
GWD-R
DRMAA-WG
drmaa-wg@ogf.org

Peter Tröger, Hasso-Plattner-Institute
(Corresponding Author)

Roger Brobst, Cadence Design Systems
Daniel Gruber, Univa

Mariusz Mamoński, PSNC
Daniel Templeton, Cloudera

March 2011

1

Distributed Resource Management Application API Version 22

(DRMAA) - Draft 43

Status of This Document4

Group Working Draft Recommendation (GWD-R)5

(See footnote)
1

6

Obsoletes7

This document obsoletes GFD-R.022 [7], GFD-R-P.130 [9], and GWD-R.133 [8].8

Copyright Notice9

Copyright c© Open Grid Forum (2005-2011). Some Rights Reserved. Distribution is unlimited.10

Trademark11

All company, product or service names referenced in this document are used for identification purposes only12

and may be trademarks of their respective owners.13

Abstract14

This document describes the Distributed Resource Management Application API Version 2 (DRMAA), which15

provides a generalized API to Distributed Resource Management (DRM) systems in order to facilitate the16

development of portable application programs and high-level libraries for such systems. DRMAA defines17

interfaces for a tightly coupled, but still portable access by abstracting the fundamental functions available18

in the majority of DRM systems. The scope is limited to job submission, job control, and retrieval of job19

and machine monitoring information.20

This document acts as root specification for the abstract API concepts and the behavioral rules that must be21

fulfilled by a DRMAA-compliant implementation. The programming language representation of the abstract22

API concepts must be formulated by a separate language binding specification derived from this document.23

The intended audience for this specification are DRMAA language binding designers, DRM system vendors,24

high-level API designers and meta-scheduler architects. End users are expected to rely on product-specific25

documentation for the DRMAA API implementation in their particular programming language.26

1 This is the non-normative annotated version of the specification with line numbers. It includes historical information
concerning the content and why features were included or discarded by the working group. It also emphasizes the consequences
of some aspects that may not be immediately apparent. This document in only intended for internal working group discussions.

drmaa-wg@ogf.org 1

mailto:drmaa-wg@ogf.org
http://www.drmaa.org/
http://www.drmaa.org/
mailto:drmaa-wg@ogf.org

GWD-R March 2011

Contents27

1 Introduction . 328

1.1 Notational Conventions . 329

1.2 Language Bindings . 430

1.3 Slots and Queues . 431

1.4 Multithreading . 532

2 Namespace . 533

3 Common Type Definitions . 534

4 Enumerations . 635

4.1 OperatingSystem enumeration . 636

4.2 CpuArchitecture enumeration . 837

4.3 ResourceLimitType enumeration . 838

4.4 JobTemplatePlaceholder enumeration . 939

5 Extensible Data Structures . 1040

5.1 Queue structure . 1141

5.2 Version structure . 1142

5.3 Machine structure . 1143

5.4 JobInfo structure . 1344

5.5 ReservationInfo structure . 1645

5.6 JobTemplate structure . 1846

5.7 ReservationTemplate structure . 2547

5.8 DrmaaReflective Interface . 2848

6 Common Exceptions . 2849

7 The DRMAA Session Concept . 3050

7.1 SessionManager Interface . 3051

8 Working with Jobs . 3352

8.1 The DRMAA State Model . 3353

8.2 JobSession Interface . 3654

8.3 DrmaaCallback Interface . 3955

8.4 Job Interface . 3956

8.5 JobArray Interface . 4157

9 Working with Advance Reservation . 4358

9.1 ReservationSession Interface . 4359

9.2 Reservation Interface . 4460

10 Monitoring the DRM System . 4561

10.1 MonitoringSession Interface . 4562

11 Annex A: Complete DRMAA IDL Specification . 4763

12 Security Considerations . 5364

13 Contributors . 5365

14 Intellectual Property Statement . 5466

15 Disclaimer . 5567

16 Full Copyright Notice . 5568

17 References . 5569

drmaa-wg@ogf.org 2

mailto:drmaa-wg@ogf.org

GWD-R March 2011

1 Introduction70

This document describes the Distributed Resource Management Application API Version 2 (DRMAA) in-71

terface semantics in a generalized way by using the OMG Interface Definition Language (IDL) [4] syntax for72

a language-agnostic description. Based on this abstract specification, language binding standards have to73

be designed that map the described concepts into a library interface for a particular programming language74

(e.g. C, Java, Python). While this document has the responsibility to ensure consistent API semantics over75

all possible DRMAA implementations, the language binding has the responsibility to ensure source-code76

portability for DRMAA applications on different DRM systems.77

An effort has been made to choose an API layout that is not unique to a particular language. However, in78

some cases, various languages disagree over some points. In those cases, the most meritous approach was79

taken, irrespective of language.80

There are other relevant OGF standards in the area of job submission and monitoring. An in-depth com-81

parison and positioning of the obsoleted DRMAA1 specification was provided by another publication [10].82

The DRMAA specification is based on the following stakeholders:83

• Distributed resource management system / DRM system / DRMS : Any system that supports the con-84

cept of distributing computational jobs on execution resources through the help of a central scheduling85

entity. Examples are multi-processor systems controlled by a operating system scheduler, cluster sys-86

tems with multiple machines controlled by a central scheduler software, grid systems, or cloud systems87

with a job concept.88

• DRMAA implementation, DRMAA library : The implementation of a DRMAA language binding spec-89

ification with the functional semantics described in this document. The resulting artifact is expected90

to be a library that is deployed together with the DRM system that is wrapped by the particular91

implementation.92

• (DRMAA-based) application: Software that utilizes the DRMAA implementation for gaining access to93

one or multiple DRM systems in a standardized way.94

• Submission host : A execution resource in the DRM system that runs the DRMAA-based application.95

• Execution host : A execution resource in the DRM system that can run a job submitted through the96

DRMAA implementation.97

1.1 Notational Conventions98

In this document, IDL language elements and definitions are represented in a fixed-width font.99

The key words “MUST” “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD100

NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described in RFC 2119 [1].101

Memory quantities are expressed in kibibyte (KiB), the unit established by the International Electrotechnical102

Commission (IEC) in 1999. 1 kibibyte equals 1024 bytes.103

Proposal to
use bytes in-
stead, similar
to JSDL

104

Parts of the specification which are normative for derived language binding specifications only are graphically
marked as shaded box.

drmaa-wg@ogf.org 3

mailto:drmaa-wg@ogf.org

GWD-R March 2011

1.2 Language Bindings105

A language binding specification derived from this document MUST define a mapping between the IDL
constructs and programming language constructs, with focus on source code portability for the resulting
DRMAA-based applications.

A language binding SHOULD NOT rely completely on the OMG language mapping standards available for
many programming languages, since they have a huge overhead of irrelevant CORBA-related mapping rules.
Therefore, language binding authors must carefully decide if a binding decision reflects a natural and simple
mapping of the intended purpose for the DRMAA interfaces. The binding SHOULD reuse OMG value type
mappings (e.g. IDL long long to Java long), and SHOULD define custom mappings for the other types.
The language binding MUST use the described concept mapping in a consistent manner for its overal API
layout.

Due to the usage of IDL, all method groups for a particular purpose (e.g. job control) are described in terms
of interfaces, and not classes. The mapping to a class concept depends on the specific language-mapping
rules.

It may be the case that IDL constructs do not map directly to any language construct. In this case it MUST
be ensured that the chosen mapping retains the intended semantic of the DRMAA interface definition.

Access to scalar attributes (string, boolean, long) MUST operate in a pass-by-value mode. A language
binding must ensure that this behavior is always fulfilled. For non-scalar attributes, the language binding
MUST specify a consistent access strategy for all these attributes – either pass-by-value or pass-by-reference
– according to the use cases of language binding implementations.

This specification tries to consider the possibility of a Remote Procedure Call (RPC) scenario in a DRMAA-
conformant language mapping. It SHOULD therefore be ensured that the programming language type for
an IDL struct definition supports the serialization and comparison of instances. These capabilities should
be accomplished through whatever mechanism is most natural for the programming language.

A language binding MUST define a way to declare an invalid value (UNSET). In case, a definition per data
type needs to be provided. Evaluating an UNSET boolean value MUST result in a negative result, e.g. for
JobTemplate::emailOnStarted.

(See footnote)
2

106

1.3 Slots and Queues107

DRMAA supports the notion of slots and queues as resources of a DRM system. A DRMAA application108

can request them in advance reservation and job submission. However, slots and queues SHALL be opaque109

concepts from the viewpoint of a DRMAA implementation, meaning that the requirements given by the110

application are just passed through to the DRM system. This is reasoned by the large variation in interpreting111

that concepts in the different DRM systems, which makes it impossible to define a common understanding112

on the level of the DRMAA API.113

2 The concept of a UNSET value was decided on a conf call (Aug 25th 2010). Boolean in C can use custom enumeration
(TRUE, FALSE, INVALID) or pointer to static values. A numerical UNSET in C should use a magic number, since all long
attributes are unsigned, it could be MIN INT. With Python, just use None. For Java, Dan has an idea.

drmaa-wg@ogf.org 4

mailto:drmaa-wg@ogf.org

GWD-R March 2011

(See footnote)
3

114

1.4 Multithreading115

High-level APIs such as SAGA [3] are expected to utilize DRMAA for asynchronous operations, based on the116

assumption that re-entrancy is supported by DRMAA implementations. For this reason, implementations117

SHOULD ensure the proper functioning of the library in case of re-entrant library calls. A DRMAA library118

SHOULD allow a multithreaded application to use DRMAA interfaces without any explicit synchronization119

among the application threads. DRMAA implementers should document their work as thread safe if they120

meet the above criteria. Providers of non-thread-safe DRMAA implementations should document all the121

interfaces that are thread unsafe and provide a list of interfaces and their dependencies on external thread122

unsafe routines.123

2 Namespace124

The DRMAA interfaces and structures are encapsulated by a naming scope, which avoids conflicts with125

other APIs used in the same application.126

module DRMAA2 {127

Language binding authors MUST map the IDL module encapsulation to an according package or namespace
concept and MAY change the module name according to programming language conventions.

(See footnote)
4

128

3 Common Type Definitions129

The DRMAA specification defines some custom types to express special value semantics not expressible in130

IDL.131

typedef sequence <string > OrderedStringList;132

typedef sequence <string > StringList;133

typedef sequence <Job > JobList;134

typedef sequence <Queue > QueueList;135

typedef sequence <Machine > MachineList;136

typedef sequence <Reservation > ReservationList;137

typedef sequence < sequence <string ,2> > Dictionary;138

typedef string AbsoluteTime;139

typedef long long TimeAmount;140

native ZERO_TIME;141

native INFINITE_TIME;142

OrderedStringList: An unbounded list of strings, which supports element insertion, element deletion, and143

iteration over elements while keeping an element order.144

3 As one example, queues can be either treated as representation of execution hosts (Sun Grid Engine) or as central waiting
line located at the scheduler (LSF).

4 Comparison to DRMAA v1.0: The IDL module name was change to DRMAA2, in order to intentionally break backward
compatibility of the interface.

drmaa-wg@ogf.org 5

mailto:drmaa-wg@ogf.org

GWD-R March 2011

StringList: An unbounded list of strings, without any demand on element order.145

JobList: An unbounded list of Job instances, without any demand on element order.146

MachineList: An unbounded list of Machine instances, without any demand on element order.147

QueueList: An unbounded list of Queue instances, without any demand on element order.148

ReservationList: An unbounded list of Reservation instances, without any demand on element order.149

Dictionary: An unbounded dictionary type for storing key-value pairs, without any demand on element150

order.151

AbsoluteTime: Expression of a point in time, with a resolution at least to seconds.152

TimeAmount: Expression of an amount of time, with a resolution at least to seconds.153

ZERO TIME: A constant value of type TimeAmount that expresses a zero amount of time.154

INFINITE TIME: A constant value of type TimeAmount that expresses an infinite amount of time.155

A language binding MUST replace these type definitions with semantically equal reference or value types in
the according language. This may include the creation of new complex language types for one or more of the
above concepts. The language binding MUST define a consistent mapping on module level, and a mechanism
for obtaining the RFC822 string representation from a given AbsoluteTime or TimeAmount instance.

(See footnote)
5

156

4 Enumerations157

Language bindings SHOULD define numerical values for all DRMAA constants and enumeration members,
in order to foster binary portability of DRMAA-based applications.

4.1 OperatingSystem enumeration158

DRMAA supports the identification of an operating system installation on execution resources in the DRM159

system. The OperatingSystem enumeration is used as data type both in the advanced reservation and the160

DRM system monitoring functionalities. It defines a set of standardized identifiers for operating system161

types. The list is a shortened version of the according CIM Schema [6]. It includes only operating systems162

that are supported by the majority of DRM systems available at the time of writing:163

enum OperatingSystem {164

HPUX , LINUX , IRIX , TRUE64 , MACOS , SUNOS , WIN , WINNT , AIX , UNIXWARE ,165

BSD , OTHER_OS };166

AIX: AIX Unix by IBM.167

BSD: All operating system distributions based on the BSD kernel.168

5 The PartialTimestamp functionality from DRMAA 1.0 was completely removed. Absolute date and time values are now
expressed as RFC822 conformant data items with stringification support (conf. call Mar 31st 2009). String list for job identifiers
are replaced by Job object lists (F2F meeting July 2009)

drmaa-wg@ogf.org 6

mailto:drmaa-wg@ogf.org

GWD-R March 2011

LINUX: All operating system distributions based on the Linux kernel.169

HPUX: HP-UX Unix by Hewlett-Packard.170

IRIX: The IRIX operating system by SGI.171

MACOS: The MAC OS X operating system by Apple.172

SUNOS: SunOS or Solaris operating system by Sun / Oracle.173

TRUE64: True64 Unix by Hewlett-Packard, or DEC Digital Unix, or DEC OSF/1 AXP.174

UNIXWARE: UnixWare system by SCO group.175

WIN: Windows 95, Windows 98, Windows ME.176

WINNT: Microsoft Windows operating systems based on the NT kernel177

OTHER OS: An operating system type not specified in this list.178

Implementations SHOULD NOT add new operating system identifiers to this enumeration, even if they are179

supported by the underlying DRM system.180

The operating system information is only useful in conjunction with version information (see Section 10.1),181

which is also the reporting approach taken in most DRM systems. Examples:182

• The Apple MacOS X operating system commonly denoted as “Snow Leopard” would be reported as183

“MACOS” with the version structure [“10”,“6”]184

• The Microsoft Windows 7 operating system would be reported as “WINNT” with the version infor-185

mation [“6”,“1”], which is the internal version number reported by the Windows API.186

• All Linux distributions would be reported as operating system type “LINUX” with the major revision187

of the kernel, such as [“2”,“6”].188

• The Solaris operating system is reported as “SUNOS”, together with the internal version number, e.g.189

[“5”,“10”] for Solaris 10.190

The DRMAA OperatingSystem enumeration can be mapped to other high-level APIs. Table 1 gives a191

non-normative set of examples.192

DRMAA OperatingSystem value JSDL jsdl:OperatingSystemTypeEnumeration value
HPUX HPUX
LINUX LINUX
IRIX IRIX

TRUE64 Tru64 UNIX, OSF
MACOS MACOS
SUNOS SunOS, SOLARIS

WIN WIN95, WIN98, Windows R Me
WINNT WINNT, Windows 2000, Windows XP

AIX AIX
UNIXWARE SCO UnixWare, SCO OpenServer

BSD BSDUNIX, FreeBSD, NetBSD, OpenBSD
OTHER OS Other

Table 1: Mapping example for the DRMAA OperatingSystem enumeration

drmaa-wg@ogf.org 7

mailto:drmaa-wg@ogf.org

GWD-R March 2011

4.2 CpuArchitecture enumeration193

DRMAA supports identifying the processor instruction set architecture on execution resources in the DRM194

system. The CpuArchitecture enumeration is used as data type both in the advanced reservation and the195

DRM system monitoring functionalities. It defines a set of standardized identifiers for processor architecture196

families. The list is a shortened version of the according CIM Schema [6], It includes only processor families197

that are supported by the majority of DRM systems available at the time of writing:198

enum CpuArchitecture {199

ALPHA , ARM , CELL , PARISC , X86 , X64 , IA64 , MIPS , PPC , PPC64 ,200

SPARC , SPARC64 , OTHER_CPU };201

ALPHA: The DEC Alpha / Alpha AXP processor architecture.202

ARM: The ARM processor architecture.203

CELL: The Cell processor architecture.204

PA-RISC: The PA-RISC processor architecture.205

X86: The IA-32 line of the X86 processor architecture family, with 32bit support only.206

X64: The X86-64 line of the X86 processor architecture family, with 64bit support.207

IA-64: The Itanium processor architecture.208

MIPS: The MIPS processor architecture.209

PPC: The PowerPC processor architecture, all models with 32bit support only.210

PPC64: The PowerPC processor architecture, all models with 64bit support.211

SPARC: The SPARC processor architecture, all models with 32bit support only.212

SPARC64: The SPARC processor architecture, all models with 64bit support.213

OTHER CPU: A processor architecture not specified in this list.214

The DRMAA CpuArchitecture enumeration can be mapped to other high-level APIs. Table 2 gives a215

non-normative set of examples.216

The reporting and job configuration for processor architectures SHOULD operate on a “as-is” base, if sup-217

ported by the DRM system. This means that the reported architecture should reflect the current operation218

mode of the processor with the running operating system. For example, X64 processors executing a 32-bit219

operating system typically report themself as X86 processor.220

4.3 ResourceLimitType enumeration221

Modern DRM systems expose resource constraint capabilities from the operating system for jobs on the222

execution host. The ResourceLimitType enumeration represents the typical ulimit(3) parameters [5] in223

different DRM systems. All parameters relate to the operating system process representing some job on the224

execution host.225

enum ResourceLimitType {226

CORE_FILE_SIZE , CPU_TIME , DATA_SEG_SIZE , FILE_SIZE , OPEN_FILES ,227

STACK_SIZE , VIRTUAL_MEMORY , WALLCLOCK_TIME };228

drmaa-wg@ogf.org 8

mailto:drmaa-wg@ogf.org

GWD-R March 2011

DRMAA CpuArchitecture value JSDL jsdl:ProcessorArchitectureEnumeration value
ALPHA other

ARM arm
CELL other

PA-RISC parisc
X86 x86 32
X64 x86 64

IA-64 ia64
MIPS mips
PPC powerpc

PPC64 powerpc
SPARC sparc

SPARC64 sparc
OTHER other

Table 2: Mapping example for DRMAA CpuArchitecture enumeration

CORE FILE SIZE: The maximum size of the core dump file created on fatal errors of the process, in229

Kibibyte. Setting this value to zero SHOULD disable the creation of core dump files on the execution230

host.231

CPU TIME: The maximum accumulated time in seconds the process is allowed to perform computations232

on all processors in the execution host.233

DATA SEG SIZE: The maximum amount of memory the process can allocate on the heap e.g. for object234

creation, in Kibibyte.235

FILE SIZE: The maximum file size the process can generate, in Kibibyte.236

OPEN FILES: The maximum number of file descriptors the process is allowed to have open at the same237

time.238

STACK SIZE: The maximum amount of memory the process can allocate on the stack, e.g. for local239

variables, in Kibibyte.240

VIRTUAL MEMORY: The maximum amount of memory the process is allowed to allocate, in Kibibyte.241

WALLCLOCK TIME: The maximum wall clock time in seconds the job is allowed to exist in RUNNING242

and SUSPENDED state (see Section 8.1).243

(See footnote)
6

244

4.4 JobTemplatePlaceholder enumeration245

The JobTemplatePlaceholder enumeration defines constant macros to be used in string attributes of a246

JobTemplate instance.247

enum JobTemplatePlaceholder {248

6 “Pipe size” was not added, since there is no use case in DRM systems with a job concept. “Max user processes” was
omitted because it operates on the notion of users, which is not an explicit concept in DRMAA.

The understanding of wallclock time was decided in the Apr 6th 2011 conf call. At least Condor and Grid Engine fulfil this
definition.

drmaa-wg@ogf.org 9

mailto:drmaa-wg@ogf.org

GWD-R March 2011

HOME_DIRECTORY ,WORKING_DIRECTORY ,HOST_NAME ,USER_NAME ,PARAMETRIC_INDEX };249

A HOME_DIRECTORY placeholder SHOULD be only allowed at the beginning of a JobTemplate attribute value.250

It denotes the remaining portion as a directory / file path resolved relative to the job users home directory251

at the execution host.252

A WORKING_DIRECTORY placeholder SHOULD be only allowed at the beginning of a JobTemplate attribute253

value. It denotes the remaining portion as a directory / file path resolved relative to the jobs working254

directory at the execution host.255

The HOST_NAME placeholder SHOULD be usable at any position within an attribute value that supports place256

holders. It SHALL be substituted by the full-qualified name of the execution host were the job is executed.257

The USER_NAME placeholder SHOULD be usable at any position within an attribute value that supports258

place holders. It SHALL be substituted by the job users account name on the execution host.259

The PARAMETRIC_INDEX placeholder SHOULD be usable at any position within an attribute value that260

supports place holders. It SHALL be substituted by the parametric job index in a JobSession::runBulkJobs261

call (see Section 8.2.6). If the job template is used for a JobSession:runJob call, PARAMETRIC_INDEX262

SHOULD be substituted with a constant implementation-specific value.263

(See footnote)
7

264

5 Extensible Data Structures265

DRMAA defines a set of data structures commonly used by different interfaces to express information266

for and from the DRM system. A DRMAA implementation is allowed to extend these structures with267

implementation-specific attributes in all cases. Behavioral aspects of such extended attributes are out of268

scope for DRMAA. The interpretation is implementation-specific, implementations MAY even ignore such269

attribute values.270

Mariusz pro-
poses to re-
move igno-
rance possi-
bility.

271

Implementations SHALL only extend data structures in the way specified by the language binding. The272

introspection about supported implementation-specific attributes is supported by the DrmaaReflective273

interface (see Section 5.8). Implementations SHOULD also support native introspection functionalities if274

defined by the language binding.275

A language binding MUST define a consistent mechanism to realize implementation-specific structure ex-
tension, without breaking the portability of DRMAA-based applications that relies on the original version
of the structure. Object oriented languages MAY use inheritance mechanisms for this purpose. Instances
of these structures SHALL be treated in a “call-by-value” fashion, meaning that the collection of struct
member values is handed over as one to the called interface method.

Language bindings MAY define how native introspection capabilities of the language or it’s runtime envi-
ronment can also be used to work with implementation-specific attributes. These mechanisms MUST work
in parallel to the DrmaaReflective interface.

7 Placeholders for other job template attributes were rejected, in order to avoid circular dependencies (Conf. call Oct 20th
2010)

drmaa-wg@ogf.org 10

mailto:drmaa-wg@ogf.org

GWD-R March 2011

(See footnote)
8

276

5.1 Queue structure277

Queue is an opaque concept from the perspective of the DRMAA application (see Section 1.3). The Queue278

struct contains read-only information.279

struct Queue {280

string name;281

};282

5.1.1 name283

This attribute contains the name of the queue as reported by the DRM system. The format of the queue284

name is implementation-specific. The naming scheme SHOULD be consistent for all strings returned.285

5.2 Version structure286

The Version structure denotes versioning information for an operating system, DRM system, or DRMAA287

implementation.288

struct Version {289

string major;290

string minor;291

};292

Both the major and the minor part are expressed as strings, in order to allow extensions with character293

combinations such as “rev”. Original version strings containing a dot, e.g. Linux “2.6”, SHOULD be294

interpreted as having the major part before the dot, and the minor part after the dot. The dot character295

SHOULD NOT be added to the Version attributes.296

5.3 Machine structure297

The Machine structure describes the properties of a particular execution host in the DRM system. It contains298

read-only information. An implementation or its DRM system MAY restrict jobs in their resource utilization299

even below the limits described in the Machine structure. The limits given here MAY be imposed by the300

hardware configuration, or MAY be be imposed by DRM system policies.301

struct Machine {302

string name;303

long sockets;304

long coresPerSocket;305

long threadsPerCore;306

double load;307

long physMemory;308

long virtMemory;309

8 Comparison to DRMAA 1.0: The binding of job template attribute names and exception names to strings was removed.
Language bindings have to define their own mapping, if needed.

One example for native language introspection support could be attributes.

drmaa-wg@ogf.org 11

mailto:drmaa-wg@ogf.org

GWD-R March 2011

OperatingSystem machineOS;310

Version machineOSVersion;311

CpuArchitecture machineArch;312

};313

5.3.1 name314

This attribute describes the name of the machine as reported by the DRM system. The format of the315

machine name is implementation-specific, but MAY be a DNS host name. The naming scheme SHOULD be316

consistent for all strings returned.317

5.3.2 sockets318

This attribute describes the number of processor sockets (CPUs) usable for jobs on the machine from oper-319

ating system perspective. The attribute value MUST be greater than 0. In the case where the correct value320

is unknown to the implementation, the value MUST be set to 1.321

5.3.3 coresPerSocket322

This attribute describes the number of cores per socket usable for jobs on the machine from operating system323

perspective. The attribute value MUST be greater than 0. In case where the correct value is unknown to324

the implementation, the value MUST be set to 1.325

5.3.4 threadsPerCore326

This attribute describes the number of threads that can be executed in parallel by a job on one core in the327

machine. The attribute value MUST be greater than 0. In case where the correct value is unknown to the328

implementation, the value MUST be set to 1.329

5.3.5 load330

This attributes describes the 1-minute average load on the given machine, similar to the Unix uptime com-331

mand. The value has only informative character, and should not be utilized by end user applications for job332

scheduling purposes. An implementation MAY provide delayed or averaged data here, if necessary due to333

implementation issues. The implementation strategy on non-Unix systems is undefined.334

5.3.6 physMemory335

This attribute describes the amount of physical memory in Kibibyte available on the machine.336

5.3.7 virtMemory337

This attribute describes the amount of virtual memory in Kibibyte available for a job executing on this338

machine. The virtual memory amount is defined as the sum of physical memory installed plus the configured339

swap space for the operating system. The value is expected to be used as indicator whether or not an340

application is able to get its memory allocation needs fulfilled on a particular machine. Implementations341

SHOULD derive this value directly from operating system information, without further consideration of342

additional memory allocation restrictions such as address space range or already running processes.343

drmaa-wg@ogf.org 12

mailto:drmaa-wg@ogf.org

GWD-R March 2011

5.3.8 machineOS344

This attribute describes the operating system installed on the described machine, with semantics as specified345

in Section 4.1.346

5.3.9 machineOSVersion347

This attribute describes the operating system version of the machine, with semantics as specified in Section348

4.1.349

5.3.10 machineArch350

This attribute describes the instruction set architecture of the machine, with semantics as specified in Section351

4.2.352

5.4 JobInfo structure353

The JobInfo structure describes job information that is available for the DRMAA-based application.354

struct JobInfo {355

string jobId;356

Dictionary resourceUsage;357

long exitStatus;358

string terminatingSignal;359

string annotation;360

JobState jobState;361

any jobSubState;362

OrderedStringList allocatedMachines;363

string submissionMachine;364

string jobOwner;365

string queueName;366

TimeAmount wallclockTime;367

long cpuTime;368

AbsoluteTime submissionTime;369

AbsoluteTime dispatchTime;370

AbsoluteTime finishTime;371

};372

The structure is used in two occasions - first for the expression of information about a single job, and second373

as filter expression when retrieving a list of jobs from the DRMAA implementation.374

In both usage scenarios, the structure information has to be understood as snapshot of the live DRM system.375

Multiple values being set in one structure instance should be interpreted as “occurring at the same time”.376

In real implementations, some granularity limits must be assumed - for example, the wallclockTime and377

the cpuTime attributes might hold values that were measured with a very small delay one after each other.378

In the use case of job information monitoring, it is assumed that the DRM system has three job information379

states: running, buffered, purged. Only information for jobs that are still running or are still held in the380

buffer of finished job information will be reported completely. In this case, the information SHOULD reflect381

the current status of the job as as close as possible to the time of the call.382

drmaa-wg@ogf.org 13

mailto:drmaa-wg@ogf.org

GWD-R March 2011

If jobs have been purged out to accounting, different attributes might not contain valid data. Implementa-383

tions MAY decide to return only partially filled JobInfo instances due to performance restrictions in the384

communication with the DRM system.385

For additional DRMS-specific information, the JobInfo structure MAY be extended by the DRMAA imple-386

mentation (see Section 5).387

(See footnote)
9

388

5.4.1 jobId389

For monitoring: Returns the stringified job identifier assigned to the job by the DRM system.390

For filtering: Returns the job with the chosen job identifier.391

5.4.2 resourceUsage392

For monitoring: Returns resource consumption information for the given job. The dictionary keys are393

implementation-specific.394

For filtering: Returns the jobs that have the dictionary key-value pairs as subset of their own.395

Standardize
resource
usage key
names ?!?

396

5.4.3 exitStatus397

For monitoring: The process exit status of the job, as reported by the operating system. If the job is not in398

one of the terminated states, the value should be UNSET.399

For filtering: Return the jobs with the given exitStatus value. Jobs without exit status information should400

be filtered out by asking for the appropriate states.401

5.4.4 terminatingSignal402

For monitoring: This attribute specifies the UNIX signal that reasoned the end of the job. Implementations403

should document the extent to which they can gather such information in the particular DRM system (e.g.404

with Windows hosts).405

For filtering: Returns the jobs with the given terminatingSignal value.406

5.4.5 annotation407

For monitoring: Gives a human-readable annotation describing why the job is in its current state or sub-state.408

The support for this information is optional.409

For filtering: This attribute is ignored for filtering.410

9 In comparison to DRMAA 1.0, the JobInfo value type was heavily extended for providing more information (solves issue
#2827). JobInfo::hasCoreDump is no longer supported, since the information is useless without according core file staging
support, which is not implementable in a portable way. (conf. call Jun 9th 2010)

Some DRM systems (SGE / Condor at least) support the automated modification of job template attributes after submission,
and therefore allow to fetch the true job template attributes at run-time from the job. The monitoring for such data was
intentionally not included in DRMAA (mailing list July 2010).

drmaa-wg@ogf.org 14

mailto:drmaa-wg@ogf.org

GWD-R March 2011

5.4.6 jobState411

For monitoring: This attribute specifies the jobs current state according to the DRMAA job state model412

(see Section 8.1).413

For filtering: Returns all jobs in the specified state. If the given state is simulated by the implementation414

(see Section 8.1), the implementation SHOULD raise an InvalidArgumentException explaining that this415

filter can never match.416

5.4.7 jobSubState417

For monitoring: This attribute specifies the jobs current DRMAA implementation specific sub-state (see418

Section 8.1).419

For filtering: Returns all jobs in the specified sub-state. If the given sub-state is not supported by the imple-420

mentation (see Section 8.1), the implementation SHOULD raise an InvalidArgumentException explaining421

that this filter can never match.422

5.4.8 allocatedMachines423

This attribute expresses the set of machines that are utilized for job execution. Implementations MAY424

decide to give the ordering of machine names a particular meaning, for example putting the master node in425

a parallel job at first position. This decision should be documented for the user. For performance reasons,426

only the machine names are returned, and SHOULD be equal to the according Machine::name attribute in427

monitoring data.428

For monitoring: This attribute lists the set of names of the machines to which this job has been assigned.429

For filtering: Returns the list of jobs which have a set of assigned machines that is a superset of the given430

set of machines.431

5.4.9 submissionMachine432

This attribute provides the machine name of the submission host for this job. For performance reasons,433

only the machine name is returned, and SHOULD be equal to the according Machine::name attribute in434

monitoring data.435

For monitoring: This attribute specifies the machine from which this job was submitted.436

For filtering: Returns the set of jobs that were submitted from the specified machine.437

5.4.10 jobOwner438

For monitoring: This attribute specifies the job owner as reported by the DRM system.439

For filtering: Returns all jobs owned by the specified user.440

5.4.11 queueName441

For monitoring: This attribute specifies the queue in which the job was queued or started (see Section 1.3).442

For filtering: Returns all jobs that were queued or started in the specified queue.443

drmaa-wg@ogf.org 15

mailto:drmaa-wg@ogf.org

GWD-R March 2011

5.4.12 wallclockTime444

For monitoring: Accumulated time the job spent in RUNNING and SUSPENDED state.445

For filtering: Returns all jobs that have consumed at least the specified amount of wall clock time.446

5.4.13 cpuTime447

For monitoring: This attribute specifies the amount of CPU time consumed by the job. This value includes448

only time the job spent in JobState::RUNNING (see Section 8.1).449

For filtering: Returns all jobs that have consumed at least the specified amount of CPU time.450

5.4.14 submissionTime451

For monitoring: This attribute specifies the time at which the job was submitted. Implementations SHOULD452

use the submission time recorded by the DRM system, if available.453

For filtering: Returns all jobs that were submitted at or after the specified submission time.454

5.4.15 dispatchTime455

For monitoring: The time the job first entered a “Started” state (see Section 8.1). On job restart or re-456

scheduling, this value does not change.457

For filtering: Returns all jobs that entered a “Started” state at, or after the specified dispatch time.458

5.4.16 finishTime459

For monitoring: The time the job first entered a “Terminated” state (see Section 8.1).460

For filtering: Returns all jobs that entered a “Terminated” state at or after the specified finish time.461

Resolve how
to report slot
assignments
for jobs

462

5.5 ReservationInfo structure463

The ReservationInfo structure describes reservation information information that is available for the464

DRMAA-based application.465

struct ReservationInfo {466

string reservationId;467

string reservationName;468

AbsoluteTime reservedStartTime;469

AbsoluteTime reservedEndTime;470

StringList usersACL;471

long reservedSlots;472

OrderedStringList reservedMachines;473

boolean inErrorState;474

};475

drmaa-wg@ogf.org 16

mailto:drmaa-wg@ogf.org

GWD-R March 2011

The structure is used for the expression of information about a single advance reservation, in particular: the476

actual reservation start and end time and the reserved resources. Most of the information provided in this477

structure are, by their nature, static (exept the inErrorState attribute) and should not change over the478

reservation lifetime. However it should be noted that this assumption may not hold if the advance reservation479

is altered outside of the DRMAA.480

For additional DRMS-specific information, the ReservationInfo structure MAY be extended by the DR-481

MAA implementation (see Section 5).482

5.5.1 reservationId483

Returns the stringified job identifier assigned to the advance reservation by the DRM system.484

this attribute
is duplicated
with the
Reservation
interface, the
same happens
to JobIn-
fo/Job but
there we need
it for filtering

485

5.5.2 reservationName486

This attribute describes the reservation name that was stored by the implementation or DRM system, derived487

from the original reservationName attribute given in the ReservationTemplate. The reservationName488

attribute may be UNSET.489

5.5.3 reservedStartTime490

This attribute describes the start time for the reservation. If the value is UNSET, it expresses an unrestricted491

start time (i.e. “minus infinity”) for this reservation.492

5.5.4 reservedEndTime493

This attribute describes the end time for the reservation. If the value is UNSET, it expresses an unrestricted494

end time (i.e. “plus infinity”) for this reservation.495

5.5.5 usersACL496

The list of the users that are permitted to submit jobs to the reservation.497

5.5.6 reservedSlots498

This attribute describes the number of slots that was reserved by the DRM system, based on the original499

minSlots and maxSlots arguments in the ReservationTemplate.500

Could the
reservation
result be a
range, or is
this always
a maximum
? ANSWER:
actually re-
served slots
count can not
be a range
value

501

5.5.7 reservedMachines502

This attribute describes the set of machines which was reserved under the conditions described in the503

according reservation template. Every machine name in the list should be repeated as many times as the504

number of slots reserved on this machine. The reservedMachines attribute may be UNSET.505

Now more
clear: De-
scribes how
many slots
were reserved
on given host

506

drmaa-wg@ogf.org 17

mailto:drmaa-wg@ogf.org

GWD-R March 2011

5.5.8 inErrorState507

This attribute helps to detect error conditions realted with the reservation (e.g. one of the reserved nodes508

went down). If the value is True, this indicate that the reservation is not fully usable, however such reservation509

MAY still be a valid input for the job submission. The opposite does not hold, i.e. if the value is False, it510

does not have to mean that the reservation is fully usable. An error state may be a transient situation. (See

NEW, not
so crucial.
Needs group
approvement

511

footnote)
10

512

5.6 JobTemplate structure513

In order to define the attributes associated with a job, a DRMAA application uses the JobTemplate struc-514

ture. It specifies any required job parameters and is passed to the DRMAA JobSession instance when job515

execution is requested.516

struct JobTemplate {517

string remoteCommand;518

OrderedStringList args;519

boolean submitAsHold;520

boolean rerunnable;521

Dictionary jobEnvironment;522

string workingDirectory;523

string jobCategory;524

StringList email;525

boolean emailOnStarted;526

boolean emailOnTerminated;527

string jobName;528

string inputPath;529

string outputPath;530

string errorPath;531

boolean joinFiles;532

string reservationId;533

string queueName;534

long minSlots;535

long maxSlots;536

long priority;537

OrderedStringList candidateMachines;538

long minPhysMemory;539

OperatingSystem machineOS;540

CpuArchitecture machineArch;541

AbsoluteTime startTime;542

AbsoluteTime deadlineTime;543

Dictionary stageInFiles;544

Dictionary stageOutFiles;545

Dictionary softResourceLimits;546

Dictionary hardResourceLimits;547

string accountingId;548

10In DRMAA 2.0 we do not have an explcit state model for advance reservations as the reservation state can be easily
deducted by comparing current time with reservation start and time.

drmaa-wg@ogf.org 18

mailto:drmaa-wg@ogf.org

GWD-R March 2011

};549

The DRMAA job template concept makes a distinction between mandatory and optional attributes. Manda-550

tory attributes MUST be supported by the implementation in the sense that they are evaluated on job551

submission. Optional attributes MAY be evaluated on job submission, but MUST be provided as part of the552

JobTemplate structure in the implementation. If an unsupported optional attribute has a value different to553

UNSET, the job submission MUST fail with a UnsupportedAttributeException. DRMAA applications are554

expected to check for the availability of optional attributes before using them.555

Implementations MUST set all attribute values to UNSET on struct allocation. This ensures that both the556

DRMAA application and the library implementation can determine untouched attribute members. If not557

described differently in the following sections, all attributes SHOULD be allowed to have the UNSET value558

on job submission.559

An implementation MAY support JobTemplatePlaceholder macros in more occasions than defined in this560

specification.561

A language binding specification SHOULD define how a JobTemplate instance is convertible to a string
for printing, through whatever mechanism is most natural for the implementation language. The resulting
string MUST contain the values of all set properties.

The initialization to UNSET SHOULD be realized without additional methods in the DRMAA interface, if
possible. The according approach MUST be specified by the language binding.

Which
attributes
should allow
the new
HOST NAME
and
USER NAME
place holders
?

562

(See footnote)
11

563

5.6.1 remoteCommand564

This attribute describes the command to be executed on the remote host. In case this parameter contains565

path information, it MUST be seen as relative to the execution host file system and is therefore evaluated566

there. The implementation SHOULD NOT relate the value of this attribute to binary file management or567

file staging activities. The behavior with an UNSET value is implementation-specific.568

The support for this attribute is mandatory.569

5.6.2 args570

This attribute contains the list of command-line arguments for the job(s) to be executed.571

The support for this attribute is mandatory.572

11 Comparison to DRMAA 1.0: JobTemplate is now a value type, meaning that it maps to a struct in C. This removes the
need for DRMAA-defined methods for construction and destruction of job templates. An eventual RPC scenario for DRMAA
gets easier with this approach, since it is closer to the JSDL concept of a job description document.

Supported string placeholders for job template attributes are now listed in the JobTemplatePlaceholder enumeration, and
must be filled with values by the language binding. Invalid job template settings are now only detected on job submission, not
when the attribute is set.

DRMAA1 supported the utilization of new DRM features through an old DRMAA implementation, based on the
nativeSpecification field. A conf call (Jul 14th 2010) voted for dropping this intentionally. Implementations should use
according implementation-specific attributes for this.

drmaa-wg@ogf.org 19

mailto:drmaa-wg@ogf.org

GWD-R March 2011

5.6.3 submitAsHold573

This attribute defines if the job(s) should be submitted as QUEUED or QUEUED_HELD (see Section 8.1). Since574

the boolean UNSET value defaults to False, jobs are submitted as non-held if this attribute is not set.575

The support for this attribute is mandatory.576

5.6.4 rerunnable577

This flag indicates if the submitted job(s) can safely be restarted by the DRM system, for example on a578

node failure or some other re-scheduling event. Since the boolean UNSET value defaults to False, jobs are579

submitted as not rerunnable if this attribute is not set. This attribute SHOULD NOT be used by the580

implementation to let the application denote the checkpointability of a job.581

How should
check-
pointability
be denoted ?

582

The support for this attribute is mandatory.583

(See footnote)
12

584

5.6.5 jobEnvironment585

This attribute holds the environment variable key-value pairs for the execution machine(s). The values586

SHOULD override the execution host environment values if there is a collision.587

The support for this attribute is mandatory.588

5.6.6 workingDirectory589

This attribute specifies the directory where the job or the bulk jobs are executed. If the attribute value590

is UNSET, the behavior is implementation dependent. Otherwise, the attribute value MUST be evaluated591

relative to the file system on the execution host. The attribute value MUST be allowed to contain either the592

JobTemplatePlaceholder::HOME_DIRECTORY or the JobTemplatePlaceholder::PARAMETRIC_INDEX place-593

holder (see Section 4.4).594

The workingDirectory attribute should be specified by the application in a syntax that is common at the595

host where the job is executed. Implementations MAY perform according validity checks on job submission.596

If the attribute is set and no placeholder is used, an absolute directory specification is expected. If the597

attribute is set and the job was submitted successfully and the directory does not exist on the execution598

host, the job MUST enter the state JobState::FAILED.599

The support for this attribute is mandatory.600

5.6.7 jobCategory601

DRMAA facilitates writing DRM-enabled applications even though the deployment properties, in particular602

the configuration of the DRMS, cannot be known in advance.603

Through the jobCategory string attribute, a DRMAA application can specify additional needs of the job(s)604

that are to be mapped by the implementation or DRM system itself to DRMS-specific options. It is intended605

as non-programmatic extension of DRMAA job submission capabilities. The mapping is performed during606

12 The differentiation between rerunnable and checkpointable was decided on a conf call (Aug 25th 2010)

drmaa-wg@ogf.org 20

mailto:drmaa-wg@ogf.org

GWD-R March 2011

the process of job submission. Each category expresses a particular type of job execution that demands607

site-specific configuration, for example path settings, environment variables, or application starters such as608

MPIRUN.609

A valid input SHOULD be one of the returned strings in MonitoringSession::drmsJobCategoryNames (see610

Section 10.1), otherwise an InvalidArgumentException SHOULD be raised.611

A non-normative recommendation of category names is maintained at:612

http://www.drmaa.org/jobcategories/613

In case the name is not taken from the DRMAA working group recommendations, it should be self-614

explanatory for the user to understand the implications on job execution. Implementations are recommended615

to provide a library configuration facility, which allows site administrators to link job category names with616

specific product- and site-specific configuration options, such as submission wrapper shell scripts.617

The interpretation of the supported jobCategory values is implementation-specific. The order of precedence618

for the jobCategory attribute value or other attribute values is implementation-specific. It is RECOM-619

MENDED to overrule job template settings with a conflicting jobCategory setting.620

The support for this attribute is mandatory.621

5.6.8 email622

This attribute holds a list of email addresses that should be used to report DRM information. Content and623

formatting of the emails are defined by the implementation or the DRM system. If the attribute value is624

UNSET, no emails SHOULD be sent to the user running the job(s), even if the DRM system default behavior625

is to send emails on some event.626

The support for this attribute is optional. If an implementation cannot configure the email notification627

functionality of the DRM system, or if the DRM system has no such functionality, the attribute SHOULD628

NOT be supported in the implementation.629

This became
an optional
attribute,
since we
mandate the
’switch off’
semantic in
case of UNSET

630

(See footnote)
13

631

5.6.9 emailOnStarted / emailOnTerminated632

The emailOnStarted flag indicates if the given email address(es) SHOULD get a notification when the job633

(or any of the bulk jobs) entered one of the “Started” states. emailOnTerminated fulfills the same purpose634

for the ”Terminated” states. Since the boolean UNSET value defaults to False, the notification about state635

changes SHOULD NOT be sent if the attribute is not set.636

The support for this attribute is optional. It SHALL only be supported if the email attribute is supported637

in the implementation.638

5.6.10 jobName639

The job name attributes allows the specification of an additional non-unique string identifier for the job(s).640

The implementation MAY truncate any client-provided job name to an implementation-defined length.641

13 The blockEmail attribute in the JobTemplate was replaced by the UNSET semantic for the email adresses. (conf. call
July 28th 2010).

drmaa-wg@ogf.org 21

http://www.drmaa.org/jobcategories/
mailto:drmaa-wg@ogf.org

GWD-R March 2011

The support for this attribute is mandatory.642

5.6.11 inputPath / outputPath / errorPath643

This attribute specifies standard input / output / error stream of the job as a path to a file. If the attribute644

value is UNSET, the behavior is implementation dependent. Otherwise, the attribute value MUST be evaluated645

relative to the file system of the execution host in a syntax that is common at the host. Implementations646

MAY perform according validity checks on job submission. The attribute value MUST be allowed to contain647

any of the JobTemplatePlaceholder placeholders (see Section 4.4). If the attribute is set and no placeholder648

is used, an absolute file path specification is expected.649

If the outputPath or errorPath file does not exist at the time the job is about to be executed, the file650

SHALL first be created. An existing outputPath or errorPath file SHALL be opened in append mode.651

If the attribute is set and the job was submitted successfully and the file cannot be created / read / written652

on the execution host, the job MUST enter the state JobState::FAILED.653

The support for this attribute is mandatory.654

5.6.12 joinFiles655

Specifies whether the error stream should be intermixed with the output stream. Since the boolean UNSET656

value defaults to False, intermixing SHALL NOT happen if the attribute is not set.657

If this attribute is set to True, the implementation SHALL ignore the value of the errorPath attribute and658

intermix the standard error stream with the standard output stream as specified by the outputPath.659

The support for this attribute is mandatory.660

5.6.13 stageInFiles / stageOutFiles661

Specifies what files should be transfered (staged) as part of the job execution. The data staging operation662

MUST be a copy operation between the submission host and the execution host(s). File transfers between663

execution hosts are not covered by DRMAA.664

The attribute value is formulated as dictionary. For each key-value pair in the dictionary, the key defines665

the source path of one file or directory, and the value defines the destination path of one file or directory666

for the copy operation. For stageInFiles, the submission host acts as source, and the execution host(s)667

act as destination. For stageOutFiles, the execution host(s) acts as source, and the submission host act as668

destination.669

All values MUST be evaluated relative to the file system on the host in a syntax that is common at that670

host. Implementations MAY perform according validity checks on job submission. Paths on the execution671

host(s) MUST be allowed to contain any of the JobTemplatePlaceholder placeholders. Paths on the sub-672

mission host MUST be allowed to contain the JobTemplatePlaceholder::PARAMETRIC_INDEX placeholder673

(see Section 4.4). If no placeholder is used in the values, an absolute path specification on the particular674

host SHOULD be assumed by the implementation.675

Jobs SHOULD NOT enter JobState::DONE unless all staging operations are finished. The behavior in676

case of missing files is implementation-specific. The support for wildcard operators in path specifications is677

implementation-specific.678

The support for this attribute is optional.679

drmaa-wg@ogf.org 22

mailto:drmaa-wg@ogf.org

GWD-R March 2011

Needs final
approval by
the group.

680

(See footnote)
14

681

5.6.14 reservationId682

Specifies the identifier of the advance reservation associated with the job(s). The application is expected683

to create an advance reservation through the ReservationSession interface, the resulting reservationId684

(see Section 9.2) then acts as valid input for this job template attribute. Implementations MAY support an685

reservation identifier from non-DRMAA information sources as valid input.686

The support for this attribute is mandatory.687

5.6.15 queueName688

This attribute specifies the name of the queue the job(s) should be submitted to. In case this attribute689

value is UNSET, and MonitoringSession::getAllQueues returns a list with a minimum length of 1, the690

implementation SHOULD use the DRM systems default queue.691

The MonitoringSession::getAllQueues method (see 10.1) supports the determination of valid queue692

names. Implementations SHOULD allow these queue names to be used in the queueName attribute. Imple-693

mentations MAY also support queue names from other non-DRMAA information sources as valid input. If694

no default queue is defined or if the given queue name is not valid, the job submission MUST lead to an695

InvalidArgumentException.696

If MonitoringSession::getAllQueues returns an empty list, this attribute MUST be only accepted with697

the value UNSET.698

Since the meaning of “queues” is implementation-specific, there is no implication on the effects in the DRM699

system when using this attribute. As one example, requesting a number of slots for a job in one queue has no700

implication on the number of utilized machines at run-time. Implementations therefore SHOULD document701

the effects of this attribute accordingly.702

The support for this attribute is mandatory.703

5.6.16 minSlots / maxSlots704

This attribute expresses the minimum / maximum number of slots requested per job (see also Section 1.3).705

If the value of minSlots is UNSET, it SHOULD default to 1. If the value of maxSlots is UNSET, it SHOULD706

default to the value of minSlots.707

Implementations MAY interprete the slot count as number of concurrent processes being allowed on one708

machine. If this interpretation is taken, and minSlots is greater than 1, than the jobCategory SHOULD709

also be demanded on job submission, in order to express the nature of the intended parallel job execution.710

The support for this attribute is mandatory.711

14 Comparsion to DRMAA 1.0: New job template attributes for file transfers were introduced. They allow to express a set
of file staging activities, similar to the approach in LSF and SAGA. They replace the old transferFiles attribute, the according
FileTransferMode data structure and the special host definition syntax in inputPath / outputPath / errorPath (different conf.
calls, SAGA F2F meeting, solves issue #5876)

drmaa-wg@ogf.org 23

mailto:drmaa-wg@ogf.org

GWD-R March 2011

5.6.17 priority712

This attribute specifies the scheduling priority for the job. The intepretation of the given value incl. an713

UNSET value is implementation-specific.714

The support for this attribute is mandatory.715

5.6.18 candidateMachines716

Requests that the job(s) should run on any subset (with minimum size of 1), or all of the given machines.717

If the attribute value is UNSET, it should default to the result of the MonitoringSession::getAllMachines718

method. If this resource demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised719

on job submission time. If the problem can only be detected after job submission, the job should enter720

JobState::FAILED.721

The support for this attribute is mandatory.722

5.6.19 minPhysMemory723

This attribute denotes the minimum amount of physical memory in Kibibyte expected on the / all execution724

host(s). If this resource demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised725

at job submission time. If the problem can only be detected after job submission, the job SHOULD enter726

JobState::FAILED accordingly.727

The support for this attribute is mandatory.728

5.6.20 machineOS729

This attribute denotes the expected operating system type on the / all execution host(s). If this resource de-730

mand cannot be fulfilled, an InvalidArgumentException SHOULD be raised on job submission time. If the731

problem can only be detected after job submission, the job SHOULD enter JobState::FAILED accordingly.732

The support for this attribute is mandatory.733

(See footnote)
15

734

5.6.21 machineArch735

This attribute denotes the expected machine architecture on the / all execution host(s). If this resource736

demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised on job submission time. If737

the problem can only be detected after job submission, the job should enter JobState::FAILED.738

The support for this attribute is mandatory.739

5.6.22 startTime740

This attribute specifies the earliest time when the job may be eligible to be run.741

The support for this attribute is mandatory.742

15 Requesting a particular operating system version is not supported by the majority of DRM systems (conf call Jul 28th
2010)

drmaa-wg@ogf.org 24

mailto:drmaa-wg@ogf.org

GWD-R March 2011

5.6.23 deadlineTime743

Specifies a deadline after which the implementation or the DRM system SHOULD change the job state to744

any of the “Terminated” states (see Section 8.1).745

The support for this attribute is optional.746

5.6.24 softResourceLimits / hardResourceLimits747

This attribute specifies the soft / hard limits on resource utilization of the job(s) on the execution host(s).748

The valid dictionary keys and their value semantics are defined in Section 4.3. An implementation MAY749

map the settings to an ulimit(3) on the operating system, if available.750

The support for this attribute is optional. If only a subset of the attributes from ResourceLimitType is751

supported by the implementation, and some of the unsupported attributes are used, the job submission752

SHOULD raise an InvalidArgumentException expressing the fact that resource limits are supported in753

general.754

Conflicts of these attribute values with any other job template attribute or with referenced advanced reser-755

vations are handled in an implementation-specific manner. Implementations SHOULD try to delegate the756

decision about parameter combination validity to the DRM system, in order to ensure similar semantics in757

different DRMAA implementations for this system.758

Unclear what
happens from
DRMAA per-
spective if
a soft limit
is violated.
We have no
signals.

759

(See footnote)
16

760

5.6.25 accountingId761

This attribute denotes a string that can be used by the DRM system for job accounting purposes. Im-762

plementations SHOULD NOT utilize this information as authentication token, but only as identification763

information in addition to the implementation-specific authentication (see Section 12).764

The support for this attribute is optional.765

5.7 ReservationTemplate structure766

In order to define the attributes associated with an advance reservation, the DRMAA application creates767

an ReservationTemplate instance and requests the fulfilment through the ReservationSession methods768

in the DRM system.769

struct ReservationTemplate {770

string reservationName;771

AbsoluteTime startTime;772

AbsoluteTime endTime;773

TimeAmount duration;774

long minSlots;775

long maxSlots;776

16 In comparison to DRMAA 1.0, resource usage limitations can now be expressed by two dictionaries and an according
standardized set of valid dictionary keys (LimitType). The idea is to allow a direct mapping to ulimit(3) semantics, which are
supported by the majority of DRM system today. A separate run duration limit is no longer needed, since this is covered by
the new CPU TIME limit parameter. (conf. call Jun 9th 2010).

drmaa-wg@ogf.org 25

mailto:drmaa-wg@ogf.org

GWD-R March 2011

StringList usersACL777

OrderedStringList candidateMachines;778

long minPhysMemory;779

OperatingSystem machineOS;780

CpuArchitecture machineArch;781

};782

Similar to the JobTemplate concept (see Section 5.6), there is a distinction between mandatory and op-783

tional attributes. Mandatory attributes MUST be supported by the implementation in the sense that they784

are evaluated in a ReservationSession::requestReservation call. Optional attributes MAY NOT be785

evaluated by the particular implementation, but MUST be provided as part of the ReservationTemplate786

structure in the implementation. If an optional attribute is not evaluated by the particular implementation,787

but has a value different to UNSET, the callto ReservationSession::requestReservation MUST fail with788

a UnsupportedAttributeException.789

Implementations MUST set all attribute values to UNSET on struct allocation. This ensures that both the790

DRMAA application and the library implementation can determine untouched attribute members.

deleted: If
not described
differently in
the following
sections, all
attributes
SHOULD
be allowed
to have
the UNSET
value when
ReservationSession::requestReservation
is called.

791

A language binding specification SHOULD model the ReservationTemplate representation the same way as
the JobTemplate interface (see Section 5.6), and therefore MUST define the realization of implementation-
specific attributes, printing, and and the initialization of attribute values. Complete sec-

tion needs
group ap-
proval

792

5.7.1 reservationName793

A human-readable reservation name. If this attribute is omitted then the name of the reservation SHALL be794

automatically defined by the implementation. The implementation MAY truncate or alter any application-795

provided job name in order to adjust it to the DRMS specific constraints.796

The support for this attribute is optional.797

5.7.2 startTime / endTime / duration798

The time frame in which resources should be reserved. Table 3 explains the different possible parameter799

combinations and their semantic.800

The support for startTime and endTime is mandatory. The support for duration is optional.801

On UNSET
/ UNSET
/ UNSET,
throw Inval-
idArgument
instead ?

802

5.7.3 minSlots803

The minimum number of requested slots (see also Section 1.3). If the attribute value is UNSET, it should804

default to 1.805

The support for this attribute is mandatory.806

drmaa-wg@ogf.org 26

mailto:drmaa-wg@ogf.org

GWD-R March 2011

startTime endTime duration Description
UNSET UNSET UNSET Invalid, SHALL leave to a InvalidAttributeException on the

reservation attempt.
Set UNSET UNSET Invalid, SHALL leave to a InvalidAttributeException on the

reservation attempt.
UNSET Set UNSET Invalid, SHALL leave to a InvalidAttributeException on the

reservation attempt.
Set Set UNSET Perform reservation attempt to get resources in the specified time

frame.
UNSET UNSET Set Perform reservation attempt the get resources at least for the time

amount given in duration.
Set UNSET Set Implies endTime = startTime + duration

UNSET Set Set Implies startTime = endTime - duration

Set Set Set If endTime - startTime is larger than duration, perform a reser-
vation attempt where the demanded duration is fulfilled at the ear-
liest point in time after startTime, and without extending endTime.
If endTime - startTime is smaller than duration, the reserva-
tion attempt SHALL leave to a InvalidAttributeException. If
endTime - startTime and duration are equal, duration SHALL
be ignored.

Table 3: Parameter combinations for the advance reservation time frame. If duration is not supported, it
should be treated as UNSET.

5.7.4 maxSlots807

The maximum number of requested slots (see also Section 1.3). If this attribute is not specified, it should808

default to the value of minSlots.809

The support for this attribute is mandatory.810

5.7.5 usersACL811

The list of the users that would be permitted to submit jobs to the created reservation. If this attribute is812

not specified, it should default to the current user.813

The support for this attribute is mandatory.814

5.7.6 candidateMachines815

Requests that the reservation must be created on any subset of the given list of machines. If this attribute816

is not specified, it should default to the result of MonitoringSession::getAllMachines (see Section 10.1).817

The support for this attribute is optional.818

5.7.7 minPhysMemory819

Requests that the reservation must be created with machines that have at least the given amount of physical820

memory in Kibibyte.821

drmaa-wg@ogf.org 27

mailto:drmaa-wg@ogf.org

GWD-R March 2011

The support for this attribute is optional.822

5.7.8 machineOS823

Requests that the reservation must be created with machines that have the given type of operating system,824

regardless of its version, with semantics as specified in Section 4.1.825

The support for this attribute is optional.826

(See footnote)
17

827

5.7.9 machineArch828

Requests that the reservation must be created with machines that have the given instruction set architecture,829

with semantics as specified in Section 4.2.830

The support for this attribute is optional.831

5.8 DrmaaReflective Interface832

Group ap-
proval for
concept, then
add descrip-
tion

833

6 Common Exceptions834

The exception model specifies error information that can be returned by a DRMAA implementation on835

method calls.836

exception DeniedByDrmException {string message ;};837

exception DrmCommunicationException {string message ;};838

exception TryLaterException {string message ;};839

exception SessionManagementException {string message ;};840

exception TimeoutException {string message ;};841

exception InternalException {string message ;};842

exception InvalidArgumentException {string message ;};843

exception InvalidSessionException {string message ;};844

exception InvalidStateException {string message ;};845

exception OutOfMemoryException {string message ;};846

exception UnsupportedAttributeException {string message ;};847

exception UnsupportedOperationException {string message ;};848

exception NotEnoughSlotsException {string message ;};849

exception InvalidReservationException: {string message ;};850

If not defined otherwise, the exceptions have the following meaning:851

DeniedByDrmException: The DRM system rejected the operation due to security issues.

DeniedBy
DRMSExcep-
tion ?

852

DrmCommunicationException: The DRMAA implementation could not contact the DRM system. The853

problem source is unknown to the implementation, so it is unknown if the problem is transient or not.854

17 Requesting a particular operating system version is not supported by the majority of DRM systems (conf call Jul 28th
2010)

drmaa-wg@ogf.org 28

mailto:drmaa-wg@ogf.org

GWD-R March 2011

TryLaterException: The DRMAA implementation detected a transient problem with performing the855

operation, for example due to excessive load. The application is recommended to retry the call.856

SessionManagementException: A problem was encountered while trying to create / open / close /857

destroy a session.

Should we
have Dupli-
catedSession-
NameExcep-
tion instead?

858

TimeoutException: The timeout given in one the waiting functions was reached without successfully859

finishing the waiting attempt.860

InternalException: An unexpected or internal error occurred in the DRMAA library, for example a system861

call failure. It is unknown if the problem is transient or not.862

InvalidArgumentException: From the viewpoint of the DRMAA library, a function parameter is invalid863

or inappropriate for the particular function call.864

InvalidSessionException: The session used for the function is not valid, for example since it was closed865

before.866

InvalidStateException: The function call is not allowed in the current state of the job.867

OutOfMemoryException: This exception can be thrown by any method at any time when the DRMAA868

implementation has run out of free memory.869

UnsupportedAttributeException: The optional attribute is not supported by the DRMAA implemen-870

tation.871

UnsupportedOperationException: The function is not supported by the DRMAA implementation. One872

example is the registration of an event callback function.873

NotEnoughSlotsException: The advance reservation request could not be fullfiled due to unavailibity of874

resources in the requested time window.875

InvalidReservationException: The reservation do not exist in the DRM System.

Two new
exceptions.
Group
approval
needed.

876

. We might
want to
introduce
InvalidTemplateException
for separating
input
parameter
issues

877

The DRMAA specification assumes that programming languages targeted by language bindings typically

drmaa-wg@ogf.org 29

mailto:drmaa-wg@ogf.org

GWD-R March 2011

support the concept of exceptions. If a destination language does not support them (like ANSI C), the
language binding specification SHOULD map error conditions to an appropriate consistent concept. A
language binding MAY chose to model exceptions as numeric error code return values, and return values as
additional output parameters of the operation. In this case, the language binding specification SHOULD
specify numeric values for all DRMAA error constants.

The representation of exceptions in the language binding MUST support a possibility to express an exception
cause as textual description. Implementations MAY use this text to express DRMS-specific error conditions
that are outside of the DRMAA scope.

Object-oriented language bindings MAY decide to derive all exceptions from one or multiple exception base
classes, in order to support generic catch clauses. Whenever it is appropriate, language bindings SHOULD
replace DRMAA exceptions by their semantically equivalent native exception from the application runtime
environment.

Language bindings MAY decide to introduce a hierarchical ordering of the DRMAA exceptions through class
derivation. In this case, any new exceptions added for aggregation purposes SHOULD be prevented from
being thrown, for example by marking them as abstract.

The UnsupportedAttributeException may either be raised by the setter function for the attribute or by
the job submission function. A consistent decision for either one or the other approach MUST be made by
the language binding specification.

(See footnote)
18

878

7 The DRMAA Session Concept879

DRMAA relies on an overall session concept, which supports the persistency of job and advance reservation880

information over multiple application runs. This supports short-lived applications that need to work with881

DRM system state spanning multiple application runs. Typical examples are job submission portals or882

command-line tools. The session concept is also intended to allow implementations to perform DRM system883

attach / detach operations at dedicated points in the application control flow.884

7.1 SessionManager Interface885

interface SessionManager{886

readonly attribute string drmsName;887

readonly attribute Version drmaaVersion;888

readonly attribute boolean reservationSupported;889

JobSession createJobSession(in string sessionName ,890

in string contactString);891

ReservationSession createReservationSession(in string sessionName ,892

in string contactString);893

MonitoringSession createMonitoringSession (in string contactString);894

18 Comparsion to DRMAA 1.0: The InconsistentStateException was removed, since it is semantically equal to the In-
validStateException (conf. call Jan 7th 2010) The former HoldInconsistentStateException, ReleaseInconsistentStateException,
ResumeInconsistentStateException, and SuspendInconsistentStateException from DRMAA v1.0 are now expressed as single
InvalidStateException with different meaning per raising method. (F2F meeting July 2009)

drmaa-wg@ogf.org 30

mailto:drmaa-wg@ogf.org

GWD-R March 2011

JobSession openJobSession(in string sessionName);895

ReservationSession openReservationSession(in string sessionName);896

void closeJobSession(in JobSession s);897

void closeReservationSession(in ReservationSession s);898

void closeMonitoringSession(in MonitoringSession s);899

void destroyJobSession(in string sessionName);900

void destroyReservationSession(in string sessionName);901

StringList getJobSessions ();902

StringList getReservationSessions ();903

};904

The SessionManager interface is the main interface for establishing communication with a given DRM sys-905

tem. By the help of this interface, sessions for job management, monitoring, and/or reservation management906

can be maintained.907

Job and reservation sessions maintain persistent state information (about jobs and reservations created)908

between application runs. State data SHOULD be persisted by the library implementation or the DRMS909

itself (if supported) after closing the session through the according method in the SessionManager interface.910

The re-opening of a session MUST be possible on the machine where the session was originally created.911

Implementations MAY also offer to re-open the session on another machine.912

The state information SHOULD be kept until the job or reservation session is explicitly reaped by the913

according destroy method in the SessionManager interface. If an implementation runs out of resources for914

storing the session information, the closing function SHOULD throw a SessionManagementException. If915

an application ends without closing the session properly, the behavior of the DRMAA implementation is916

undefined.917

An implementation MUST allow the application to have multiple sessions of the same or different types918

instantiated at the same time. This includes the proper coordination of parallel calls to session methods919

that share state information.920

(See footnote)
19

921

7.1.1 drmsName922

A system identifier denoting a specific type of DRM system, e.g. “LSF” or “GridWay”. It is intended923

to support conditional code blocks in the DRMAA application that rely on DRMS-specific details of the924

DRMAA implementation. Implementations SHOULD NOT make versioning information of the particular925

DRM system a part of this attribute value.926

7.1.2 drmaaVersion927

A combination of minor / major version number information for the DRMAA implementation. The major928

version number MUST be the constant value “2”, the minor version number SHOULD be used by the929

19 Comparison to DRMAA 1.0: The concept of a factory from GFD.130 was removed (solves issue #6276). Version 2.0 of
DRMAA supports restartable sessions by the newly introduced SessionManager interface. It allows creating multiple concurrent
sessions for job submission (solves issue #2821), which can be restarted by their generated session name (solves issue #2820).
Session.init() and Session.exit() functionalities are moved to the according session creation and closing routines. The descriptions
were fixed accordingly (solves issue #2822). The AlreadyActiveSession error was removed. (F2F meeting July 2009) The
drmaaImplementation attribute from DRMAA 1.0 was removed, since it was redundant to the drmsInfo attribute. This one is
now available in the new SessionManager interface. (F2F meeting July 2009).

drmaa-wg@ogf.org 31

mailto:drmaa-wg@ogf.org

GWD-R March 2011

DRMAA implementation for expressing its own versioning information.930

7.1.3 reservationSupported931

The attribute indicates if advance reservation is supported by the DRMAA implementation. If False, all932

methods related to advance reservation will raise an UnsupportedOperationExeption if being used.933
New, needs
group ap-
proval

934

(See footnote)
20

935

7.1.4 createJobSession / createReservationSession / createMonitoringSession936

The method creates a new session instance of the particular type for the application. On successful completion937

of this method, the necessary initalization for making the session usable MUST be completed. Examples are938

the connection establishment from the DRMAA library to the DRM system, or the prefetching of information939

from non-thread-safe operating system calls, such as getHostByName.940

The contactString parameter is an implementation-dependent string that SHALL allow the application to941

specify which DRM system instance to use. A contact string represents a specific installation of a specific942

DRM system, e.g. a Condor central manager machine at a given IP address, or a Grid Engine ‘root’ and943

‘cell’. Contact strings are always implementation dependent and therefore opaque to the application. If944

contactString has the value UNSET, a default DRM system SHOULD be contacted. The manual configu-945

ration or automated detection of a default contact is implementation-specific.946

The sessionName parameter denotes a unique name to be used for the new session. If a session with such947

a name was created before, the method MUST throw an InvalidArgumentException. In all other cases,948

including if the provided name has the value UNSET, a new session MUST be created with a unique name949

generated by the implementation. A MonitoringSession instance has no persistent state, and therefore950

does not support the name concept.951

If the DRM system does not support advance reservation, than createReservationSession SHALL throw952

an UnsupportedOperationException.953

7.1.5 openJobSession / openReservationSession954

The method is used to open a persisted JobSession or ReservationSession instance that has previously955

been created under the given sessionName. The implementation MUST support the case that the session956

have been created by the same application or by a different application running on the same machine. The957

implementation MAY support the case that the session was created or updated on a different machine. If958

no session with the given sessionName exists, an InvalidArgumentException MUST be raised.959

If the session described by sessionName was already opened before, implementations MAY return the same960

job or reservation session instance.961

If the DRM system does not support advance reservation, openReservationSession SHALL throw an962

UnsupportedOperationException.963

20This attribute is intended to avoid test calls for checking if advance reservation is supported by the implementation

drmaa-wg@ogf.org 32

mailto:drmaa-wg@ogf.org

GWD-R March 2011

7.1.6 closeJobSession / closeReservationSession / closeMonitoringSession964

The method MUST do whatever work is required to disengage from the DRM system. It SHOULD be callable965

only once, by only one of the application threads. This SHOULD be ensured by the library implementation.966

Additional calls beyond the first SHOULD lead to a NoActiveSessionException error notification.967

For JobSession or ReservationSession instances, the according state information MUST be saved to some968

stable storage before the method returns. This method SHALL NOT affect any jobs or reservations in the969

session (e.g., queued and running jobs remain queued and running).970

If the DRM system does not support advance reservation, closeReservationSession SHALL throw an971

UnsupportedOperationException.972

7.1.7 destroyJobSession / destroyReservationSession973

The method MUST do whatever work is required to reap persistent session state and cached job state974

information for the given session name. If session instances for the given name exist, they MUST become975

invalid after this method was finished sucessfully. Invalid sessions MUST throw InvalidSessionException976

on every attempt of utilization. This method SHALL NOT affect any jobs or reservations in the session in977

their operation, e.g. queued and running jobs remain queued and running.978

If the DRM system does not support advance reservation, destroyReservationSession SHALL throw an979

UnsupportedOperationException.980

7.1.8 getJobSessions / getReservationSessions981

This method returns a list of JobSession or ReservationSession names that are valid input for a openJobSession982

or openReservationSession call.983

If the DRM system does not support advance reservation, getReservationSessions SHALL throw an984

UnsupportedOperationException.985

8 Working with Jobs986

A DRMAA job represents a single computational activity that is executed by the DRM system on a execution987

host, typically as operating system process. The JobSession interface represents all control and monitoring988

functions commonly available in DRM systems for such jobs as a whole, while the Job interface represents the989

common functionality for single jobs. Sets of jobs resulting from a bulk submission are separately represented990

by the JobArray interface. JobTemplate instances allow to formulate conditions and requirements for the991

job execution by the DRM system.992

8.1 The DRMAA State Model993

DRMAA defines the following job states:994

enum JobState {995

UNDETERMINED , QUEUED , QUEUED_HELD , RUNNING , SUSPENDED , REQUEUED ,996

REQUEUED_HELD , DONE , FAILED };997

UNDETERMINED: The job status cannot be determined. This is a permanent issue, not being solvable998

by querying again for the job state.999

drmaa-wg@ogf.org 33

mailto:drmaa-wg@ogf.org

GWD-R March 2011

QUEUED: The job is queued for being scheduled and executed.1000

QUEUED HELD: The job has been placed on hold by the system, the administrator, or the submitting1001

user.1002

RUNNING: The job is running on a execution host.1003

SUSPENDED: The job has been suspended by the user, the system or the administrator.1004

REQUEUED: The job was re-queued by the DRM system, and is eligible to run.1005

REQUEUED HELD: The job was re-queued by the DRM system, and is currently placed on hold.1006

DONE: The job finished without an error.1007

FAILED: The job exited abnormally before finishing.1008

If a DRMAA job state has no representation in the underlying DRMS, the DRMAA implementation MAY1009

never report that job state value. However, all DRMAA implementations MUST provide the JobState1010

enumeration as given here. An implementation SHOULD NOT return any job state value other than those1011

defined in the JobState enumeration.1012

The status values relate to the DRMAA job state transition model, as shown in Figure 1.1013

TerminatedStartedQueued

QUEUED

QUEUED_HELD

RUNNING

SUSPENDED

DONE

FAILED

UNDETERMINED

REQUEUED

REQUEUED_HELD

runJob()
runBulkJobs()

Figure 1: DRMAA Job State Transition Model

The transition diagram in Figure 1 expresses the clasification of possible job states into “Queued”, “Started”,1014

and “Terminated”. This is relevant for the job waiting functions (see Section 8.2 and Section 8.4), which1015

drmaa-wg@ogf.org 34

mailto:drmaa-wg@ogf.org

GWD-R March 2011

operate on job state classes only. The “Terminated” class of states is final, meaning that further state1016

transition is not allowed.1017

Implementations SHALL NOT introduce other job transitions (e.g. from RUNNING to QUEUED) beside the ones1018

stated in Figure 1, even if they might happen in the underlying DRM system. In this case, implementations1019

MAY emulate the neccessary intermediate steps for the DRMAA-based application.1020

When an application requests job state information, the implementation SHOULD also provide the subState1021

value to explain DRM-specific information about the job state. The possible values of this attribute are1022

implementation-specific, but should be documented properly. Examples are extra states for staging phases1023

or details on the hold reason. Implementations SHOULD define a DRMS-specific data structure for the1024

sub-state information that can be converted to / from the data type defined by the language binding.1025

The IDL definition declares the sub state attributes as type any, expressing the fact that the language
binding MUST map the data type to a generic language type (e.g. void*, Object) that maintains source code
portability across DRMAA implementations and still accepts an UNSET value.

The DRMAA job state model can be mapped to other high-level API state models. Table 4 gives a non-1026

normative set of examples.1027

DRMAA JobState SAGA JobState [3] OGSA-BES Job State [2]
UNDETERMINED N/A N/A
QUEUED Running Pending (Queued)
QUEUED HELD Running Pending (Queued)
RUNNING Running Running (Executing)
SUSPENDED Suspended Running (Suspended)
REQUEUED Running Pending (Queued)
REQUEUED HELD Running Pending (Queued)
DONE Done Finished
FAILED Cancelled, Failed Cancelled, Failed

Table 4: Example Mapping of DRMAA Job States Re-check job
state map-
ping

1028

(See footnote)
21

1029

21 Comparison to DRMAA 1.0:
The differentiation between the system hold, user hold, and system / user hold job states was removed (conf. call Jan

20th 2009). There is only one hold state now. A job can now change its state from one of the SUSPENDED states to the
QUEUED ACTIVE state (conf. call Jan 20th 2009, solves issue #2788). The job state UNDETERMINED is now clearer
defined. It expressed a permanent issue, meaning that the job state will not change by just waiting. Temporary problems in
the detection of the job state are now expressed by the TryLaterException (conf. call Feb 5th 2009, solves issue #2783). The
description of the FAILED state was extended to support a more specific differentiation between different job failure reasons.
The new subState feature allows the DRMAA implementation to provide better information, if available. There was no portable
way of standardizing extended failure information in a better way. (conf. call May 12th 2009, solves issue #5875) The different
suspend job states from DRMAA1 (user suspended, system suspended, user / system suspended) are now combined into one
suspend state. DRM systems with the need to express the different suspend reasons can use the new sub-state feature (conf.
call Mar 5th 2010).

drmaa-wg@ogf.org 35

mailto:drmaa-wg@ogf.org

GWD-R March 2011

8.2 JobSession Interface1030

A job session instance acts as container for job instances controlled through the DRMAA API. The session1031

methods support the submission of new jobs, the monitoring and the control of existing jobs. The relationship1032

between jobs and their session MUST be persisted, as described in Section 7.1.1033

interface JobSession {1034

readonly attribute string contact;1035

readonly attribute string sessionName;1036

readonly attribute boolean notificationSupported;1037

JobList getJobs(in JobInfo filter);1038

Job runJob(in JobTemplate jobTemplate);1039

JobArray runBulkJobs(1040

in JobTemplate jobTemplate ,1041

in long beginIndex ,1042

in long endIndex ,1043

in long step);1044

Job waitAnyStarted(in JobList jobs , in TimeAmount timeout);1045

Job waitAnyTerminated(in JobList jobs , in TimeAmount timeout);1046

void registerEventNotification(in DrmaaCallback callback);1047

};1048

(See footnote)
22

1049

8.2.1 contact1050

This attribute contains the contact value that was used in the SessionManager::createJobSession call1051

for this instance (see Section 7.1). If no value was originally provided, the default contact string from the1052

implementation MUST be returned. This attribute is read-only.1053

8.2.2 sessionName1054

This attribute contains the sessionName value that was used in the SessionManager::createJobSession1055

or SessionManager::openJobSession call for this instance (see Section 7.1). This attribute is read-only.1056

22 Comparison to DRMAA 1.0: The original separation between synchronize() and wait() was replaced by a complete new
synchronization semantic in the API. DRMAA2 has now two methods, waitStarted() and waitTerminated(). The first waits
for any state that expresses that the job was started, the second for any terminal status. Both methods are available on
session level (wait for any of the given jobs to start / end) or on single job level (solves issue #5880 and #2838). The function
returns always a Job object, in order to allow chaining, e.g. job.wait(JobStatus.RUNNING).hold(). The session-level functions
implement the old DRMAA wait(SESSION ANY). The old synchronize() semantics are no longer directly supported - instead,
the DRMAA application should use a looped Job.wait... / JobSession.waitAny... call. The result is a more condensed and
responsive API, were the application can decide to keep the user informed during synchronization on a set of jobs. DRMAA
library implementations should also become easier to design, since the danger of multithreading side effects inside the DRMAA
API is reduced by this change. As a side effect, JOB IDS SESSION ANY and JOB IDS SESSION ALL are no longer needed.
The special consideration of a partial failures during SESSION ALL wait activities is also no longer necessary (F2F meeting
July 2009). The JobSession now allows to fetch also information about jobs that were not submitted through DRMAA (conf.
call June 23th 2010).

drmaa-wg@ogf.org 36

mailto:drmaa-wg@ogf.org

GWD-R March 2011

8.2.3 notificationSupported1057

The attribute indicates if event notification is supported by the DRMAA implementation for the job session.1058

If False, then registerEventNotification will raise an UnsupportedOperationExeption if being used.1059
New, needs
group ap-
proval

1060

8.2.4 getJobs1061

This method returns a sequence of jobs that belong to the job session. The filter parameter allows one1062

to choose a subset of the session jobs as return value. The attribute semantics for the filter argument are1063

explained in Section 5.4. If no job matches or the session has no jobs attached, the method MUST return1064

an empty sequence instance. If filter is UNSET, all session jobs MUST be returned.1065

Time-dependent effects of this method, such as jobs no longer matching to filter criteria on evaluation time,1066

are implementation-specific. The purpose of the filter parameter is to keep scalability with a large number1067

of jobs per session. Applications therefore must consider the possibly changed state of jobs during their1068

evaluation of the method result.1069

8.2.5 runJob1070

The runJob method submits a job with the attributes defined in the job template parameter. It returns a1071

Job object that represents the job in the underlying DRM system. Depending on the job template settings,1072

submission attempts may be rejected with an InvalidArgumentException. The error details SHOULD1073

provide further information about the attribute(s) responsible for the rejection.1074

When this method returns a valid Job instance, the following conditions SHOULD be fulfilled:1075

• The job is part of the persistent state of the job session.1076

• All non-DRMAA and DRMAA interfaces to the DRM system report the job as being submitted to1077

the DRM system.1078

• The job has one of the DRMAA job states.1079

8.2.6 runBulkJobs1080

The runBulkJobs method creates a set of parametric jobs, each with attributes defined in the given1081

job template. Each job in the set is identical, except for the job template attributes that include the1082

JobTemplatePlaceholder::PARAMETRIC_INDEX macro (see Section 5.6).1083

If any of the resulting parametric job templates is not accepted by the DRM system, the method call MUST1084

raise an InvalidArgumentException. No job from the set SHOULD be submitted in this case.1085

The first job in the set has an index equal to the beginIndex parameter of the method call. The smallest valid1086

value for beginIndex is 1. The next job has an index equal to beginIndex + step, and so on. The last job1087

has an index equal to beginIndex + n * step, where n is equal to(endIndex - beginIndex) / step. The1088

index of the last job may not be equal to endIndex if the difference between beginIndex and endIndex is not1089

evenly divisible by step. The beginIndex value must be less than or equal to the endIndex value, and only1090

positive index numbers are allowed, otherwise the method SHOULD raise an InvalidArgumentException.1091

Implementations MAY provide custom ways for the job to determine its index number.1092

drmaa-wg@ogf.org 37

mailto:drmaa-wg@ogf.org

GWD-R March 2011

The runBulkJobs method returns a JobArray (see Section 8.5) instance that represents the set of Job objects1093

created by the method call under a common array identifier. For each of the jobs in the array, the same1094

conditions as for the result of runJob SHOULD apply.1095

The largest valid value for endIndex MUST be defined by the language binding.

(See footnote)
23

1096

8.2.7 waitAnyStarted / waitAnyTerminated1097

The waitAnyStarted method blocks until any of the jobs referenced in the jobs parameter entered one of1098

the “Started” states. The waitAnyTerminated method blocks until any of the jobs referenced in the jobs1099

parameter entered one of the “Terminated” states (see Section 8.1). If the input list contains jobs that are1100

not part of the session, waitAnyStarted SHALL fail with an InvalidArgumentException.1101

The timeout argument specifies the desired behavior when a result is not immediately available. The con-1102

stant value INFINITE_TIME may be specified to wait indefinitely for a result. The constant value ZERO_TIME1103

may be specified to return immediately. Alternatively, a number of seconds may be specified to indicate1104

how long to wait for a result to become available. If the invocation exits on timeout, an TimeoutException1105

SHALL be raised.1106

In a multi-threaded environment with multiple JobSession::waitAny... calls, only one of the active thread1107

SHOULD get the status change notification for a particular job, while the other threads SHOULD continue1108

waiting. If there are no more queryable jobs left in the session, all remaining waiting threads SHOULD fail1109

with an InvalidStateException. If thread A is waiting for a specific job with Job::wait..., and another1110

thread, thread B, waiting for that same job or with JobSession::waitAny..., than B SHOULD receive the1111

notification that the job has finished, thread A SHOULD fail with an InvalidStateException. Waiting for1112

a job state is a read-only operation.1113

An application waiting for some condition to happen in all jobs of a set is expected to perform looped calls1114

of these waiting functions.1115

(See footnote)
24

1116

8.2.8 registerEventNotification1117

This method is used to register a DrmaaCallback interface (see Section 8.3) implemented by the DRMAA-1118

based application. If the callback functionality is not supported by the DRMAA implementation, the method1119

SHALL raise an UnsupportedOperationException. Implementations MAY support the registration of1120

multiple callback methods.1121

A language binding specification MUST define how the reference to an interface-compliant method can be
given as argument to this method.

23 There was a discussion (mailing list Jan 2011) about having specialized job templates for bulk submission, with support
for the start / end index and a slots limit. We rejected that, since job templates are intended for re-usage.

24 People typically ask for the waitAll..() counterparts of these functions. Since they are so easy to implement in the
application itself, we could not see any benefit in adding them. Due to there intended long-blocking operation, the DRM
system would no be able to offer any better (meaning much faster) implementation to be wrapped by DRMAA.

drmaa-wg@ogf.org 38

mailto:drmaa-wg@ogf.org

GWD-R March 2011

8.3 DrmaaCallback Interface1122

The DrmaaCallback interface allows the DRMAA library or the DRM system to inform the application about1123

relevant events from the DRM system in a asynchronous fashion. One expected use case is loseless monitoring1124

of job state transitions. The support for such callback functionality is optional, but all implementations1125

MUST define the DrmaaCallback interface type as given in the language binding.1126

interface DrmaaCallback {1127

void notify(in DrmaaNotification notification);1128

};1129

struct DrmaaNotification {1130

DrmaaEvent event;1131

Job job;1132

JobState jobState;1133

};1134

enum DrmaaEvent {1135

NEW_STATE , MIGRATED , ATTRIBUTE_CHANGE1136

};1137

The application callback interface is registered through the JobSession::registerEventNotification1138

method (see Section 8.2). The DrmaaNotification structure represents the notification information from1139

the DRM system. Implementations MAY extend this structure for further information (see Section 5). All1140

given information SHOULD be valid at least at the time of notification generation.1141

The DrmaaEvent enumeration defines standard event types for notification:1142

NEW STATE The job entered a new state, which is described in the jobState attribute of the notification1143

structure.1144

MIGRATED The job was migrated to another execution host, and is now in the given state.1145

ATTRIBUTE CHANGE A monitoring attribute of the job, such as the memory consumption, changed1146

to a new value. The jobState attribute MAY have the value UNSET on this event.1147

DRMAA implementations SHOULD protect themself from unexpected behavior of the called application.1148

This includes indefinite delays or unexpected exceptions from the callee. An implementation SHOULD1149

also disallow any library calls while the callback function is running, to avoid recursion scenarios. It is1150

RECOMMENDED to raise TryLaterException in this case.1151

Scalability issues of the notification facility are out of scope for this specification. Implementations MAY1152

decide to support non-standardized throttling configuration options.1153

(See footnote)
25

1154

8.4 Job Interface1155

Every job in the JobSession is expressed by an own instance of the Job interface. It allows one to instruct1156

the DRM system for a job status change, and to query the status attributes of the job in the DRM system.1157

25 We intentionally did not add subState to the notification information, since this would make callback interface implemen-
tations specific for the DRM system, without any chance for creating a portable DRMAA application.

drmaa-wg@ogf.org 39

mailto:drmaa-wg@ogf.org

GWD-R March 2011

interface Job {1158

readonly attribute string jobId;1159

readonly attribute JobSession session;1160

readonly attribute JobTemplate jobTemplate;1161

void suspend ();1162

void resume ();1163

void hold ();1164

void release ();1165

void terminate ();1166

JobState getState(out any jobSubState);1167

JobInfo getInfo ();1168

Job waitStarted(in TimeAmount timeout);1169

Job waitTerminated(in TimeAmount timeout);1170

};1171

(See footnote)
26

1172

8.4.1 jobId1173

This attribute provides the string job identifier assigned to the job by the DRM system. It is intended as1174

performant alternative for fetching a complete JobInfo instance for this information.1175

8.4.2 session1176

This attribute offers a reference to the JobSession instance that represents the session used for the job1177

submission creating this Job instance.1178

8.4.3 jobTemplate1179

This attribute provides a reference to a JobTemplate instance that has equal values to the one that was1180

used for the job submission creating this Job instance.

We must
clarify if this
attribute
should be
UNSET for
non-session
jobs

1181

8.4.4 suspend / resume / hold / release / terminate1182

The job control functions allow modifying the status of the single job in the DRM system, according to the1183

state model presented in Section 8.1.1184

The suspend method triggers a transition from RUNNING to SUSPENDED state. The resume method triggers1185

a transition from SUSPENDED to RUNNING state. The hold method triggers a transition from QUEUED to1186

QUEUED_HELD, or from REQUEUED to REQUEUED_HELD state. The release method triggers a transition from1187

QUEUED_HELD to QUEUED, or from REQUEUED_HELD to REQUEUED state. The terminate method triggers a1188

26 In comparison to DRMAA v1.0, DRMAA2 replaces the identification of jobs by strings with Job objects. This enables a
tighter integration of job meta-data and identity, for the price of reduced performance in (so far not existing) DRMAA RPC
scenarios. The former DRMAA control() with the JobControlAction structure is now split up into dedicated functions (such
as hold() and release()) on the Job object.

Even though the DRMAAv2 surveys showed interest in interactive job support, this feature was intentionally left out. Reasons
are the missing support in some major DRM systems, and the lack of a relevant DRMAA-related use case (conf. call Jan 7th
2010)

Issue #5877 (support for direct job signaling) was rejected, even though there was an according request from the SAGA WG.
Issue #2782 (change attributes of submitted, but pending jobs) was rejected based on group decision.

drmaa-wg@ogf.org 40

mailto:drmaa-wg@ogf.org

GWD-R March 2011

transition from any of the “Started” states to one of the “Terminated” states. If the job is in an inappropriate1189

state for the particular method, the method MUST raise an InvalidStateException.1190

The methods SHOULD return after the action has been acknowledged by the DRM system, but MAY1191

return before the action has been completed. Some DRMAA implementations MAY allow this method1192

to be used to control jobs submitted externally to the DRMAA session, such as jobs submitted by other1193

DRMAA sessions in other DRMAA implementations or jobs submitted via native utilities. This behavior is1194

implementation-specific.1195

8.4.5 getState1196

This method allows one to gather the current status of the job according to the DRMAA state model,1197

together with an implementation specific sub state (see Section 8.1). It is intended as performant alternative1198

for fetching a complete JobInfo instance for state checks. The timing conditions are described in Section1199

5.4.1200

(See footnote)
27

1201

8.4.6 getInfo1202

This method returns a JobInfo instance for the particular job under the conditions described in Section 5.4.1203

8.4.7 waitStarted / waitTerminated1204

The waitStarted method blocks until the job entered one of the “Started” states. The waitTerminated1205

method blocks until the job entered one of the “Terminated” states (see Section 8.1). The timeout argument1206

specifies the desired behavior when a result is not immediately available. The constant value INFINITE_TIME1207

may be specified to wait indefinitely for a result. The constant value ZERO_TIME may be specified to return1208

immediately. Alternatively, a number of seconds may be specified to indicate how long to wait for a result to1209

become available. If the invocation exits on timeout, an TimeoutException SHALL be raised. If the job is1210

in an inappropriate state for the particular method, the method MUST raise an InvalidStateException.1211

8.5 JobArray Interface1212

The following section explains the set of methods and attributes defined in the JobArray interface. Any1213

instance of this interface represent an job array, a common concept in many DRM systems for a job set created1214

by one operation. In DRMAA, JobArray instances are only created by the runBulkJobs operation (see1215

Section 8.2). JobArray instances differ from the JobList data structure due to their potential for representing1216

a DRM system concept, while JobList is a DRMAA-only concept mainly realized by the language binding1217

sequence support. Implementations SHOULD realize the JobArray functionality as wrapper for DRM system1218

job arrays, if possible. If the DRM system has only single job support or incomplete job array support with1219

respect to the DRMAA-provided functionality, implementations MUST realize the JobArray functionality1220

on their own, for example based on looped operations with a list of jobs.1221

interface JobArray {1222

readonly attribute string jobArrayId;1223

readonly attribute JobList jobs;1224

readonly attribute JobSession session;1225

27 The getState() function now also returns job subState information. This is intended as additional information for the given
DRMAA job state, and can be used for expressing the hold state differentiation from DRMAA 1.0 (conf. call Mar 31st 2009).

drmaa-wg@ogf.org 41

mailto:drmaa-wg@ogf.org

GWD-R March 2011

readonly attribute JobTemplate jobTemplate;1226

void suspend ();1227

void resume ();1228

void hold ();1229

void release ();1230

void terminate ();1231

};1232
Completely
new, needs
group ap-
proval

1233

(See footnote)
28

1234

8.5.1 jobArrayId1235

This attribute provides the string job identifier assigned to the job array by the DRM system. If the DRM1236

system has no job array support, the implementation MUST generate a system-wide unique identifier for1237

the result of the successful runBulkJobs operation.1238

8.5.2 jobs1239

This attribute provides the static list of jobs that are part of the job array.1240

(See footnote)
29

1241

8.5.3 session1242

This attribute offers a reference to a JobSession instance that represents the session which was used for the1243

job submission creating this JobArray instance.1244

8.5.4 jobTemplate1245

This attribute provides a reference to a JobTemplate instance that has equal values to the one that was1246

used for the job submission creating this JobArray instance.1247

(See footnote)
30

1248

8.5.5 suspend / resume / hold / release / terminate1249

The job control functions allow modifying the status of the job array in the DRM system, with the same1250

semantic as with the counterparts in the Job interface (see Section 8.4). If one of the jobs in the array is in1251

an inappropriate state for the particular method, the method MUST raise an InvalidStateException.1252

28 We are aware of the fact that some systems (e.g. LSF at the time of writing) do not support all DRMAA control operations
offered for JobArrays. Since we intended to avoid optional DRMAA operations wherever we could, the text here mandates
the implementation to simulate the JobArray support on its own. For example, looping over all jobs in the array and calling
“suspend” for each one is trivial to implement and fulfills the same purpose.

29 We were asked for offering a filter support similar to JobSession here. This was rejected by discussion on the list (Jan
2011), since the number of jobs returned here is normally comparatively short. In this case, the DRM system cannot provide
any benefit over the looped check in the application itself.

30 The use case from SAGA perspective is that the user can easily resubmit the same job - just changing for example some
command line parameter, but leaving the remainder fixed (mail by Andre Merzky, July 29th 2010).

drmaa-wg@ogf.org 42

mailto:drmaa-wg@ogf.org

GWD-R March 2011

The methods SHOULD return after the action has been acknowledged by the DRM system for all jobs in1253

the array, but MAY return before the action has been completed. Some DRMAA implementations MAY1254

allow this method to be used to control job arrays created externally to the DRMAA session, such as job1255

arrays submitted by other DRMAA sessions in other DRMAA implementations or job arrays submitted via1256

native utilities. This behavior is implementation-specific.1257

9 Working with Advance Reservation1258

Adance reservation is a DRM system concept that allows the reservation of execution resources for jobs1259

to be submitted. DRMAA encapsulates such functionality of a DRM system with the interfaces and data1260

structures described in this chapter.1261

DRMAA implementations for DRM systems that do not support advance reservation still MUST imple-1262

mented the described interfaces, in order to keep source code portability for DRMAA-based applications.1263

9.1 ReservationSession Interface1264

Every ReservationSession instance represents a set of advance reservations in the DRM system. Every1265

Reservation instance SHALL belong only to one ReservationSession instance.1266

interface ReservationSession {1267

readonly attribute string contact;1268

readonly attribute string sessionName;1269

Reservation getReservation(in string reservationId);1270

Reservation requestReservation(in ReservationTemplate reservationTemplate);1271

ReservationList getReservations ();1272

};1273

If the DRM system does not support advance reservation, all methods in this interface SHALL throw an1274

UnsupportedOperationException.1275

9.1.1 contact1276

This attribute contains the contact value that was used in the createReservationSession call for this1277

instance (see Section 7.1). If no value was originally provided, the default contact string from the implemen-1278

tation MUST be returned. This attribute is read-only.1279

9.1.2 sessionName1280

This attribute contains the name of the session that was used for creating or opening this Reservation1281

instance (see Section 7.1). This attribute is read-only.1282

9.1.3 getReservation1283

This method returns a Reservation instance that has the given reservationId. Implementations MAY1284

support the access to reservations created outside of a DRMAA session scope, under the same regulari-1285

ties as for the MonitoringSession::getAllReservations method (see Section 10.1.2). If no reservation1286

matches, the method SHALL raise an InvalidArgumentException. Time-dependent effects of this method1287

are implementation-specific.1288

drmaa-wg@ogf.org 43

mailto:drmaa-wg@ogf.org

GWD-R March 2011

9.1.4 requestReservation1289

The requestReservation method SHALL request an advance reservation in the DRM system with at-1290

tributes defined in the provided ReservationTemplate. On a successful reservation, the method returns a1291

Reservation instance that represents the advance reservation in the underlying DRM system.1292

The method SHALL raise:1293

• DeniedByDrmsException if the current user is not authorized to create reservations,1294

• NotEnoughSlotsException if there is not enough resources in the requested time window,1295

• InvalidArgumentException if the reservation cannot be performed by the DRM system due to invalid1296

format/value of one of the ReservationTemplate attributes (e.g. the start time is in the past).1297

It SHOULD further provide detailed information about the rejection cause in the extended error1298

information (see Section 6).1299

In case some of the conditions are not fulfilled after the reservation was succesfully created, for example due1300

to execution host outages, the reservation itself SHOULD remain valid, as long is it wasn’t cancelled either1301

through or outside of DRMAA.
refer the
JobInfo::inErrorState

1302

9.1.5 getReservations1303

This method returns the list of reservations successfully created so far in this session, regardless of their start1304

and end time. The list of Reservation instances is only cleared in conjunction with the destruction of the1305

actual session instance through SessionManager::destroyReservationSession (see also Section 7.1).1306

9.2 Reservation Interface1307

The Reservation interface represents attributes and methods available for an advance reservation success-1308

fully created in the DRM system.1309

interface Reservation {1310

readonly attribute string reservationId;1311

readonly attribute ReservationSession session;1312

readonly attribute ReservationTemplate reservationTemplate;1313

ReservationInfo getInfo ();1314

void terminate ();1315

};1316

9.2.1 reservationId1317

The reservationId is an opaque string identifier for the advance reservation. If the DRM system has1318

identifiers for advance reservations, this attribute SHOULD provide the according stringified value. If not,1319

the DRMAA implementation MUST generate value this is unique in time and extend of the DRM system.1320

Any relation-
ship to reser-
vationName
?

1321

9.2.2 session1322

This attribute references the ReservationSession which was used to create the advance reservation instance.1323

drmaa-wg@ogf.org 44

mailto:drmaa-wg@ogf.org

GWD-R March 2011

9.2.3 reservationTemplate1324

This attribute provides a reference to a ReservationTemplate instance that has equal values to the one1325

that was used for the advance reservation creating this Reservation instance. This attribute value MUST1326

be UNSET if the referenced reservation was created outside of a DRMAA session.1327

9.2.4 getInfo1328

This method returns a ReservationInfo instance for the particular job under the conditions described in1329

Section 5.5. This method SHOULD throw InvalidReservationException if the reservation expired (i.e.1330

its end time passed) or was termined.1331

9.2.5 terminate1332

This method terminates the advance reservation in the DRM system represented by this Reservation1333

instance. All jobs submitted to this reservation, either Queued or Started SHOULD be terminated by the1334

DRM system or the DRMAA library itself automatically.1335

.

Needs ad-
ditional ex-
planation of
expected be-
havior

1336

10 Monitoring the DRM System1337

The DRMAA monitoring facility supports four basic units of monitoring:1338

• Properties of the DRM system as a whole (e.g. DRM system version number) that are independent1339

from the particular session and contact string,1340

• Properties of the DRM system that depend on the current contact string (e.g. list of machines in the1341

currently accessed Grid Engine cell)1342

• Properties of individual queues known from a getAllQueues call1343

• Properties of individual machines available with the current contact string (e.g. amount of physical1344

memory in a chosen machine)1345

The MonitoringSession interface in DRMAA supports the monitoring of execution resources in the DRM1346

system. This is distinct from the monitoring of jobs running in the DRM system, which is covered by the1347

JobSession and the Job interface.1348

10.1 MonitoringSession Interface1349

The MonitoringSession interface represents a set of stateless methods for fetching information about the1350

DRM system and the DRMAA implementation itself. It MAY be used to implement DRM system monitoring1351

tools like qstat.1352

interface MonitoringSession {1353

readonly attribute Version drmsVersion;1354

ReservationList getAllReservations ();1355

JobList getAllJobs(in JobInfo filter);1356

QueueList getAllQueues(in StringList names);1357

MachineList getAllMachines(in StringList names);1358

readonly attribute StringList drmsJobCategoryNames;1359

drmaa-wg@ogf.org 45

mailto:drmaa-wg@ogf.org

GWD-R March 2011

};1360

All returned data SHOULD be related to the current user running the DRMAA-based application. For1361

example, the getAllQueues function MAY be reduced to only denote queues that are usable or generally1362

accessible for the DRMAA application and user performing the query.1363

Because no guarantee can be made as to future accessibility, and because of cases where list reduction may1364

demand excessive overhead in the DRMAA implementation, an unreduced or partially reduced result MAY1365

be returned on all methods returning lists. The behavior of the DRMAA implementation in this regard1366

should be clearly documented. In all cases, the list items MUST all be valid input for job submission or1367

advance reservation through the DRMAA API.1368

10.1.1 drmsVersion1369

This attribute provides the DRM-system specific version information. While the DRM system type is avail-1370

able from the SessionManager::drmsName attribute (see Section 7.1), this attribute provides the according1371

version of the product. Applications are expected to use the information about the general DRM system type1372

for accessing product-specific features. Applications are not expected to make decisions based on versioning1373

information from this attribute - instead, the value should only be utilized for informative output to the end1374

user.1375

10.1.2 getAllReservations1376

This method returns the list of all DRMS advance reservations accessible for the user running the DRMAA-1377

based application. In contrast to a ReservationSession::getReservations call, this method SHOULD1378

also return reservations that were created outside of DRMAA (e.g. through command-line tools) by this user.1379

The returned list MAY also contain reservations that were created by other users if the security policies of1380

the DRM system allow such global visibility. The DRM system or the DRMAA implementation is at liberty,1381

however, to restrict the set of returned reservations based on site or system policies, such as security settings1382

or scheduler load restrictions.1383

This method SHALL raise an UnsupportedOperationException if advance reservation is not supported by1384

the implementation.1385

10.1.3 getAllJobs1386

This method returns the list of all DRMS jobs visible to the user running the DRMAA-based application. In1387

contrast to a JobSession::getJobs call, this method SHOULD also return jobs that were submitted outside1388

of DRMAA (e.g. through command-line tools) by this user. The returned list MAY also contain jobs that1389

were submitted by other users if the security policies of the DRM system allow such global visibility. The1390

DRM system or the DRMAA implementation is at liberty, however, to restrict the set of returned jobs based1391

on site or system policies, such as security settings or scheduler load restrictions.1392

Querying the DRM system for all jobs might result in returning an excessive number of Job objects. Impli-1393

cations to the library implementation are out of scope for this specification.1394

The method supports a filter argument for fetching only a subset of the job information available. Both1395

the return value semantics and the filter semantics SHOULD be similar to the ones described for the1396

JobSession::getJobs method (see Section 8.2).1397

drmaa-wg@ogf.org 46

mailto:drmaa-wg@ogf.org

GWD-R March 2011

Language bindings SHOULD NOT try to solve the scalability issues by replacing the sequence type of
the return value with some iterator-like solution. This approach would break the basic snapshot semantic
intended for this method.

(See footnote)
31

1398

10.1.4 getAllQueues1399

This method returns a list of queues available for job submission in the DRM system. All Queue instances1400

in this list SHOULD be (based on their name attribute) a valid input for the JobTemplate::queueName1401

attribute (see Section 5.6). The result can be an empty list or might be incomplete, based on queue, host,1402

or system policies. It might also contain queues that are not accessible for the user (because of queue1403

configuration limits) at job submission time.1404

The names parameter supports restricting the result to Queue instances that have one of the names given in1405

the argument. If the names parameter value is UNSET, all Queue instances should be returned.1406

10.1.5 getAllMachines1407

This method returns the list of machines available in the DRM system as execution host. The returned list1408

might be empty or incomplete based on machine or system policies. The returned list might also contain1409

machines that are not accessible by the user, e.g. because of host configuration limits.1410

The names parameter supports restricting the result to Machine instances that have one of the names given1411

in the argument. If the names parameter value is UNSET, all Machine instances should be returned.1412

10.1.6 drmsJobCategoryNames1413

This method provides the list of of valid job category names which can be used for the jobCategory attribute1414

in a job template. The semantics are described in Section 5.6.7.1415

11 Annex A: Complete DRMAA IDL Specification1416

The following text shows the complete IDL specification for the DRMAAv2 application programming inter-1417

face. The ordering of IDL constructs here has no normative meaning, but ensures the correct compilation1418

with a standard CORBA IDL compiler for syntactical correctness checks. This demands only some additional1419

forward declarations to resolve circular dependencies.1420

module DRMAA2 {1421

enum JobState {1422

UNDETERMINED , QUEUED , QUEUED_HELD , RUNNING , SUSPENDED , REQUEUED ,1423

REQUEUED_HELD , DONE , FAILED };1424

enum OperatingSystem {1425

HPUX , LINUX , IRIX , TRUE64 , MACOS , SUNOS , WIN , WINNT , AIX , UNIXWARE ,1426

BSD , OTHER_OS };1427

31 The non-argumentation about the scalability problem was the final result of a clarification attempt. We hand this one
over to the implementors. (conf call Jul 14th 2010)

drmaa-wg@ogf.org 47

mailto:drmaa-wg@ogf.org

GWD-R March 2011

enum CpuArchitecture {1428

ALPHA , ARM , CELL , PARISC , X86 , X64 , IA64 , MIPS , PPC , PPC64 ,1429

SPARC , SPARC64 , OTHER_CPU };1430

enum ResourceLimitType {1431

CORE_FILE_SIZE , CPU_TIME , DATA_SEG_SIZE , FILE_SIZE , OPEN_FILES ,1432

STACK_SIZE , VIRTUAL_MEMORY , WALLCLOCK_TIME };1433

enum JobTemplatePlaceholder {1434

HOME_DIRECTORY ,WORKING_DIRECTORY ,HOST_NAME ,USER_NAME ,PARAMETRIC_INDEX };1435

enum DrmaaEvent {1436

NEW_STATE , MIGRATED , ATTRIBUTE_CHANGE1437

};1438

typedef sequence <string > OrderedStringList;1439

typedef sequence <string > StringList;1440

typedef sequence <Job > JobList;1441

typedef sequence <Queue > QueueList;1442

typedef sequence <Machine > MachineList;1443

typedef sequence <Reservation > ReservationList;1444

typedef sequence < sequence <string ,2> > Dictionary;1445

typedef string AbsoluteTime;1446

typedef long long TimeAmount;1447

native ZERO_TIME;1448

native INFINITE_TIME;1449

struct JobInfo {1450

string jobId;1451

Dictionary resourceUsage;1452

long exitStatus;1453

string terminatingSignal;1454

string annotation;1455

JobState jobState;1456

any jobSubState;1457

OrderedStringList allocatedMachines;1458

string submissionMachine;1459

string jobOwner;1460

string queueName;1461

TimeAmount wallclockTime;1462

long cpuTime;1463

AbsoluteTime submissionTime;1464

AbsoluteTime dispatchTime;1465

AbsoluteTime finishTime;1466

};1467

struct ReservationInfo {1468

string reservationId;1469

drmaa-wg@ogf.org 48

mailto:drmaa-wg@ogf.org

GWD-R March 2011

string reservationName;1470

AbsoluteTime reservedStartTime;1471

AbsoluteTime reservedEndTime;1472

StringList usersACL;1473

long reservedSlots;1474

OrderedStringList reservedMachines;1475

boolean inErrorState;1476

};1477

struct JobTemplate {1478

string remoteCommand;1479

OrderedStringList args;1480

boolean submitAsHold;1481

boolean rerunnable;1482

Dictionary jobEnvironment;1483

string workingDirectory;1484

string jobCategory;1485

StringList email;1486

boolean emailOnStarted;1487

boolean emailOnTerminated;1488

string jobName;1489

string inputPath;1490

string outputPath;1491

string errorPath;1492

boolean joinFiles;1493

string reservationId;1494

string queueName;1495

long minSlots;1496

long maxSlots;1497

long priority;1498

OrderedStringList candidateMachines;1499

long minPhysMemory;1500

OperatingSystem machineOS;1501

CpuArchitecture machineArch;1502

AbsoluteTime startTime;1503

AbsoluteTime deadlineTime;1504

Dictionary stageInFiles;1505

Dictionary stageOutFiles;1506

Dictionary softResourceLimits;1507

Dictionary hardResourceLimits;1508

string accountingId;1509

};1510

struct ReservationTemplate {1511

string reservationName;1512

AbsoluteTime startTime;1513

AbsoluteTime endTime;1514

TimeAmount duration;1515

drmaa-wg@ogf.org 49

mailto:drmaa-wg@ogf.org

GWD-R March 2011

long minSlots;1516

long maxSlots;1517

StringList usersACL1518

OrderedStringList candidateMachines;1519

long minPhysMemory;1520

OperatingSystem machineOS;1521

CpuArchitecture machineArch;1522

};1523

struct DrmaaNotification {1524

DrmaaEvent event;1525

Job job;1526

JobState jobState;1527

};1528

struct Queue {1529

string name;1530

};1531

struct Version {1532

string major;1533

string minor;1534

};1535

struct Machine {1536

string name;1537

long sockets;1538

long coresPerSocket;1539

long threadsPerCore;1540

double load;1541

long physMemory;1542

long virtMemory;1543

OperatingSystem machineOS;1544

Version machineOSVersion;1545

CpuArchitecture machineArch;1546

};1547

exception DeniedByDrmException {string message ;};1548

exception DrmCommunicationException {string message ;};1549

exception TryLaterException {string message ;};1550

exception SessionManagementException {string message ;};1551

exception TimeoutException {string message ;};1552

exception InternalException {string message ;};1553

exception InvalidArgumentException {string message ;};1554

exception InvalidSessionException {string message ;};1555

exception InvalidStateException {string message ;};1556

exception OutOfMemoryException {string message ;};1557

exception UnsupportedAttributeException {string message ;};1558

drmaa-wg@ogf.org 50

mailto:drmaa-wg@ogf.org

GWD-R March 2011

exception UnsupportedOperationException {string message ;};1559

exception NotEnoughSlotsException {string message ;};1560

exception InvalidReservationException: {string message ;};1561

interface DrmaaReflective {1562

readonly attribute StringList jobTemplateOpt;1563

readonly attribute StringList jobTemplateImpl;1564

readonly attribute StringList jobInfoOpt;1565

readonly attribute StringList jobInfoImpl;1566

readonly attribute StringList reservationTemplateOpt;1567

readonly attribute StringList reservationTemplateImpl;1568

readonly attribute StringList reservationInfoOpt;1569

readonly attribute StringList reservationInfoImpl;1570

readonly attribute StringList queueImpl;1571

readonly attribute StringList machineImpl;1572

1573

string getAttr(any instance , in string name);1574

void setAttr(any instance , in string name , in string value);1575

string describeAttr(in string name);1576

};1577

interface DrmaaCallback {1578

void notify(in DrmaaNotification notification);1579

};1580

interface ReservationSession {1581

readonly attribute string contact;1582

readonly attribute string sessionName;1583

Reservation getReservation(in string reservationId);1584

Reservation requestReservation(in ReservationTemplate reservationTemplate);1585

ReservationList getReservations ();1586

};1587

interface Reservation {1588

readonly attribute string reservationId;1589

readonly attribute ReservationSession session;1590

readonly attribute ReservationTemplate reservationTemplate;1591

ReservationInfo getInfo ();1592

void terminate ();1593

};1594

interface JobArray {1595

readonly attribute string jobArrayId;1596

readonly attribute JobList jobs;1597

readonly attribute JobSession session;1598

readonly attribute JobTemplate jobTemplate;1599

void suspend ();1600

void resume ();1601

drmaa-wg@ogf.org 51

mailto:drmaa-wg@ogf.org

GWD-R March 2011

void hold ();1602

void release ();1603

void terminate ();1604

};1605

interface JobSession {1606

readonly attribute string contact;1607

readonly attribute string sessionName;1608

readonly attribute boolean notificationSupported;1609

JobList getJobs(in JobInfo filter);1610

Job runJob(in JobTemplate jobTemplate);1611

JobArray runBulkJobs(1612

in JobTemplate jobTemplate ,1613

in long beginIndex ,1614

in long endIndex ,1615

in long step);1616

Job waitAnyStarted(in JobList jobs , in TimeAmount timeout);1617

Job waitAnyTerminated(in JobList jobs , in TimeAmount timeout);1618

void registerEventNotification(in DrmaaCallback callback);1619

};1620

interface Job {1621

readonly attribute string jobId;1622

readonly attribute JobSession session;1623

readonly attribute JobTemplate jobTemplate;1624

void suspend ();1625

void resume ();1626

void hold ();1627

void release ();1628

void terminate ();1629

JobState getState(out any jobSubState);1630

JobInfo getInfo ();1631

Job waitStarted(in TimeAmount timeout);1632

Job waitTerminated(in TimeAmount timeout);1633

};1634

interface MonitoringSession {1635

readonly attribute Version drmsVersion;1636

ReservationList getAllReservations ();1637

JobList getAllJobs(in JobInfo filter);1638

QueueList getAllQueues(in StringList names);1639

MachineList getAllMachines(in StringList names);1640

readonly attribute StringList drmsJobCategoryNames;1641

};1642

interface SessionManager{1643

readonly attribute string drmsName;1644

readonly attribute Version drmaaVersion;1645

drmaa-wg@ogf.org 52

mailto:drmaa-wg@ogf.org

GWD-R March 2011

readonly attribute boolean reservationSupported;1646

JobSession createJobSession(in string sessionName ,1647

in string contactString);1648

ReservationSession createReservationSession(in string sessionName ,1649

in string contactString);1650

MonitoringSession createMonitoringSession (in string contactString);1651

JobSession openJobSession(in string sessionName);1652

ReservationSession openReservationSession(in string sessionName);1653

void closeJobSession(in JobSession s);1654

void closeReservationSession(in ReservationSession s);1655

void closeMonitoringSession(in MonitoringSession s);1656

void destroyJobSession(in string sessionName);1657

void destroyReservationSession(in string sessionName);1658

StringList getJobSessions ();1659

StringList getReservationSessions ();1660

};1661

};1662

12 Security Considerations1663

The DRMAA API does not specifically assume the existence of a particular security infrastructure in the1664

DRM system. The scheduling scenario described herein presumes that security is handled at the point of job1665

authorization/execution on a particular resource. It is assumed that credentials owned by the application1666

using the API are in effect for the DRMAA implementation too.1667

It is conceivable an authorized but malicious user could use a DRMAA implementation or a DRMAA enabled1668

application to saturate a DRM system with a flood of requests. Unfortunately for the DRM system this1669

case is not distinguishable from the case of an authorized good-natured user who has many jobs to be1670

processed. For temporary load defense, implementations SHOULD utilize the TryLaterException. In case1671

of permanent issues, the implementation SHOULD raise the DeniedByDrmException.1672

DRMAA implementers should guard against buffer overflows that could be exploited through DRMAA1673

enabled interactive applications or web portals. Implementations of the DRMAA API will most likely1674

require a network to coordinate subordinate DRMS; however the API makes no assumptions about the1675

security posture provided the networking environment. Therefore, application developers should further1676

consider the security implications of “on-the-wire” communications.1677

For environments that allow remote or protocol based DRMAA clients, the implementation SHOULD offer1678

support for secure transport layers to prevent man in the middle attacks.1679

13 Contributors1680

Roger Brobst1681

Cadence Design Systems, Inc.1682

555 River Oaks Parkway1683

San Jose, CA 951341684

drmaa-wg@ogf.org 53

mailto:drmaa-wg@ogf.org

GWD-R March 2011

Email: rbrobst@cadence.com1685

1686

Daniel Gruber1687

Univa1688

1689

Mariusz Mamoński1690

Poznań Supercomputing and Networking Center1691

ul. Noskowskiego 101692

61-704 Poznań, Poland1693

Email: mamonski@man.poznan1694

1695

Daniel Templeton (Corresponding Author)1696

Cloudera1697

1698

Peter Tröger (Corresponding Author)1699

Hasso-Plattner-Institute at University of Potsdam1700

Prof.-Dr.-Helmert-Str. 2-31701

14482 Potsdam, Germany1702

Email: peter@troeger.eu1703

1704 Add miss-
ing contact
details

1705

We are grateful to numerous colleagues for support and discussions on the topics covered in this document,1706

in particular (in alphabetical order, with apologies to anybody we have missed):1707

Guillaume Alleon, Ali Anjomshoaa, Ed Baskerville, Harald Böhme, Nadav Brandes, Matthieu Cargnelli,1708

Karl Czajkowski, Piotr Domagalski, Fritz Ferstl, Paul Foley, Nicholas Geib, Becky Gietzel, Alleon Guillaume,1709

Daniel S. Katz, Andreas Haas, Tim Harsch, Greg Hewgill, Rayson Ho, Eduardo Huedo, Dieter Kranzmüller,1710

Krzysztof Kurowski, Peter G. Lane, Miron Livny, Ignacio M. Llorente, Martin v. Löwis, Andre Merzky,1711

Ruben S. Montero, Greg Newby, Steven Newhouse, Michael Primeaux, Greg Quinn, Hrabri L. Rajic, Martin1712

Sarachu, Jennifer Schopf, Enrico Sirola, Chris Smith, Ancor Gonzalez Sosa, Douglas Thain, John Tollefsrud,1713

Jose R. Valverde, and Peter Zhu.1714

14 Intellectual Property Statement1715

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that1716

might be claimed to pertain to the implementation or use of the technology described in this document or the1717

extent to which any license under such rights might or might not be available; neither does it represent that1718

it has made any effort to identify any such rights. Copies of claims of rights made available for publication1719

and any assurances of licenses to be made available, or the result of an attempt made to obtain a general1720

license or permission for the use of such proprietary rights by implementers or users of this specification can1721

be obtained from the OGF Secretariat.1722

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications,1723

or other proprietary rights which may cover technology that may be required to practice this recommendation.1724

Please address the information to the OGF Executive Director.1725

drmaa-wg@ogf.org 54

mailto:drmaa-wg@ogf.org

GWD-R March 2011

15 Disclaimer1726

This document and the information contained herein is provided on an “as-is” basis and the OGF disclaims1727

all warranties, express or implied, including but not limited to any warranty that the use of the information1728

herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular1729

purpose.1730

16 Full Copyright Notice1731

Copyright c© Open Grid Forum (2005-2011). Some Rights Reserved.1732

This document and translations of it may be copied and furnished to others, and derivative works that1733

comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and1734

distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice1735

and this paragraph are included on all such copies and derivative works. However, this document itself1736

may not be modified in any way, such as by removing the copyright notice or references to the OGF or1737

other organizations, except as needed for the purpose of developing Grid Recommendations in which case1738

the procedures for copyrights defined in the OGF Document process must be followed, or as required to1739

translate it into languages other than English.1740

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors1741

or assignees.1742

17 References17431744

[1] Scott Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119 (Best Current1745

Practice), March 1997. URL http://tools.ietf.org/html/rfc2119.1746

[2] I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pickles, D. Pulsipher, C. Smith,1747

and M. Theimer. OGSA Basic Execution Service v1.0 (GFD-R.108), nov 2008.1748

[3] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Kleijer, Andre Merzky, John1749

Shalf, and Christopher Smith. A Simple API for Grid Applications (SAGA) Version 1.1 (GFD-R-P.90),1750

jan 2008.1751

[4] Object Management Group. Common Object Request Broker Architecture (CORBA) Specification,1752

Version 3.1. http://www.omg.org/spec/CORBA/3.1/Interfaces/PDF, jan 2008.1753

[5] The IEEE and The Open Group. The Open Group Base Specifications Issue 6 IEEE Std 1003.1.1754

http://www.opengroup.org/onlinepubs/000095399/utilities/ulimit.html.1755

[6] Distributed Management Task Force (DMTF) Inc. CIM System Model White Paper CIM Version 2.7,1756

jun 2003.1757

[7] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas Haas, Bill Nitzberg,1758

Daniel Templeton, John Tollefsrud, and Peter Tröger. Distributed Resource Management Application1759

API Specification 1.0 (GFD-R.022), aug 2007.1760

[8] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas Haas, Bill Nitzberg,1761

Daniel Templeton, John Tollefsrud, and Peter Tröger. Distributed Resource Management Application1762

API Specification 1.0 (GWD-R.133), jun 2008.1763

drmaa-wg@ogf.org 55

http://tools.ietf.org/html/rfc2119
mailto:drmaa-wg@ogf.org

GWD-R March 2011

[9] Peter Tröger, Daniel Templeton, Roger Brobst, Andreas Haas, and Hrabri Rajic. Distributed Resource1764

Management Application API 1.0 - IDL Specification (GFD-R-P.130), apr 2008.1765

[10] Peter Tröger, Hrabri Rajic, Andreas Haas, and Piotr Domagalski. Standardised job submission and1766

control in cluster and grid environments. International Journal of Grid and Utility Computing, 1:1767

134–145, dec 2009. doi: {http://dx.doi.org/10.1504/IJGUC.2009.022029}.1768

drmaa-wg@ogf.org 56

mailto:drmaa-wg@ogf.org

	Introduction
	Notational Conventions
	Language Bindings
	Slots and Queues
	Multithreading

	Namespace
	Common Type Definitions
	Enumerations
	OperatingSystem enumeration
	CpuArchitecture enumeration
	ResourceLimitType enumeration
	JobTemplatePlaceholder enumeration

	Extensible Data Structures
	Queue structure
	Version structure
	Machine structure
	JobInfo structure
	ReservationInfo structure
	JobTemplate structure
	ReservationTemplate structure
	DrmaaReflective Interface

	Common Exceptions
	The DRMAA Session Concept
	SessionManager Interface

	Working with Jobs
	The DRMAA State Model
	JobSession Interface
	DrmaaCallback Interface
	Job Interface
	JobArray Interface

	Working with Advance Reservation
	ReservationSession Interface
	Reservation Interface

	Monitoring the DRM System
	MonitoringSession Interface

	Annex A: Complete DRMAA IDL Specification
	Security Considerations
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice
	References

