
GWD-R
DRMAA-WG
drmaa-wg@ogf.org

Peter Tröger, Hasso-Plattner-Institute
(Corresponding Author)

Roger Brobst, Cadence Design Systems
Daniel Gruber, Univa

Mariusz Mamoński, PSNC
Daniel Templeton, Cloudera

July 2011

1

Distributed Resource Management Application API Version 22

(DRMAA) - Draft 83

Status of This Document4

Group Working Draft Recommendation (GWD-R)5

(See footnote)
1

6

Obsoletes7

This document obsoletes GFD-R.022 [8], GFD-R-P.130 [10], and GWD-R.133 [9].8

Document Change History9

Date Notes

Copyright Notice10

Copyright c© Open Grid Forum (2005-2011). Some Rights Reserved. Distribution is unlimited.11

Trademark12

All company, product or service names referenced in this document are used for identification purposes only13

and may be trademarks of their respective owners.14

Abstract15

This document describes the Distributed Resource Management Application API Version 2 (DRMAA). It16

defines a generalized API to Distributed Resource Management (DRM) systems in order to facilitate the17

development of portable application programs and high-level libraries.18

The intended audience for this specification are DRMAA language binding designers, DRM system vendors,19

high-level API designers and meta-scheduler architects. End users are expected to rely on product-specific20

documentation for the DRMAA API implementation in their particular programming language.21

1 This is the non-normative annotated version of the specification with line numbers. It includes historical information
concerning the content and why features were included or discarded by the working group. It also emphasizes the consequences
of some aspects that may not be immediately apparent. This document in only intended for internal working group discussions.

drmaa-wg@ogf.org 1

mailto:drmaa-wg@ogf.org
http://www.drmaa.org/
http://www.drmaa.org/
mailto:drmaa-wg@ogf.org

GWD-R July 2011

Notational Conventions22

In this document, IDL language elements and definitions are represented in a fixed-width font.23

The key words “MUST” “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,24

“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described25

in RFC 2119 [2].26

Memory quantities are expressed in kilobyte (KB). 1 kilobyte equals 1024 bytes.27

Parts of this document are only normative for DRMAA language binding specifications. These sections are
graphically marked as shaded box.

(See footnote)
2 .28

2The usage of kikibyte as memory quantity unit, as well as the usage of bytes as in JSDL, was rejected by the group (conf
call Apr. 13th 2011)

drmaa-wg@ogf.org 2

mailto:drmaa-wg@ogf.org

GWD-R July 2011

Contents29

1 Introduction . 530

1.1 Basic concepts . 531

1.2 Slots and Queues . 632

1.3 Language Bindings . 633

1.4 Job Categories . 734

1.5 Multithreading . 835

2 Namespace . 836

3 Common Type Definitions . 837

4 Enumerations . 1038

4.1 OperatingSystem enumeration . 1039

4.2 CpuArchitecture enumeration . 1140

4.3 ResourceLimitType enumeration . 1241

4.4 JobTemplatePlaceholder enumeration . 1342

4.5 DrmaaCapability . 1443

5 Extensible Data Structures . 1544

5.1 QueueInfo structure . 1545

5.2 Version structure . 1646

5.3 MachineInfo structure . 1647

5.4 SlotInfo structure . 1848

5.5 JobInfo structure . 1849

5.6 ReservationInfo structure . 2250

5.7 JobTemplate structure . 2351

5.8 ReservationTemplate structure . 3152

5.9 DrmaaReflective Interface . 3553

6 Common Exceptions . 3654

7 The DRMAA Session Concept . 3855

7.1 SessionManager Interface . 3856

8 Working with Jobs . 4257

8.1 The DRMAA State Model . 4258

8.2 JobSession Interface . 4459

8.3 DrmaaCallback Interface . 4760

8.4 Job Interface . 4861

8.5 JobArray Interface . 5062

8.6 The DRMAA INDEX VAR environment variable . 5263

9 Working with Advance Reservation . 5264

9.1 ReservationSession Interface . 5365

9.2 Reservation Interface . 5466

10 Monitoring the DRM System . 5567

10.1 MonitoringSession Interface . 5568

11 Complete DRMAA IDL Specification . 5769

12 Security Considerations . 6270

13 Contributors . 6371

14 Intellectual Property Statement . 6472

drmaa-wg@ogf.org 3

mailto:drmaa-wg@ogf.org

GWD-R July 2011

15 Disclaimer . 6473

16 Full Copyright Notice . 6574

17 References . 6575

drmaa-wg@ogf.org 4

mailto:drmaa-wg@ogf.org

GWD-R July 2011

1 Introduction76

The Distributed Resource Management Application API Version 2 (DRMAA) specification defines an inter-77

face for tightly coupled, but still portable access by abstracting the fundamental functions available in the78

majority of DRM systems. The scope is limited to job submission, job control, reservation management, and79

retrieval of job and machine monitoring information.80

This document acts as root specification for the abstract API concepts and the behavioral rules of a DRMAA-81

compliant implementation. The programming language representation of the API is defined by a separate82

language binding specification.83

There are other relevant OGF standards in the area of job submission and monitoring. An in-depth compar-84

ison and positioning of the obsoleted first version of the DRMAA [9] specification was provided by another85

publication [11]. This document was created in close collaboration with the OGF SAGA and the OGF OCCI86

working group.87

First-time readers are recommended to complete reading this section. After that, they should jump to Section88

7 for getting an overview of the supported functionality in DRMAA. Section 11 can be always consulted in89

parallel for a global overview on the API layout.90

1.1 Basic concepts91

The DRMAA specification is based on the following stakeholders:92

• Distributed resource management system / DRM system / DRMS : Any system that supports the con-93

cept of distributing computational tasks on execution resources through the help of a central scheduling94

entity. Examples are multi-processor systems controlled by a operating system scheduler, cluster sys-95

tems with multiple machines controlled by a central scheduler software, grid systems, or cloud systems96

with a job concept.97

• (DRMAA) implementation / (DRMAA) library : The implementation of a DRMAA language binding98

specification, with the functional behavior as described in this document. The resulting artifact is99

expected to target one DRM system.100

• (DRMAA-based) application: Software that utilizes the DRMAA implementation for gaining access to101

one or multiple DRM systems in a standardized way.102

• Submission host : A resource in the DRM system that runs the DRMAA-based application. A submis-103

sion host MAY also be able to act as execution host.104

• Execution host : A resource in the DRM system that can run a submitted job.105

• Job: A computational activity submitted by the DRMAA-based application to a DRM system, with106

the help of the DRMAA implementation. A job is expected to run as one or many operating system107

processes on one or many execution hosts.108

Table 1 defines the conceptual mapping of DRMAA to the GLUE 2.0 Information model [1]. Since the109

DRMAA API design is derived from existing DRM system functionality and terminology, not all GLUE110

concepts are applicable here, such as the expression of ID’s as URI’s, the SI metric model, the representation111

of date information, or the endpoint concept.112

drmaa-wg@ogf.org 5

mailto:drmaa-wg@ogf.org

GWD-R July 2011

DRMAA Reference GLUE 2.0 Reference [1]
DRM system Section 1.1 Manager Section 5.9
Execution host Section 1.1 ExecutionEnvironment + ComputingManager Section 6.4 / 6.6
Socket Section 5.3.3 Physical CPU Section 6
Core Section 5.3.4 Logical CPU Section 6
Job Section 1.1 ComputingActivity Section 6.9
Job category Section 1.4 ApplicationEnvironment Section 6.7
UNSET value Section 1.3 Placeholder values for unknown data Appendix A

Table 1: Mapping of DRMAA concepts to GLUE 2.0

1.2 Slots and Queues113

Similar to GLUE, DRMAA supports the notion of slots and queues as resources of a DRM system. A114

DRMAA application can request them in advance reservation and job submission. However, slots and115

queues SHALL be opaque concepts from the viewpoint of a DRMAA implementation, meaning that the116

requirements given by the application are just passed through to the DRM system. This is reasoned by the117

large variation in interpreting that concepts in the different DRM systems, which makes it impossible to118

define a common understanding on the level of the DRMAA API.119

(See footnote)
3

120

1.3 Language Bindings121

The interface semantics are described with the OMG Interface Definition Language (IDL) [5] syntax. Based122

on this language-agnostic specification, language binding standards have to be designed that map the abstract123

concepts into a library interface for a particular programming language (e.g. C, Java, Python). While this124

document has the responsibility to ensure consistent API semantics for all possible DRMAA implementations,125

the language binding has the responsibility to ensure source-code portability for DRMAA applications on126

different DRM systems.127

An effort has been made to choose an API layout that is not unique to a particular language. However, in128

some cases, various languages disagree over some points. In those cases, the most meritous approach was129

taken, irrespective of language.130

A language binding specification derived from this document MUST define a mapping between the IDL

3 As one example, queues can be either treated as representation of execution hosts (Sun Grid Engine) or as central waiting
line located at the scheduler (LSF). Slots have a meaning in GLUE, but we intentionally stick with the opaque concept approach.

drmaa-wg@ogf.org 6

mailto:drmaa-wg@ogf.org

GWD-R July 2011

constructs and the constructs of its targeted programming language. The focus MUST be on source code
portability for the DRMAA-based application in the particular language.

A language binding SHOULD NOT rely completely on the OMG IDL language mapping standards available
for many programming languages, since they have a significant overhead of CORBA-related mapping rules
that are not relevant here. The language binding MUST use its initially defined type system mapping in a
consistent manner for the complete API layout.

Due to the usage of IDL, all method groups for a particular purpose (e.g. job control) are described in terms
of interfaces, and not classes. Language bindings MAY map the DRMAA IDL interfaces to classes.

It may be the case that IDL constructs do not map directly to any language construct. In this case it MUST
be ensured that the chosen mapping retains the intended semantic of the DRMAA interface definition.

Access to scalar attributes (string, boolean, long) MUST operate in a pass-by-value mode. For non-
scalar attributes, the language binding MUST specify a consistent access strategy for all these attributes,
for example pass-by-value or pass-by-reference.

This specification tries to consider the possibility of a Remote Procedure Call (RPC) scenario in a DRMAA-
conformant language binding. It SHOULD therefore be ensured that the programming language type for an
IDL struct definition supports serialization and the comparison of instances. These capabilities should be
accomplished through whatever mechanism is most natural for the programming language.

A language binding MUST define a way to declare an invalid value (UNSET). In case, a definition per data
type needs to be provided. Evaluating an UNSET boolean value MUST result in a negative result, e.g. for
JobTemplate::emailOnStarted. Invalid strings MAY be modelled according to the GLUE 2.0 scheme [1],
were an UNSET string contains the value “UNDEFINEDVALUE”. Invalid integers MAY be also modelled
according to GLUE 2.0 scheme, were an UNSET integer is expressed as “all nines”.

(See footnote)
4

131

1.4 Job Categories132

DRMAA facilitates writing DRM-enabled applications even though the deployment properties, in particular133

the configuration of the DRMS, cannot be known in advance. This is realized by a set of standardized134

attributes that can be specified for job submission or advance reservation.135

One of these attributes is the job category, which allows to give an indication about the nature of the job at136

execution time. Examples are parallel MPI jobs, OpenMP jobs, jobs targeting specific accelerator hardware,137

or jobs demanding managed runtime environments (e.g. Java).138

Job categories typically map to site-specific reservation or submission options. Each category expresses a139

particular type of job execution that demands site-specific configuration such as path settings, environment140

variables, or application starters. This mapping to site-specific conditions SHOULD take place at submission141

time of the job or advance reservation.142

A non-normative recommendation of category names is maintained at:143

4 The concept of a UNSET value was decided on a conf call (Aug 25th 2010). Boolean in C can use custom enumeration
(TRUE, FALSE, INVALID) or pointer to static values. A numerical UNSET in C should use a magic number, since all long
attributes are unsigned, it could be MIN INT. With Python, just use None. For Java, Dan has an idea.

drmaa-wg@ogf.org 7

mailto:drmaa-wg@ogf.org

GWD-R July 2011

http://www.drmaa.org/jobcategories/144

Implementations SHOULD use these recommended names. In case the name is not taken from this list, it145

should be self-explanatory for the user to make her understand the implications on job execution.146

Implementations MAY provide a library configuration facility, which allows a site administrator to link job147

category names with specific product- and site-specific configuration options.148

The order of precedence between the job category and other attributes is implementation-specific. It is149

RECOMMENDED to overrule explicit job / reservation settings with the implicit settings resulting from a150

conflicting job category.151

For bulk job submissions, the category is expected to be valid for each of the jobs created.152

(See footnote)
5

153

1.5 Multithreading154

High-level APIs such as SAGA [4] are expected to utilize DRMAA for their own asynchronous operation,155

based on the assumption that re-entrancy is supported by the DRMAA implementation. For this reason,156

implementations SHOULD ensure the proper functioning of the library in case of re-entrant library calls with-157

out any explicit synchronization among the application threads. DRMAA implementers should document158

their level of thread safety.159

2 Namespace160

The DRMAA interfaces and structures are encapsulated by a naming scope, to avoid conflicts with other161

APIs used in the same application.162

module DRMAA2 {163

A language binding MUST map the IDL module encapsulation to an according package or namespace
concept. It MAY change the module name according to programming language conventions.

(See footnote)
6

164

3 Common Type Definitions165

The abstract DRMAA specification defines some custom types to express special value semantics not available166

in original IDL:167

typedef sequence <string > OrderedStringList;168

typedef sequence <string > StringList;169

typedef sequence <Job > JobList;170

typedef sequence <QueueInfo > QueueInfoList;171

5There was a discussion on supporting the specification of multiple categories at the same time. Since this would put more
burden on the implementation in terms of conflict resolving, we avoided that intentionally. This allows to map categories simply
to some additional job submission command line arguments, similar to the old nativeSpecification thing.

6 Comparison to DRMAA v1.0: The IDL module name was change to DRMAA2, in order to intentionally break backward
compatibility of the interface.

drmaa-wg@ogf.org 8

http://www.drmaa.org/jobcategories/
mailto:drmaa-wg@ogf.org

GWD-R July 2011

typedef sequence <MachineInfo > MachineInfoList;172

typedef sequence <SlotInfo > OrderedSlotInfoList;173

typedef sequence <Reservation > ReservationList;174

typedef sequence < sequence <string ,2> > Dictionary;175

typedef string AbsoluteTime;176

typedef long long TimeAmount;177

native ZERO_TIME;178

native INFINITE_TIME;179

native NOW;180

OrderedStringList: An unbounded list of strings, which supports element insertion, element deletion, and181

iteration over elements while keeping an element order.182

StringList: An unbounded list of strings, without any demand on element order.183

JobList: An unbounded list of Job instances, without any demand on element order.184

QueueInfoList: An unbounded list of QueueInfo instances, without any demand on element order.185

MachineInfoList: An unbounded list of MachineInfo instances, without any demand on element order.186

OrderedSlotInfoList: An unbounded list of SlotInfo instances, which supports element insertion, element187

deletion, and iteration over elements while keeping an element order.188

ReservationList: An unbounded list of Reservation instances, without any demand on element order.189

Dictionary: An unbounded dictionary type for storing key-value pairs, without any demand on element190

order.191

AbsoluteTime: Expression of a point in time, with a resolution at least to seconds.192

TimeAmount: Expression of an amount of time, with a resolution at least to seconds.193

ZERO TIME: A constant value of type TimeAmount that expresses a zero amount of time.194

INFINITE TIME: A constant value of type TimeAmount that expresses an infinite amount of time.195

NOW: A constant value of type AbsoluteTime that represents the point in time at which it is evaluated196

by some function.197

A language binding MUST replace these type definitions with semantically equal reference or value types
in the according language. This MAY include the creation of new complex language types for one or more
of the above concepts. The language binding MUST define a mechanism for obtaining the RFC822 string
representation from a given AbsoluteTime or TimeAmount instance.

(See footnote)
7

198

7 The PartialTimestamp functionality from DRMAA 1.0 was completely removed. Absolute date and time values are now
expressed as RFC822 conformant data items with stringification support (conf. call Mar 31st 2009). String list for job identifiers
are replaced by Job object lists (F2F meeting July 2009)

drmaa-wg@ogf.org 9

mailto:drmaa-wg@ogf.org

GWD-R July 2011

4 Enumerations199

Some methods and attributes in DRMAA expect enumeration constants as input. The specified enumerations200

SHOULD NOT be extended by an implementation or language binding.201

Language bindings SHOULD define numerical values for all enumeration members.

(See footnote)
8

202

4.1 OperatingSystem enumeration203

DRMAA supports the identification or demanding of an operating system installation on execution hosts.204

The enumeration defines a set of standardized identifiers for operating system types. The list is a shortened205

version of the according CIM Schema [7]. It includes only operating systems that are supported by the206

majority of DRM systems available at the time of writing:207

enum OperatingSystem {208

AIX , BSD , LINUX , HPUX , IRIX , MACOS , SUNOS , TRUE64 , UNIXWARE , WIN ,209

WINNT , OTHER_OS };210

AIX: AIX Unix by IBM.211

BSD: All operating system distributions based on the BSD kernel.212

LINUX: All operating system distributions based on the Linux kernel.213

HPUX: HP-UX Unix by Hewlett-Packard.214

IRIX: The IRIX operating system by SGI.215

MACOS: The MAC OS X operating system by Apple.216

SUNOS: SunOS or Solaris operating system by Sun / Oracle.217

TRUE64: True64 Unix by Hewlett-Packard, or DEC Digital Unix, or DEC OSF/1 AXP.218

UNIXWARE: UnixWare system by SCO group.219

WIN: Windows 95, Windows 98, Windows ME.220

WINNT: Microsoft Windows operating systems based on the NT kernel221

OTHER OS: An operating system type not specified in this list.222

Implementations SHOULD NOT add new operating system identifiers to this enumeration, even if they are223

supported by the underlying DRM system.224

The operating system information is only useful in conjunction with version information (see Section 5.2),225

which reflects the reporting approach taken in most DRM systems. Examples:226

• The Apple MacOS X operating system commonly denoted as “Snow Leopard” would be reported as227

“MACOS” with the version structure [“10”,“6”]228

8Enumeration member value definitions are expected from the binding in order to foster binary portability of DRMAA-based
applications.

drmaa-wg@ogf.org 10

mailto:drmaa-wg@ogf.org

GWD-R July 2011

• The Microsoft Windows 7 operating system would be reported as “WINNT” with the version infor-229

mation [“6”,“1”], which is the internal version number reported by the Windows API.230

• All Linux distributions would be reported as operating system type “LINUX” with the major revision231

of the kernel, such as [“2”,“6”].232

• The Solaris operating system is reported as “SUNOS”, together with the internal version number, e.g.233

[“5”,“10”] for Solaris 10.234

The DRMAA OperatingSystem enumeration can be mapped to other high-level specifications. Table 2 gives235

a non-normative set of examples.236

DRMAA OperatingSystem JSDL jsdl:OperatingSystemTypeEnumeration GLUE v2.0
HPUX HPUX
LINUX LINUX OSFamily t:linux
IRIX IRIX
TRUE64 Tru64 UNIX, OSF
MACOS MACOS OSFamily t:macosx
SUNOS SunOS, SOLARIS OSFamily t:solaris
WIN WIN95, WIN98, Windows R Me OSFamily t:windows
WINNT WINNT, Windows 2000, Windows XP OSFamily t:windows
AIX AIX OSName t:aix
UNIXWARE SCO UnixWare, SCO OpenServer
BSD BSDUNIX, FreeBSD, NetBSD, OpenBSD

Table 2: Mapping example for the DRMAA OperatingSystem enumeration

4.2 CpuArchitecture enumeration237

DRMAA supports identifying the processor instruction set architecture on execution hosts. The238

CpuArchitecture enumeration is used as data type in job submission, advance reservation and system239

monitoring. It defines a set of standardized identifiers for processor architecture families. The list is a short-240

ened version of the according CIM Schema [7], It includes only processor families that are supported by the241

majority of DRM systems available at the time of writing:242

enum CpuArchitecture {243

ALPHA , ARM , CELL , PARISC , X86 , X64 , IA64 , MIPS , PPC , PPC64 ,244

SPARC , SPARC64 , OTHER_CPU };245

ALPHA: The DEC Alpha / Alpha AXP processor architecture.246

ARM: The ARM processor architecture.247

CELL: The Cell processor architecture.248

PARISC: The PA-RISC processor architecture.249

X86: The IA-32 line of the X86 processor architecture family, with 32bit support only.250

X64: The X86-64 line of the X86 processor architecture family, with 64bit support.251

IA64: The Itanium processor architecture.252

drmaa-wg@ogf.org 11

mailto:drmaa-wg@ogf.org

GWD-R July 2011

MIPS: The MIPS processor architecture.253

PPC: The PowerPC processor architecture, all models with 32bit support only.254

PPC64: The PowerPC processor architecture, all models with 64bit support.255

SPARC: The SPARC processor architecture, all models with 32bit support only.256

SPARC64: The SPARC processor architecture, all models with 64bit support.257

OTHER CPU: A processor architecture not specified in this list.258

The DRMAA CpuArchitecture enumeration can be mapped to other high-level APIs. Table 3 gives a259

non-normative set of examples.260

The reporting and job configuration for processor architectures SHOULD operate on a “as-is” base, if sup-261

ported by the DRM system. This means that the reported architecture should reflect the current operation262

mode of the processor with the running operating system. For example, X64 processors executing a 32-bit263

operating system should be reported as X86 processor.264

(See footnote)
9

265

DRMAA CpuArchitecture JSDL jsdl:ProcessorArchitectureEnumeration GLUE v2.0
ALPHA other

ARM arm
CELL other

PARISC parisc
X86 x86 32 Platform t:i386
X64 x86 64 Platform t:amd64
IA64 ia64 Platform t:itanium
MIPS mips
PPC powerpc Platform t:powerpc

PPC64 powerpc Platform t:powerpc
SPARC sparc Platform t:sparc

SPARC64 sparc Platform t:sparc

Table 3: Mapping example for DRMAA CpuArchitecture enumeration

4.3 ResourceLimitType enumeration266

Modern DRM systems expose resource constraint capabilities from the operating system also for jobs. The267

ResourceLimitType enumeration represents the most common setrlimit parameters [6] supported in DRM268

systems. In general, resource limitations aim at the level of jobs. If a job is instantiated as multiple processes,269

the behavior is implementation-specific.270

(See footnote)
10

271

9This kind of reporting is the only one that makes sense from the application point of view.
10 The June 2011 face-to-face meeting had hard discussion on the relation between operating system processes, jobs, and

slots. It was decided that slot is a truly opaque concept, which means that you cannot do resource contraints on something that
is implementation-specific. Therefore, the spec semantics must focus on jobs only, and leave the interpretation to the DRM
system / DRMAA implementation.This leads to some intentional fuzzying of descriptions for ResourceLimitType members.

drmaa-wg@ogf.org 12

mailto:drmaa-wg@ogf.org

GWD-R July 2011

enum ResourceLimitType {272

CORE_FILE_SIZE , CPU_TIME , DATA_SEG_SIZE , FILE_SIZE , OPEN_FILES ,273

STACK_SIZE , VIRTUAL_MEMORY , WALLCLOCK_TIME };274

CORE FILE SIZE: The maximum size of the core dump file created on fatal errors of the job, in kilobyte.275

Setting this value to zero SHOULD disable the creation of core dump files on the execution host.276

CPU TIME: The maximum time in seconds the job is allowed to perform computations. The value277

SHOULD be interpreted as sum for all processes belonging to the job. This value MUST only include278

time the job is spending in JobState::RUNNING (see Section 8.1).279

DATA SEG SIZE: The maximum amount of memory the job can allocate on the heap e.g. for object280

creation, in kilobyte.281

FILE SIZE: The maximum file size the job can generate, in kilobyte.282

OPEN FILES: The maximum number of file descriptors the job is allowed to have open at the same time.283

STACK SIZE: The maximum amount of memory the job can allocate on the stack, e.g. for local variables,284

in kilobyte.285

VIRTUAL MEMORY: The maximum amount of memory the job is allowed to allocate, in kilobyte.286

WALLCLOCK TIME: The maximum wall clock time in seconds that all processes of a job are allowed287

to exist. The time amount MUST include the time spent in RUNNING state, and MAY also include288

the time spent in SUSPENDED state (see Section 8.1). The limit value MAY also be used for job289

scheduling decisions by the DRM system or the implementation.290

(See footnote)
11

291

4.4 JobTemplatePlaceholder enumeration292

The JobTemplatePlaceholder enumeration defines constant macros to be used in string attributes of a293

JobTemplate instance (see Section 5.7).294

enum JobTemplatePlaceholder {295

HOME_DIRECTORY ,WORKING_DIRECTORY ,PARAMETRIC_INDEX };296

A HOME_DIRECTORY placeholder SHOULD be only allowed at the beginning of a JobTemplate attribute value.297

It denotes the remaining portion as a directory / file path resolved relative to the job users home directory298

on the execution host.299

A WORKING_DIRECTORY placeholder SHOULD be only allowed at the beginning of a JobTemplate attribute300

value. It denotes the remaining portion as a directory / file path resolved relative to the jobs working301

directory on the execution host.302

The PARAMETRIC_INDEX placeholder SHOULD be usable at any position within an attribute value that sup-303

ports place holders. It SHALL be substituted by the parametric job index when JobSession::runBulkJobs304

11 “Pipe size” was not added, since there is no use case in DRM systems with a job concept. “Max user processes” was
omitted because it operates on the notion of users, which is not an explicit concept in DRMAA.

The understanding of wall clock time and CPU time was decided in the Apr 6th and 13th 2011 and June 29th 2011 conf call.
Condor and Grid Engine also add SUSPEND time to wallclock time, but LSF does not.

drmaa-wg@ogf.org 13

mailto:drmaa-wg@ogf.org

GWD-R July 2011

is called (see Section 8.2.7). If the job template is used for a JobSession:runJob call, PARAMETRIC_INDEX305

SHOULD be substituted with a constant implementation-specific value.306

(See footnote)
12

307

4.5 DrmaaCapability308

The DrmaaCapability enumeration expresses DRMAA features and data attributes that may or may not309

be supported by a particular implementation. Applications are expected to check the availability of optional310

capabilities through the SessionManager::supports method (see Section 7.1.5).311

enum DrmaaCapability {312

ADVANCE_RESERVATION , RESERVE_SLOTS , CALLBACK , BULK_JOBS_MAXPARALLEL ,313

JT_EMAIL , JT_STAGING , JT_DEADLINE , JT_MAXSLOTS , JT_ACCOUNTINGID ,314

RT_STARTNOW , RT_DURATION , RT_MACHINEOS , RT_MACHINEARCH315

};316

ADVANCE RESERVATION: Indicates that the implementation supports advance reservation through317

the interfaces (ReservationSession and Reservation).318

RESERVE SLOTS: Indicates that the advance reservation functionality is targeting slots. If this capa-319

bility is not given, the advance reservation is targeting whole machines as granularity level.320

CALLBACK: Indicates that the implementation supports event notification through a DrmaaCallback321

interface in the application.322

BULK JOBS MAXPARALLEL: Indicates that the maxParallel parameter in the323

JobSession::runBulkJobs method is considered and supported by the implementation.324

JT EMAIL: Indicates that the optional email, emailOnStarted, and emailOnTerminated attributes in325

job templates are supported by the implementation.326

JT STAGING: Indicates that the optional JobTemplate::stageInFiles and327

JobTemplate::stageOutFiles attributes are supported by the implementation.328

JT DEADLINE: Indicates that the optional JobTemplate::deadlineTime attribute is supported by the329

implementation.330

JT MAXSLOTS: Indicates that the optional JobTemplate::maxSlots attribute is supported by the331

implementation.332

JT ACCOUNTINGID: Indicates that the optional JobTemplate::accountingId attribute is supported333

by the implementation.334

RT STARTNOW: Indicates that the ReservationTemplate::startTime attribute accepts the NOW value.335

RT DURATION: Indicates that the optional ReservationTemplate::duration attribute is supported336

by the implementation.337

RT MACHINEOS: Indicates that the optional ReservationTemplate::machineOS attribute is sup-338

ported by the implementation.339

12 Placeholders for other job template attributes were rejected, in order to avoid circular dependencies (Conf. call Oct 20th
2010). Any extended semantic of placeholders in comparison to DRMAA1 was rejected, since the support in the DRM system
didn’t change. (conf call Apr. 20th 2011)

drmaa-wg@ogf.org 14

mailto:drmaa-wg@ogf.org

GWD-R July 2011

RT MACHINEARCH: Indicates that the optional ReservationTemplate::machineArch attribute is340

supported by the implementation.341

5 Extensible Data Structures342

DRMAA defines a set of data structures commonly used in the API to express information for and from343

the DRM system. A DRMAA implementation MAY extend these structures with implementation-specific344

attributes. Behavioral aspects of such extended attributes are out of scope for DRMAA. Implementations345

MAY even ignore the attribute values in some situations.346

A language binding MUST define a consistent mechanism to realize implementation-specific structure ex-
tension, without breaking the portability of DRMAA-based applications that rely on the original version of
the structure. Object oriented languages MAY use inheritance mechanisms for this purpose. Instances of
extended structures SHALL still be treated in a “call-by-value” fashion.

Implementations SHALL only extend data structures in the way specified by the language binding. The347

introspection of supported implementation-specific attributes is offered by the DrmaaReflective interface348

(see Section 5.9). Implementations SHOULD also support native introspection functionalities if defined by349

the language binding.350

Language bindings MAY define how the native introspection capabilities of a language or it’s runtime envi-
ronment can be used. These mechanisms MUST work in parallel to the DrmaaReflective interface.

(See footnote)
13

351

5.1 QueueInfo structure352

DRMAA defines queues as opaque concept for an implementation, which allows different mappings to DRMS353

concepts (see Section 1.2). The DRMAA QueueInfo struct therefore contains only the name of the queue,354

but can be extended by the implementation as described above. All such structure instances are read-only.355

struct QueueInfo {356

string name;357

};358

5.1.1 name359

This attribute contains the name of the queue as reported by the DRM system. The format of the queue360

name is implementation-specific. The naming scheme SHOULD be consistent for all instances.361

13 Comparison to DRMAA 1.0: The binding of job template attribute names and exception names to strings was removed.
Language bindings have to define their own mapping, if needed.

One example for native language introspection support could be attributes.
There was a discussion to remove the attribute ignorance possibility for implementations, in order to have a defined error

when unknown attributes are used. This was rejected on the Apr. 13th conf call, since applications do not need the error as
indication for missing attribute support. Instead, they should use the given introspection capabilities.

drmaa-wg@ogf.org 15

mailto:drmaa-wg@ogf.org

GWD-R July 2011

5.2 Version structure362

The Version structure denotes versioning information for an operating system, DRM system, or DRMAA363

implementation.364

struct Version {365

string major;366

string minor;367

};368

Both the major and the minor part are expressed as strings, in order to allow extensions with character369

combinations such as “rev”. Original version strings containing a dot, e.g. Linux “2.6”, SHOULD be370

interpreted as having the major part before the dot, and the minor part after the dot. The dot character371

SHOULD NOT be added to the Version attributes.372

Implementations SHOULD NOT extend this structure with implementation-specific attributes.373

(See footnote)
14

374

5.3 MachineInfo structure375

The MachineInfo structure describes the properties of a particular execution host in the DRM system. It376

contains read-only information. An implementation or its DRM system MAY restrict jobs in their resource377

utilization even below the limits described in the MachineInfo structure. The limits given here MAY be378

imposed by the hardware configuration, or MAY be be imposed by DRM system policies.379

struct MachineInfo {380

string name;381

boolean available;382

long sockets;383

long coresPerSocket;384

long threadsPerCore;385

double load;386

long physMemory;387

long virtMemory;388

OperatingSystem machineOS;389

Version machineOSVersion;390

CpuArchitecture machineArch;391

};392

5.3.1 name393

This attribute describes the name of the machine as reported by the DRM system. The format of the394

machine name is implementation-specific, but MAY be a DNS host name. The naming scheme SHOULD be395

consistent among all machine struct instances.396

14 We could see no use case in doing implementation-specific extensions here, so this structure is not considered in DrmaaRe-
flective. Another reason is that versioning information may be used for control flow decisions. Therefore, it should be portable
in any case.

drmaa-wg@ogf.org 16

mailto:drmaa-wg@ogf.org

GWD-R July 2011

5.3.2 available397

This attribute expresses the usability of the machine for job execution at the time of querying. The value of398

this attribute SHALL NOT influence the validity of job templates referencing MachineInfo instances. DRM399

systems and their DRMAA implementation MAY allow to submit jobs intended for machines unavailable at400

this time.401

(See footnote)
15

402

5.3.3 sockets403

This attribute describes the number of processor sockets (CPUs) usable for jobs on the machine. The at-404

tribute value MUST be greater than 0. In the case where the correct value is unknown to the implementation,405

the value MUST be set to 1.406

5.3.4 coresPerSocket407

This attribute describes the number of cores per socket usable for jobs on the machine. The attribute value408

MUST be greater than 0. In case where the correct value is unknown to the implementation, the value409

MUST be set to 1.410

5.3.5 threadsPerCore411

This attribute describes the number of threads that can be executed in parallel by a job’s process on one core412

in the machine. The attribute value MUST be greater than 0. In case where the correct value is unknown413

to the implementation, the value MUST be set to 1.414

5.3.6 load415

This attributes describes the 1-minute average load on the given machine. Implementations MAY use the416

same mechanism as the Unix uptime command. The value has only informative character, and should not417

be utilized by end user applications for job scheduling purposes. An implementation MAY provide delayed418

or averaged data here, if necessary due to implementation issues. The implementation strategy on non-Unix419

systems is undefined.420

(See footnote)
16

421

5.3.7 physMemory422

This attribute describes the amount of physical memory in kilobyte installed in this machine.423

5.3.8 virtMemory424

This attribute describes the amount of virtual memory in kilobyte available for a job executing on this425

machine. The virtual memory SHOULD be defined as the sum of physical memory installed, plus the426

configured swap space for the operating system. The value is expected to be used as indicator whether or not427

an application is able to get its memory allocation needs fulfilled on a particular machine. Implementations428

15These jobs are expected to be queued until the machine becomes available again.
16In July 2011, there was a short debate on the list if this value should be normalized by the library to ¡0,1¿. It was rejected,

since DRMAA should just forward given information from the DRM / OS, for which the maximum value is typically not known.

drmaa-wg@ogf.org 17

mailto:drmaa-wg@ogf.org

GWD-R July 2011

SHOULD derive this value directly from operating system information, without further consideration of429

additional memory allocation restrictions, such as address space ranges or already running processes.430

5.3.9 machineOS431

This attribute describes the operating system installed on the machine, with values as specified in Section432

4.1.433

5.3.10 machineOSVersion434

This attribute describes the operating system version on the machine, with values as specified in Section 4.1.435

5.3.11 machineArch436

This attribute describes the instruction set architecture of the machine, with values as specified in Section437

4.2.438

5.4 SlotInfo structure439

DRMAA defines slots as opaque concept for an implementation, which allows different mappings to DRMS440

concepts (see Section 1.2). The DRMAA SlotInfo structure describes the amount of reserved slots on a441

machine. Implementations SHALL NOT extend this structure with implementation-specific attributes. All442

such structure instances are read-only.443

(See footnote)
17

444

struct SlotInfo {445

string machineName;446

string slots;447

};448

5.4.1 machineName449

The name of the machine. Strings returned here SHOULD be equal to the MachineInfo::name attribute in450

the matching MachineInfo instance.451

5.4.2 slots452

The number of slots reserved on the given machine. Depending on the intepretation of slots in the imple-453

mentation, this value MAY be always one.454

5.5 JobInfo structure455

The JobInfo structure provides detailed information about the characteristics of a (bulk) job.456

struct JobInfo {457

string jobId;458

long exitStatus;459

17 We could see no use case in realizing implementation-specific extensions here, so this structure is not considered in
DrmaaReflective.

drmaa-wg@ogf.org 18

mailto:drmaa-wg@ogf.org

GWD-R July 2011

string terminatingSignal;460

string annotation;461

JobState jobState;462

any jobSubState;463

OrderedSlotInfoList allocatedMachines;464

string submissionMachine;465

string jobOwner;466

long slots;467

string queueName;468

TimeAmount wallclockTime;469

long cpuTime;470

AbsoluteTime submissionTime;471

AbsoluteTime dispatchTime;472

AbsoluteTime finishTime;473

};474

It is used in two occasions - first for the representation of information about a single job, and second as filter475

expression when retrieving a list of jobs.476

In both usage scenarios, the structure information has to be understood as snapshot of the live DRM system.477

Multiple values being set in one structure instance should be interpreted as “occurring at the same time”.478

In real implementations, some granularity limits must be assumed - for example, the wallclockTime and479

the cpuTime attributes might hold values that were measured with a very small delay one after each other.480

In the filtering case, the value UNSET for an attribute MUST express wildcard semantics, meaning that this481

part of JobInfo is ignored for filtering.482

DRMAA makes no assumption on the JobInfo availability for jobs in a a “Terminated” state (see Section483

8.1). Implementations SHOULD allow to fetch information about such jobs, complete or incomplete, for484

a reasonable amount of time. For such terminated jobs, implementations MAY also decide to return only485

partially filled JobInfo instances.486

(See footnote)
18

487

For additional DRMS-specific information, the JobInfo structure MAY be extended by the DRMAA imple-488

mentation (see Section 5).489

(See footnote)
19

490

5.5.1 jobId491

For monitoring: Reports the stringified job identifier assigned to the job by the DRM system.492

18We want to tackle performance restrictions in the communication with the DRM system by this.
19 In comparison to DRMAA 1.0, the JobInfo value type was heavily extended for providing more information (solves issue

#2827). JobInfo::hasCoreDump is no longer supported, since the information is useless without according core file staging
support, which is not implementable in a portable way. (conf. call Jun 9th 2010) resourceUsage is no longer supported, since
this should be modelled with implementation-specific attributes (conf call Apr 13th 2011).

Some DRM systems (SGE / Condor at least) support the automated modification of job template attributes after submission,
and therefore allow to fetch the true job template attributes at run-time from the job. The monitoring for such data was
intentionally not included in DRMAA (mailing list July 2010).

A comment attribute was rejected (conf call May 11th).
Several conf. calls in 2011 ended up in the conclusion that data reaping cannot be clarified by DRMAA. There are too many

completely different use cases in local and distributed systems.

drmaa-wg@ogf.org 19

mailto:drmaa-wg@ogf.org

GWD-R July 2011

For filtering: Returns the job with the chosen job identifier.493

5.5.2 exitStatus494

For monitoring: The process exit status of the job, as reported by the operating system on the execution host.495

The value MAY be UNSET. If the job contains of multiple processes, the behavior is implementation-specific.496

For filtering: Return the jobs with the given exitStatus value.497

(See footnote)
20

498

(See footnote)
21

499

5.5.3 terminatingSignal500

For monitoring: This attribute describes the UNIX signal that reasoned the end of the job. Implementations501

should document the extent to which they can gather such information in the particular DRM system.502

For filtering: Returns the jobs with the given terminatingSignal value.503

5.5.4 annotation504

For monitoring: Gives a human-readable annotation describing why the job is in its current state or sub-state.505

Implementations MAY decide to offer such description only in specific cases, so it MAY also be UNSET.506

For filtering: This attribute is ignored for filtering.507

5.5.5 jobState508

For monitoring: This attribute reports the jobs current state according to the DRMAA job state model (see509

Section 8.1).510

For filtering: Returns all jobs in the specified state. If the given state is emulated by the implementation511

(see Section 8.1), the implementation SHOULD raise an InvalidArgumentException explaining that this512

filter can never match.513

5.5.6 jobSubState514

For monitoring: This attribute reports the current implementation-specific sub-state for this job (see Section515

8.1).516

For filtering: Returns all jobs in the specified sub-state. If the given sub-state is not supported by the517

implementation, it MAY raise an InvalidArgumentException explaining that this filter can never match.518

(See footnote)
22

519

20Jobs without exit status information should be filtered out by asking for the appropriate states.
21June 29th 2011 conf call decided to explicitely decline any relationship between job status and exit code, since there is no

common behavior in DRM systems. For this reason, exit status is allowed to be UNSET, without giving any further reasons.
It is, however, expected that many implementations will put this on UNSET in the non-terminal job states.

22As the jobSubState is an opaque object, any invalid usage may lead to a crash of the library. For this reason, the JUne 29th
2011 conf call decided to use only MAY here, in order to reflect the potentially missing reflection capabilities in the languages.

drmaa-wg@ogf.org 20

mailto:drmaa-wg@ogf.org

GWD-R July 2011

5.5.7 allocatedMachines520

This attribute expresses a set of machines that is utilized for job execution. Each SlotInfo instance in the521

attribute value describes the utilization of a particular execution host, and of a set of slots related to this522

host.523

Implementations MAY decide to give the ordering of machine names a particular meaning, for example524

putting the master node of a parallel job at first position. This decision should be documented for the user.525

For monitoring: The attribute lists the machines and the slot count per machine allocated for the job. The526

slot count value MAY be UNSET. The machine name value MUST be set.527

For filtering: Returns all jobs that fulfill the following condition: The job is executed on a superset of the528

given list of machines, and got at least the given number of slots on the particular machine. The slots value529

per machine MUST be allowed to have an UNSET value. In this case, only the machine condition SHALL be530

checked.531

5.5.8 submissionMachine532

This attribute provides the name of the submission host for this job. The machine name SHOULD be equal533

to the according MachineInfo::name attribute in monitoring data.534

For monitoring: This attribute reports the machine from which this job was submitted.535

For filtering: Returns the set of jobs that were submitted from the specified machine.536

5.5.9 jobOwner537

For monitoring: This attribute reports the job owner as recorded in the DRM system.538

For filtering: Returns all jobs owned by the specified user.539

5.5.10 slots540

For monitoring: This attribute reports the number slots that were allocated for the job. The value SHOULD541

be in between JobTemplate::minSlots and JobTemplate::maxSlots.542

For filtering: Return all jobs with the specified number of reserved slots.543

5.5.11 queueName544

For monitoring: This attribute reports the name of the queue in which the job was queued or started (see545

Section 1.2).546

For filtering: Returns all jobs that were queued or started in the queue with the specified name.547

5.5.12 wallclockTime548

For monitoring: The accumulated wall clock time, with the semantics as defined in Section 4.3.549

For filtering: Returns all jobs that have consumed at least the specified amount of wall clock time.550

drmaa-wg@ogf.org 21

mailto:drmaa-wg@ogf.org

GWD-R July 2011

5.5.13 cpuTime551

For monitoring: The accumulated CPU time, with the semantics as defined in Section 4.3.552

For filtering: Returns all jobs that have consumed at least the specified amount of CPU time.553

5.5.14 submissionTime554

For monitoring: This attribute reports the time at which the job was submitted. Implementations SHOULD555

use the submission time recorded by the DRM system, if available.556

For filtering: Returns all jobs that were submitted at or after the specified submission time.557

5.5.15 dispatchTime558

For monitoring: The time the job first entered a “Started” state (see Section 8.1). On job restart or re-559

scheduling, this value does not change.560

For filtering: Returns all jobs that entered a “Started” state at or after the specified dispatch time.561

5.5.16 finishTime562

For monitoring: The time the job first entered a “Terminated” state (see Section 8.1).563

For filtering: Returns all jobs that entered a “Terminated” state at or after the specified finish time.564

5.6 ReservationInfo structure565

The structure provides information about an existing advance reservation, as reported by the DRM system.566

struct ReservationInfo {567

string reservationId;568

string reservationName;569

AbsoluteTime reservedStartTime;570

AbsoluteTime reservedEndTime;571

StringList usersACL;572

long reservedSlots;573

OrderedSlotInfoList reservedMachines;574

};575

The structure is used for the expression of information about a single advance reservation. Information576

provided in this structure SHOULD NOT change over the reservation lifetime. However, implementations577

MAY reflect the altering of advance reservations outside of DRMAA sessions.578

For additional DRMS-specific information, the ReservationInfo structure MAY be extended by the imple-579

mentation (see Section 5).580

5.6.1 reservationId581

Returns the stringified identifier assigned to the advance reservation by the DRM system.582

drmaa-wg@ogf.org 22

mailto:drmaa-wg@ogf.org

GWD-R July 2011

5.6.2 reservationName583

This attribute describes the reservation name that was stored by the implementation or the DRM sys-584

tem for the reservation. It SHOULD be derived from the reservationName attribute in the originating585

ReservationTemplate.586

5.6.3 reservedStartTime587

This attribute describes the start time for the reservation. If the value is UNSET, it expresses an unrestricted588

start time (i.e., minus infinity) for this reservation.589

5.6.4 reservedEndTime590

This attribute describes the end time for the reservation. If the value is UNSET, the behavior is591

implementation-specific.592

(See footnote)
23

593

5.6.5 usersACL594

The list of the users that are permitted to submit jobs to the reservation. The formatting of user identi-595

ties is implementation-specific, but SHOULD be consistent with the user information representation in job596

templates and reservation templates.597

5.6.6 reservedSlots598

This attribute describes the number of slots reserved by the DRM system. The value SHOULD range in599

between ReservationTemplate::minSlots and ReservationTemplate::maxSlots.600

5.6.7 reservedMachines601

This attribute describes the set of machines that were reserved under the conditions described in the according602

reservation template. Each SlotInfo instance in this list describes the reservation of a particular machine603

and of a set of slots related to this machine. The sum of all slot counts in the sequence SHOULD be equal604

to ReservationInfo::reservedSlots.605

5.7 JobTemplate structure606

A DRMAA application uses the JobTemplate structure to define characteristics of a job submission. The607

template instance is passed to the DRMAA JobSession instance when job execution is requested.608

struct JobTemplate {609

string remoteCommand;610

OrderedStringList args;611

boolean submitAsHold;612

boolean rerunnable;613

Dictionary jobEnvironment;614

string workingDirectory;615

string jobCategory;616

23Mai 18th 2011 conf call rejected to treat UNSET as unrestricted end time (i.e. “plus infinity”) here.

drmaa-wg@ogf.org 23

mailto:drmaa-wg@ogf.org

GWD-R July 2011

StringList email;617

boolean emailOnStarted;618

boolean emailOnTerminated;619

string jobName;620

string inputPath;621

string outputPath;622

string errorPath;623

boolean joinFiles;624

string reservationId;625

string queueName;626

long minSlots;627

long maxSlots;628

long priority;629

OrderedStringList candidateMachines;630

long minPhysMemory;631

OperatingSystem machineOS;632

CpuArchitecture machineArch;633

AbsoluteTime startTime;634

AbsoluteTime deadlineTime;635

Dictionary stageInFiles;636

Dictionary stageOutFiles;637

Dictionary resourceLimits;638

string accountingId;639

};640

Implementations MUST set all attribute values to UNSET on struct allocation. This ensures that both the641

DRMAA application and the library implementation can determine untouched attribute members. If not642

described differently in the following sections, all attributes SHOULD be allowed to have the UNSET value643

on job submission.644

The initialization to UNSET SHOULD be realized without additional methods in the DRMAA interface, if
possible. The according approach MUST be specified by the language binding.

The DRMAA job template concept makes a distinction between mandatory and optional attributes. Manda-645

tory attributes MUST be supported by the implementation in the sense that they are evaluated on job646

submission. Optional attributes MAY be evaluated on job submission, but MUST be provided as part of the647

JobTemplate structure in the implementation. If an unsupported optional attribute has a value different to648

UNSET, the job submission MUST fail with a UnsupportedAttributeException. DRMAA applications are649

expected to check for the availability of optional attributes before using them (see Section 4.5).650

An implementation MUST support JobTemplatePlaceholder placeholders at the occasions defined in this651

specification. They MAY also allow their usage in other attributes.652

A language binding specification SHOULD define how a JobTemplate instance is convertible to a string
for printing, through whatever mechanism is most natural for the implementation language. The resulting
string MUST contain the values of all set properties.

drmaa-wg@ogf.org 24

mailto:drmaa-wg@ogf.org

GWD-R July 2011

(See footnote)
24

653

5.7.1 remoteCommand654

This attribute describes the command to be executed on the remote host. In case this parameter contains655

path information, it MUST be interpreted as relative to the execution host file system. The implementation656

SHOULD NOT use the value of this attribute to trigger file staging activities. Instead, the file staging should657

be performed by the application explicitly.658

The behavior of the implementation with an UNSET value in this attribute is undefined.659

The support for this attribute is mandatory.660

5.7.2 args661

This attribute contains the list of command-line arguments for the job(s) to be executed.662

The support for this attribute is mandatory.663

5.7.3 submitAsHold664

This attribute defines if the job(s) should have QUEUED or QUEUED_HELD (see Section 8.1) as initial state after665

submission. Since the boolean UNSET value defaults to False, jobs are submitted as non-held if this attribute666

is not set.667

The support for this attribute is mandatory.668

5.7.4 rerunnable669

This flag indicates if the submitted job(s) can safely be restarted by the DRM system, for example on670

node failure or some other re-scheduling event. Since the boolean UNSET value defaults to False, jobs are671

submitted as not rerunnable if this attribute is not set. This attribute SHOULD NOT be used to let the672

application denote the checkpointability of a job.673

The support for this attribute is mandatory.674

(See footnote)
25

675

24 Comparison to DRMAA 1.0: JobTemplate is now a value type, meaning that it maps to a struct in C. This removes the
need for DRMAA-defined methods for construction and destruction of job templates. An eventual RPC scenario for DRMAA
gets easier with this approach, since it is closer to the JSDL concept of a job description document.

Supported string placeholders for job template attributes are now listed in the JobTemplatePlaceholder enumeration, and
must be filled with values by the language binding. Invalid job template settings are now only detected on job submission, not
when the attribute is set.

DRMAA1 supported the utilization of new DRM features through an old DRMAA implementation, based on the
nativeSpecification field. A conf call (Jul 14th 2010) voted for dropping this intentionally. Implementations should use
according implementation-specific attributes for this.

GridEngine does not support to request a number of slots per machine - of course in a default installation, since you can do
everything in GridEngine ... This is the reason for not having such an attribute.

25 The differentiation between rerunnable and checkpointable was decided on a conf call (Aug 25th 2010). Checkpointability
indication was intentionally left out, since there is no common understanding in the DRM systems (conf call Apr. 27th, 2011).

drmaa-wg@ogf.org 25

mailto:drmaa-wg@ogf.org

GWD-R July 2011

5.7.5 jobEnvironment676

This attribute holds the environment variable settings to be configured on the execution machine(s). The677

values SHOULD override the execution host environment settings.678

The support for this attribute is mandatory.679

5.7.6 workingDirectory680

This attribute specifies the directory where the job or the bulk jobs are executed. If the attribute681

value is UNSET, the behavior is undefined. If set, the attribute value MUST be evaluated relative to682

the file system on the execution host. The attribute value MUST be allowed to contain either the683

JobTemplatePlaceholder::HOME_DIRECTORY or the JobTemplatePlaceholder::PARAMETRIC_INDEX place-684

holder (see Section 4.4).685

The workingDirectory attribute should be specified by the application in a syntax that is common at the686

host where the job is executed. Implementations MAY perform according validity checks on job submission.687

If the attribute is set and no placeholder is used, an absolute directory specification is expected. If the688

attribute is set and the job was submitted successfully and the directory does not exist on the execution689

host, the job MUST enter the state JobState::FAILED.690

The support for this attribute is mandatory.691

5.7.7 jobCategory692

This attribute defines the job category to be used (see Section 1.4). A valid input SHOULD be one of693

the strings in JobSession::jobCategories (see Section 8.2.3), otherwise an InvalidArgumentException694

SHOULD be raised.695

The support for this attribute is mandatory.696

5.7.8 email697

This attribute defines a list of email addresses that SHOULD be used when the DRM system sends status698

notifications. Content and formatting of the emails are defined by the implementation or the DRM system.699

If the attribute value is UNSET, no emails SHOULD be sent to the user running the job(s), even if the DRM700

system default behavior is different.701

The support for this attribute is optional, expressed by the DrmaaCapability::JT_EMAIL flag. If an imple-702

mentation cannot configure the email notification functionality of the DRM system, or if the DRM system703

has no such functionality, the attribute SHOULD NOT be supported in the implementation.704

(See footnote)
26

705

5.7.9 emailOnStarted / emailOnTerminated706

The emailOnStarted flag indicates if the given email address(es) SHOULD get a notification when the job707

(or any of the bulk jobs) entered one of the “Started” states. emailOnTerminated fulfills the same purpose708

for the ”Terminated” states. Since the boolean UNSET value defaults to False, the notification about state709

changes SHOULD NOT be sent if the attribute is not set.710

26 The blockEmail attribute in the JobTemplate was replaced by the UNSET semantic for the email addresses. (conf. call
July 28th 2010). This became an optional attribute, since we mandate the ’switch off’ semantic in case of UNSET.

drmaa-wg@ogf.org 26

mailto:drmaa-wg@ogf.org

GWD-R July 2011

The support for these attributes is optional, expressed by the DrmaaCapability::JT_EMAIL flag.711

5.7.10 jobName712

The job name attribute allows the specification of an additional non-unique string identifier for the job(s).713

The implementation MAY truncate any client-provided job name to an implementation-defined length.714

The support for this attribute is mandatory.715

5.7.11 inputPath / outputPath / errorPath716

This attribute specifies standard input / output / error stream of the job as file path. If the attribute value717

is UNSET, the behavior is undefined. If set, the attribute value MUST be evaluated relative to the file system718

of the execution host. Implementations MAY perform validity checks for the path syntax on job submission.719

The attribute value MUST be allowed to contain any of the JobTemplatePlaceholder placeholders (see720

Section 4.4). If the attribute is set and no placeholder is used, an absolute file path specification is expected.721

If the outputPath or errorPath file does not exist at the time of job execution start, the file SHALL722

automatically be created. An existing outputPath or errorPath file SHALL be opened in append mode.723

If the attribute is set and the job was submitted successfully and the file cannot be created / read / written724

on the execution host, the job MUST enter the state JobState::FAILED.725

The support for this attribute is mandatory.726

5.7.12 joinFiles727

Specifies whether the error stream should be intermixed with the output stream. Since the boolean UNSET728

value defaults to False, intermixing SHALL NOT happen if the attribute is not set.729

If this attribute is set to True, the implementation SHALL ignore the value of the errorPath attribute and730

intermix the standard error stream with the standard output stream as specified by the outputPath.731

The support for this attribute is mandatory.732

5.7.13 reservationId733

Specifies the identifier of the existing advance reservation to be associated with the job(s). The application is734

expected to generate this ID by creating an advance reservation through the ReservationSession interface.735

The resulting reservationId (see Section 9.2.1) then acts as valid input for this job template attribute.736

Implementations MAY support a reservation identifier from non-DRMAA information sources as valid in-737

put. The behavior on conflicting settings between the job template and the granted advance reservation is738

undefined.739

The support for this attribute is mandatory.740

5.7.14 queueName741

This attribute specifies the name of the queue the job(s) should be submitted to. In case this attribute value742

is UNSET, the implementation SHOULD use the DRM systems default queue. If no default queue is defined743

or if the given queue name is not valid, the job submission MUST lead to an InvalidArgumentException.744

drmaa-wg@ogf.org 27

mailto:drmaa-wg@ogf.org

GWD-R July 2011

The MonitoringSession::getAllQueues method (see Section 10.1) supports the determination of valid745

queue names. Implementations SHOULD allow at least these queue names to be used in the queueName746

attribute. Implementations MAY also support queue names from non-DRMAA information sources as valid747

input.748

If MonitoringSession::getAllQueues returns an empty list, this attribute MUST be only allowed to have749

the value UNSET.750

Since the meaning of “queues” is implementation-specific, there is no DRMAA-defined effect when using751

this attribute. Implementations therefore should document the effects of this attribute in their targeted752

environment.753

The support for this attribute is mandatory.754

(See footnote)
27

755

5.7.15 minSlots756

This attribute expresses the minimum number of slots requested per job (see also Section 1.2). If the value757

of minSlots is UNSET, it SHOULD default to 1.758

Implementations MAY interpret the slot count as number of concurrent processes being allowed to run.759

If this interpretation is taken, and minSlots is greater than 1, than the jobCategory SHOULD also be760

demanded on job submission, in order to express the nature of the intended parallel job execution.761

The support for this attribute is mandatory.762

(See footnote)
28

763

5.7.16 maxSlots764

This attribute expresses the maximum number of slots requested per job (see also Section 1.2). If the value765

of maxSlots is UNSET, it SHOULD default to the value of minSlots.766

Implementations MAY interpret the slot count as number of concurrent processes being allowed to run.767

If this interpretation is taken, and maxSlots is greater than 1, than the jobCategory SHOULD also be768

demanded on job submission, in order to express the nature of the intended parallel job execution.769

The support for this attribute is optional, as indicated by the DrmaaCapability::JT_MAXSLOTS flag.770

(See footnote)
29 .771

5.7.17 priority772

This attribute specifies the scheduling priority for the job. The interpretation of the given value is773

implementation-specific.774

The support for this attribute is mandatory.775

27As one example, requesting a number of slots for a job in one queue has no implication on the number of utilized machines
at run-time.

28The hint regarding number of concurrent processes intentionally does not speak about processes per host - this would create
semantics for our opaque slot concept.

29Torque does not support maxSlots on job submission, conf call on May 11th decided to keep it as optional feature. Expected
use cases are billing limitations and parallel job scalability considerations

drmaa-wg@ogf.org 28

mailto:drmaa-wg@ogf.org

GWD-R July 2011

5.7.18 candidateMachines776

Requests that the job(s) should run on this set or any subset (with minimum size of 1) of the given machines.777

If the attribute value is UNSET, it should default to the result of the MonitoringSession::getAllMachines778

method. If the resource demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised779

on job submission time. If the problem can only be detected after job submission, the job should enter780

JobState::FAILED.781

The support for this attribute is mandatory.782

5.7.19 minPhysMemory783

This attribute denotes the minimum amount of physical memory in kilobyte that should be available for the784

job. If the job gets more than one slot, the interpretation of this value is implementation-specific. If this785

resource demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised at job submission786

time. If the problem can only be detected after job submission, the job SHOULD enter JobState::FAILED787

accordingly.788

The support for this attribute is mandatory.789

5.7.20 machineOS790

This attribute denotes the expected operating system type on the / all execution host(s). If this resource de-791

mand cannot be fulfilled, an InvalidArgumentException SHOULD be raised on job submission time. If the792

problem can only be detected after job submission, the job SHOULD enter JobState::FAILED accordingly.793

The support for this attribute is mandatory.794

(See footnote)
30

795

5.7.21 machineArch796

This attribute denotes the expected machine architecture on the / all execution host(s). If this resource797

demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised on job submission time. If798

the problem can only be detected after job submission, the job should enter JobState::FAILED.799

The support for this attribute is mandatory.800

5.7.22 startTime801

This attribute specifies the earliest time when the job may be eligible to be run.802

The support for this attribute is mandatory.803

5.7.23 deadlineTime804

Specifies a deadline after which the implementation or the DRM system SHOULD change the job state to805

any of the “Terminated” states (see Section 8.1).806

The support for this attribute is optional, as expressed by the DrmaaCapability::JT_DEADLINE.807

30 Requesting a specific operating system version beyond the type is not supported by the majority of DRM systems (conf
call Jul 28th 2010)

drmaa-wg@ogf.org 29

mailto:drmaa-wg@ogf.org

GWD-R July 2011

5.7.24 stageInFiles / stageOutFiles808

This attribute specifies what files should be transferred (staged) as part of the job execution. The data809

staging operation MUST be a copy operation between the submission host and a execution host. File810

transfers between execution hosts are not covered by DRMAA.811

The attribute value is formulated as dictionary. For each key-value pair in the dictionary, the key defines812

the source path of one file or directory, and the value defines the destination path of one file or directory813

for the copy operation. For stageInFiles, the submission host acts as source, and the execution host814

act as destination. For stageOutFiles, the execution host acts as source, and the submission host act as815

destination.816

All values MUST be evaluated relative to the file system on the host in a syntax that is common at that817

host. Implementations MAY perform according validity checks on job submission. Paths on the execution818

host MUST be allowed to contain any of the JobTemplatePlaceholder placeholders. Paths on the submis-819

sion host MUST be allowed to contain the JobTemplatePlaceholder::PARAMETRIC_INDEX placeholder (see820

Section 4.4). If no placeholder is used, an absolute path specification on the particular host SHOULD be821

assumed by the implementation.822

Relative path specifications for the submission host should be interpreted starting from the current working823

directory of the DRMAA application at the time of job submission. The behavior for relative path specifica-824

tions on the execution is implementation-specific. Implementations MAY use JobTemplate::workingDirectory,825

if defined, as starting point on the execution host.826

Jobs SHOULD NOT enter JobState::DONE unless all staging operations are finished. The behavior in827

case of missing files is implementation-specific. The support for wildcard operators in path specifications is828

implementation-specific. Any kind of recursive or non-recursive copying behavior is implementation-specific.829

If the job category (see Section 1.4) implies a parallel job (e.g., MPI), the copy operation SHOULD target830

the execution host of the parallel job master as destination. A job category MAY also trigger file distribution831

to other hosts participating in the job execution.832

The support for this attribute is optional, expressed by the DrmaaCapability::JT_STAGING flag.833

(See footnote)
31

834

5.7.25 resourceLimits835

This attribute specifies the limits on resource utilization of the job(s) on the execution host(s). The valid836

dictionary keys and their value semantics are defined in Section 4.3.837

The following resource restrictions should operate as soft limit, meaning that exceeding the limit SHOULD838

NOT influence the job state from a DRMAA perspective:839

• CORE_FILE_SIZE840

• DATA_SEG_SIZE841

• FILE_SIZE842

31 Comparison to DRMAA 1.0: New job template attributes for file transfers were introduced. They allow to express a set
of file staging activities, similar to the approach in LSF and SAGA. They replace the old transferFiles attribute, the according
FileTransferMode data structure and the special host definition syntax in inputPath / outputPath / errorPath (different conf.
calls, SAGA F2F meeting, solves issue #5876)

drmaa-wg@ogf.org 30

mailto:drmaa-wg@ogf.org

GWD-R July 2011

• OPEN_FILES843

• STACK_SIZE844

• VIRTUAL_MEMORY845

The following resource restrictions should operate as hard limit, meaning that exceeding the limit MAY846

terminate the job. The termination MAY be performed by the DRM system. It MAY also be done by the847

job itself if it reacts on a signal from the DRM system or the execution host operating system:848

• CPU_TIME849

• WALLCLOCK_TIME850

The support for this attribute is mandatory. If only a subset of the attributes from ResourceLimitType851

is supported by the implementation, and some of the unsupported attributes are used, the job submission852

SHOULD raise an InvalidArgumentException expressing the fact that resource limits are supported in853

general.854

Conflicts of these attribute values with any other job template attribute or with referenced advance reser-855

vations are handled in an implementation-specific manner. Implementations SHOULD try to delegate the856

decision about parameter combination validity to the DRM system, in order to ensure similar semantics in857

different DRMAA implementations for this system.858

(See footnote)
32

859

5.7.26 accountingId860

This attribute denotes a string that can be used by the DRM system for job accounting purposes. Implemen-861

tations SHOULD NOT utilize this information as authentication token, but only as untested identification862

information in addition to the implementation-specific authentication (see Section 12).863

The support for this attribute is optional, as described by the DrmaaCapability::JT_ACCOUNTINGID flag.864

5.8 ReservationTemplate structure865

In order to define the characteristics of a reported advance reservation, the DRMAA application creates an866

ReservationTemplate instance and submits it through the ReservationSession methods.867

struct ReservationTemplate {868

string reservationName;869

AbsoluteTime startTime;870

AbsoluteTime endTime;871

TimeAmount duration;872

long minSlots;873

32 In comparison to DRMAA 1.0, resource usage limitations can now be expressed by two dictionaries and an according
standardized set of valid dictionary keys (LimitType). The idea is to allow a direct mapping to ulimit(3) semantics, which are
supported by the majority of DRM system today. A separate run duration limit is no longer needed, since this is covered by
the new CPU TIME limit parameter. (conf. call Jun 9th 2010).

This distinguishing between different reactions on limit violation was restricted to the job entering, or not entering, the
FAILED state. All further effects (e.g., no more open() calls possible) are out of scope for DRMAA, since they relate to
operating system behavior on execution host (conf call May 4th 2011).

The attribute is mandatory, since the missing general support for resource limits can be simply expressed by raising Invali-
dArgumentException for all types.

drmaa-wg@ogf.org 31

mailto:drmaa-wg@ogf.org

GWD-R July 2011

long maxSlots;874

string jobCategory;875

StringList usersACL;876

OrderedStringList candidateMachines;877

long minPhysMemory;878

OperatingSystem machineOS;879

CpuArchitecture machineArch;880

};881

Similar to the JobTemplate concept (see Section 5.7), there is a distinction between mandatory and optional882

attributes in the ReservationTemplate. Mandatory attributes MUST be supported by the implementation883

in the sense that they are evaluated in a ReservationSession::requestReservation method call. Optional884

attributes MAY NOT be evaluated by the particular implementation, but MUST be provided as part of the885

ReservationTemplate structure in the implementation. If an optional attribute is not evaluated, but has a886

value different to UNSET, the method call to ReservationSession::requestReservation MUST fail with887

an UnsupportedAttributeException.888

Implementations MUST set all attribute values to UNSET on struct allocation. This ensures that both the889

DRMAA application and the library implementation can determine untouched attribute members.890

A language binding specification SHOULD model the ReservationTemplate representation the same way as
the JobTemplate interface, and therefore MUST specify the realization of implementation-specific attributes,
printing, and the initialization to UNSET.

5.8.1 reservationName891

A human-readable reservation name. The implementation MAY truncate or alter any application-provided892

name in order to adjust it to DRMS-specific constraints. The name of the reservation SHALL be automati-893

cally defined by the implementation if this attribute is UNSET.894

The support for this attribute is mandatory.895

5.8.2 startTime / endTime / duration896

The time frame in which resources should be reserved. Table 4 explains the different possible parameter897

combinations and their semantic.898

The support for startTime and endTime is mandatory. The support for duration is optional, as described899

by the DrmaaCapability::RT_DURATION flag. Implementations that do not support the described ”sliding900

window” approach for the SET / SET / SET case SHOULD express this by NOT supporting the duration901

attribute.902

Implementations MAY support startTime to have the constant value NOW (see Section 3), which expresses903

that the reservation should start at the time of reservation template approval in the DRM system. The904

support for this feature is declared by the DrmaaCapability::RT_STARTNOW flag.905

5.8.3 minSlots906

This attribute expresses the minimum number of slots requested per job (see also Section 1.2). If the value907

of minSlots is UNSET, it SHOULD default to 1.908

drmaa-wg@ogf.org 32

mailto:drmaa-wg@ogf.org

GWD-R July 2011

startTime endTime duration Description
UNSET UNSET UNSET Invalid, SHALL leave to an InvalidArgumentException.

Set UNSET UNSET Invalid, SHALL leave to an InvalidArgumentException.
UNSET Set UNSET Invalid, SHALL leave to an InvalidArgumentException.

Set Set UNSET Attempt to reserve resources in the specified time frame.
UNSET UNSET Set Attempt to reserve resources at least for the time amount given in

duration.
Set UNSET Set Implies endTime = startTime + duration

UNSET Set Set Implies startTime = endTime - duration

Set Set Set If endTime - startTime is larger than duration, perform a reser-
vation attempt where the demanded duration is fulfilled at the
earliest point in time after startTime, and without extending
endTime (”sliding window” approach). If endTime - startTime

is smaller than duration, the reservation attempt SHALL leave
to an InvalidArgumentException. If endTime - startTime and
duration are equal, duration SHALL be ignored.

Table 4: Parameter combinations for the advance reservation time frame. If duration is not supported, it
should be treated as UNSET.

Implementations MAY interpret the slot count as number of concurrent processes being allowed to run.909

If this interpretation is taken, and minSlots is greater than 1, than the jobCategory SHOULD also be910

demanded on job submission, in order to express the nature of the intended parallel job execution.911

The support for this attribute is mandatory.912

(See footnote)
33

913

5.8.4 maxSlots914

This attribute expresses the maximum number of slots requested per job (see also Section 1.2). If the value915

of maxSlots is UNSET, it SHOULD default to the value of minSlots.916

Implementations MAY interpret the slot count as number of concurrent processes being allowed to run. If917

this interpretation is taken, and maxSlots is greater than 1, than the jobCategory MAY also be demanded918

on job submission, in order to express the nature of the intended parallel job execution.919

The support for this attribute is mandatory.920

(See footnote)
34

921

33The hint regarding number of concurrent processes intentionally does not speak about processes per host - this would create
semantics for our opaque slot concept.

34Conf call June 29th 2011: For maxSlots ¿ 1, the demand for a job category is intentionally only MAY. This is reasoned by
the fact that in most DRM systems, advance reservation is a concept that is independent to the jobs that are later used in this
reservation. So you are just requesting just some container, and you do not have to specify at this moment what kind of jobs
do you want to run using this reservation (e.g. OpenMP, OpenMPI, MPICH). However, some systems need that information,
so we leave it to the implementation how to deal with that.

drmaa-wg@ogf.org 33

mailto:drmaa-wg@ogf.org

GWD-R July 2011

5.8.5 jobCategory922

This attribute defines the job category to be used (see Section 1.4). A valid input SHOULD be one of923

the strings in JobSession::jobCategories (see Section 8.2.3), otherwise an InvalidArgumentException924

SHOULD be raised.925

The support for this attribute is mandatory.926

5.8.6 usersACL927

The list of the users that would be permitted to submit jobs to the created reservation. If the attribute value928

is UNSET, it should default to the user running the application.929

The support for this attribute is mandatory.930

5.8.7 candidateMachines931

Requests that the reservation SHALL be created for the given set of machines. Implementations and their932

DRM system MAY decide to reserve only a subset of the given machines. If this attribute is not specified,933

it should default to the result of MonitoringSession::getAllMachines (see Section 10.1).934

The support for this attribute is mandatory.935

(See footnote)
35

936

5.8.8 minPhysMemory937

Requests that the reservation SHALL be created with machines that have at least the given amount of938

physical memory in kilobyte. Implementations MAY interpret this attribute value as filter for candidate939

machines, or as memory reservation demand on a shared execution resource.940

The support for this attribute is mandatory.941

(See footnote)
36

942

5.8.9 machineOS943

Requests that the reservation must be created with machines that have the given type of operating system,944

regardless of its version, with semantics as specified in Section 4.1.945

The support for this attribute is optional, the availability is indicated by the946

DrmaaCapability::RT_MACHINEOS flag.947

(See footnote)
37

948

35May 18th 2011 conf call identified the subset reservation feature to be only available in some of the systems, so it is no
promise here.

36May 18th 2011 conf call identified the different understandings of memory reservation.
37May 18th 2011 conf call identified support in DRM systems to be mainly given by additional configuration only.

drmaa-wg@ogf.org 34

mailto:drmaa-wg@ogf.org

GWD-R July 2011

5.8.10 machineArch949

Requests that the reservation must be created for machines that have the given instruction set architecture,950

with semantics as specified in Section 4.2.951

The support for this attribute is optional, the availability is indicated by the952

DrmaaCapability::RT_MACHINEARCH flag.953

(See footnote)
38

954

5.9 DrmaaReflective Interface955

The DrmaaReflective interface allows an application to determine the set of supported implementation-956

specific attributes. It also standardizes the read / write access to such attributes when their existence is957

determined at run-time by the application.958

For the second class of non-mandatory attributes, the optional ones, applications are expected to use the959

DRMAA capabiliy feature (see Section 4.5).960

interface DrmaaReflective {961

readonly attribute StringList jobTemplateImplSpec;962

readonly attribute StringList jobInfoImplSpec;963

readonly attribute StringList reservationTemplateImplSpec;964

readonly attribute StringList reservationInfoImplSpec;965

readonly attribute StringList queueInfoImplSpec;966

readonly attribute StringList machineInfoImplSpec;967

readonly attribute StringList notificationImplSpec;968

969

string getInstanceValue(in any instance , in string name);970

void setInstanceValue(in any instance , in string name , in string value);971

string describeAttribute(in any instance , in string name);972

};973

5.9.1 jobTemplateImplSpec974

This attribute provides the list of supported implementation-specific JobTemplate attributes.975

5.9.2 jobInfoImplSpec976

This attribute provides the list of supported implementation-specific JobInfo attributes.977

5.9.3 reservationTemplateImplSpec978

This attribute provides the list of supported implementation-specific ReservationTemplate attributes.979

5.9.4 reservationInfoImplSpec980

This attribute provides the list of supported implementation-specific ReservationInfo attributes.981

38May 18th 2011 conf call identified support in DRM systems to be mainly given by additional configuration only.

drmaa-wg@ogf.org 35

mailto:drmaa-wg@ogf.org

GWD-R July 2011

5.9.5 queueInfoImplSpec982

This attribute provides the list of supported implementation-specific QueueInfo attributes.983

5.9.6 machineInfoImplSpec984

This attribute provides the list of supported implementation-specific MachineInfo attributes.985

5.9.7 notificationImplSpec986

This attribute provides the list of supported implementation-specific DrmaaNotification attributes.987

5.9.8 getInstanceValue988

This method allows to retrieve the attribute value for name from the structure instance referenced in the989

instance parameter. The return value is the stringified current attribute value.990

5.9.9 setInstanceValue991

This method allows to set the attribute name to value in the structure instance referenced in the instance992

parameter. In case the conversion from string input into the native attribute type leads to an error,993

InvalidArgumentException SHALL be thrown.994

5.9.10 describeAttribute995

This method returns a human-readable description of an attributes purpose, for the attribute referenced by996

name and instance. The content and language of the result value is implementation-specific.997

6 Common Exceptions998

The exception model specifies error information that MAY be returned by a DRMAA implementation on999

method calls. Implementations MAY also wrap DRMS-specific error conditions in DRMAA exceptions.1000

exception DeniedByDrmsException {string message ;};1001

exception DrmCommunicationException {string message ;};1002

exception TryLaterException {string message ;};1003

exception SessionManagementException {string message ;};1004

exception TimeoutException {string message ;};1005

exception InternalException {string message ;};1006

exception InvalidArgumentException {string message ;};1007

exception InvalidSessionException {string message ;};1008

exception InvalidStateException {string message ;};1009

exception OutOfResourceException {string message ;};1010

exception UnsupportedAttributeException {string message ;};1011

exception UnsupportedOperationException {string message ;};1012

The exceptions have the following general meaning, if not specified otherwise in a method description:1013

DeniedByDrmsException: The DRM system rejected the operation due to security issues.1014

drmaa-wg@ogf.org 36

mailto:drmaa-wg@ogf.org

GWD-R July 2011

DrmCommunicationException: The DRMAA implementation could not contact the DRM system. The1015

problem source is unknown to the implementation, so it is unknown if the problem is transient or not.1016

TryLaterException: The DRMAA implementation detected a transient problem while performing the1017

operation, for example due to excessive load. The application is recommended to retry the operation.1018

TimeoutException: The timeout given in one the waiting functions was reached without successfully1019

finishing the waiting attempt.1020

InternalException: An unexpected or internal error occurred in the DRMAA library, for example a system1021

call failure. It is unknown if the problem is transient or not.1022

InvalidArgumentException: From the viewpoint of the DRMAA library, an input parameter for the1023

particular method call is invalid or inappropriate. If the parameter is a structure, the exception1024

description SHOULD contain the name(s) of the problematic structure attribute(s).1025

InvalidSessionException: The session used for the method call is not valid, for example since the session1026

was closed before.1027

InvalidStateException: The operation is not allowed in the current state of the job.1028

OutOfResourceException: The implementation has run out of operating system resources, such as1029

buffers, main memory, or disk space.1030

UnsupportedAttributeException: The optional attribute is not supported by this DRMAA implemen-1031

tation.1032

UnsupportedOperationException: The method is not supported by this DRMAA implementation.1033

The DRMAA specification assumes that programming languages targeted by language bindings typically
support the concept of exceptions. If a destination language does not support them (like ANSI C), the
language binding specification SHOULD map error reporting to an appropriate alternative concept.

A language binding MAY chose to model exceptions as numeric error codes. In this case, the language
binding specification SHOULD specify numeric values for all DRMAA error constants.

The representation of exceptions in the language binding MUST support a possibility to express an additional
error cause as textual description. This is intended as specialization of the general error information.

Object-oriented language bindings MAY decide to derive all exception classes from one or multiple base
classes, in order to support generic catch clauses.

Language bindings MAY decide to introduce a hierarchical ordering of DRMAA exceptions based on class
derivation. In this case, any new exceptions added for aggregation purposes SHOULD be prevented from
being thrown, for example by marking them as abstract.

Language bindings SHOULD replace a DRMAA exception by some semantically equivalent native exception
from the application runtime environment, if available.

The UnsupportedAttributeException may either be raised by a setter function for an attribute, or by the
job submission function. This depends on the language binding design. A consistent decision for either one
or the other approach MUST be declared by the language binding specification.

drmaa-wg@ogf.org 37

mailto:drmaa-wg@ogf.org

GWD-R July 2011

(See footnote)
39

1034

7 The DRMAA Session Concept1035

DRMAA relies on a session concept for most parts of the API, in order to support the persistency of job1036

and advance reservation information in multiple runs of short-lived applications. Typical examples are job1037

submission portals or command-line tools. The session concept also allows implementations to perform DRM1038

system attach / detach action at dedicated points in the application control flow.1039

7.1 SessionManager Interface1040

interface SessionManager{1041

readonly attribute string drmsName;1042

readonly attribute Version drmsVersion;1043

readonly attribute string drmaaName;1044

readonly attribute Version drmaaVersion;1045

boolean supports(in DrmaaCapability capability);1046

JobSession createJobSession(in string sessionName ,1047

in string contact);1048

ReservationSession createReservationSession(in string sessionName ,1049

in string contact);1050

JobSession openJobSession(in string sessionName);1051

ReservationSession openReservationSession(in string sessionName);1052

MonitoringSession openMonitoringSession (in string contact);1053

void closeJobSession(in JobSession s);1054

void closeReservationSession(in ReservationSession s);1055

void closeMonitoringSession(in MonitoringSession s);1056

void destroyJobSession(in string sessionName);1057

void destroyReservationSession(in string sessionName);1058

StringList getJobSessionNames ();1059

StringList getReservationSessionNames ();1060

void registerEventNotification(in DrmaaCallback callback);1061

};1062

The SessionManager interface is the main interface of a DRMAA implementation for establishing commu-1063

nication with the DRM system. By the help of this interface, sessions for job management, monitoring,1064

and/or reservation management can be maintained.1065

Job and reservation sessions maintain persistent state information (about jobs and reservations created)1066

between application runs. State data SHOULD be persisted in the DRMS itself. If this is not supported,1067

the DRMAA implementation MUST realize the persistency. The data SHOULD be saved when the session1068

is closed by the according method in the SessionManager interface.1069

The state information SHOULD be kept until the job or reservation session is explicitly reaped by the1070

according destroy method in the SessionManager interface. If an implementation runs out of resources1071

39 Comparison to DRMAA 1.0: The InconsistentStateException was removed, since it is semantically equal to the In-
validStateException (conf. call Jan 7th 2010) The former HoldInconsistentStateException, ReleaseInconsistentStateException,
ResumeInconsistentStateException, and SuspendInconsistentStateException from DRMAA v1.0 are now expressed as single
InvalidStateException with different meaning per raising method. (F2F meeting July 2009)

drmaa-wg@ogf.org 38

mailto:drmaa-wg@ogf.org

GWD-R July 2011

for storing session information, the closing function SHOULD throw an OutOfResourceException. If an1072

application ends without closing the session properly, the behavior is unspecified.1073

The contact parameter in some of the interface methods SHALL allow the application to specify which1074

DRM system instance to use. A contact string represents a specific installation of a specific DRM system,1075

e.g., a Condor central manager machine at a given IP address, or a Grid Engine ‘root’ and ‘cell’. Contact1076

strings are always implementation-specific and therefore opaque to the application. If contact has the value1077

UNSET, a default DRM system SHOULD be contacted. The manual configuration or automated detection of1078

a default contact string is implementation-specific.1079

The re-opening of a session MUST work on the machine where the session was originally created. Imple-1080

mentations MAY also offer to re-open the session on another machine, if the state information is accessible.1081

An implementation MUST allow the application to have multiple open sessions of the same or different type1082

at the same time. This includes the proper coordination of parallel calls to session methods that share state1083

information.1084

A SessionManager instance SHALL be available as singleton at DRMAA application start. Language
bindings MAY realize this by mapping the session manager methods to global functions.

(See footnote)
40

1085

7.1.1 drmsName1086

A read-only system identifier denoting the DRM system targeted by the implementation, e.g., “LSF” or1087

“GridWay”. Implementations SHOULD NOT make versioning information of the particular DRM system a1088

part of this attribute value.1089

The value is only intended as informative output for application users.1090

7.1.2 drmsVersion1091

This attribute provides the DRM-system specific version information.1092

The value is only intended as informative output for application users.1093

7.1.3 drmaaName1094

This attribute contains a string identifying the vendor of the DRMAA implementation.1095

The value is only intended as informative output for application users.1096

40 Comparison to DRMAA 1.0: The concept of a factory from GFD.130 was removed (solves issue #6276). Version 2.0 of
DRMAA supports restartable sessions by the newly introduced SessionManager interface. It allows creating multiple concurrent
sessions for job submission (solves issue #2821), which can be restarted by their generated session name (solves issue #2820).
Session.init() and Session.exit() functionalities are moved to the according session creation and closing routines. The descriptions
were fixed accordingly (solves issue #2822). The AlreadyActiveSession error was removed. (F2F meeting July 2009) The
drmaaImplementation attribute from DRMAA 1.0 was removed, since it was redundant to the drmsInfo attribute. This one is
now available in the new SessionManager interface. (F2F meeting July 2009).

drmaa-wg@ogf.org 39

mailto:drmaa-wg@ogf.org

GWD-R July 2011

7.1.4 drmaaVersion1097

This attribute provides the minor / major version number information for the DRMAA implementation.1098

The major version number MUST be the constant value “2”, the minor version number SHOULD be used1099

by the DRMAA implementation for expressing its own versioning information.1100

7.1.5 supports1101

This method allows to test if the DRMAA implementation supports a feature specified as optional. The1102

allowed input values are specified in the DrmaaCapability enumeration (see Section 4.5). This method1103

SHOULD throw no exceptions.1104

7.1.6 createJobSession / createReservationSession1105

The method creates a new job / reservation session instance. On successful completion of this method, the1106

necessary initialization for making the session usable MUST be completed. Examples are the connection1107

establishment from the DRMAA library to the DRM system, or the prefetching of information from non-1108

thread-safe operating system calls.1109

The sessionName parameter denotes a unique name to be used for the new session. If a session with such a1110

name already exists, the method MUST throw an InvalidArgumentException. In all other cases, including1111

if the provided name has the value UNSET, a new session MUST be created with a unique name generated1112

by the implementation.1113

If the DRM system does not support advance reservation, than createReservationSession SHALL throw1114

an UnsupportedOperationException.1115

7.1.7 openJobSession / openReservationSession1116

The method is used to open a persisted JobSession or ReservationSession instance that has previously1117

been created under the given sessionName. The implementation MUST support the case that the session1118

have been created by the same application or by a different application running on the same machine. The1119

implementation MAY support the case that the session was created or updated on a different machine. If1120

no session with the given sessionName exists, an InvalidArgumentException MUST be raised.1121

If the session referenced by sessionName is already opened, implementations MAY return this job or reser-1122

vation session instance.1123

If the DRM system does not support advance reservation, openReservationSession SHALL throw an1124

UnsupportedOperationException.1125

7.1.8 openMonitoringSession1126

The method opens a stateless MonitoringSession instance for fetching information about the DRM system.1127

On successful completion of this method, the necessary initialization for making the session usable MUST1128

be completed. One example is the connection establishment from the DRMAA library to the DRM system.1129

7.1.9 closeJobSession / closeReservationSession / closeMonitoringSession1130

The method MUST perform the necessary action to disengage from the DRM system. It SHOULD be callable1131

only once, by only one of the application threads. This SHOULD be ensured by the library implementation.1132

drmaa-wg@ogf.org 40

mailto:drmaa-wg@ogf.org

GWD-R July 2011

Additional calls beyond the first one SHOULD lead to a InvalidSessionException error notification.1133

For JobSession or ReservationSession instances, the according state information MUST be saved to some1134

stable storage before the method returns. This method SHALL NOT affect any jobs or reservations in the1135

session (e.g., queued and running jobs remain queued and running).1136

If the DRM system does not support advance reservation, closeReservationSession SHALL throw an1137

UnsupportedOperationException.1138

A language binding MAY define implicit calls to closeJobSession, closeReservationSession, or
closeMonitoringSession, for example when session objects are destroyed. It MAY also add a close

method to JobSession, ReservationSession, or MonitoringSession with the same functionality as de-
scribed here. However, the SessionManager still MUST contain all methods as described in this specfication.

(See footnote)
41

1139

7.1.10 destroyJobSession / destroyReservationSession1140

The method MUST do whatever work is required to reap persistent or cached state information for the1141

given session name. It is intended to be used when no session instance with this particular name is open.1142

If session instances for the given name exist, they MUST become invalid after this method was finished1143

successfully. Invalid sessions MUST throw InvalidSessionException on every attempt of utilization. This1144

method SHALL NOT affect any jobs or reservations in the session, e.g., queued and running jobs remain1145

queued and running.1146

If the DRM system does not support advance reservation, destroyReservationSession SHALL throw an1147

UnsupportedOperationException.1148

7.1.11 getJobSessionNames1149

This method returns a list of JobSession names that are valid input for the openJobSession method.1150

(See footnote)
42

1151

7.1.12 getReservationSessionNames1152

This method returns a list of ReservationSession names that are valid input for the1153

openReservationSession method.1154

If the DRM system does not support advance reservation, the method SHALL always throw an1155

UnsupportedOperationException.1156

(See footnote)
43

1157

7.1.13 registerEventNotification1158

This method is used to register a DrmaaCallback interface (see Section 8.3) offered by the DRMAA-based1159

application, which can be called by the implementation. If the callback functionality is not supported by the1160

41Conf call June 29th 2011: The closing of stateless monitoring sessions was intentionally kept, in order to allow an orderly
shut down of the monitoring connection.

42June 29th 2011 conf call decided to make the method names explicit enough to see the return type.
43June 29th 2011 conf call decided to make the method names explicit enough to see the return type.

drmaa-wg@ogf.org 41

mailto:drmaa-wg@ogf.org

GWD-R July 2011

DRMAA implementation, this method SHALL raise an UnsupportedOperationException. Implementation1161

can check for the support through the DrmaaCapability::CALLBACK flag (see Section 4.5). Implementations1162

with callback support SHOULD allow to perform multiple registration calls that just update the callback1163

target.1164

If the argument of the method call is UNSET, the currently registered callback MUST be unregistered. After1165

such a method call returned, no more events SHALL be delivered to the application. If no callback target is1166

registered, such a method call SHOULD return immediately without an error.1167

A language binding specification MUST define how the reference to an interface-compliant method can be
given as argument to this method. It MUST also clarify how to pass an UNSET callback method reference.

8 Working with Jobs1168

A DRMAA job represents a single computational activity that is executed by the DRM system. There1169

are three relevant method sets for working with jobs: The JobSession interface represents all control and1170

monitoring functions available for jobs. The Job interface represents the common control functionality for1171

one existing job. Sets of jobs resulting from a bulk submission are controllable as a whole by the JobArray1172

interface.1173

8.1 The DRMAA State Model1174

DRMAA defines the following states for jobs:1175

enum JobState {1176

UNDETERMINED , QUEUED , QUEUED_HELD , RUNNING , SUSPENDED , REQUEUED ,1177

REQUEUED_HELD , DONE , FAILED };1178

UNDETERMINED: The job status cannot be determined. This is a permanent issue, not being solvable1179

by asking again for the job state.1180

QUEUED: The job is queued for being scheduled and executed.1181

QUEUED HELD: The job has been placed on hold by the system, the administrator, or the submitting1182

user.1183

RUNNING: The job is running on an execution host.1184

SUSPENDED: The job has been suspended by the user, the system or the administrator.1185

REQUEUED: The job was re-queued by the DRM system, and is eligible to run.1186

REQUEUED HELD: The job was re-queued by the DRM system, and is currently placed on hold by the1187

system, the administrator, or the submitting user.1188

DONE: The job finished without an error.1189

FAILED: The job exited abnormally before finishing.1190

If a DRMAA job state has no representation in the underlying DRMS, the DRMAA implementation MAY1191

never report that job state value. However, all DRMAA implementations MUST provide the JobState1192

drmaa-wg@ogf.org 42

mailto:drmaa-wg@ogf.org

GWD-R July 2011

enumeration as given here. An implementation SHOULD NOT return any job state value other than those1193

defined in the JobState enumeration.1194

The status values relate to the DRMAA job state transition model, as shown in Figure 1.1195

TerminatedStartedQueued

QUEUED

QUEUED_HELD

RUNNING

SUSPENDED

DONE

FAILED

UNDETERMINED

REQUEUED

REQUEUED_HELD

runJob()
runBulkJobs()

Figure 1: DRMAA Job State Transition Model

The transition diagram in Figure 1 expresses the classification of possible job states into “Queued”, “Started”,1196

and “Terminated”. The “Terminated” class of states is final, meaning that no further state transition is1197

allowed.1198

Implementations SHALL NOT introduce other job transitions (e.g., from RUNNING to QUEUED) beside the ones1199

stated in Figure 1, even if they might happen in the underlying DRM system. In this case, implementations1200

MAY emulate the necessary intermediate steps for the DRMAA-based application.1201

When an application requests job state information, the implementation SHOULD also provide the1202

jobSubState value (see Section 5.5.6) to explain DRM-specific details about the job state. The value1203

of this attribute is implementation-specific, but should be documented properly. Examples are extra states1204

for staging phases or details on the hold reason. Implementations SHOULD define a DRMS-specific data1205

structure for the sub-state information that can be converted to / from the data type defined by the language1206

binding.1207

The IDL definition declares the jobSubState attribute as type any, expressing the fact that the language

drmaa-wg@ogf.org 43

mailto:drmaa-wg@ogf.org

GWD-R July 2011

binding MUST map the data type to a generic language type (e.g., void*, Object) that keeps source code
portability across DRMAA implementations, and accepts an UNSET value.

The DRMAA job state model can be mapped to other high-level API state models. Table 5 gives a non-1208

normative set of examples.1209

DRMAA JobState SAGA JobState [4] OGSA-BES Job State [3]
UNDETERMINED N/A N/A
QUEUED Running Pending (Queued)
QUEUED HELD Running Pending (Queued)
RUNNING Running Running (Executing)
SUSPENDED Suspended Running (Suspended)
REQUEUED Running Running (Queued)
REQUEUED HELD Running Running (Queued)
DONE Done Finished
FAILED Cancelled, Failed Cancelled, Failed

Table 5: Example Mapping of DRMAA Job States

(See footnote)
44

1210

8.2 JobSession Interface1211

A job session instance acts as container for job instances controlled through the DRMAA API. The session1212

methods support the submission of new jobs and the monitoring of existing jobs. The relationship between1213

jobs and their session MUST be persisted, as described in Section 7.1.1214

interface JobSession {1215

readonly attribute string contact;1216

readonly attribute string sessionName;1217

readonly attribute StringList jobCategories;1218

JobList getJobs(in JobInfo filter);1219

JobArray getJobArray(in string jobArrayId);1220

Job runJob(in JobTemplate jobTemplate);1221

JobArray runBulkJobs(1222

in JobTemplate jobTemplate ,1223

44 Comparison to DRMAA 1.0:
The differentiation between the system hold, user hold, and system / user hold job states was removed (conf. call Jan

20th 2009). There is only one hold state now. A job can now change its state from one of the SUSPENDED states to the
QUEUED ACTIVE state (conf. call Jan 20th 2009, solves issue #2788). The job state UNDETERMINED is now clearer
defined. It expressed a permanent issue, meaning that the job state will not change by just waiting. Temporary problems in
the detection of the job state are now expressed by the TryLaterException (conf. call Feb 5th 2009, solves issue #2783). The
description of the FAILED state was extended to support a more specific differentiation between different job failure reasons.
The new subState feature allows the DRMAA implementation to provide better information, if available. There was no portable
way of standardizing extended failure information in a better way. (conf. call May 12th 2009, solves issue #5875) The different
suspend job states from DRMAA1 (user suspended, system suspended, user / system suspended) are now combined into one
suspend state. DRM systems with the need to express the different suspend reasons can use the new sub-state feature (conf.
call Mar 5th 2010).

REQUEUED and REQUEUED HELD maps to RUNNING in BES, since BES does not allow a transition between Running
and Pending (mailing list, APr. 2011)

drmaa-wg@ogf.org 44

mailto:drmaa-wg@ogf.org

GWD-R July 2011

in long beginIndex ,1224

in long endIndex ,1225

in long step ,1226

in long maxParallel);1227

Job waitAnyStarted(in JobList jobs , in TimeAmount timeout);1228

Job waitAnyTerminated(in JobList jobs , in TimeAmount timeout);1229

};1230

(See footnote)
45

1231

8.2.1 contact1232

This attribute reports the contact value that was used in the SessionManager::createJobSession call1233

for this instance (see Section 7.1). If no value was originally provided, the default contact string from the1234

implementation MUST be returned. This attribute is read-only.1235

8.2.2 sessionName1236

This attribute reports the session name, a value that resulted from the SessionManager::createJobSession1237

or SessionManager::openJobSession call for this instance (see Section 7.1). This attribute is read-only.1238

8.2.3 jobCategories1239

This method provides the list of valid job category names which can be used for the jobCategory attribute1240

in a JobTemplate instance. Further details about job categories are described in Section 1.4.1241

8.2.4 getJobs1242

This method returns the set of jobs that belong to the job session. The filter parameter allows to choose1243

a subset of the session jobs as return value. The semantics of the filter argument are explained in Section1244

5.5. If no job matches or the session has no jobs attached, the method MUST return an empty set. If filter1245

is UNSET, all session jobs MUST be returned.1246

Time-dependent effects of this method, such as jobs no longer matching to filter criteria on evaluation time,1247

are implementation-specific. The purpose of the filter parameter is to keep scalability with a large number1248

of jobs per session. Applications therefore must consider the possibly changed state of jobs during their1249

evaluation of the method result.1250

45 Comparison to DRMAA 1.0: The original separation between synchronize() and wait() was replaced by a complete new
synchronization semantic in the API. DRMAA2 has now two methods, waitStarted() and waitTerminated(). The first waits
for any state that expresses that the job was started, the second for any terminal status. Both methods are available on
session level (wait for any of the given jobs to start / end) or on single job level (solves issue #5880 and #2838). The function
returns always a Job object, in order to allow chaining, e.g. job.wait(JobStatus.RUNNING).hold(). The session-level functions
implement the old DRMAA wait(SESSION ANY). The old synchronize() semantics are no longer directly supported - instead,
the DRMAA application should use a looped Job.wait... / JobSession.waitAny... call. The result is a more condensed and
responsive API, were the application can decide to keep the user informed during synchronization on a set of jobs. DRMAA
library implementations should also become easier to design, since the danger of multithreading side effects inside the DRMAA
API is reduced by this change. As a side effect, JOB IDS SESSION ANY and JOB IDS SESSION ALL are no longer needed.
The special consideration of a partial failures during SESSION ALL wait activities is also no longer necessary (F2F meeting
July 2009). The JobSession now allows to fetch also information about jobs that were not submitted through DRMAA (conf.
call June 23th 2010).

drmaa-wg@ogf.org 45

mailto:drmaa-wg@ogf.org

GWD-R July 2011

(See footnote)
46

1251

8.2.5 getJobArray1252

This method returns the JobArray instance with the given ID. If the session does not / no longer contain1253

the according job array, InvalidArgumentException SHALL be thrown.1254

(See footnote)
47

1255

8.2.6 runJob1256

The runJob method submits a job with the attributes defined in the given job template instance. The1257

method returns a Job object that represents the job in the underlying DRM system. Depending on the job1258

template settings, submission attempts may be rejected with an InvalidArgumentException. The error1259

details SHOULD provide further information about the attribute(s) responsible for the rejection.1260

When this method returns a valid Job instance, the following conditions SHOULD be fulfilled:1261

• The job is part of the persistent state of the job session.1262

• All non-DRMAA and DRMAA interfaces to the DRM system report the job as being submitted to1263

the DRM system.1264

• The job has one of the DRMAA job states.1265

8.2.7 runBulkJobs1266

The runBulkJobs method creates a set of parametric jobs, each with attributes as defined in the given job1267

template instance. Each job in the set has the same attributes, except for the job template attributes that1268

include the JobTemplatePlaceholder::PARAMETRIC_INDEX macro (see Section 4.4).1269

If any of the resulting parametric job templates is not accepted by the DRM system, the method call MUST1270

raise an InvalidArgumentException. No job from the set SHOULD be submitted in this case.1271

The first job in the set has an index equal to the beginIndex parameter of the method call. The smallest1272

valid value for beginIndex is 1. The next job has an index equal to beginIndex + step, and so on. The last1273

job has an index equal to beginIndex + n * step, where n is equal to(endIndex - beginIndex) / step.1274

The index of the last job may not be equal to endIndex if the difference between beginIndex and endIndex1275

is not evenly divisible by step. The beginIndex value must be less than or equal to endIndex, and only1276

positive index numbers are allowed, otherwise the method SHOULD raise an InvalidArgumentException.1277

Jobs can determine their index number at run time by the mechanism described in Section 8.6.1278

The maxParallel parameter allows to specify how many of the bulk job’s instances are allowed to run in1279

parallel on the utilized resources. Implementations MAY consider this value if the DRM system supports such1280

functionality, otherwise the parameter MUST be silently ignored. If given, the support MUST be expressed1281

by the DrmaaCapability::BULK_JOBS_MAXPARALLEL capability flag (see Section 4.5). If the parameter value1282

is UNSET, no limit SHOULD be applied.1283

46We are aware of the fact that the automated reaping of terminated jobs in some DRM systems might change this methods
result. However, there was no way to demand some standardized behavior for that.

47 June 2011 conf. call decided to not support JobArray filtering in the session at this point. The face-to-face meeting in
June 2011 identified that DRM systems typically do not support the identification of bulk jobs in the system, so it would be
hard to implement the according reporting function.

drmaa-wg@ogf.org 46

mailto:drmaa-wg@ogf.org

GWD-R July 2011

The runBulkJobs method returns a JobArray (see Section 8.5) instance that represents the set of Job1284

objects created by the method call under a common array identity. For each of the jobs in the array, the1285

same conditions as for the result of runJob SHOULD apply.1286

The largest (syntactically) allowed value for endIndex MUST be defined by the language binding.

Further restrictions on the maximum endIndex MAY be implied by the implementation.1287

(See footnote)
48

1288

8.2.8 waitAnyStarted / waitAnyTerminated1289

The waitAnyStarted method blocks until any of the jobs referenced in the jobs parameter entered one of1290

the “Started” states. The waitAnyTerminated method blocks until any of the jobs referenced in the jobs1291

parameter entered one of the “Terminated” states (see Section 8.1). If the input list contains jobs that are1292

not part of the session, the method SHALL fail with an InvalidArgumentException.1293

The timeout argument specifies the desired waiting time for the state change. The constant value1294

INFINITE_TIME MUST be supported to get an indefinite waiting time. The constant value ZERO_TIME1295

MUST be supported to express that the method call SHALL return immediately. A number of seconds1296

can be specified to indicate the maximum waiting time . If the method call returns because of timeout, an1297

TimeoutException SHALL be raised.1298

An application waiting for some condition to happen in all jobs of a set is expected to perform looped calls1299

of these waiting functions.1300

(See footnote)
49

1301

8.3 DrmaaCallback Interface1302

The DrmaaCallback interface allows the DRMAA library or the DRM system to inform the application1303

about relevant events in an asynchronous fashion. One expected use case is continuous monitoring of job1304

state transitions. The implementation MAY decide to not deliver all events occurring in the DRM system.1305

The support for such callback functionality is optional, indicated by the DrmaaCallback::CALLBACK flag.1306

Also, all implementations MUST define the DrmaaCallback interface type as given in the language binding,1307

regardless of the support for these functions.1308

interface DrmaaCallback {1309

void notify(in DrmaaNotification notification);1310

};1311

48 There was a discussion (mailing list Jan 2011) about having specialized job templates for bulk submission, with support
for the start / end index and a slots limit. We rejected that, since job templates are intended for re-usage.

The May 4th 2011 conf call identified Grid Engine, Torque and LSF as the only systems having support for maxParallel. The
feature was determined as critical enough for still adding it, therefore the ignorance rule and the MAY semantics are applied.

49 People typically ask for the waitAll..() counterparts of these functions. Since they are so easy to implement in the
application itself, we could not see any benefit in adding them. Due to their intended long-blocking operation, the DRM system
would no be able to offer any better (meaning much faster) implementation to be wrapped by DRMAA.

A section on synchronization of multi-threaded parallel wait calls was removed. This would complicate DRMAA implementa-
tions, since synchronization does not map to the obvious state polling approach. An optimization like this would be classically
a task of application-oriented APIs - so, Andre has to solve it.

drmaa-wg@ogf.org 47

mailto:drmaa-wg@ogf.org

GWD-R July 2011

struct DrmaaNotification {1312

DrmaaEvent event;1313

string jobId;1314

string sessionName;1315

JobState jobState;1316

};1317

enum DrmaaEvent {1318

NEW_STATE , MIGRATED , ATTRIBUTE_CHANGE1319

};1320

The application implements a DrmaaCallback interface as pre-condition for using this functionality. This1321

interface is registered through the SessionManager::registerEventNotification method (see Section1322

7.1). On notification, the implementation or the DRM system pass a DrmaaNotification instance to the1323

application. Implementations MAY extend this structure for further information (see Section 5). All given1324

information SHOULD be valid at least at the time of notification generation.1325

The DrmaaNotification::jobState attribute expresses the state of the job at the time of notification1326

generation.1327

The DrmaaEvent enumeration defines standard event types for notification:1328

NEW STATE The job entered a new state, which is described in the jobState attribute.1329

MIGRATED The job was migrated to another execution host, and is now in the state described by1330

jobState.1331

ATTRIBUTE CHANGE A monitoring attribute of the job, such as the memory consumption, changed1332

to a new value. The jobState attribute MAY have the value UNSET on this event.1333

DRMAA implementations SHOULD protect themselves from unexpected behavior of the called application.1334

This includes indefinite delays or unexpected exceptions from the callee on notification processing. The1335

implementation SHOULD prevent a nested callback at the time of occurrence, and MAY decide to deliver1336

the according events at a later point in time.1337

Scalability issues of the notification facility are out of scope for this specification. Implementations MAY1338

support non-standardized throttling configuration options.1339

(See footnote)
50

1340

8.4 Job Interface1341

Every job in the JobSession is represented by an own instance of the Job interface. It allows one to instruct1342

the DRM system for a job status change, and to query the properties of the job in the DRM system.1343

Implementations MAY provide Job objects for jobs created outside of a DRMAA session.1344

interface Job {1345

readonly attribute string jobId;1346

50 We intentionally did not add subState to the notification information, since this would make callback interface implemen-
tations specific for the DRM system, without any chance for creating a portable DRMAA application.

The DrmaaNotification structure intentionally avoids to reference a Job object - instead, all relevant lookup information
(session name + job ID) is provided. This demands only non-interface data types to be understandable in the callback target.
Also, it hopefully helps to support scalability of high-frequent event callbacks.

drmaa-wg@ogf.org 48

mailto:drmaa-wg@ogf.org

GWD-R July 2011

readonly attribute string sessionName;1347

readonly attribute JobTemplate jobTemplate;1348

void suspend ();1349

void resume ();1350

void hold ();1351

void release ();1352

void terminate ();1353

JobState getState(out any jobSubState);1354

JobInfo getInfo ();1355

Job waitStarted(in TimeAmount timeout);1356

Job waitTerminated(in TimeAmount timeout);1357

};1358

(See footnote)
51

1359

8.4.1 jobId1360

This attribute reports the stringified job identifier assigned by the DRM system. This method is expected1361

to be used as fast alternative to the fetching of a complete JobInfo instance.1362

8.4.2 sessionName1363

This attribute reports the name of the JobSession that was used to create the job. If the session name1364

cannot be determined, for example since the job was created outside of a DRMAA session, the attribute1365

SHOULD be UNSET.1366

(See footnote)
52

1367

8.4.3 jobTemplate1368

This attribute provides a reference to a JobTemplate instance that has equal values to the one that was1369

used for the job submission creating this Job instance.1370

For jobs created outside of a DRMAA session, implementations MUST also return a JobTemplate instance1371

here, which MAY be empty or only partially filled.1372

51 In comparison to DRMAA v1.0, DRMAA2 replaces the identification of jobs by strings with Job objects. This enables a
tighter integration of job meta-data and identity, for the price of reduced performance in (so far not existing) DRMAA RPC
scenarios. The former DRMAA control() with the JobControlAction structure is now split up into dedicated functions (such
as hold() and release()) on the Job object.

Even though the DRMAAv2 surveys showed interest in interactive job support, this feature was intentionally left out. Reasons
are the missing support in some major DRM systems, and the lack of a relevant DRMAA-related use case (conf. call Jan 7th
2010)

Issue #5877 (support for direct job signaling) was rejected, even though there was an according request from the SAGA WG.
Issue #2782 (change attributes of submitted, but pending jobs) was rejected based on group decision.

52June 29th 2011 conf call decided to return session names instead of session objects. This keeps the consistent approach that
instantiated session objects represent a live ’connection’ to the DRMS. Connecting to the referenced session is then a separate
explicit step in the application. It also supports better that people create instances from jobs created outside of a DRMAA
session.

drmaa-wg@ogf.org 49

mailto:drmaa-wg@ogf.org

GWD-R July 2011

8.4.4 suspend / resume / hold / release / terminate1373

The job control functions allow modifying the status of the single job in the DRM system, according to the1374

state model presented in Section 8.1.1375

The suspend method triggers a transition from RUNNING to SUSPENDED state.1376

The resume method triggers a transition from SUSPENDED to RUNNING state.1377

The hold method triggers a transition from QUEUED to QUEUED_HELD, or from REQUEUED to REQUEUED_HELD1378

state.1379

The release method triggers a transition from QUEUED_HELD to QUEUED, or from REQUEUED_HELD to REQUEUED1380

state.1381

The terminate method triggers a transition from any of the “Started” states to one of the “Terminated”1382

states.1383

If the job is in an inappropriate state for the particular method call, it MUST raise an1384

InvalidStateException.1385

The methods SHOULD return after the action has been acknowledged by the DRM system, but MAY1386

return before the action has been completed. Some DRMAA implementations MAY allow these methods to1387

be used to control jobs submitted externally to the DRMAA session. Examples are jobs submitted by other1388

DRMAA sessions, in other DRMAA implementations, or jobs submitted via native utilities. This behavior1389

is implementation-specific.1390

8.4.5 getState1391

This method allows the application to get the current status of the job according to the DRMAA state1392

model, together with an implementation specific sub state (see Section 8.1). It is intended as fast alternative1393

to the fetching of a complete JobInfo instance. The timing conditions are described in Section 5.5.1394

(See footnote)
53

1395

8.4.6 getInfo1396

This method returns a JobInfo instance for the particular job, under the conditions described in Section1397

5.5.1398

8.4.7 waitStarted / waitTerminated1399

The waitStarted method blocks until the job entered one of the “Started” states. The waitTerminated1400

method blocks until the job entered one of the “Terminated” states (see Section 8.1). All other behavior1401

MUST work as described in Section 8.2.8.1402

8.5 JobArray Interface1403

An instance of the JobInfo interface represents a set of jobs created by one operation. In DRMAA, JobArray1404

instances are only created by the runBulkJobs method (see Section 8.2). JobArray instances differ from the1405

53 The getState() function now also returns job subState information. This is intended as additional information for the given
DRMAA job state, and can be used for expressing the hold state differentiation from DRMAA 1.0 (conf. call Mar 31st 2009).

drmaa-wg@ogf.org 50

mailto:drmaa-wg@ogf.org

GWD-R July 2011

JobList data structure due to their potential for representing a DRM system concept, while JobList is a1406

DRMAA-only concept realized by language binding support.1407

Implementations SHOULD realize the JobArray functionality as wrapper for DRM system job arrays, if1408

available. If the DRM system has only single job support or incomplete job array support with respect to1409

the DRMAA-provided functionality, implementations MUST offer the JobArray functionality on their own,1410

for example based on looped activities with a list of jobs.1411

interface JobArray {1412

readonly attribute string jobArrayId;1413

readonly attribute JobList jobs;1414

readonly attribute string sessionName;1415

readonly attribute JobTemplate jobTemplate;1416

void suspend ();1417

void resume ();1418

void hold ();1419

void release ();1420

void terminate ();1421

};1422

(See footnote)
54

1423

8.5.1 jobArrayId1424

This attribute reports the stringified job identifier assigned to the job array by the DRM system. If the1425

DRM system has no job array support, the implementation MUST generate a system-wide unique identifier1426

for the result of the runBulkJobs method.1427

8.5.2 jobs1428

This attribute provides the list of jobs that are part of the job array, regardless of their state.1429

(See footnote)
55

1430

8.5.3 sessionName1431

This attribute states the name of the JobSession that was used to create the bulk job represented by this1432

instance. If the session name cannot be determined, for example since the bulk job was created outside of a1433

DRMAA session, the attribute SHOULD have an UNSET value.1434

(See footnote)
56

1435

54 We are aware of the fact that some systems (e.g., LSF at the time of writing) do not support all DRMAA control methods
offered for job arrays. Since we intended to avoid optional DRMAA methods wherever we could, the text here mandates the
implementation to simulate the array support on its own. For example, looping over all jobs in the array and calling “suspend”
for each one is trivial to implement and fulfills the same purpose.

55 We were asked for offering a filter support similar to JobSession here. This was rejected by discussion on the list (Jan
2011), since the number of jobs returned here is normally comparatively short. In this case, the DRM system cannot provide
any benefit over the looped check in the application itself.

The dissappearance of terminated jobs is intentionally not specified (see discussion above for getJobs).
56June 29th 2011 conf call decided to return session names instead of session objects. This keeps the consistent approach that

instantiated session objects represent a live ’connection’ to the DRMS. Connecting to the referenced session is then a separate
explicit step in the application. It also supports better that people create instances from bulk jobs created outside of a DRMAA
session.

drmaa-wg@ogf.org 51

mailto:drmaa-wg@ogf.org

GWD-R July 2011

8.5.4 jobTemplate1436

This attribute provides a reference to a JobTemplate instance that has equal values to the one that was1437

used for the job submission creating this JobArray instance.1438

(See footnote)
57

1439

8.5.5 suspend / resume / hold / release / terminate1440

The job control functions allow modifying the status of the job array in the DRM system, with the same1441

semantic as in the Job interface (see Section 8.4.4). If one of the jobs in the array is in an inappropriate1442

state for the particular method, the method MAY raise an InvalidStateException.1443

The methods SHOULD return after the action has been acknowledged by the DRM system for all jobs1444

in the array, but MAY return before the action has been completed for all of the jobs. Some DRMAA1445

implementations MAY allow this method to be used to control job arrays created externally to the DRMAA1446

session. This behavior is implementation-specific.1447

(See footnote)
58

1448

8.6 The DRMAA INDEX VAR environment variable1449

DRMAA implementations SHOULD implicitly set an environment variable with the name DRMAA_INDEX_VAR1450

for each job submitted to the DRM system.1451

An expected implementation strategy would be the transparent addition of an environment variable spec-1452

ification in the job submission. Such a definition SHOULD NOT be visible for the application as part of1453

the job template. If the application defines its own DRMAA_INDEX_VAR environment variable, it SHOULD1454

override the implementation-defined value.1455

The environment variable MUST contain the name of the DRM system environment variable that holds1456

the parametric job index. Examples are TASK_ID in GridEngine, PBS_ARRAYID in Torque, or LSB_JOBINDEX1457

in LSF. By doing an indirect fetching of the environment variable value, jobs are enabled to get their own1458

parametric index regardless of the DRM system type. For DRM systems that do not provide such an1459

environment variable, DRMAA_INDEX_VAR SHOULD not be set.1460

9 Working with Advance Reservation1461

Advance reservation is a DRM system concept that allows the reservation of execution resources for jobs to1462

be submitted in the future. DRMAA encapsulates such functionality of a DRM system with the interfaces1463

and data structures described in this chapter.1464

DRMAA implementations for a DRM system that does not support advance reservation MUST still imple-1465

ment the described interfaces, in order to keep source code portability for DRMAA-based applications. All1466

methods related to advance reservation MUST raise an UnsupportedOperationExeption in this case. Sup-1467

port for advance reservation is expressed by the DrmaaCapability::ADVANCE_RESERVATION flag (see Section1468

4.5).1469

57 The use case from SAGA perspective is that the user can easily resubmit the same job - just changing for example some
command line parameter, but leaving the remainder fixed (mail by Andre Merzky, July 29th 2010).

58We were asked to make explicit that some of these functions may not be atomic. However, this holds for most methods,
and is not supported to be a part of the API standard.

drmaa-wg@ogf.org 52

mailto:drmaa-wg@ogf.org

GWD-R July 2011

9.1 ReservationSession Interface1470

Every ReservationSession instance acts as container for advance reservations in the DRM system. Every1471

Reservation instance SHALL belong only to one ReservationSession instance.1472

interface ReservationSession {1473

readonly attribute string contact;1474

readonly attribute string sessionName;1475

Reservation getReservation(in string reservationId);1476

Reservation requestReservation(in ReservationTemplate reservationTemplate);1477

ReservationList getReservations ();1478

};1479

9.1.1 contact1480

This attribute reports the contact value that was used in the createReservationSession call for this1481

instance (see Section 7.1). If no value was originally provided, the default contact string from the implemen-1482

tation MUST be returned. This attribute is read-only.1483

9.1.2 sessionName1484

This attribute reports the name of the session that was used for creating or opening this Reservation1485

instance (see Section 7.1). This attribute is read-only.1486

9.1.3 getReservation1487

This method returns the Reservation instance that has the given reservationId. Implementations MAY1488

support the access to reservations created outside of a DRMAA session scope, under the same regulari-1489

ties as for the MonitoringSession::getAllReservations method (see Section 10.1.1). If no reservation1490

matches, the method SHALL raise an InvalidArgumentException. Time-dependent effects of this method1491

are implementation-specific.1492

9.1.4 requestReservation1493

The requestReservation method SHALL request an advance reservation in the DRM system as described1494

by the ReservationTemplate. On a successful reservation, the method returns a Reservation instance that1495

represents the advance reservation in the underlying DRM system.1496

If the current user is not authorized to create reservations, DeniedByDrmsException SHALL be raised. If1497

the reservation cannot be performed by the DRM system due to invalid ReservationTemplate attributes,1498

or if the demanded combination of resources is not available, InvalidArgumentException SHALL be raised.1499

The exception SHOULD provide further details about the rejection cause in the extended error information1500

(see Section 6).1501

Some of the requested conditions might be not fulfilled after the reservation was successfully created, for1502

example due to execution host outages. In this case, the reservation itself SHOULD remain valid. A job1503

using such a reservation may spend additional time in one of the non-RUNNING states. In this case, the1504

JobInfo::jobSubState information SHOULD inform about this situation.1505

drmaa-wg@ogf.org 53

mailto:drmaa-wg@ogf.org

GWD-R July 2011

(See footnote)
59

1506

9.1.5 getReservations1507

This method returns the list of reservations successfully created so far in this session, regardless of their start1508

and end time. The list of Reservation instances is only cleared in conjunction with the destruction of the1509

actual session instance through SessionManager::destroyReservationSession (see Section 7.1).1510

9.2 Reservation Interface1511

The Reservation interface represents attributes and methods available for an advance reservation suc-1512

cessfully created in the DRM system. Implementations MAY offer Reservation instances for advance1513

reservations created outside of a DRMAA session.1514

interface Reservation {1515

readonly attribute string reservationId;1516

readonly attribute string sessionName;1517

readonly attribute ReservationTemplate reservationTemplate;1518

ReservationInfo getInfo ();1519

void terminate ();1520

};1521

9.2.1 reservationId1522

The reservationId is an opaque string identifier for the advance reservation. If the DRM system has1523

identifiers for advance reservations, this attribute SHOULD provide the according value. If not, the DRMAA1524

implementation MUST generate a value that is unique in time and extend of the DRM system.1525

9.2.2 sessionName1526

This attribute states the name of the ReservationSession that was used to create the advance reservation1527

instance. If the session name cannot be determined, for example since the reservation was created outside1528

of a DRMAA session, the attribute SHOULD have an UNSET value.1529

(See footnote)
60

1530

9.2.3 reservationTemplate1531

This attribute provides a reference to a ReservationTemplate instance that has equal values to the one that1532

was used to create this reservation. For reservations created outside of a DRMAA session, implementations1533

MUST also return a ReservationTemplate instance, which MAY be empty or only partially filled.1534

59In DRMAA 2.0 we do not have an explicit state model for advance reservations, as the reservation state can be easily
deducted by comparing current time with reservation start and end time. For this reason, we use the subState approach for
informing the user about the described situation.

60June 29th 2011 conf call decided to return session names instead of session objects. This keeps the consistent approach
that instantiated session objects represent a live ’connection’ to the DRMS. Connecting to the referenced session is then a
separate explicit step in the application. It also supports better that people create instances from reservation created outside
of a DRMAA session.

drmaa-wg@ogf.org 54

mailto:drmaa-wg@ogf.org

GWD-R July 2011

9.2.4 getInfo1535

This method returns a ReservationInfo instance under the conditions described in Section 5.6. The method1536

SHOULD throw InvalidArgumentException if the reservation is already expired (i.e., its end time passed),1537

or if it was terminated before.1538

9.2.5 terminate1539

This method terminates the advance reservation represented by this Reservation instance. All jobs submit-1540

ted with a reference to this reservation SHOULD be terminated by the DRM system or the implementation,1541

regardless of their current state.1542

10 Monitoring the DRM System1543

The monitoring support in DRMAA focusses on the investigation of resources and on global data maintained1544

by the DRM system. Session-related information is available from the JobSession and ReservationSession1545

instances, respectively.1546

10.1 MonitoringSession Interface1547

The MonitoringSession interface provides a set of stateless methods for fetching information about the1548

DRM system and the DRMAA implementation itself.1549

interface MonitoringSession {1550

ReservationList getAllReservations ();1551

JobList getAllJobs(in JobInfo filter);1552

QueueInfoList getAllQueues(in StringList names);1553

MachineInfoList getAllMachines(in StringList names);1554

};1555

All returned data SHOULD be related to the current user running the DRMAA-based application. For1556

example, the getAllQueues function MAY be reduced to only report queues that are usable or generally1557

accessible for the DRMAA application and the user performing the query.1558

Because of cases where such a list reduction may demand excessive overhead in the DRMAA implementa-1559

tion, an unreduced or only partially reduced result MAY also be returned. The behavior of the DRMAA1560

implementation in this regard should be clearly documented. In all cases, the list items MUST be valid input1561

for job submission or advance reservation through the DRMAA API, but MAY lead to later exceptions.1562

10.1.1 getAllReservations1563

This method returns the list of all advance reservations visible for the user running the DRMAA-based1564

application. In contrast to a ReservationSession::getReservations call, this method SHOULD also1565

return reservations that were created outside of DRMAA (e.g., through command-line tools) by this user.1566

The DRM system or the DRMAA implementation is at liberty to restrict the set of returned reservations1567

based on site or system policies, such as security settings or scheduler load restrictions. The returned list1568

MAY contain reservations that were created by other users. It MAY also contain reservations that are not1569

usable for the user.1570

drmaa-wg@ogf.org 55

mailto:drmaa-wg@ogf.org

GWD-R July 2011

This method SHALL raise an UnsupportedOperationException if advance reservation is not supported by1571

the implementation.1572

10.1.2 getAllJobs1573

This method returns the list of all DRMS jobs visible to the user running the DRMAA-based application. In1574

contrast to a JobSession::getJobs call, this method SHOULD also return jobs that were submitted outside1575

of DRMAA (e.g., through command-line tools) by this user. The returned list MAY also contain jobs that1576

were submitted by other users if the security policies of the DRM system allow such global visibility. The1577

DRM system or the DRMAA implementation is at liberty, however, to restrict the set of returned jobs based1578

on site or system policies, such as security settings or scheduler load restrictions.1579

Querying the DRM system for all jobs might result in returning an excessive number of Job objects. Impli-1580

cations to the library implementation are out of scope for this specification.1581

The method supports a filter argument for fetching only a subset of the job information available. Both1582

the return value semantics and the filter semantics SHOULD be similar to the ones described for the1583

JobSession::getJobs method (see Section 8.2).1584

Language bindings SHOULD NOT try to solve the scalability issues by replacing the sequence type of
the return value with some iterator-like solution. This approach would break the basic snapshot semantic
intended for this method.

(See footnote)
61

1585

10.1.3 getAllQueues1586

This method returns a list of queues available for job submission in the DRM system. The names from all1587

QueueInfo instances in this list SHOULD be a valid input for the JobTemplate::queueName attribute (see1588

Section 5.7.14). The result can be an empty list or might be incomplete, based on queue, host, or system1589

policies. It might also contain queues that are not accessible for the user at job submission time because of1590

queue configuration limits.1591

The names parameter supports restricting the result to QueueInfo instances that have one of the names1592

given in the argument. If the names parameter value is UNSET, all QueueInfo instances should be returned.1593

10.1.4 getAllMachines1594

This method returns the list of machines available in the DRM system as execution host. The returned list1595

might be empty or incomplete based on machine or system policies. The returned list might also contain1596

machines that are not accessible for the user, e.g., because of host configuration limits.1597

The names parameter supports restricting the result to MachineInfo instances that have one of the names1598

given in the argument. If the names parameter value is UNSET, all MachineInfo instances should be returned.1599

61 The non-argumentation about the scalability problem was the final result of a clarification attempt. We hand this one
over to the implementors. (conf call Jul 14th 2010)

drmaa-wg@ogf.org 56

mailto:drmaa-wg@ogf.org

GWD-R July 2011

11 Complete DRMAA IDL Specification1600

The following text shows the complete IDL specification for the DRMAAv2 application programming inter-1601

face. The ordering of IDL constructs here has no normative meaning, but ensures an easier compilation with1602

a standard CORBA IDL compiler for syntactical correctness checks. This demands also some additional1603

forward declarations to resolve circular dependencies.1604

module DRMAA2 {1605

enum JobState {1606

UNDETERMINED , QUEUED , QUEUED_HELD , RUNNING , SUSPENDED , REQUEUED ,1607

REQUEUED_HELD , DONE , FAILED };1608

enum OperatingSystem {1609

AIX , BSD , LINUX , HPUX , IRIX , MACOS , SUNOS , TRUE64 , UNIXWARE , WIN ,1610

WINNT , OTHER_OS };1611

enum CpuArchitecture {1612

ALPHA , ARM , CELL , PARISC , X86 , X64 , IA64 , MIPS , PPC , PPC64 ,1613

SPARC , SPARC64 , OTHER_CPU };1614

enum ResourceLimitType {1615

CORE_FILE_SIZE , CPU_TIME , DATA_SEG_SIZE , FILE_SIZE , OPEN_FILES ,1616

STACK_SIZE , VIRTUAL_MEMORY , WALLCLOCK_TIME };1617

enum JobTemplatePlaceholder {1618

HOME_DIRECTORY ,WORKING_DIRECTORY ,PARAMETRIC_INDEX };1619

enum DrmaaEvent {1620

NEW_STATE , MIGRATED , ATTRIBUTE_CHANGE1621

};1622

enum DrmaaCapability {1623

ADVANCE_RESERVATION , RESERVE_SLOTS , CALLBACK , BULK_JOBS_MAXPARALLEL ,1624

JT_EMAIL , JT_STAGING , JT_DEADLINE , JT_MAXSLOTS , JT_ACCOUNTINGID ,1625

RT_STARTNOW , RT_DURATION , RT_MACHINEOS , RT_MACHINEARCH1626

};1627

typedef sequence <string > OrderedStringList;1628

typedef sequence <string > StringList;1629

typedef sequence <Job > JobList;1630

typedef sequence <QueueInfo > QueueInfoList;1631

typedef sequence <MachineInfo > MachineInfoList;1632

typedef sequence <SlotInfo > OrderedSlotInfoList;1633

typedef sequence <Reservation > ReservationList;1634

typedef sequence < sequence <string ,2> > Dictionary;1635

typedef string AbsoluteTime;1636

typedef long long TimeAmount;1637

drmaa-wg@ogf.org 57

mailto:drmaa-wg@ogf.org

GWD-R July 2011

native ZERO_TIME;1638

native INFINITE_TIME;1639

native NOW;1640

struct JobInfo {1641

string jobId;1642

long exitStatus;1643

string terminatingSignal;1644

string annotation;1645

JobState jobState;1646

any jobSubState;1647

OrderedSlotInfoList allocatedMachines;1648

string submissionMachine;1649

string jobOwner;1650

long slots;1651

string queueName;1652

TimeAmount wallclockTime;1653

long cpuTime;1654

AbsoluteTime submissionTime;1655

AbsoluteTime dispatchTime;1656

AbsoluteTime finishTime;1657

};1658

struct ReservationInfo {1659

string reservationId;1660

string reservationName;1661

AbsoluteTime reservedStartTime;1662

AbsoluteTime reservedEndTime;1663

StringList usersACL;1664

long reservedSlots;1665

OrderedSlotInfoList reservedMachines;1666

};1667

struct JobTemplate {1668

string remoteCommand;1669

OrderedStringList args;1670

boolean submitAsHold;1671

boolean rerunnable;1672

Dictionary jobEnvironment;1673

string workingDirectory;1674

string jobCategory;1675

StringList email;1676

boolean emailOnStarted;1677

boolean emailOnTerminated;1678

string jobName;1679

string inputPath;1680

string outputPath;1681

string errorPath;1682

drmaa-wg@ogf.org 58

mailto:drmaa-wg@ogf.org

GWD-R July 2011

boolean joinFiles;1683

string reservationId;1684

string queueName;1685

long minSlots;1686

long maxSlots;1687

long priority;1688

OrderedStringList candidateMachines;1689

long minPhysMemory;1690

OperatingSystem machineOS;1691

CpuArchitecture machineArch;1692

AbsoluteTime startTime;1693

AbsoluteTime deadlineTime;1694

Dictionary stageInFiles;1695

Dictionary stageOutFiles;1696

Dictionary resourceLimits;1697

string accountingId;1698

};1699

struct ReservationTemplate {1700

string reservationName;1701

AbsoluteTime startTime;1702

AbsoluteTime endTime;1703

TimeAmount duration;1704

long minSlots;1705

long maxSlots;1706

string jobCategory;1707

StringList usersACL;1708

OrderedStringList candidateMachines;1709

long minPhysMemory;1710

OperatingSystem machineOS;1711

CpuArchitecture machineArch;1712

};1713

struct DrmaaNotification {1714

DrmaaEvent event;1715

string jobId;1716

string sessionName;1717

JobState jobState;1718

};1719

struct QueueInfo {1720

string name;1721

};1722

struct Version {1723

string major;1724

string minor;1725

};1726

drmaa-wg@ogf.org 59

mailto:drmaa-wg@ogf.org

GWD-R July 2011

struct MachineInfo {1727

string name;1728

boolean available;1729

long sockets;1730

long coresPerSocket;1731

long threadsPerCore;1732

double load;1733

long physMemory;1734

long virtMemory;1735

OperatingSystem machineOS;1736

Version machineOSVersion;1737

CpuArchitecture machineArch;1738

};1739

struct SlotInfo {1740

string machineName;1741

string slots;1742

};1743

exception DeniedByDrmsException {string message ;};1744

exception DrmCommunicationException {string message ;};1745

exception TryLaterException {string message ;};1746

exception SessionManagementException {string message ;};1747

exception TimeoutException {string message ;};1748

exception InternalException {string message ;};1749

exception InvalidArgumentException {string message ;};1750

exception InvalidSessionException {string message ;};1751

exception InvalidStateException {string message ;};1752

exception OutOfResourceException {string message ;};1753

exception UnsupportedAttributeException {string message ;};1754

exception UnsupportedOperationException {string message ;};1755

interface DrmaaReflective {1756

readonly attribute StringList jobTemplateImplSpec;1757

readonly attribute StringList jobInfoImplSpec;1758

readonly attribute StringList reservationTemplateImplSpec;1759

readonly attribute StringList reservationInfoImplSpec;1760

readonly attribute StringList queueInfoImplSpec;1761

readonly attribute StringList machineInfoImplSpec;1762

readonly attribute StringList notificationImplSpec;1763

1764

string getInstanceValue(in any instance , in string name);1765

void setInstanceValue(in any instance , in string name , in string value);1766

string describeAttribute(in any instance , in string name);1767

};1768

interface DrmaaCallback {1769

void notify(in DrmaaNotification notification);1770

};1771

drmaa-wg@ogf.org 60

mailto:drmaa-wg@ogf.org

GWD-R July 2011

interface ReservationSession {1772

readonly attribute string contact;1773

readonly attribute string sessionName;1774

Reservation getReservation(in string reservationId);1775

Reservation requestReservation(in ReservationTemplate reservationTemplate);1776

ReservationList getReservations ();1777

};1778

interface Reservation {1779

readonly attribute string reservationId;1780

readonly attribute string sessionName;1781

readonly attribute ReservationTemplate reservationTemplate;1782

ReservationInfo getInfo ();1783

void terminate ();1784

};1785

interface JobArray {1786

readonly attribute string jobArrayId;1787

readonly attribute JobList jobs;1788

readonly attribute string sessionName;1789

readonly attribute JobTemplate jobTemplate;1790

void suspend ();1791

void resume ();1792

void hold ();1793

void release ();1794

void terminate ();1795

};1796

interface JobSession {1797

readonly attribute string contact;1798

readonly attribute string sessionName;1799

readonly attribute StringList jobCategories;1800

JobList getJobs(in JobInfo filter);1801

JobArray getJobArray(in string jobArrayId);1802

Job runJob(in JobTemplate jobTemplate);1803

JobArray runBulkJobs(1804

in JobTemplate jobTemplate ,1805

in long beginIndex ,1806

in long endIndex ,1807

in long step ,1808

in long maxParallel);1809

Job waitAnyStarted(in JobList jobs , in TimeAmount timeout);1810

Job waitAnyTerminated(in JobList jobs , in TimeAmount timeout);1811

};1812

interface Job {1813

readonly attribute string jobId;1814

readonly attribute string sessionName;1815

drmaa-wg@ogf.org 61

mailto:drmaa-wg@ogf.org

GWD-R July 2011

readonly attribute JobTemplate jobTemplate;1816

void suspend ();1817

void resume ();1818

void hold ();1819

void release ();1820

void terminate ();1821

JobState getState(out any jobSubState);1822

JobInfo getInfo ();1823

Job waitStarted(in TimeAmount timeout);1824

Job waitTerminated(in TimeAmount timeout);1825

};1826

interface MonitoringSession {1827

ReservationList getAllReservations ();1828

JobList getAllJobs(in JobInfo filter);1829

QueueInfoList getAllQueues(in StringList names);1830

MachineInfoList getAllMachines(in StringList names);1831

};1832

interface SessionManager{1833

readonly attribute string drmsName;1834

readonly attribute Version drmsVersion;1835

readonly attribute string drmaaName;1836

readonly attribute Version drmaaVersion;1837

boolean supports(in DrmaaCapability capability);1838

JobSession createJobSession(in string sessionName ,1839

in string contact);1840

ReservationSession createReservationSession(in string sessionName ,1841

in string contact);1842

JobSession openJobSession(in string sessionName);1843

ReservationSession openReservationSession(in string sessionName);1844

MonitoringSession openMonitoringSession (in string contact);1845

void closeJobSession(in JobSession s);1846

void closeReservationSession(in ReservationSession s);1847

void closeMonitoringSession(in MonitoringSession s);1848

void destroyJobSession(in string sessionName);1849

void destroyReservationSession(in string sessionName);1850

StringList getJobSessionNames ();1851

StringList getReservationSessionNames ();1852

void registerEventNotification(in DrmaaCallback callback);1853

};1854

};1855

12 Security Considerations1856

The DRMAA API does not specifically assume the existence of a particular security infrastructure in the1857

DRM system. The scheduling scenario described herein presumes that security is handled at the point of1858

drmaa-wg@ogf.org 62

mailto:drmaa-wg@ogf.org

GWD-R July 2011

interaction with the DRM system. It is assumed that credentials owned by the application using the API1859

are in effect for the DRMAA implementation too, so that it acts as stakeholder for the application.1860

An authorized but malicious user could use a DRMAA implementation or a DRMAA-enabled application1861

to saturate a DRM system with a flood of requests. Unfortunately for the DRM system, this case is not1862

distinguishable from the case of an authorized good-natured user who has many jobs to be processed. For1863

temporary load defense, implementations SHOULD utilize the TryLaterException, if possible. In case of1864

permanent issues, the implementation SHOULD raise the DeniedByDrmsException.1865

DRMAA implementers SHOULD guard their product against buffer overflows that can be exploited through1866

DRMAA enabled interactive applications or portals. Implementations of the DRMAA API will most likely1867

require a network to coordinate subordinate DRM system requests. However, the API makes no assumptions1868

about the security posture provided by the networking environment. Therefore, application developers1869

SHOULD also consider the security implications of “on-the-wire” communications in this case.1870

For environments that allow remote or protocol based DRMAA clients, the implementation SHOULD offer1871

support for secure transport layers to prevent man in the middle attacks.1872

13 Contributors1873

The DRMAA working group is grateful to numerous colleagues for support and discussions on the topics1874

covered in this document, in particular (in alphabetical order, with apologies to anybody we have missed):1875

Guillaume Alleon, Ali Anjomshoaa, Ed Baskerville, Harald Böhme, Nadav Brandes, Matthieu Cargnelli,1876

Karl Czajkowski, Piotr Domagalski, Fritz Ferstl, Paul Foley, Nicholas Geib, Becky Gietzel, Alleon Guillaume,1877

Daniel S. Katz, Andreas Haas, Tim Harsch, Greg Hewgill, Rayson Ho, Eduardo Huedo, Dieter Kranzmüller,1878

Krzysztof Kurowski, Peter G. Lane, Miron Livny, Ignacio M. Llorente, Martin v. Löwis, Andre Merzky,1879

Thijs Metsch, Ruben S. Montero, Greg Newby, Steven Newhouse, Michael Primeaux, Greg Quinn, Hrabri L.1880

Rajic, Martin Sarachu, Jennifer Schopf, Enrico Sirola, Chris Smith, Ancor Gonzalez Sosa, Douglas Thain,1881

John Tollefsrud, Jose R. Valverde, and Peter Zhu.1882

Special thanks must go to Andre Merzky, who participated as SAGA working group representative in nu-1883

merous DRMAA events.1884

This specification was developed by the following core members of the DRMAA working group at the Open1885

Grid Forum:1886

Roger Brobst1887

Cadence Design Systems, Inc.1888

555 River Oaks Parkway1889

San Jose, CA 951341890

United States1891

Email: rbrobst@cadence.com1892

1893

Daniel Gruber1894

Univa GmbH1895

c/o Rüter und Partner1896

Prielmayerstr. 3 80335 München1897

Germany1898

drmaa-wg@ogf.org 63

mailto:drmaa-wg@ogf.org

GWD-R July 2011

Email: dgruber@univa.com1899

1900

Mariusz Mamoński1901

Poznań Supercomputing and Networking Center1902

ul. Noskowskiego 101903

61-704 Poznań1904

Poland1905

Email: mamonski@man.poznan.pl1906

1907

Daniel Templeton1908

Cloudera Inc.1909

210 Portage Avenue1910

Palo Alto, CA 943061911

United States1912

Email: daniel@cloudera.com1913

1914

Peter Tröger (Corresponding Author)1915

Hasso-Plattner-Institute at University of Potsdam1916

Prof.-Dr.-Helmert-Str. 2-31917

14482 Potsdam1918

Germany1919

Email: peter@troeger.eu1920

1921

14 Intellectual Property Statement1922

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that1923

might be claimed to pertain to the implementation or use of the technology described in this document or the1924

extent to which any license under such rights might or might not be available; neither does it represent that1925

it has made any effort to identify any such rights. Copies of claims of rights made available for publication1926

and any assurances of licenses to be made available, or the result of an attempt made to obtain a general1927

license or permission for the use of such proprietary rights by implementers or users of this specification can1928

be obtained from the OGF Secretariat.1929

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications,1930

or other proprietary rights which may cover technology that may be required to practice this recommendation.1931

Please address the information to the OGF Executive Director.1932

15 Disclaimer1933

This document and the information contained herein is provided on an “as-is” basis and the OGF disclaims1934

all warranties, express or implied, including but not limited to any warranty that the use of the information1935

herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular1936

purpose.1937

drmaa-wg@ogf.org 64

mailto:drmaa-wg@ogf.org

GWD-R July 2011

16 Full Copyright Notice1938

Copyright c© Open Grid Forum (2005-2011). Some Rights Reserved.1939

This document and translations of it may be copied and furnished to others, and derivative works that1940

comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and1941

distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice1942

and this paragraph are included on all such copies and derivative works. However, this document itself1943

may not be modified in any way, such as by removing the copyright notice or references to the OGF or1944

other organizations, except as needed for the purpose of developing Grid Recommendations in which case1945

the procedures for copyrights defined in the OGF Document process must be followed, or as required to1946

translate it into languages other than English.1947

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors1948

or assignees.1949

17 References19501951

[1] Sergio Andreozzi, Stephen Burke, Felix Ehm, Laurence Field, Gerson Galang, Balazs Konya, Maarten1952

Litmaath, Paul Millar, and JP Navarro. GLUE Specification v. 2.0 (GFD-R-P.147), mar 2009.1953

[2] Scott Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119 (Best Current1954

Practice), March 1997. URL http://tools.ietf.org/html/rfc2119.1955

[3] I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pickles, D. Pulsipher, C. Smith,1956

and M. Theimer. OGSA Basic Execution Service v1.0 (GFD-R.108), nov 2008.1957

[4] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Kleijer, Andre Merzky, John1958

Shalf, and Christopher Smith. A Simple API for Grid Applications (SAGA) Version 1.1 (GFD-R-P.90),1959

jan 2008.1960

[5] Object Management Group. Common Object Request Broker Architecture (CORBA) Specification,1961

Version 3.1. http://www.omg.org/spec/CORBA/3.1/Interfaces/PDF, jan 2008.1962

[6] The IEEE and The Open Group. The Open Group Base Specifications Issue 6 IEEE Std 1003.1.1963

http://www.opengroup.org/onlinepubs/000095399/utilities/ulimit.html.1964

[7] Distributed Management Task Force (DMTF) Inc. CIM System Model White Paper CIM Version 2.7,1965

jun 2003.1966

[8] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas Haas, Bill Nitzberg,1967

Daniel Templeton, John Tollefsrud, and Peter Tröger. Distributed Resource Management Application1968

API Specification 1.0 (GFD-R.022), aug 2007.1969

[9] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas Haas, Bill Nitzberg,1970

Daniel Templeton, John Tollefsrud, and Peter Tröger. Distributed Resource Management Application1971

API Specification 1.0 (GWD-R.133), jun 2008.1972

[10] Peter Tröger, Daniel Templeton, Roger Brobst, Andreas Haas, and Hrabri Rajic. Distributed Resource1973

Management Application API 1.0 - IDL Specification (GFD-R-P.130), apr 2008.1974

drmaa-wg@ogf.org 65

http://tools.ietf.org/html/rfc2119
mailto:drmaa-wg@ogf.org

GWD-R July 2011

[11] Peter Tröger, Hrabri Rajic, Andreas Haas, and Piotr Domagalski. Standardised job submission and1975

control in cluster and grid environments. International Journal of Grid and Utility Computing, 1:1976

134–145, dec 2009. doi: {http://dx.doi.org/10.1504/IJGUC.2009.022029}.1977

drmaa-wg@ogf.org 66

mailto:drmaa-wg@ogf.org

	Introduction
	Basic concepts
	Slots and Queues
	Language Bindings
	Job Categories
	Multithreading

	Namespace
	Common Type Definitions
	Enumerations
	OperatingSystem enumeration
	CpuArchitecture enumeration
	ResourceLimitType enumeration
	JobTemplatePlaceholder enumeration
	DrmaaCapability

	Extensible Data Structures
	QueueInfo structure
	Version structure
	MachineInfo structure
	SlotInfo structure
	JobInfo structure
	ReservationInfo structure
	JobTemplate structure
	ReservationTemplate structure
	DrmaaReflective Interface

	Common Exceptions
	The DRMAA Session Concept
	SessionManager Interface

	Working with Jobs
	The DRMAA State Model
	JobSession Interface
	DrmaaCallback Interface
	Job Interface
	JobArray Interface
	The DRMAA_INDEX_VAR environment variable

	Working with Advance Reservation
	ReservationSession Interface
	Reservation Interface

	Monitoring the DRM System
	MonitoringSession Interface

	Complete DRMAA IDL Specification
	Security Considerations
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice
	References

