described by
jobState.

ATTRIBUTE_CHANGE A monitoring attribute of the job, such as the memory consumption, changed
to a new value. The jobState attribute MAY have the value UNSET on this event.

DRMAA implementations SHOULD protect themselves from unexpected behavior of the called application.
This includes indefinite delays or unexpected exceptions from the callee on notification processing. The
implementation SHOULD prevent a nested callback at the time of occurrence, and MAY decide to deliver
the according events at a later point in time.

Scalability issues of the notification facility are out of scope for this specification. Implementations MAY
support non-standardized throttling configuration options.

5
(See footnote)

8.4 Job Interface

Every job in the JobSession is represented by an own instance of the Job interface. It allows one to instruct
the DRM system for a job status change, and to query the properties of the job in the DRM system.
Implementations MAY provide Job objects for jobs created outside of a DRMAA session.

interface Job {
readonly attribute string jobId;

50 We intentionally did not add subState to the notification information, since this would make callback interface implemen-
tations specific for the DRM system, without any chance for creating a portable DRMAA application.

The DrmaaNotification structure intentionally avoids to reference a Job object - instead, all relevant lookup information
(session name + job ID) is provided. This demands only non-interface data types to be understandable in the callback target.
Also, it hopefully helps to support scalability of high-frequent event callbacks.

drmaa-wgQogf.org 48

mailto:drmaa-wg@ogf.org

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

GWD-R July 2011

readonly attribute string sessionName;
readonly attribute JobTemplate jobTemplate;
void suspend ();

void resume ();

void hold ();

void release ();

void terminate ();

JobState getState (out any jobSubState);
JobInfo getInfo();

Job waitStarted(in TimeAmount timeout);
Job waitTerminated(in TimeAmount timeout) ;

};
(See footnote)

8.4.1 jobld

This attribute reports the stringified job identifier assigned by the DRM system. This method is expected
to be used as fast alternative to the fetching of a complete JobInfo instance.

8.4.2 sessionName

This attribute reports the name of the JobSession that was used to create the job. If the session name
cannot be determined, for example since the job was created outside of a DRMAA session, the attribute
SHOULD be UNSET.

(See fuotnute)52

8.4.3 jobTemplate

This attribute provides a reference to a JobTemplate instance that has equal values to the one that was
used for the job submission creating this Job instance.

For jobs created outside of a DRMAA session, implementations MUST also return a JobTemplate instance
here, which MAY be empty or only partially filled.

51 Tn comparison to DRMAA v1.0, DRMAA2 replaces the identification of jobs by strings with Job objects. This enables a
tighter integration of job meta-data and identity, for the price of reduced performance in (so far not existing) DRMAA RPC
scenarios. The former DRMAA control() with the JobControlAction structure is now split up into dedicated functions (such
as hold() and release()) on the Job object.

Even though the DRMAAv2 surveys showed interest in interactive job support, this feature was intentionally left out. Reasons
are the missing support in some major DRM systems, and the lack of a relevant DRMAA-related use case (conf. call Jan Tth
2010)

Issue #5877 (support for direct job signaling) was rejected, even though there was an according request from the SAGA WG.
Issue #2782 (change attributes of submitted, but pending jobs) was rejected based on group decision.

52 June 29th 2011 conf call decided to return session names instead of session objects. This keeps the consistent approach that
instantiated session objects represent a live ’connection’ to the DRMS. Connecting to the referenced session is then a separate
explicit step in the application. It also supports better that people create instances from jobs created outside of a DRMAA
session.

drmaa-wgQogf.org 49

mailto:drmaa-wg@ogf.org

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

GWD-R July 2011

8.4.4 suspend / resume / hold / release / terminate

The job control functions allow modifying the status of the single job in the DRM system, according to the
state model presented in Section 8.1.

The suspend method triggers a transition from RUNNING to SUSPENDED state.

The resume method triggers a transition from SUSPENDED to RUNNING state.

The hold method triggers a transition from QUEUED to QUEUED_HELD, or from REQUEUED to REQUEUED_HELD
state.

The release method triggers a transition from QUEUED_HELD to QUEUED, or from REQUEUED_HELD to REQUEUED
state.

The terminate method triggers a transition from any of the “Started” states to one of the “Terminated”
states.

If the job is in an inappropriate state for the particular method «call, it MUST raise an
InvalidStateException.

The methods SHOULD return after the action has been acknowledged by the DRM system, but MAY
return before the action has been completed. Some DRMAA implementations MAY allow these methods to
be used to control jobs submitted externally to the DRMAA session. Examples are jobs submitted by other
DRMAA sessions, in other DRMAA implementations, or jobs submitted via native utilities. This behavior
is implementation-specific.

8.4.5 getState

This method allows the application to get the current status of the job according to the DRMAA state
model, together with an implementation specific sub state (see Section 8.1). It is intended as fast alternative
to the fetching of a complete JobInfo instance. The timing conditions are described in Section 5.5.

(See footnote)

8.4.6 getlnfo

This method returns a JobInfo instance for the particular job, under the conditions described in Section
5.5.

8.4.7 waitStarted / waitTerminated

The waitStarted method blocks until the job entered one of the “Started” states. The waitTerminated
method blocks until the job entered one of the “Terminated” states (see Section 8.1). All other behavior
MUST work as described in Section 8.2.8.

8.5 JobArray Interface

An instance of the JobInfo interface represents a set of jobs created by one operation. In DRMAA, JobArray
instances are only created by the runBulkJobs method (see Section 8.2). JobArray instances differ from the

53 The getState() function now also returns job subState information. This is intended as additional information for the given
DRMAA job state, and can be used for expressing the hold state differentiation from DRMAA 1.0 (conf. call Mar 31st 2009).

drmaa-wgQogf.org 50

mailto:drmaa-wg@ogf.org

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

GWD-R July 2011

JobList data structure due to their potential for representing a DRM system concept, while JobList is a
DRMAA-only concept realized by language binding support.

Implementations SHOULD realize the JobArray functionality as wrapper for DRM system job arrays, if
available. If the DRM system has only single job support or incomplete job array support with respect to
the DRMAA-provided functionality, implementations MUST offer the JobArray functionality on their own,
for example based on looped activities with a list of jobs.

interface JobArray {
readonly attribute string jobArrayId;
readonly attribute JobList jobs;
readonly attribute string sessionName;
readonly attribute JobTemplate jobTemplate;
void suspend();
void resume ();
void hold ();
void release();
void terminate ();

s
(See footnote)5
8.5.1 jobArrayld

This attribute reports the stringified job identifier assigned to the job array by the DRM system. If the
DRM system has no job array support, the implementation MUST generate a system-wide unique identifier
for the result of the runBulkJobs method.

8.5.2 jobs

This attribute provides the list of jobs that are part of the job array, regardless of their state.

(See footnotc)55
8.5.3 sessionName

This attribute states the name of the JobSession that was used to create the bulk job represented by this
instance. If the session name cannot be determined, for example since the bulk job was created outside of a
DRMAA session, the attribute SHOULD have an UNSET value.

(See foutnute)56

54 We are aware of the fact that some systems (e.g., LSF at the time of writing) do not support all DRMAA control methods
offered for job arrays. Since we intended to avoid optional DRMAA methods wherever we could, the text here mandates the
implementation to simulate the array support on its own. For example, looping over all jobs in the array and calling “suspend”
for each one is trivial to implement and fulfills the same purpose.

55 We were asked for offering a filter support similar to JobSession here. This was rejected by discussion on the list (Jan
2011), since the number of jobs returned here is normally comparatively short. In this case, the DRM system cannot provide
any benefit over the looped check in the application itself.

The dissappearance of terminated jobs is intentionally not specified (see discussion above for getJobs).

56 June 29th 2011 conf call decided to return session names instead of session objects. This keeps the consistent approach that
instantiated session objects represent a live ’connection’ to the DRMS. Connecting to the referenced session is then a separate
explicit step in the application. It also supports better that people create instances from bulk jobs created outside of a DRMAA
session.

drmaa-wgQogf.org 51

mailto:drmaa-wg@ogf.org

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

GWD-R July 2011

8.5.4 jobTemplate

This attribute provides a reference to a JobTemplate instance that has equal values to the one that was
used for the job submission creating this JobArray instance.

(See fuotnute)57
8.5.5 suspend / resume / hold / release / terminate

The job control functions allow modifying the status of the job array in the DRM system, with the same
semantic as in the Job interface (see Section 8.4.4). If one of the jobs in the array is in an inappropriate
state for the particular method, the method MAY raise an InvalidStateException.

The methods SHOULD return after the action has been acknowledged by the DRM system for all jobs
in the array, but MAY return before the action has been completed for all of the jobs. Some DRMAA
implementations MAY allow this method to be used to control job arrays created externally to the DRMAA
session. This behavior is implementation-specific.

(See footnote)

8.6 The DRMAA_INDEX_VAR environment variable

DRMAA implementations SHOULD implicitly set an environment variable with the name DRMAA_INDEX_VAR
for each job submitted to the DRM system.

An expected implementation strategy would be the transparent addition of an environment variable spec-
ification in the job submission. Such a definition SHOULD NOT be visible for the application as part of
the job template. If the application defines its own DRMAA_INDEX_VAR environment variable, it SHOULD
override the implementation-defined value.

The environment variable MUST contain the name of the DRM system environment variable that holds
the parametric job index. Examples are TASK_ID in GridEngine, PBS_ARRAYID in Torque, or LSB_JOBINDEX
in LSF. By doing an indirect fetching of the environment variable value, jobs are enabled to get their own
parametric index regardless of the DRM system type. For DRM systems that do not provide such an
environment variable, DRMAA_INDEX_VAR SHOULD not be set.

9 Working with Advance Reservation

Advance reservation is a DRM system concept that allows the reservation of execution resources for jobs to
be submitted in the future. DRMAA encapsulates such functionality of a DRM system with the interfaces
and data structures described in this chapter.

DRMAA implementations for a DRM system that does not support advance reservation MUST still imple-
ment the described interfaces, in order to keep source code portability for DRMAA-based applications. All
methods related to advance reservation MUST raise an UnsupportedOperationExeption in this case. Sup-
port for advance reservation is expressed by the DrmaaCapability: : ADVANCE_RESERVATION flag (see Section
4.5).

57 The use case from SAGA perspective is that the user can easily resubmit the same job - just changing for example some
command line parameter, but leaving the remainder fixed (mail by Andre Merzky, July 29th 2010).

58We were asked to make explicit that some of these functions may not be atomic. However, this holds for most methods,
and is not supported to be a part of the API standard.

drmaa-wgQogf.org 52

mailto:drmaa-wg@ogf.org

GWD-R July 2011

wo 9.1 ReservationSession Interface

wn Every ReservationSession instance acts as container for advance reservations in the DRM system. Every
w2 Reservation instance SHALL belong only to one ReservationSession instance.

1473 interface ReservationSession {

1474 readonly attribute string contact;

1475 readonly attribute string sessionName;

1476 Reservation getReservation(in string reservationId);

1477 Reservation requestReservation(in ReservationTemplate reservationTemplate);
1478 Reservationlist getReservations ();

1479 } 5

uwo 9.1.1 contact

wsr This attribute reports the contact value that was used in the createReservationSession call for this
ue instance (see Section 7.1). If no value was originally provided, the default contact string from the implemen-
1z tation MUST be returned. This attribute is read-only.

ues 9.1.2 sessionName

uss This attribute reports the name of the session that was used for creating or opening this Reservation
uss instance (see Section 7.1). This attribute is read-only.

usr 9.1.3 getReservation

uss This method returns the Reservation instance that has the given reservationId. Implementations MAY
s support the access to reservations created outside of a DRMAA session scope, under the same regulari-
1o ties as for the MonitoringSession: :getAllReservations method (see Section 10.1.1). If no reservation
uor matches, the method SHALL raise an InvalidArgumentException. Time-dependent effects of this method
ue are implementation-specific.

us 9.1.4 requestReservation

ua The requestReservation method SHALL request an advance reservation in the DRM system as described
us by the ReservationTemplate. On a successful reservation, the method returns a Reservation instance that
ues represents the advance reservation in the underlying DRM system.

w7 If the current user is not authorized to create reservations, DeniedByDrmsException SHALL be raised. If
s the reservation cannot be performed by the DRM system due to invalid ReservationTemplate attributes,
1o or if the demanded combination of resources is not available, InvalidArgumentException SHALL be raised.
100 The exception SHOULD provide further details about the rejection cause in the extended error information
1sor (see Section 6).

152 Some of the requested conditions might be not fulfilled after the reservation was successfully created, for
1503 example due to execution host outages. In this case, the reservation itself SHOULD remain valid. A job
104 using such a reservation may spend additional time in one of the non-RUNNING states. In this case, the
1s0s JobInfo::jobSubState information SHOULD inform about this situation.

drmaa-wgQogf.org 53

mailto:drmaa-wg@ogf.org

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

GWD-R July 2011

59

(See footnote)
9.1.5 getReservations

This method returns the list of reservations successfully created so far in this session, regardless of their start
and end time. The list of Reservation instances is only cleared in conjunction with the destruction of the
actual session instance through SessionManager: :destroyReservationSession (see Section 7.1).

9.2 Reservation Interface

The Reservation interface represents attributes and methods available for an advance reservation suc-
cessfully created in the DRM system. Implementations MAY offer Reservation instances for advance
reservations created outside of a DRMAA session.

interface Reservation {
readonly attribute string reservationlId;
readonly attribute string sessionName;
readonly attribute ReservationTemplate reservationTemplate;
ReservationInfo getInfo ();
void terminate () ;

};

9.2.1 reservationld

The reservationId is an opaque string identifier for the advance reservation. If the DRM system has
identifiers for advance reservations, this attribute SHOULD provide the according value. If not, the DRMAA
implementation MUST generate a value that is unique in time and extend of the DRM system.

9.2.2 sessionName

This attribute states the name of the ReservationSession that was used to create the advance reservation
instance. If the session name cannot be determined, for example since the reservation was created outside
of a DRMAA session, the attribute SHOULD have an UNSET value.

(See footnote)ﬁ
9.2.3 reservationTemplate

This attribute provides a reference to a ReservationTemplate instance that has equal values to the one that
was used to create this reservation. For reservations created outside of a DRMAA session, implementations
MUST also return a ReservationTemplate instance, which MAY be empty or only partially filled.

59In DRMAA 2.0 we do not have an explicit state model for advance reservations, as the reservation state can be easily
deducted by comparing current time with reservation start and end time. For this reason, we use the subState approach for
informing the user about the described situation.

60 June 29th 2011 conf call decided to return session names instead of session objects. This keeps the consistent approach
that instantiated session objects represent a live ’connection’ to the DRMS. Connecting to the referenced session is then a
separate explicit step in the application. It also supports better that people create instances from reservation created outside
of a DRMAA session.

drmaa-wgQogf.org 54

mailto:drmaa-wg@ogf.org

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

GWD-R July 2011

9.2.4 getlnfo

This method returns a ReservationInfo instance under the conditions described in Section 5.6. The method
SHOULD throw InvalidArgumentException if the reservation is already expired (i.e., its end time passed),
or if it was terminated before.

9.2.5 terminate

This method terminates the advance reservation represented by this Reservation instance. All jobs submit-
ted with a reference to this reservation SHOULD be terminated by the DRM system or the implementation,
regardless of their current state.

10 Monitoring the DRM System

The monitoring support in DRMAA focusses on the investigation of resources and on global data maintained
by the DRM system. Session-related information is available from the JobSession and ReservationSession
instances, respectively.

10.1 MonitoringSession Interface

The MonitoringSession interface provides a set of stateless methods for fetching information about the
DRM system and the DRMAA implementation itself.

interface MonitoringSession {
ReservationlList getAllReservations ();
JobList getAllJobs(in JobInfo filter);
QueueInfolist getAllQueues (in StringlList names);
MachineInfolList getAllMachines(in Stringlist names) ;

};

All returned data SHOULD be related to the current user running the DRMAA-based application. For
example, the getAllQueues function MAY be reduced to only report queues that are usable or generally
accessible for the DRMAA application and the user performing the query.

Because of cases where such a list reduction may demand excessive overhead in the DRMAA implementa-
tion, an unreduced or only partially reduced result MAY also be returned. The behavior of the DRMAA
implementation in this regard should be clearly documented. In all cases, the list items MUST be valid input
for job submission or advance reservation through the DRMAA API, but MAY lead to later exceptions.

10.1.1 getAllReservations

This method returns the list of all advance reservations visible for the user running the DRMAA-based
application. In contrast to a ReservationSession::getReservations call, this method SHOULD also
return reservations that were created outside of DRMAA (e.g., through command-line tools) by this user.

The DRM system or the DRMAA implementation is at liberty to restrict the set of returned reservations
based on site or system policies, such as security settings or scheduler load restrictions. The returned list
MAY contain reservations that were created by other users. It MAY also contain reservations that are not
usable for the user.

drmaa-wgQogf.org 55

mailto:drmaa-wg@ogf.org

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

GWD-R July 2011

This method SHALL raise an UnsupportedOperationException if advance reservation is not supported by
the implementation.

10.1.2 getAllJobs

This method returns the list of all DRMS jobs visible to the user running the DRMA A-based application. In
contrast to a JobSession: : getJobs call, this method SHOULD also return jobs that were submitted outside
of DRMAA (e.g., through command-line tools) by this user. The returned list MAY also contain jobs that
were submitted by other users if the security policies of the DRM system allow such global visibility. The
DRM system or the DRMAA implementation is at liberty, however, to restrict the set of returned jobs based
on site or system policies, such as security settings or scheduler load restrictions.

Querying the DRM system for all jobs might result in returning an excessive number of Job objects. Impli-
cations to the library implementation are out of scope for this specification.

The method supports a filter argument for fetching only a subset of the job information available. Both
the return value semantics and the filter semantics SHOULD be similar to the ones described for the
JobSession: :getJobs method (see Section 8.2).

Language bindings SHOULD NOT try to solve the scalability issues by replacing the sequence type of
the return value with some iterator-like solution. This approach would break the basic snapshot semantic
intended for this method.

(See footnote)

10.1.3 getAllQueues

This method returns a list of queues available for job submission in the DRM system. The names from all
QueueInfo instances in this list SHOULD be a valid input for the JobTemplate: :queueName attribute (see
Section 5.7.14). The result can be an empty list or might be incomplete, based on queue, host, or system
policies. It might also contain queues that are not accessible for the user at job submission time because of
queue configuration limits.

The names parameter supports restricting the result to QueueInfo instances that have one of the names
given in the argument. If the names parameter value is UNSET, all QueueInfo instances should be returned.

10.1.4 getAllMachines

This method returns the list of machines available in the DRM system as execution host. The returned list
might be empty or incomplete based on machine or system policies. The returned list might also contain
machines that are not accessible for the user, e.g., because of host configuration limits.

The names parameter supports restricting the result to MachineInfo instances that have one of the names
given in the argument. If the names parameter value is UNSET, all MachineInfo instances should be returned.

61 The non-argumentation about the scalability problem was the final result of a clarification attempt. We hand this one
over to the implementors. (conf call Jul 14th 2010)

drmaa-wgQogf.org 56

mailto:drmaa-wg@ogf.org

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

GWD-R July 2011

11 Complete DRMAA IDL Specification

The following text shows the complete IDL specification for the DRMAAv2 application programming inter-
face. The ordering of IDL constructs here has no normative meaning, but ensures an easier compilation with
a standard CORBA IDL compiler for syntactical correctness checks. This demands also some additional
forward declarations to resolve circular dependencies.

module DRMAA2 {

enum JobState {
UNDETERMINED , QUEUED, QUEUED_HELD, RUNNING, SUSPENDED, REQUEUED,
REQUEUED_HELD, DONE, FAILED};

enum OperatingSystem {
AIX, BSD, LINUX, HPUX, IRIX, MACOS, SUNOS, TRUE64, UNIXWARE, WIN,
WINNT, OTHER_OS}I};

enum CpuArchitecture {
ALPHA, ARM, CELL, PARISC, X86, X64, IA64, MIPS, PPC, PPC64,
SPARC, SPARC64, OTHER_CPU};

enum ResourcelimitType {
CORE_FILE_SIZE, CPU_TIME, DATA_SEG_SIZE, FILE_SIZE, OPEN_FILES,
STACK_SIZE, VIRTUAL_MEMORY, WALLCLOCK_TIME };

enum JobTemplatePlaceholder {
HOME_DIRECTORY ,WORKING_DIRECTORY ,PARAMETRIC_INDEX };

enum DrmaaEvent {
NEW_STATE, MIGRATED, ATTRIBUTE_CHANGE
};

enum DrmaaCapability {
ADVANCE_RESERVATION, RESERVE_SLOTS, CALLBACK, BULK_JOBS_MAXPARALLEL,
JT_EMAIL, JT_STAGING, JT_DEADLINE, JT_MAXSLOTS, JT_ACCOUNTINGID,
RT_STARTNOW, RT_DURATION, RT_MACHINEOS, RT_MACHINEARCH
s

typedef sequence<string> OrderedStringlList;
typedef sequence<string> Stringlist;

typedef sequence<Job> JobList;

typedef sequence<QueuelInfo> QueuelInfolist;

typedef sequence<MachineInfo> MachineInfolist;
typedef sequence<SlotInfo> OrderedSlotInfolist;
typedef sequence<Reservation> ReservationlList;
typedef sequence< sequence<string,2> > Dictionary;
typedef string AbsoluteTime;

typedef long long TimeAmount;

drmaa-wgQogf.org 57

mailto:drmaa-wg@ogf.org

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

GWD-R

native ZERO_TIME;
native INFINITE_TIME;
native NOW;

struct JobInfo {
string jobId;
long exitStatus;
string terminatingSignal;
string annotation;
JobState jobState;
any jobSubState;
OrderedSlotInfolist allocatedMachines;
string submissionMachine;
string jobOwner;
long slots;
string queueName;
TimeAmount wallclockTime;
long cpuTime;
AbsoluteTime submissionTime;
AbsoluteTime dispatchTime;
AbsoluteTime finishTime;

};

struct ReservationInfo {
string reservationId;
string reservationName;
AbsoluteTime reservedStartTime;
AbsoluteTime reservedEndTime;
Stringlist usersACL;
long reservedSlots;
OrderedSlotInfolist reservedMachines;

};

struct JobTemplate {
string remoteCommand;
OrderedStringlist args;
boolean submitAsHold;
boolean rerunnable;
Dictionary jobEnvironment;
string workingDirectory;
string jobCategory;
Stringlist email;
boolean emailOnStarted;
boolean emailOnTerminated;
string jobName;
string inputPath;
string outputPath;
string errorPath;

drmaa-wgQogf.org

July 2011

58

mailto:drmaa-wg@ogf.org

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

GWD-R

boolean joinFiles;

string reservationId;

string queueName;

long minSlots;

long maxSlots;

long priority;
OrderedStringlist candidateMachines;
long minPhysMemory;
OperatingSystem machine(OS;
CpuArchitecture machineArch;
AbsoluteTime startTime;
AbsoluteTime deadlineTime;
Dictionary stageImnFiles;
Dictionary stageOutFiles;
Dictionary resourcelimits;
string accountingld;

};

struct ReservationTemplate {
string reservationName;
AbsoluteTime startTime;
AbsoluteTime endTime;
TimeAmount duration;
long minSlots;
long maxSlots;
string jobCategory;
StringlList usersACL;
OrderedStringlist candidateMachines;
long minPhysMemory;
OperatingSystem machine0S;
CpuArchitecture machineArch;

};

struct DrmaaNotification {
DrmaaEvent event;
string jobId;
string sessionName;
JobState jobState;

};

struct QueuelInfo {
string name;

};

struct Version {
string major;
string minor;

};

drmaa-wgQogf.org

July 2011

59

mailto:drmaa-wg@ogf.org

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

GWD-R

struct Mac

hineInfo {

string name;

boolean
long soc

available;
kets;

long coresPerSocket;
long threadsPerCore;

double 1

oad;

long physMemory;

long vir

tMemory ;

OperatingSystem machine0S;
Version machineOSVersion;
CpuArchitecture machineArch;

};

struct Slo

string machineName;

string s

};

exception
exception
exception
exception
exception
exception
exception
exception
exception
exception
exception
exception

interface
readonly
readonly
readonly
readonly
readonly
readonly
readonly

string getInstanceValue(in any instance,
void setInstanceValue(in any instance,
string describeAttribute(in any instance,

};

tInfo {

lots;

DeniedByDrmsException {string message;l};
DrmCommunicationException {string message;l};
TrylLaterException {string message;};
SessionManagementException {string message;};
TimeoutException {string message;};
InternalException {string message;};
InvalidArgumentException {string message;};
InvalidSessionException {string message;};
InvalidStateException {string message;};
OutOfResourceException {string message;};
UnsupportedAttributeException {string message;};
UnsupportedOperationException {string message;};

DrmaaReflective {

attribute
attribute
attribute
attribute
attribute
attribute
attribute

StringlList
StringlList
Stringlist
Stringlist
Stringlist
StringList
StringlList

interface DrmaaCallback {
void notify(in DrmaaNotification notification);

};

drmaa-wgQogf.org

jobTemplateImplSpec;
jobInfoImplSpec;
reservationTemplateImplSpec;
reservationInfolImplSpec;
queueInfoImplSpec;
machineInfoImplSpec;
notificationImplSpec;

in string name);
in string name,
in string name);

July 2011

in string value);

60

mailto:drmaa-wg@ogf.org

GWD-R July 2011

1772 interface ReservationSession {

1773 readonly attribute string contact;

1774 readonly attribute string sessionName;

1775 Reservation getReservation(in string reservationId);
1776 Reservation requestReservation(in ReservationTemplate reservationTemplate);
1777 ReservationlList getReservations ();

1778 } 5

1779 interface Reservation {

1780 readonly attribute string reservationld;

1781 readonly attribute string sessionName;

1782 readonly attribute ReservationTemplate reservationTemplate;
1783 ReservationInfo getInfo ();

1784 void terminate ();

1785 } 5

1786 interface JobArray {

1787 readonly attribute string jobArrayId;

1788 readonly attribute JobList jobs;

1789 readonly attribute string sessionName;

1790 readonly attribute JobTemplate jobTemplate;

1701 void suspend();

1792 void resume () ;

1793 void hold ();

1794 void release ();

1795 void terminate ();

1796 } 5

1797 interface JobSession {

1798 readonly attribute string contact;

1799 readonly attribute string sessionName;

1800 readonly attribute StringlList jobCategories;

1801 JobList getJobs(in JobInfo filter);

1802 JobArray getJobArray(in string jobArrayId);

1803 Job runJob(in JobTemplate jobTemplate);

1804 JobArray runBulkJobs (

1805 in JobTemplate jobTemplate,

1806 in long beginIndex,

1807 in long endIndex,

1808 in long step,

1800 in long maxParallel);

1810 Job waitAnyStarted(in JobList jobs, in TimeAmount timeout);
1811 Job waitAnyTerminated (in JobList jobs, in TimeAmount timeout);
1812 } 5

1813 interface Job {

1814 readonly attribute string jobId;

1815 readonly attribute string sessionName;

drmaa-wgQogf.org 61

mailto:drmaa-wg@ogf.org

GWD-R July 2011

1816 readonly attribute JobTemplate jobTemplate;

1817 void suspend();

1818 void resume ();

1819 void hold ();

1820 void release ();

1821 void terminate ();

1822 JobState getState(out any jobSubState);

1823 JobInfo getInfo();

1824 Job waitStarted(in TimeAmount timeout);

1825 Job waitTerminated(in TimeAmount timeout);

1826 } N

1827 interface MonitoringSession {

1828 Reservationlist getAllReservations();

1820 JobList getAllJobs(in JobInfo filter);

1830 QueueInfolist getAllQueues (in StringlList names);

1831 MachineInfolList getAllMachines(in Stringlist names) ;

1832 } 5

1833 interface SessionManager{

1834 readonly attribute string drmsName;

1835 readonly attribute Version drmsVersion;

1836 readonly attribute string drmaaName;

1837 readonly attribute Version drmaaVersion;

1838 boolean supports(in DrmaaCapability capability);

1839 JobSession createJobSession(in string sessionName,

1840 in string contact);

1841 ReservationSession createReservationSession(in string sessionName,
1842 in string contact);
1843 JobSession openJobSession(in string sessionName);

1844 ReservationSession openReservationSession(in string sessionName);
1845 MonitoringSession openMonitoringSession (in string contact);
1846 void closeJobSession(in JobSession s);

1847 void closeReservationSession(in ReservationSession s);

1848 void closeMonitoringSession(in MonitoringSession s);

1849 void destroyJobSession(in string sessionName);

1850 void destroyReservationSession(in string sessionName);

1851 Stringlist getJobSessionNames ();

1852 StringlList getReservationSessionNames () ;

1853 void registerEventNotification(in DrmaaCallback callback);
1854 } N

1855 } N

@ 12 Security Considerations

187 The DRMAA API does not specifically assume the existence of a particular security infrastructure in the
158 DRM system. The scheduling scenario described herein presumes that security is handled at the point of

drmaa-wgQogf.org 62

mailto:drmaa-wg@ogf.org

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

GWD-R July 2011

interaction with the DRM system. It is assumed that credentials owned by the application using the API
are in effect for the DRMAA implementation too, so that it acts as stakeholder for the application.

An authorized but malicious user could use a DRMAA implementation or a DRMAA-enabled application
to saturate a DRM system with a flood of requests. Unfortunately for the DRM system, this case is not
distinguishable from the case of an authorized good-natured user who has many jobs to be processed. For
temporary load defense, implementations SHOULD utilize the TryLaterException, if possible. In case of
permanent issues, the implementation SHOULD raise the DeniedByDrmsException.

DRMAA implementers SHOULD guard their product against buffer overflows that can be exploited through
DRMAA enabled interactive applications or portals. Implementations of the DRMAA API will most likely
require a network to coordinate subordinate DRM system requests. However, the API makes no assumptions
about the security posture provided by the networking environment. Therefore, application developers
SHOULD also consider the security implications of “on-the-wire” communications in this case.

For environments that allow remote or protocol based DRMAA clients, the implementation SHOULD offer
support for secure transport layers to prevent man in the middle attacks.

13 Contributors

The DRMAA working group is grateful to numerous colleagues for support and discussions on the topics
covered in this document, in particular (in alphabetical order, with apologies to anybody we have missed):

Guillaume Alleon, Ali Anjomshoaa, Ed Baskerville, Harald Bohme, Nadav Brandes, Matthieu Cargnelli,
Karl Czajkowski, Piotr Domagalski, Fritz Ferstl, Paul Foley, Nicholas Geib, Becky Gietzel, Alleon Guillaume,
Daniel S. Katz, Andreas Haas, Tim Harsch, Greg Hewgill, Rayson Ho, Eduardo Huedo, Dieter Kranzmiiller,
Krzysztof Kurowski, Peter G. Lane, Miron Livny, Ignacio M. Llorente, Martin v. Lowis, Andre Merzky,
Thijs Metsch, Ruben S. Montero, Greg Newby, Steven Newhouse, Michael Primeaux, Greg Quinn, Hrabri L.
Rajic, Martin Sarachu, Jennifer Schopf, Enrico Sirola, Chris Smith, Ancor Gonzalez Sosa, Douglas Thain,
John Tollefsrud, Jose R. Valverde, and Peter Zhu.

Special thanks must go to Andre Merzky, who participated as SAGA working group representative in nu-
merous DRMAA events.

This specification was developed by the following core members of the DRMAA working group at the Open
Grid Forum:

Roger Brobst

Cadence Design Systems, Inc.
555 River Oaks Parkway

San Jose, CA 95134

United States

Email: rbrobst@cadence.com

Daniel Gruber

Univa GmbH

c¢/o Riiter und Partner
Prielmayerstr. 3 80335 Miinchen
Germany

drmaa-wgQogf.org 63

mailto:drmaa-wg@ogf.org

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

GWD-R July 2011

Email: dgruber@univa.com

Mariusz Mamonski

Poznan Supercomputing and Networking Center
ul. Noskowskiego 10

61-704 Poznan

Poland

Email: mamonski@man.poznan.pl

Daniel Templeton
Cloudera Inc.

210 Portage Avenue

Palo Alto, CA 94306
United States

Email: daniel@cloudera.com

Peter Troger (Corresponding Author)
Hasso-Plattner-Institute at University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3

14482 Potsdam

Germany

Email: peter@troeger.eu

14 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or the
extent to which any license under such rights might or might not be available; neither does it represent that
it has made any effort to identify any such rights. Copies of claims of rights made available for publication
and any assurances of licenses to be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by implementers or users of this specification can
be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to practice this recommendation.
Please address the information to the OGF Executive Director.

15 Disclaimer

This document and the information contained herein is provided on an “as-is” basis and the OGF disclaims
all warranties, express or implied, including but not limited to any warranty that the use of the information
herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular
purpose.

drmaa-wgQogf.org 64

mailto:drmaa-wg@ogf.org

1938

1939

1940
1941
1942
1943
1944
1945
1946

1947

1948

1949

1683

1952

1953

1954

1955

1956

1957

1958
1959

1960

1961

1962

1963

1964

1965

1966

1967
1968

1969

1970
1971

1972

1973

1974

GWD-R July 2011

16 Full Copyright Notice

Copyright (© Open Grid Forum (2005-2011). Some Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice or references to the OGF or
other organizations, except as needed for the purpose of developing Grid Recommendations in which case
the procedures for copyrights defined in the OGF Document process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors
or assignees.

17 References

[1] Sergio Andreozzi, Stephen Burke, Felix Ehm, Laurence Field, Gerson Galang, Balazs Konya, Maarten
Litmaath, Paul Millar, and JP Navarro. GLUE Specification v. 2.0 (GFD-R-P.147), mar 20009.

[2] Scott Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119 (Best Current
Practice), March 1997. URL http://tools.ietf.org/html/rfc2119.

[3] 1. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pickles, D. Pulsipher, C. Smith,
and M. Theimer. OGSA Basic Execution Service v1.0 (GFD-R.108), nov 2008.

[4] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Kleijer, Andre Merzky, John
Shalf, and Christopher Smith. A Simple API for Grid Applications (SAGA) Version 1.1 (GFD-R-P.90),
jan 2008.

[5] Object Management Group. Common Object Request Broker Architecture (CORBA) Specification,
Version 3.1. http://www.omg.org/spec/CORBA /3.1 /Interfaces/PDF, jan 2008.

[6] The IEEE and The Open Group. The Open Group Base Specifications Issue 6 IEEE Std 1003.1.
http://www.opengroup.org/onlinepubs/000095399 /utilities /ulimit.html.

[7] Distributed Management Task Force (DMTF) Inc. CIM System Model White Paper CIM Version 2.7,
jun 2003.

[8] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas Haas, Bill Nitzberg,
Daniel Templeton, John Tollefsrud, and Peter Troger. Distributed Resource Management Application
APIT Specification 1.0 (GFD-R.022), aug 2007.

[9] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas Haas, Bill Nitzberg,
Daniel Templeton, John Tollefsrud, and Peter Troger. Distributed Resource Management Application
API Specification 1.0 (GWD-R.133), jun 2008.

[10] Peter Troger, Daniel Templeton, Roger Brobst, Andreas Haas, and Hrabri Rajic. Distributed Resource
Management Application API 1.0 - IDL Specification (GFD-R-P.130), apr 2008.

drmaa-wgQogf.org 65

http://tools.ietf.org/html/rfc2119
mailto:drmaa-wg@ogf.org

GWD-R July 2011

ws [11] Peter Troger, Hrabri Rajic, Andreas Haas, and Piotr Domagalski. Standardised job submission and
1076 control in cluster and grid environments. International Journal of Grid and Utility Computing, 1:
1077 134-145, dec 2009. doi: {http://dx.doi.org/10.1504/1JGUC.2009.022029}.

drmaa-wgQogf.org 66

mailto:drmaa-wg@ogf.org

	Introduction
	Basic concepts
	Slots and Queues
	Language Bindings
	Job Categories
	Multithreading

	Namespace
	Common Type Definitions
	Enumerations
	OperatingSystem enumeration
	CpuArchitecture enumeration
	ResourceLimitType enumeration
	JobTemplatePlaceholder enumeration
	DrmaaCapability

	Extensible Data Structures
	QueueInfo structure
	Version structure
	MachineInfo structure
	SlotInfo structure
	JobInfo structure
	ReservationInfo structure
	JobTemplate structure
	ReservationTemplate structure
	DrmaaReflective Interface

	Common Exceptions
	The DRMAA Session Concept
	SessionManager Interface

	Working with Jobs
	The DRMAA State Model
	JobSession Interface
	DrmaaCallback Interface
	Job Interface
	JobArray Interface
	The DRMAA_INDEX_VAR environment variable

	Working with Advance Reservation
	ReservationSession Interface
	Reservation Interface

	Monitoring the DRM System
	MonitoringSession Interface

	Complete DRMAA IDL Specification
	Security Considerations
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice
	References

