	GWD-R
	Daniel Templeton, Sun Microsystems (editor)

	Distributed Resource Management Application API (DRMAA) Working Group
	Peter Tröger, Hasso Plattner Institute (editor)

Roger Brobst, Cadence Design Systems

Andreas Haas*, Sun Microsystems

Hrabri Rajic*, Intel Americas Inc.

*co-chairs

	
	October, 2006

Distributed Resource Management Application API - IDL Bindings 0.38

Status of This Memo

This memo is a Global Grid Forum Grid Working Draft - Recommendation (GWD-R) in process, in general accordance with the provisions of Global Grid Forum Document GFD-C.1, the Global Grid Forum Documents and Recommendations: Process and Requirements, revised April 2002.

Copyright Notice

Copyright © Global Grid Forum (2005-2006). All Rights Reserved.

Table of Contents

1 Abstract
5

2 Introduction
5

2.1 How to read this document
5

3 Design Decisions
5

3.1 Service Provider Interface
6

4 General concepts
6

4.1 IDL language mapping
6

4.2 The DRMAA Module
7

5 Application Programming Interface (API) Section
8

5.1 JobControlAction enumeration
9

5.2 JobProgramState enumeration
9

5.3 JobSubmissionState enumeration
9

5.4 FileTransferMode value type
10

5.4.1 transferInputStream
10

5.4.2 transferOutputStream
10

5.4.3 transferErrorStream
10

5.5 Version value type
10

5.5.1 major
10

5.5.2 minor
11

5.6 Exceptions
11

5.6.1 AlreadyActiveSessionException
12

5.6.2 AuthorizationException
12

5.6.3 ConflictingAttributeValuesException
12

5.6.4 DefaultContactStringException
12

5.6.5 DeniedByDrmException
12

5.6.6 DrmCommunicationException
12

5.6.7 DrmsExitException
12

5.6.8 DrmsInitException
12

5.6.9 ExitTimeoutException
12

5.6.10 HoldInconsistentStateException
12

5.6.11 InternalException
12

5.6.12 InvalidArgumentException
12

5.6.13 InvalidAttributeFormatException
13

5.6.14 InvalidAttributeValueException
13

5.6.15 InvalidContactStringException
13

5.6.16 InvalidJobException
13

5.6.17 InvalidJobTemplateException
13

5.6.18 NoActiveSessionException
13

5.6.19 NoDefaultContactStringSelectedException
13

5.6.20 OutOfMemoryException
13

5.6.21 ReleaseInconsistentStateException
13

5.6.22 ResumeInconsistentStateException
13

5.6.23 SuspendInconsistentStateException
13

5.6.24 TryLaterException
14

5.6.25 UnsupportedAttributeException
14

5.7 The PartialTimestamp
14

6 Service Provider Interface (SPI) Section
15

6.1 JobInfo interface
16

6.1.1 jobId
17

6.1.2 resourceUsage
17

6.1.3 hasExited
17

6.1.4 exitStatus
17

6.1.5 hasSignaled
17

6.1.6 terminatingSignal
17

6.1.7 hasCoreDump
17

6.1.8 wasAborted
17

6.2 JobTemplate interface
17

6.2.1 Constants
19

6.2.2 remoteCommand
19

6.2.3 args
20

6.2.4 jobSubmissionState
20

6.2.5 jobEnvironment
20

6.2.6 workingDirectory
20

6.2.7 jobCategory
20

6.2.8 nativeSpecification
20

6.2.9 email
21

6.2.10 blockEmail
21

6.2.11 startTime
21

6.2.12 jobName
21

6.2.13 inputPath
21

6.2.14 outputPath
21

6.2.15 errorPath
22

6.2.16 joinFiles
23

6.2.17 transferFiles
23

6.2.18 deadlineTime
23

6.2.19 hardWallclockTimeLimit
23

6.2.20 softWallClockTimeLimit
23

6.2.21 hardRunDurationLimit
23

6.2.22 softRunDurationLimit
24

6.2.23 getAttributeNames
24

6.3 Session interface
24

6.3.1 Constants
24

6.3.2 init
25

6.3.3 exit
26

6.3.4 createJobTemplate
26

6.3.5 deleteJobTemplate
27

6.3.6 runJob
28

6.3.7 runBulkJobs
29

6.3.8 control
30

6.3.9 synchronize
31

6.3.10 wait
32

6.3.11 jobProgramStatus
33

6.3.12 contact
34

6.3.13 version
35

6.3.14 drmsInfo
35

6.3.15 drmaaImplementation
35

7 Annex
36

7.1 Correlation of DRMAA error codes and exceptions
36

7.2 Correlation of DRMAA and OO job template attributes
37

8 Security Considerations
38

9 References
38

10 Author Information
38

11 Intellectual Property Statement
39

12 Full Copyright Notice
39

1 Abstract

This document describes the common base for the Distributed Resource Management Application API (DRMAA) language bindings. The document is based on the implementations work of the DRMAA 1.0 GWD-R document.

2 Introduction

This document gives an IDL description for the DRMAA interface. It arises from the results of a collaborative effort to bring the JavaTM language binding and .NET language binding into agreement, based on the DRMAA 1.0 specification.

The DRMAA Interface Specification was written originally with a procedural C-language slant. As such, several aspects of the DRMAA interface needed to be altered slightly to better fit with object-oriented languages. Among the aspects that changed are variable and method naming and the error structure.

Although this document can be seen as stand-alone, it still bases on the concepts defined in the DRMAA 1.0 specification. The text refers to the respective chapter of the DRMAA standard whenever it is necessary.

2.1 How to read this document

In this document, the following conventions are used:

· IDL language elements and definitions are represented in a fixed-width font.

· References to IDL language elements and definitions are represented in italics.

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,”

“SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” are to be interpreted as described in RFC-2119 [RFC 2119].

The document describes the DRMAA interface semantics with the help of OMG IDL [OMG IDL]. It includes a set of overall rules for the creation of specific language bindings for the given specification. Specific examples are given for the Java language. These examples are not normative.

3 Design Decisions

An effort has been made to choose design patterns that are not unique to a specific language. However, in some cases, various languages disagree over some points. In those cases, the most meritous approach was taken, irrespective of language.

The following text bases on the terminology of OMG IDL. For this reason, all operational semantics are described in terms of interfaces and not of classes. This concept ensures the possibility to map the described operational semantics to a variety of object-oriented, and even procedural, languages. The usage of a class concept depends on the specific language-mapping rules.

This specification assumes that all possible language bindings based on this document can use an introspection concept. Therefore some methods from the DRMAA specification are unnecessary. The drmaa_get_attribute(), drmaa_set_attribute(), drmaa_get_vector_attribute(), drmaa_set_vector_attribute(), and drmaa_get_vector_attribute_names() methods are not needed because introspective languages are able to obtain a list of property names from the JobTemplate::getAttributeNames() method and use introspection to locate the appropriate getters and getters. The getters and setters can also be directly accessed.

3.1 Service Provider Interface

The IDL binding approach borrows from the Java platform the notion of a service provider interface. This idea means that a common subset of the API need only be implemented once for a programming language, whereas each vendor can provide his own service provider implementation. The service provider interface is accomplished by factoring common functionality out into specific interfaces. The service provider then implements these interfaces and uses the specific classes to build his own implementation. The advantage is that the common core functionality need only be implemented once in any given language, and that developers can become familiar with a single package that may hide beneath it several different vendor implementations.

4 General concepts

4.1 IDL language mapping

Language binding documents based on this specification MUST define a mapping between the IDL constructs used in this specification and their specific language constructs. A language binding SHOULD NOT rely itself completely on the OMG language mapping documents available for many programming languages. It must be considered that the OMG mappings bring a huge overhead of irrelevant CORBA-related mapping rules into the specification. Therefore it must be carefully decided whether a binding decision reflects a natural and simple mapping of the intended purpose for the DRMAA interfaces. In most situations it SHOULD be enough to reuse value type mappings only and to define custom mappings for the reference types.

The language binding MUST use the described concept mapping in a consistent manner for the overall specification.

It may be the case that IDL constructs do not map directly to an according language construct. In this case it MUST be ensured that the according construct in the particular language retains the intended semantic of the DRMAA interface definition.

Languages without an explicit notion of enumerations MAY map the IDL enumeration values to constant class members, enabled by the distinct naming of all enumeration values in the specification.

This specification tries to consider the possibility of a Remote Procedure Call scenario in a DRMAA-conformant language mapping. It MUST therefore be ensured that the programming language type for an IDL valuetype definition supports the serialization, comparison, cloning and string representation of valuetype instances. These capabilities SHOULD be accomplished through whatever mechanism is most natural for the specific programming language. The IDL valuetype definitions SHOULD always map to a reference type in the binding specification.

Java binding example:

	IDL
	Java language

	module definition
	package keyword

	interface definition
	public abstract interface definition

	enum definition with enumeration members
	Enumeration members become Java int constants in the surrounding interface definition

	string type
	java.lang.String

	long type
	int

	long long type
	long

	const type
	public static final

	boolean type
	boolean

	[readonly] attribute type
	Getter [and setter] methods in JavaBeansTM style, boolean readonly attribute names are prefixed with “get”.

	exception type
	Class definition, derived from java.lang.Exception

	raises clause
	throws clause

	valuetype definition
	public class definition, may additionally implement the Cloneable, Serializable, and Compareable interfaces

	factory definition
	class constructor

The DRMAA IDL definition defines specialized custom types:

// unbounded native string list

valuetype StringList sequence<string>;

// dictionary type, for unbounded key-value pair storage

valuetype Dictionary sequence< sequence<string,2> >;

The language-binding author SHOULD replace these type definitions directly with semantically equal basic language constructs, if possible. This MAY include the usage of multiple types for one of the above concepts, depending on the context.

Java binding example:

	IDL
	Java

	StringList
	java.util.List

	Dictionary
	java.util.Map

4.2 The DRMAA Module

The DRMAA IDL binding distinguishes between the application programming interface part (API) and the service provider interface part (SPI):

module DRMAA{

 // API part

 ...
 valuetype FileTransferMode{...};
 ...

 // SPI part

 ...
 interface Session{...};
 ...

}

The API part contains all definitions and types that are not specific to the underlying DRM system, but specific for the particular programming language. The SPI part defines the subset of functionality that must be implemented by each DRMS vendor separately.

Language binding authors MUST map the IDL module encapsulation to an according package or namespace concept and MAY change the module name according to programming language conventions.

Java binding example:

	IDL
	Java

	module DRMAA
	package org.drmaa

5 Application Programming Interface (API) Section

The API part of the DRMAA module defines the vendor-independent, language-dependent parts of the DRMAA programming interface. It consists of several DRMAA-related data structures and the possible exception types.

module DRMAA{

// API part

enum JobControlAction {…};

enum JobProgramState {…};

enum JobSubmissionState {…};

valuetype FileTransferMode {…};

valuetype Version {…};

exception AuthorizationException {…};

exception InvalidContactStringException {…};

exception DefaultContactStringException {…};

exception NoDefaultContactStringSelectedException {…};

exception DeniedByDrmException {…};

exception DrmCommunicationException {…};

exception DrmsExitException {…};

exception HoldInconsistentStateException {…};

exception ReleaseInconsistentStateException {…};

exception ResumeInconsistentStateException {…};

exception SuspendInconsistentStateException {…};

exception DrmsInitException {…};

exception InvalidArgumentException {…};

exception InvalidJobException {…};

exception ConflictingAttributeValuesException {…};

exception InvalidAttributeFormatException {…};

exception InvalidAttributeValueException {…};

exception ExitTimeoutException {…};

exception NoActiveSessionException {…};

exception AlreadyActiveSessionException {…};

exception TryLaterException {…};

exception InternalException {…};

exception OutOfMemoryException {…};

exception UnsupportedAttributeException {…};

exception InvalidJobTemplateException {…};

native PartialTimestamp;

// SPI part

...

};

5.1 JobControlAction enumeration

The JobControlAction enumeration is used as a input parameter type by the control() method in the Session interface. The meanings of the enumeration values are specified in the description of the method in section 6.3.8.

enum JobControlAction {

SUSPEND,

RESUME,

HOLD,

RELEASE,

TERMINATE

};

5.2 JobProgramState enumeration

The JobProgramState enumeration is used as a input parameter type by the jobProgramStatus() method in the Session interface. The meanings of the enumeration values are specified in the description of the method in section 6.3.11.

enum JobProgramState {

UNDETERMINED,

QUEUED_ACTIVE,

SYSTEM_ON_HOLD,

USER_ON_HOLD,

USER_SYSTEM_ON_HOLD,

RUNNING,

SYSTEM_SUSPENDED,

USER_SUSPENDED,

USER_SYSTEM_SUSPENDED,

DONE,

FAILED

};

5.3 JobSubmissionState enumeration

The JobSubmissionState enumeration is used as the type of the JobTemplate::jobSubmissionState interface attribute. In the context of the job template, the enumeration values have the following meaning:

· HOLD_STATE: The job may be queued, but it is not eligible to run.

· ACTIVE_STATE: The job is eligible to run.

enum JobSubmissionState {

HOLD_STATE,

ACTIVE_STATE

};

5.4 FileTransferMode value type

The FileTransferMode value-type is used by a JobTemplate instance to indicate the value for the transferFiles attribute. The type contains three attributes which determine the streams that will be staged in or out.

valuetype FileTransferMode {

attribute boolean transferInputStream;

attribute boolean transferOutputStream;

attribute boolean transferErrorStream;

factory FileTransferMode();

factory FileTransferMode(in boolean transferInputStream,

 in boolean transferOutputStream,

 in boolean transferErrorStream);

};

5.4.1 transferInputStream

This attribute defines whether to transfer input stream files. If this attribute contains true, the transferinputStream attribute of the corresponding job template SHALL be treated as the source from which input files should be copied.

5.4.2 transferOutputStream

This attribute defines whether to transfer output stream files. If this attribute contains true, the transferOutputStream attribute of the corresponding job template SHALL be treated as the destination to which output files should be copied.

5.4.3 transferErrorStream

This attribute defines whether to transfer error stream files. If this attribute contains true, the transferErrorStream attribute of the corresponding job template SHALL be treated as the destination to which error files should be copied.

5.5 Version value type

The Version value type is a holding structure for the major and minor version numbers of the DRMAA implementation as contained in the version attribute of the Session interface. The string representation (see section 4.1) of a Version instance MUST be of the form “<major>.<minor>”.

valuetype Version {

readonly attribute long major;

readonly attribute long minor;

factory Version(in long major, in long minor);

};

5.5.1 major

This attribute SHALL contain the major version number.

5.5.2 minor

This attribute SHALL contain the minor version number.

5.6 Exceptions

All exceptions in specific bindings MUST contain a possibility to store and read a textual description of the exception cause for the exception instance.

Language bindings MAY decide to derive all exceptions from given environmental exception base class(es). Language bindings SHOULD replace exceptions with a semantically equivalent native runtime environment exception whenever this is appropriate.

exception AlreadyActiveSessionException {string message;};

exception AuthorizationException {string message;};

exception ConflictingAttributeValuesException {string message;};

exception DefaultContactStringException {string message;};

exception DeniedByDrmException {string message;};

exception DrmCommunicationException {string message;};

exception DrmsExitException {string message;};

exception DrmsInitException {string message;};

exception ExitTimeoutException {string message;};

exception HoldInconsistentStateException {string message;};

exception InternalException {string message;};

exception InvalidArgumentException {string message;};

exception InvalidAttributeFormatException {string message;};

exception InvalidAttributeValueException {string message;};

exception InvalidContactStringException {string message;};

exception InvalidJobException {string message;};

exception InvalidJobTemplateException {string message;};

exception NoActiveSessionException {string message;};

exception NoDefaultContactStringSelectedException {string message;};

exception OutOfMemoryException {string message;};

exception ReleaseInconsistentStateException {string message;};

exception ResumeInconsistentStateException {string message;};

exception SuspendInconsistentStateException {string message;};

exception TryLaterException {string message;};

exception UnsupportedAttributeException {string message;};

Language bindings MAY decide to introduce a hierarchical ordering of the DRMAA exceptions through class derivation. In this case it MAY also happen that new exceptions are introduced for behavior aggregation. In this case, those exceptions SHALL be marked as abstract.

If the language supports the distinction between static (‘checked’) and runtime (‘unchecked’) exceptions, all but the following exceptions must be represented as checked exception:

· InternalException

· OutOfMemoryException

· UnsupportedAttributeException

· InvalidJobTemplateException

· AuthorizationException

5.6.1 AlreadyActiveSessionException

Initialization failed due to existing DRMAA session.

5.6.2 AuthorizationException

The user is not authorized to perform the given operation.

5.6.3 ConflictingAttributeValuesException

The value of this attribute conflicts with one or more previously set properties.

5.6.4 DefaultContactStringException

The DRMAA implementation could not use the default contact string to connect to DRM system.

5.6.5 DeniedByDrmException

The DRM system rejected the job. The job will never be accepted due to DRM configuration or job template settings.

5.6.6 DrmCommunicationException

Could not contact DRM system.

5.6.7 DrmsExitException

A problem was encountered while trying to exit the session.

5.6.8 DrmsInitException

A problem was encountered while trying to initialize the session.

5.6.9 ExitTimeoutException

The wait() or synchronize() method call on the Session interface returned before all selected jobs entered the DONE or FAILED state.

5.6.10 HoldInconsistentStateException

The job cannot be moved to a HOLD state.

5.6.11 InternalException

Unexpected or internal DRMAA error, like system call failure, etc.

5.6.12 InvalidArgumentException

A parameter value is fundamentally invalid, such as being of the wrong type or being null.

5.6.13 InvalidAttributeFormatException

The value for the job template property is improperly formatted, such as a badly formatted time stamp.

5.6.14 InvalidAttributeValueException

The value for the job template property is invalid.

5.6.15 InvalidContactStringException

The given contact string is not valid.

5.6.16 InvalidJobException

The job specified by the given job id does not exist.

5.6.17 InvalidJobTemplateException

The job template is not valid. It was either created incorrectly, i.e. not via Session::createJobTemplate(), or it has already been deleted via Session::deleteJobTemplate() method.

5.6.18 NoActiveSessionException

Method call failed because there is no active session.

5.6.19 NoDefaultContactStringSelectedException

No defaults contact string was provided or selected. DRMAA requires that the default contact string is selected when there is more than one default contact string due to multiple DRMAA implementations being present and available.

5.6.20 OutOfMemoryException

This exception can be throw by any method at any time when the DRMAA implementation has run out of free memory.

5.6.21 ReleaseInconsistentStateException

The job is not in a HOLD state, and hence cannot be released.

5.6.22 ResumeInconsistentStateException

The job is not in a suspended state (i.e. *_SUSPENDED), and hence cannot be resumed.

5.6.23 SuspendInconsistentStateException

The job is not is a state from which it can be suspended.

5.6.24 TryLaterException

The DRMS rejected the operation, possibly due to excessive load. A retry attempt may succeed, however.

5.6.25 UnsupportedAttributeException

The given job template attribute is not supported by the current DRMAA implementation.

5.7 The PartialTimestamp

The PartialTimestamp type is used by JobTemplate interface instances to represent partially specified time stamps, as required by the Distributed Resource Management Application API Specification 1.0. The PartialTimestamp SHOULD be an extension of the native language date/time representation if possible and reasonable. For this reason, the following text describes the functional requirements without a specific signature for the type definition. The IDL definition covers this aspect by specifying a native data type.

native PartialTimestamp;

The PartialTimestamp MUST support the following fields: century (>=19), year (0-99), month (1-12), date (1-31), hour (0-23), minute (0-59), second (0-61), zone offset hour (-11 - 12), and zone offset minute (0-59). It MUST support the following essential operations: “get field value”, “set field value”, “get time as native date/time object”, “convert to string” and “parse from string.” If possible, these operations SHOULD leverage structure already present in the native date/time class, even if this leads to a mapping with multiple classes or interfaces. The two field operations MAY be represented as attributes.

The “get field value” operation MUST return the current value for the given field. The “set field value” operation MUST set the current value for the given field. The “get time as native date/time object” operation MUST resolve the partial time to a specific time that is the soonest possible time that is not in the past, and SHOULD return that specific time as a native date/time representation. The “convert to string” operation MUST return the partial time represented by the PartialTimestamp as a String which adheres to the following format: [[[[CC]YY/]MM/]DD] hh:mm[:ss] [{-|+}UU:uu], where:

· CC is the first two digits of the year [19,]

· YY is the last two digits of the year [0,99]

· MM is the two digits of the month [01,12]

· DD is the two-digit day of the month [01,31]

· hh is the two-digit hour of the day [00,23]

· mm is the two-digit minute of the day [00,59]

· ss is the two-digit second of the minute [00,61]

· UU is the two-digit hours since (before) UTC [-11,12]

· uu is the two-digit minutes since (before) UTC [0,59]

In order for this operation to be performed, the PartialTimestamp must have no unset field of a lower order than the highest order set field, with the exception of the second and zone offset fields. For example, if the year is set, the month, date, hour, and minute must also be set for this operation to be performed. Failure to meet this criterion MUST result in an InvalidArgumentException being thrown, or the corresponding error code being returned in languages which do not support exceptions. The seconds and UTC offset are always optional. The “parse from string” operation MUST parse a string in the above format to generate a PartialTimestamp as the return value. If the string is not in the above format, an InvalidArgumentException or an appropriate language-dependent exception MUST be thrown or the corresponding error code MUST be returned in languages that do not support exceptions.

If a PartialTimestamp type is resolved to a concrete time before all fields are set, the unset fields SHALL be filled in using the current time in such a way that the resulting concrete time is the soonest possible time which agrees with the set fields and is not in the past. A PartialTimestamp type MAY be resolved to a concrete time any number of times. Each resolution will result in a concrete time that meets the above criteria for the point in time at which the resolution took place.

The resolving of partial time information MUST be performed according to the following rules:

· If the optional UTC-offset is not specified, the offset associated with the local timezone SHALL be used.

· If the second is not specified, then it SHALL be treated as zero.

· If the day is not specified, the current day SHALL be used unless the specified hour, minute and second has already elapsed, in which case the next day SHALL be used.

· If the month is not specified, the current month SHALL be used unless the specified day, hour, minute and second has already elapsed, in which case the next month SHALL be used.

· If the year is not specified, the current year SHALL be used unless the specified month, day, hour, minute and second has already elapsed, in which case the next year SHALL be used.

· If the century is not specified, the current century SHALL be used unless the specified year, month, day, hour, minute and second has already elapsed, in which case the next century SHALL be used.

The PartialTimestamp MAY also support the following four operations: “get field modifier,” “set field modifier,” “add to field,” and “roll field.” If possible, these operations SHOULD leverage structure already present in the native language date/time representation. The “get field modifier” operation MUST return any additional modifiers set for the given field. An additional modifier is added to the field's value after it has been resolved to a specific time. The “set field modifier” operation MUST set the additional modifiers for the given field. The “add to field” operation MUST add a given value to the given field. If supported by the native date/time representation, this operation SHOULD attempt to resolve out of range field values that may result from the operation. For example, adding “1” to the date of a PartialTimestamp instance which is set to January 31st SHOULD result in the PartialTimestamp being set to February 1st. If this operation is supported, the “get field modifier” and “set field modifier” operations MUST also be supported. The “roll field” operation is similar to the “add to field” operation, except that the operation cannot modify a field of a higher order than the given field. Such modifications are simply lost. For example, adding “1” to the date of a PartialTimestamp which is set to January 31st SHOULD result in the PartialTimestamp being set to January 1st.

The PartialTimestamp MUST also support a notion of unset fields. A special value is assigned to all fields which have not been explicitly set. This special value MUST be of the same type as the date/time properties and MAY be the maximum value for that data type.

Language bindings are free to define convenience functions in addition to the functionalities described here.

6 Service Provider Interface (SPI) Section

The SPI part of the DRMAA module consists of several interfaces. The Session interface represents the majority of the functionality defined by the DRMAA specification. It utilizes all the data structures defined in the API and SPI section.

module DRMAA{

// API part

...

// SPI part

interface JobInfo {…};

interface JobTemplate {…};

interface Session{

void init(in string contactString);

void exit();

JobTemplate createJobTemplate();

void deleteJobTemplate(in JobTemplate jobTemplate);

string runJob(
in JobTemplate jobTemplate);

 StringList runBulkJobs(

in JobTemplate jobTemplate,

in long beginIndex,

in long endIndex,

in long step);

 void control(in string jobName,in JobControlAction operation);

 void synchronize(

in StringList jobList,

in long long timeout,

in boolean dispose);

 JobInfo wait(

in string jobName,

in long long timeout);

 JobProgramState jobProgramStatus(in string jobName);

readonly attribute string contact;

 readonly attribute Version version;

 readonly attribute string drmsInfo;

 readonly attribute string drmaaImplementation;

};

};

6.1 JobInfo interface

The information regarding a job's execution history is encapsulated by object instances that implement the JobInfo interface. Using the JobInfo interface , a DRMAA application can discover information about the resource usage and exit status of a job. The structure of the JobInfo interface is as follows:

interface JobInfo {

readonly attribute string jobId;

readonly attribute Dictionary resourceUsage;

readonly attribute boolean hasExited;

readonly attribute long exitStatus;

readonly attribute boolean hasSignaled;

readonly attribute string terminatingSignal;

readonly attribute boolean hasCoreDump;

readonly attribute boolean wasAborted;

};

The following sections explain the meanings of the JobInfo member attributes.

6.1.1 jobId

The identifier for the completed job.

6.1.2 resourceUsage

This attribute SHALL contain the completed job's resource usage data. If the job did not produce resource usage data, this attribute SHALL be null. Please refer also to GFD.022 section 3.1.3 for more information about resource usage data semantics.

6.1.3 hasExited

This attribute SHALL contain true if the job terminated normally. A value of false MAY indicate that although the job has terminated normally, an exit status is not available, or that it is not known whether the job terminated normally. In both cases the exitStatus attribute SHALL NOT contain exit status information. A value of true indicates more detailed diagnosis can be retrieved from the exitStatus attribute.

6.1.4 exitStatus

If exited is true, this attribute SHALL contain the operating system exit code of the job.

6.1.5 hasSignaled

This attribute SHALL contain true if the job terminated due to the receipt of a signal. A value of false MAY also indicate that although the job has terminated due to the receipt of a signal, the signal is not available, or that it is not known whether the job terminated due to the receipt of a signal. In both cases terminatingSignal SHALL NOT provide signal information.

6.1.6 terminatingSignal

If hasSignaled is true, this attribute SHALL contain a representation of the signal that caused the termination of the job. For signals declared by POSIX, the symbolic names SHALL be returned (e.g., SIGABRT, SIGALRM). For signals not declared by POSIX, a DRM-dependent string SHALL be returned.

6.1.7 hasCoreDump

If hasSignaled is true, this attribute SHALL contain true if a core image of the terminated job was created.

6.1.8
wasAborted

This attribute SHALL contain true if the job ended before entering the running state.

6.2 JobTemplate interface

In order to define the attributes associated with a job, a DRMAA application uses the JobTemplate interface. Instances of such templates are created via the active Session implementation. A DRMAA application gets a JobTemplate from the active Session instance, specifies in the template any required job parameters, and the passes the template back to the DRMAA Session instance when requesting that a job be executed. When finished, the DRMAA application SHOULD call the Session::deleteJobTemplate() method to allow the underlying implementation to free any resources bound to the JobTemplate instance. Please refer also to GFD.022 section 3.1.4 to 3.1.6 for more information regarding precedence rules, site-specific requirements and job evaluation.

The structure of the JobTemplate interface is as follows:

interface JobTemplate{

const string HOME_DIRECTORY = "$drmaa_hd_ph$";

const string WORKING_DIRECTORY = "$drmaa_wd_ph$";

const string PARAMETRIC_INDEX = "$drmaa_incr_ph$";

attribute string remoteCommand;

attribute StringList args;

attribute JobSubmissionState jobSubmissionState;

attribute Dictionary jobEnvironment;

attribute string workingDirectory;

attribute string jobCategory;

attribute string nativeSpecification;

attribute StringList email;

attribute boolean blockEmail;

attribute PartialTimestamp startTime;

attribute string jobName;

attribute string inputPath;

attribute string outputPath;

attribute string errorPath;

attribute boolean joinFiles;

attribute FileTransferMode transferFiles;

attribute PartialTimestamp deadlineTime;

attribute long long hardWallclockTimeLimit;

attribute long long softWallClockTimeLimit;

attribute long long hardRunDurationLimit;

attribute long long softRunDurationLimit;

 StringList getAttributeNames();

};

The JobTemplate implementation MUST support the following exceptions for the setter operations in case there is such a concept in the programming language:

· InvalidAttributeValueException – The value is invalid for the job template property, e.g. a startTime that is in the past.

· ConflictingAttributeValuesException – the attribute value conflicts with a previously set attribute value.

For both getter and setter operations, the following exceptions MUST be supported in case exceptions are part of the programming language:

· NoActiveSessionException

· DrmCommunicationException

· AuthorizationException

· OutOfMemoryException

· InternalException

In most cases, a DRMAA implementation will require that job templates be created through the Session::createJobTemplate() method. In those cases, passing a template created other than via this method to the Session::deleteJobTemplate(), Session::runJob(), or Session::runBulkJobs() methods MUST result in an InvalidJobTemplateException being thrown or a corresponding error code being returned if exceptions are not supported.

A JobTemplate instance must be convertible to a String for printing. This should be accomplished through whatever mechanism is most natural for the implementation language. The resulting String MUST contain the values of all set properties.

Access to attribute values MUST operate in a pass-by-value mode. An according language binding must ensure that this behavior is always fulfilled. Setters for non-primitive, mutable properties SHOULD therefore store a copy of the new value instead of storing the original object.

In the job template there is a distinction between mandatory and optional attributes. A language binding implementation MUST provide implementations for all DRMAA attributes, both required and optional. The setter and getter implementations for optional attributes MUST throw UnsupportedAttributeException in languages which support exceptions. In languages which do not support exceptions, the optional attribute setters and getters MUST return some form of error. The service provider implementation SHOULD then override the setters and getters for supported optional attributes with methods that operate normally.

The SPI implementation is also allowed to add implementation-specific attributes. The JobTemplate::getAttributeNames() method SHALL return the names of all job template attributes supported by the service provider implementation, including required, optional, and implementation specific attributes. In order to get the values for supported attributes, such as in a property sheet, one should use introspection to call the appropriate setter and getter for each attribute.

6.2.1 Constants

The JobTemplate interface defines a set of constants which are used in the context of some of the attributes:

const string HOME_DIRECTORY = "$drmaa_hd_ph$";

const string WORKING_DIRECTORY = "$drmaa_wd_ph$";

const string PARAMETRIC_INDEX = "$drmaa_incr_ph$";

The HOME_DIRECTORY constant is a place holder used to represent the user's home directory when building paths for the workingDirectory, inputPath, outputPath, and errorPath attributes.

The WORKING_DIRECTORY constant is a place holder used to represent the current working directory when building paths for the inputPath, outputPath, and errorPath attributes.

The PARAMETRIC_INDEX constant is a place holder used to represent the id of the current parametric job subtask when building paths for the workingDirectory, inputPath, outputPath, and errorPath attributes.

6.2.2 remoteCommand

The command that should be executed on the remote host. In case this parameter contains path information, it MUST be seen as relative to the execution host file system and is therefore evaluated there. The attribute value SHOULD NOT relate to binary file management or file staging activities.

6.2.3 args

The list of command-line arguments for the job to be executed.

6.2.4 jobSubmissionState

Defines the state of the job at submission time. For more information see section 5.3.

6.2.5 jobEnvironment

The environment values that define the remote environment. The values MUST override the remote environment values if there is a collision. If this is not possible, the behavior is implementation dependent.

6.2.6 workingDirectory

This attribute specifies the directory where the job is executed. If the attribute is not set, the behavior is is implementation dependent. The attribute value MUST be evaluated relative to the execution host's file system. The attribute value MAY contain the HOME_DIRECTORY or PARAMETRIC_INDEX constant values as placeholders. A HOME_DIRECTORY placeholder at the begin denotes the remaining portion of the attribute value as a relative directory path resolved relative to the job users home directory at the execution host. The PARAMETRIC_INDEX placeholder MAY be used at any position within the attribute value in the case of parametric job templates and SHALL be substituted by the underlying DRM system with the parametric jobs' index.

The workingDirectory MUST be specified in a syntax that is common at the host

where the job is executed.

If the attribute is set and no placeholder is used, an absolute directory specification is expected.

If the attribute is set and the job was submitted successfully and the directory does not exist, the job MUST enter the state, JobProgramState.FAILED.

6.2.7 jobCategory

An implementation-defined string specifying how to resolve site-specific resources and/or policies. Site administrators MAY create a job category suitable for an application to be dispatched by the DRMS; the associated category name SHALL be specified as a job submission attribute. The DRMAA implementation MAY then use the category name to manage site-specific resource and functional requirements of jobs in the category. Such requirements need to be configurable by the site operating a DRMS and deploying an application on top of it.

More information can be found in section 2.4.1 of the DRMAA 1.0 specification document.

6.2.8 nativeSpecification

An implementation-defined string that is passed by the end user to DRMAA to specify

site-specific resources and/or policies.

 As far as the DRMAA interface specification is concerned, the native specification is an

implementation-defined string and is interpreted by each DRMAA library. One MAY use the job

category and the native specification with the same job submission for policy specification. In this case, the DRMAA library is assumed to be capable of merging the outcome of the two policy

sources in a reasonable way.

The native specification MAY be used without the requirement to maintain job categories,

and submit options MAY be specified directly.

More information can be found in section 2.4.2 of the DRMAA 1.0 specification document.

6.2.9 email

A list of email addresses that is used to report the job completion and status.

6.2.10 blockEmail

This Boolean parameter decides whether the sending of email is blocked by default or not, regardless of the DRMS setting. If the parameter is TRUE, the sending of email SHALL be blocked regardless of the DRMS setting. If the value is FALSE, the sending of email SHALL be determined by the DRMS setting.

6.2.11 startTime

This attribute specifies the earliest time when the job MAY be eligible to be run.

6.2.12 jobName

A job name SHALL be comprised of alphanumeric and '_' characters.The DRMAA implementation MAY truncate any client-provided job name to an implementation-defined length that is at least 31 characters.

6.2.13 inputPath

Specifies the job's standard input as a path to a file. If this property is not explicitly set in the job template, the job is started with an empty input stream, unless the job category, native specification, or a DRMS setting causes a source for the input stream to be set. If this attribute is set, it specifies the network path for the job's input stream file in the form:

[hostname]:file_path

If the transferFiles job template attribute is supported and has a value where the FileTransferMode::inputStream attribute set to true, the input file SHOULD be fetched by the underlying DRM system from the specified host, or from the submit host if no hostname

was specified.

If the transferFiles job template attribute is not supported or its value's FileTransferMode::inputStream is set to false, then the input file is always expected at the host where the job is executed, irrespective of whether a hostname was specified.

The PARAMETRIC_INDEX placeholder can be used at any position for parametric job templates and SHALL be substituted by the underlying DRM system with the parametric job's index.

A HOME_DIRECTORY placeholder at the beginning of the attribute value denotes the

remaining portion as a relative file specification resolved relative to the job's user's home directory at the host where the file is located.

A WORKING_DIRECTORY placeholder at the beginning of the attribute value denotes the remaining portion as a relative file specification resolved relative to the job's working directory at the host where the file is located.

The inputPath MUST be specified in a syntax that is common at the host where the file is located.

If set, and the job was successfully submitted, and the file can't be read, the job enters the state, JobProgramState.FAILED.

6.2.14 outputPath

Specifies how to direct the job's standard output as a path to a file or directory. If this attribute is not explicitly set in the job template, the destination of the job's output stream is not defined, unless the job category, native specification, or a DRMS setting causes a destination for the output stream to be set. If this attribute is set, it specifies the network path of the job's output stream in the form:

[hostname]:file_path

If the transferFiles job template attribute is supported and its value's FileTransferMode::outputStream attribute is set to true, the output file SHALL be transferred by the underlying DRM system to the specified host or to the submit host if no hostname is specified.

If the transferFiles job template attribute is not supported or its value's FileTransferMode::outputStream attribute is set to false, the output file SHALL be kept at the host where the job is executed, irrespective of whether a hostname was specified.

If the path specified by this attribute represents a file, all output sent to the job's standard output stream SHALL be appended to that file. If the file does not exist at the time the job is executed, the file SHALL first be created. If the path specified by this attribute represents a directory, all output sent to the job's standard output stream SHALL be placed in a file in that directory. The name of the file and it's location in the specified directory SHALL be determined by the DRMS.
The PARAMETRIC_INDEX placeholder can be used at any position with parametric job templates and SHALL be substituted by the underlying DRM system with the parametric job's index.

A HOME_DIRECTORY placeholder at the beginning denotes the remaining portion as a relative file specification resolved relative to the job users home directory at the host where the file is located.

A WORKING_DIRECTORY placeholder at the beginning denotes the remaining portion as a relative file specification resolved relative to the jobs working directory at the host where the file is located.

The outputPath MUST be specified in a syntax that is common at the host where the file is located. If set and the job was successfully submitted and the file can't be written before execution the job MUST enter the state, JobProgramState.FAILED.

6.2.15 errorPath

Specifies how to direct the jobs’ standard error to a file.

If not explicitly set in the job template, the destination of the job's error stream is not defined unless the job category, native specification, or a DRMS setting causes a destination for the error stream to be set. If this attribute is set, it specifies the network path of the jobs error stream file in the form:

[hostname]:file_path

If the transferFiles job template attribute is supported and it’s value's FileTransferMode::errorStream attribute is set to true, the error file SHALL be transferred by the underlying DRM system to the specified host or to the submit host if no hostname is specified.

If the transferFiles job template attribute is not supported or it’s value's FileTransferMode::errorStream is set to false, the error file is always kept at the host where the job is executed irrespective of whether a hostname was specified.

If the path specified by this attribute represents a file, all output sent to the job's standard error stream SHALL be appended to that file. If the file does not exist at the time the job is executed, the file SHALL first be created. If the path specified by this attribute represents a directory, all output sent to the job's standard error stream SHALL be placed in a file in that directory. The name of the file and it's location in the specified directory SHALL be determined by the DRMS.
The PARAMETRIC_INDEX placeholder can be used at any position for parametric job templates and SHALL be substituted by the underlying DRM system with the parametric jobs' index.

A HOME_DIRECTORY placeholder at the beginning denotes the remaining portion as a relative file specification, resolved relative to the job users home directory at the host where the file is located.

A WORKING_DIRECTORY placeholder at the beginning denotes the remaining portion as a relative file specification resolved relative to the jobs working directory at the host where the file is located.

The errorPath MUST be specified in a syntax that is common at the host where the file is located.

If set and the job was successfully submitted and the file can't be written before execution, the job enters the state, JobProgramState.FAILED.

6.2.16 joinFiles

Specifies whether the error stream should be intermixed with the output stream. If not explicitly set in the job template, this attribute defaults to false. If this attribute is set to true, the underlying DRM system SHALL ignore the value of the errorPath attribute and intermix the standard error stream with the standard output stream as specified by the outputPath.

6.2.17 transferFiles

Specifies how to transfer files between hosts.

If this attribute is not explicitly set in the job template, the effect is the same as setting the property to a FileTransferMode instance with all members set to false.

This attribute works in conjunction with the inputPath, outputPath and errorPath attributes.

This attribute is optional. An implementation MUST throw an UnsupportedAttributeException if this attribute is not supported.

6.2.18 deadlineTime

Specifies a deadline after which the DRMS will terminate the job.

This attribute is optional. An implementation MUST throw an UnsupportedAttributeException if this attribute is not supported.

6.2.19 hardWallclockTimeLimit

This attribute specifies when the job's wall clock time limit has been exceeded. An implementation SHALL terminate a job that has exceeded its wall clock time limit. Suspended time SHALL also be counted towards this limit. This attribute's value MUST be given in seconds.

This attribute is optional. In case an implementation MUST throw an UnsupportedAttributeException if this attribute is not supported.

6.2.20 softWallClockTimeLimit

This attribute specifies an estimate as to how much wall clock time the job will need to complete. Note that the suspended time is also counted towards this estimate. This attribute is intended to assist the scheduler. If the time specified in insufficient, the implementation MAY impose a scheduling penalty. This attribute's value MUST be given in seconds.

This attribute is optional. In case an implementation MUST throw an UnsupportedAttributeException if this attribute is not supported.

6.2.21 hardRunDurationLimit

This attribute specifies how long the job MAY be in a running state before its limit has been exceeded, and therefore is terminated by the DRMS. This attribute's value MUST be given in seconds.

This attribute is optional. In case an implementation MUST throw an UnsupportedAttributeException if this attribute is not supported.

6.2.22 softRunDurationLimit

This attribute specifies an estimate as to how long the job will need to remain in a running state to complete. This attribute is intended to assist the scheduler. If the time specified in insufficient, the implementation MAY impose a scheduling penalty. This attribute's value MUST be given in seconds.

This attribute is optional. In case an implementation MUST throw an UnsupportedAttributeException if this attribute is not supported.

6.2.23 getAttributeNames

This method SHALL return the list of supported attribute names. This list includes supported DRMAA reserved attribute names (both required and optional) and implementation-specific attribute names.

StringList getAttributeNames()

raises (
DrmCommunicationException,

AuthorizationException,

NoActiveSessionException,

OutOfMemoryException,

InternalException);

};

Exceptions

· DrmCommunicationException – the DRMS could not be contacted for this request.

· AuthorizationException – the user does not have permission to perform this action.

· NoActiveSessionException – the session has not been initialized or exit() has already been called

· OutOfMemoryException – the DRMAA implementation does not have enough free memory to perform the operation.

· InternalException – an error has occurred in the DRMAA implementation.

6.3 Session interface

The following chapter explains the set of constants, methods and attributes defined in the Session interface. Please consult GFD.022 section 3.1.2 for further details about the DRMAA session concept.

6.3.1 Constants

The Session interface defines a set of constant values, which are used in the context of several interface functions.

const long long TIMEOUT_WAIT_FOREVER = -1;

const long long TIMEOUT_NO_WAIT = 0;

const string JOB_IDS_SESSION_ANY = "DRMAA_JOB_IDS_SESSION_ANY";

const string JOB_IDS_SESSION_ALL = "DRMAA_JOB_IDS_SESSION_ALL";

The TIMEOUT_WAIT_FOREVER constant is used with the wait() and synchronize() methods to indicate that a method call should not return until the given job or jobs have entered the DONE or FAILED state.

The TIMEOUT_NO_WAIT constant is used with the wait() and synchronize() methods to indicate that a method call should return immediately if the given job or jobs have not yet entered the DONE or FAILED state.

The JOB_IDS_SESSION_ANY constant is used with the wait() method to indicate that a method call may operate on any job currently in the RUNNING state in the session.

The JOB_IDS_SESSION_ALL constant is used with the control() and synchronize() methods to indicate that a method call should operate on all jobs in the session at submission time, minus any jobs that go out of scope during the run time of the operation. For example: If a job was in the session at the time of calling synchronize(JOB_IDS_SESSION_ALL), and it’s gets reaped during the operation, the overall call will not fail. A call with JOB_IDS_SESSION_ALL to an empty session SHALL result in a successful call. In case that a call with JOB_IDS_SESSION_ALL fails for a partial set of the jobs in the session, the implementation SHALL throw an InternalException. The error text of the exception should explain the problem in detail and may give an idea of the current status of the session.

6.3.2 init

The init() method MUST do whatever work is required to initialize a DRMAA session for use. The contactString parameter is an implementation-dependent string that may be used to specify which DRM system to use. This method must be called before any other DRMAA calls, except for the getter functions of the contact, drmsInfo, and drmaaImplementation attributes defined in the Session interface.

If contact is null or emtpy, the default DRM system SHOULD be used, provided there is only one DRMS available. If contact is null or empty, and more than one DRMAA implementation is available, init() SHALL throw a NoDefaultContactStringSelectedException or return a corresponding error code if exceptions aren't supported. init() SHOULD be called only once, by only one of the threads. The main thread is recommended. A call to init() by another thread or additional calls to init() by the same thread with throw a AlreadyActiveSessionException or return a corresponding error code if exceptions are not supported.

void init(in string contactString)

raises (
DrmsInitException,

InvalidContactStringException,

AlreadyActiveSessionException,

DefaultContactStringException,

NoDefaultContactStringSelectedException,

OutOfMemoryException,

DrmCommunicationException,

AuthorizationException,

InvalidArgumentException,

InternalException);

Parameters

contactString - implementation-dependent string that may be used to specify which DRM system to use. If null or empty, the DRMAA implementation will select the default DRM system if there is only one DRMS available.

Exceptions

· DrmsInitException – failed while initializing the session.

· InvalidContactStringException – the contact parameter is invalid.

· AlreadyActiveSessionException – the session has already been initialized.

· DefaultContactStringException – the contact parameter is null or empty and the default contact string could not be used to connect to the DRMS.

· NoDefaultContactStringSelectedException – the contact parameter is null or empty and more than one DRMS is available.

· OutOfMemoryException – the DRMAA implementation does not have enough free memory to perform the operation.

· DrmCommunicationException – the DRMS could not be contacted for this request.

· AuthorizationException – the user does not have permission to perform this action.

· InvalidArgumentException – an argument value is invalid.

· InternalException – an error has occurred in the DRMAA implementation.

6.3.3 exit

The exit() method MUST do whatever work is required to disengage from the DRM

system and allow the DRMAA implementation to perform any necessary internal cleanup. This method ends the current DRMAA session SHALL NOT affect any jobs (e.g., queued and running jobs remain queued and running). Any job template instances which have not yet been deleted become invalid after exit() is called, even after a subsequent call to init(). exit() SHOULD be called only once, by only one of the threads. Additional calls to exit() beyond the first SHALL throw a NoActiveSessionException or return a corresponding error code if exceptions aren't supported.

void exit()

raises (
DrmsExitException,

NoActiveSessionException,

DrmCommunicationException,

AuthorizationException,

OutOfMemoryException,

InternalException);

Exceptions

· DrmsExitException – failed while exiting the session.

· NoActiveSessionException – the session has not been initialized or exit() has already been called

· DrmCommunicationException – the DRMS could not be contacted for this request.

· AuthorizationException – the user does not have permission to perform this action.

· OutOfMemoryException – the DRMAA implementation does not have enough free memory to perform the operation.

· InternalException – an error has occurred in the DRMAA implementation.

6.3.4 createJobTemplate

The createJobTemplate() method SHALL return a new JobTemplate instance. The job template is used to set the defining characteristics for jobs to be submitted. Once the job template has been created, it should also be deleted (via deleteJobTemplate()) when no longer needed. Failure to do so may result in a memory leak.

JobTemplate createJobTemplate()

raises (
DrmCommunicationException,

NoActiveSessionException,

OutOfMemoryException,

AuthorizationException,

InternalException);

Returns

The createJobTemplate() method SHALL return a blank JobTemplate instance.

Exceptions

· DrmCommunicationException – unable to communicate with the DRMS

· NoActiveSessionException – the session has not been initialized or exit() has already been called

· OutOfMemoryException – the DRMAA implementation does not have enough free memory to perform the operation.

· AuthorizationException – the user does not have permission to perform this action.

· InternalException – an error has occurred in the DRMAA implementation.

6.3.5 deleteJobTemplate

The deleteJobTemplate() method is used to deallocate a job template, and SHALL perform all necessary steps required to free all memory associated with the given JobTemplate instance.

In languages where memory is not freed explicitly, e.g. languages that use garbage collectors, this method SHALL perform all necessary steps required to prepare this job template to be freed. In languages where finalizers are supported, the implementation of this method MAY be empty.

This method SHALL have no effect on running jobs. This method MUST only work on JobTemplate instances that were created with the createJobTemplate() method and have not previously been deleted with the deleteJobTemplate() method and MUST otherwise throw an InvalidJobTemplateException.

void deleteJobTemplate(in JobTemplate jobTemplate)

raises (
DrmCommunicationException,

NoActiveSessionException,

OutOfMemoryException,

AuthorizationException,

InvalidArgumentException,

InvalidJobTemplateException,

InternalException);

Parameters

jobTemplate - the JobTemplate instance to delete.

Exceptions

· DrmCommunicationException – unable to communicate with the DRMS.

· NoActiveSessionException – the session has not been initialized or exit() has already been called.

· OutOfMemoryException – the DRMAA implementation does not have enough free memory to perform the operation.

· AuthorizationException – the user does not have permission to perform this action.

· InvalidArgumentException – the argument value is invalid.

· InvalidJobTemplateException – the given job template was not created with createJobTemplate() or has already been deleted .

· InternalException – an error has occurred in the DRMAA implementation.

6.3.6 runJob

The runJob() method SHALL submit a job with attributes defined in the job template given as a parameter. The returned job identifier SHOULD be a String identical to that returned from the underlying DRM system. This method MUST only work on JobTemplate instances that were created with the createJobTemplate() method and have not previously been deleted with the deleteJobTemplate() method and MUST otherwise throw an InvalidJobTemplateException.

string runJob(in JobTemplate jobTemplate)

raises (
TryLaterException,

DeniedByDrmException,

DrmCommunicationException,

AuthorizationException,

InvalidJobTemplateException,

NoActiveSessionException,

OutOfMemoryException,

InvalidArgumentException,

InternalException);

Parameters

jobTemplate - the job template to be used to create the job.

Returns

The runJob() method SHOULD return a job identifier string identical to that returned from the underlying DRM system.

Exceptions

· TryLaterException – the request could not be processed due to excessive system load.

· DeniedByDrmException – the DRMS rejected the job. The job will never be accepted due to job template or DRMS configuration settings.

· DrmCommunicationException – unable to communicate with the DRMS.

· InvalidJobTemplateException – the given job template was not created with createJobTemplate() or has already been deleted.

· AuthorizationException – the user does not have permission to submit jobs.

· NoActiveSessionException – the session has not been initialized or exit() has already been called.

· OutOfMemoryException – the DRMAA implementation does not have enough free memory to perform the operation.

· InvalidArgumentException – the argument value is invalid.

· InternalException – an error has occurred in the DRMAA implementation.

6.3.7 runBulkJobs

The runBulkJobs() method SHALL submit a set of parametric jobs, dependent on the implied loop index, each with attributes defined in the given job template. Each job in the set is identical except for its index. The first parametric job has an index equal to beginIndex. The next job has an index equal to beginIndex + step, and so on. The last job has an index equal to beginIndex + n * step, where n is equal to (endIndex – beginIndex) / step. Note that the value of the last job's index may not be equal to endIndex if the difference between beginIndex and endIndex is not evenly divisible by step. The smallest valid value for beginIndex is 1. The largest valid value for endIndex is language dependent. The beginIndex value must be less than or equal to the endIndex value, and only positive index numbers are allowed. The index number can be determined by the job in an implementation-specific fashion. The returned job identifiers SHOULD be Strings identical to those returned from the underlying DRM system.

The JobTemplate interface defines a PARAMETRIC_INDEX placeholder for use in specifying paths. This placeholder is used to represent the individual identifiers of the tasks submitted through this method.

This method MUST only work on JobTemplate instances that were created by the createJobTemplate() method and have not previously been deleted by the deleteJobTemplate() or exit() method and MUST otherwise throw an InvalidJobTemplateException.

StringList runBulkJobs(
in JobTemplate jobTemplate,

in long beginIndex,

in long endIndex,

in long step)

raises (
TryLaterException,

DeniedByDrmException,

DrmCommunicationException,

AuthorizationException,

InvalidJobTemplateException,

NoActiveSessionException,

OutOfMemoryException,

InvalidArgumentException,

InternalException);

Parameters

jobTemplate - the job template to be used to create the job.

beginIndex - the starting value for the loop index.

endIndex - the terminating value for the loop index.

step - the value by which to increment the loop index each iteration.

Returns

The runBulkJobs() method SHOULD return a list of job identifier Strings identical to that returned by the underlying DRM system

Exceptions

· TryLaterException – the request could not be processed due to excessive system load.

· DeniedByDrmException – the DRMS rejected the job. The job will never be accepted due to job template or DRMS configuration settings.

· DrmCommunicationException – unable to communicate with the DRMS.

· InvalidJobTemplateException – the given job template was not created with createJobTemplate() or has already been deleted.

· AuthorizationException – the user does not have permission to submit jobs.

· NoActiveSessionException – the session has not been initialized or exit() has already been called.

· OutOfMemoryException – the DRMAA implementation does not have enough free memory to perform the operation.

· InvalidArgumentException – an argument value is invalid.

· InternalException – an error has occurred in the DRMAA implementation.

6.3.8 control

The control() method SHALL hold, release, suspend, resume, or kill the job identified by jobName respective to the operation parameter. The jobName parameter can be JOB_IDS_SESSION_ALL (see 6.3.1) to act on all jobs in the session.

To avoid thread races in multi-threaded applications, the DRMAA implementation user should explicitly synchronize this call with any other job submission calls or control calls that may change the number of remote jobs.

The legal values for operation and their meanings SHALL be:

· JobControlAction::SUSPEND: stop the job,

· JobControlAction::RESUME: (re)start the job,

· JobControlAction::HOLD: put the job on-hold,

· JobControlAction::RELEASE: release the hold on the job, and

· JobControlAction::TERMINATE: kill the job.

This method SHALL return once the action has been acknowledged by the DRM system, but MAY return before the action has been completed.

Some DRMAA implementations MAY allow this method to be used to control jobs submitted externally to the DRMAA session, such as jobs submitted by other DRMAA sessions in other DRMAA implementations or jobs submitted via native utilities.

void control(
in string jobName,

in JobControlAction operation)

raises (
DrmCommunicationException,

AuthorizationException,

ResumeInconsistentStateException,

SuspendInconsistentStateException,

HoldInconsistentStateException,

ReleaseInconsistentStateException,

InvalidJobException,

NoActiveSessionException,

OutOfMemoryException,

InvalidArgumentException,

 InternalException);

Parameters

jobName - The String id of the job to control.

operation - the control action to be taken.

Exceptions

· DrmCommunicationException – unable to communicate with the DRMS.

· AuthorizationException – the user does not have permission to modify jobs.

· ResumeInconsistentStateException – the job is not in a state from which is can be resumed.

· SuspendInconsistentStateException – the job is not in a state from which is can be suspended.

· HoldInconsistentStateException – the job is not in a state from which is can be held.

· ReleaseInconsistentStateException – the job is not in a state from which is can be released.

· InvalidJobException – the job id does not represent a valid job.

· NoActiveSessionException – the session has not been initialized or exit() has already been called.

· OutOfMemoryException – the DRMAA implementation does not have enough free memory to perform the operation.

· InvalidArgumentException – an argument value is invalid.

· InternalException – an error has occurred in the DRMAA implementation.

6.3.9 synchronize

This method SHALL wait until all jobs specified by jobList have finished execution. The jobList parameter can be JOB_IDS_SESSION_ALL (see 6.3.1) to act on all jobs in the session.

To avoid thread race conditions in multi-threaded applications, the DRMAA implementation user should explicitly synchronize this call with any other job submission or control calls that may change the number of remote jobs.

To prevent blocking indefinitely in this call, the caller may use a timeout specifying how many seconds to block in this call. The constant value TIMEOUT_WAIT_FOREVER may be specified to wait indefinitely for a result. The constant value TIMEOUT_NO_WAIT may be specified to return immediately if no result is available. If the call exits before the timeout has elapsed, all the jobs have been waited on or there was an interrupt. If the invocation exits on timeout, an ExitTimeoutException SHALL be thrown or a corresponding error code returned if exceptions aren't supported. The caller should check system time before and after this call in order to be sure of how much time has passed.

If at any time during the call to synchronize() no jobs are active in the session, the call to synchronize() will return immediately.

The dispose parameter specifies how to treat the reaping of the remote job's internal data record, which includes a record of the job's consumption of system resources during its execution and other statistical information. If set to true, the DRM SHALL dispose of the job's data record at the end of the synchronize() call. If set to false, the data record SHALL be left for future access via the wait() method. Because a DRMAA implementation is not required to retain information about jobs which have been reaped, the routine is not required to, but MAY distinguish between non-existent and reaped jobs. If the routine successfully validates a job ID for an already reaped job, it MAY return successfully without any error.

void synchronize(
in StringList jobList,

in long long timeout,

in boolean dispose)

raises (
DrmCommunicationException,

AuthorizationException,

ExitTimeoutException,

InvalidJobException,

NoActiveSessionException,

OutOfMemoryException,

InvalidArgumentException,

InternalException);

Parameters

jobList - the list of names for the jobs to synchronize.

timeout - the maximum number of seconds to wait.

dispose - specifies how to treat reaping information.

Exceptions

· DrmCommunicationException – unable to communicate with the DRMS.

· AuthorizationException – the user does not have permission to synchronize against jobs.

· ExitTimeoutException – the call was interrupted before all given jobs finished.

· InvalidJobException – the job id does not represent a valid job.

· NoActiveSessionException – the session has not been initialized or exit() has already been called.

· OutOfMemoryException – the DRMAA implementation does not have enough free memory to perform the operation.

· InvalidArgumentException – an argument value is invalid.

· InternalException – an error has occurred in the DRMAA implementation.

6.3.10 wait

This method SHALL wait for a job with jobName to finish execution or fail. If JOB_IDS_SESSION_ANY is provided as the jobName, this method SHALL wait for any job submitted during this DRMAA session up to the moment wait() is called. At any time during a call to wait() with JOB_IDS_SESSION_ANY as the jobName parameter, if no jobs are active in the session, the call to wait() SHALL fail, throwing an InvalidJobException. This method is modeled on the wait3 POSIX routine. Only one invocation of the wait() method for a given job id MAY succeed. The others MUST throw an InvalidJobException.

The timeout value SHALL be used to specify the desired behavior when a result is not immediately available. The constant value TIMEOUT_WAIT_FOREVER may be specified to wait indefinitely for a result. The constant value TIMEOUT_NO_WAIT may be specified to return immediately if no result is available. Alternatively, a number of seconds may be specified to indicate how long to wait for a result to become available.

If the call exits before timeout seconds, either the job has been waited on successfully or there was an interrupt. If the invocation exits on timeout, an ExitTimeoutException SHALL be thrown or a corresponding error code returned if exceptions aren't supported. The caller should check system time before and after this call in order to be sure how much time has passed.

The method SHALL reap job data records on a successful call, so any subsequent calls to wait() SHALL fail, throwing an InvalidJobException, meaning that the job's data record has been already been reaped. This exception is the same as if the job were unknown. (The only case where wait() MAY be successfully called on a single job more than once is when the previous call to wait() timed out before the job finished.)

In a multi-threaded environment with a wait() call using JOB_IDS_SESSION_ANY, only the active thread gets the status of the finished or failed job in that case, while the other threads continue waiting. If there are no more running or completed jobs left in the session, all remaining waiting threads SHOULD fail with an InvalidJobException.

If thread A is waiting for a specific job, and another thread, thread B, waiting for that same job or with JOB_IDS_SESSION_ANY, receives notification that the job has finished, thread A SHOULD fail with an InvalidJobException. At any time during a call to wait() with JOB_IDS_SESSION_ANY as the jobName parameter, if no jobs are active in the session, the call to wait() SHALL fail, throwing an InvalidJobException.

When successful, the resource usage information for the job SHALL be provided as a Dictionary of usage parameter names and their values in the returned job info. The values contain the amount of resources consumed by the job and are implementation defined.

JobInfo wait(
in string jobName,

in long long timeout)

raises (
DrmCommunicationException,

AuthorizationException,

ExitTimeoutException,

InvalidJobException,

NoActiveSessionException,

OutOfMemoryException,

InvalidArgumentException,

 InternalException);

Parameters

jobName - the id of the job for which to wait.

timeout - the maximum number of seconds to wait.

Returns

This method SHALL return the resource usage and status information as JobInfo instance.

 Exceptions

· DrmCommunicationException – unable to communicate with the DRMS.

· AuthorizationException – the user does not have permission to wait for a job.

· ExitTimeoutException – the call was interrupted before the given job finished.

· InvalidJobException – the job id does not represent a valid job.

· NoActiveSessionException – the session has not been initialized or exit() has already been called.

· OutOfMemoryException – the DRMAA implementation does not have enough free memory to perform the operation.

· InvalidArgumentException – an argument value is invalid.

· InternalException – an error has occurred in the DRMAA implementation.

6.3.11 jobProgramStatus

The jobProgramStatus() method SHALL return the program status of the job identified by jobName. The possible values returned from this method are:

· JobProgramState:UNDETERMINED: job status cannot be determined,

· JobProgramState:QUEUED_ACTIVE: job is queued and waiting to be scheduled,

· JobProgramState:SYSTEM_ON_HOLD: job has been placed on hold by the system or the administrator,

· JobProgramState:USER_ON_HOLD: job has been placed on hold by a user,

· JobProgramState:USER_SYSTEM_ON_HOLD: job has been placed on hold by both the system or administrator and a user,

· JobProgramState:RUNNING: job has been scheduled and is running,

· JobProgramState:SYSTEM_SUSPENDED: job has been suspended by the system or administrator,

· JobProgramState:USER_SUSPENDED: job has been suspended by a user,

· JobProgramState:USER_SYSTEM_SUSPENDED: job has been suspended by both the system or administrator and a user,

· JobProgramState:DONE: job finished normally, and

· JobProgramState:FAILED: job exited abnormally before finishing.

The DRMAA implementation MUST always get the status of the job from the DRM system unless the status has already been determined to be FAILED or DONE and the status has been successfully cached. Terminated jobs SHALL return a FAILED status. It is up to the implementation to determine whether this method is capable of operating on jobs submitted outside of the current DRMAA session.

JobProgramState jobProgramStatus(in string jobName)

raises (
DrmCommunicationException,

AuthorizationException,

InvalidJobException,

NoActiveSessionException,

OutOfMemoryException,

InvalidArgumentException,

InternalException);

Parameters

jobName - the id of the job whose status is to be retrieved.

Returns

The jobProgramStatus() method SHALL return the program status.

Exceptions

· DrmCommunicationException – unable to communicate with the DRMS.

· AuthorizationException – the user does not have permission to query for a job's status.

· InvalidJobException – the job id does not represent a valid job.

· NoActiveSessionException – the session has not been initialized or exit() has already been called.

· OutOfMemoryException – the DRMAA implementation does not have enough free memory to perform the operation.

· InvalidArgumentException – an argument value is invalid.

· InternalException – an error has occurred in the DRMAA implementation.

6.3.12 contact

If this attribute is read before the first call to the init() method, then it SHALL return a string containing a comma-delimited list of default DRMAA implementation contacts strings. A contact string represents a specific installation of a specific DRM system, e.g. a Condor central manager machine at a given IP address or a Sun Grid Engine ‘root’ and ‘cell’.

If the value of the attribute is queried after a successful call to init(), this attribute SHALL contain the contact String for the DRM system to which the session is attached.

The returned Strings are always implementation dependent and SHOULD NOT be interpreted by the application.

readonly attribute string contact

raises (InternalException);

6.3.13 version

This attribute SHALL contain a Version instance containing the major and minor version numbers of the DRMAA library. This attribute may not be read before init() has been called.

readonly attribute Version version;

raises (InternalException);

6.3.14 drmsInfo

If the value of this attribute is read before the first successful call to the init() method, this attribute SHALL return a string containing a comma-delimited list
of DRM system identifiers. A DRM system identifier denotes a specific type of DRM system, e.g. Sun Grid Engine.

If the value is read after init(), this attribute SHALL contain the selected DRM system identifier. The Strings are implementation dependent and SHOULD NOT be interpreted by the application.

readonly attribute string drmsInfo;

raises (InternalException);

6.3.15 drmaaImplementation

If the value of this attribute is read before the first successful call to init(), this attribute SHALL return a string containing a comma-delimited list of DRMAA implementations. A DRMAA implementation string denotes a specific version of a DRM system, e.g. Condor v6.6.

If read after init(), this attribute SHALL contain the selected DRMAA implementation.

The returned Strings are implementation dependent and SHOULD NOT be interpreted by the application.

readonly attribute string drmaaImplementation;

raises (InternalException);

7 Annex

7.1 Correlation of DRMAA error codes and exceptions

The following table shows how the error codes defined in the Distributed Resource Management Application API Specification 1.0, correlated to the exceptions in this specification.

	Error Code Name (DRMAA_ERRNO_...)
	Exception Name

	SUCCESS
	none

	INTERNAL_ERROR
	InternalException

	DRM_COMMUNICATION_FAILURE
	DrmCommunicationException

	AUTH_FAILURE
	AuthorizationException

	INVALID_ARGUMENT
	InvalidArgumentException

	NO_ACTIVE_SESSION
	NoActiveSessionException

	NO_MEMORY
	OutOfMemoryException

	INVALID_CONTACT_STRING
	InvalidContactStringException

	DEFAULT_CONTACT_STRING_ERROR
	DefaultContactStringException

	DRMS_INIT_FAILED
	DrmsInitException

	ALREADY_ACTIVE_SESSION
	AlreadyActiveSessionException

	DRMS_EXIT_ERROR
	DrmsExitException

	INVALID_ATTRIBUTE_FORMAT
	InvalidAttributeFormatException

	INVALID_ATTRIBUTE_VALUE
	InvalidAttributeValueException

	CONFLICTING_ATTRIBUTE_VALUES
	ConflictingAttributeValuesException

	TRY_LATER
	TryLaterException

	DENIED_BY_DRM
	DeniedByDrmException

	INVALID_JOB
	InvalidJobException

	RESUME_INCONSISTENT_STATE
	ResumeInconsistentStateException

	SUSPEND_INCONSISTENT_STATE
	SuspendInconsistentStateException

	HOLD_INCONSISTENT_STATE
	HoldInconsistentStateException

	RELEASE_INCONSISTENT_STATE
	ReleaseInconsistentStateException

	EXIT_TIMEOUT
	ExitTimeoutException

	NO_RUSAGE
	none

	none
	InvalidJobTemplateException

	none
	UnsupportedAttributeException

The DRMAA_ERRNO_SUCCESS code clearly does not need to be represented as an exception. This specification introduces two new exceptions which have no error code correlatives. The InvalidJobTemplateException is used to indicate that the job template instance currently being used is not valid. This may be, for example, because it has already been deleted via Session::deleteJobTemplate(). The UnsupportedAttributeException is used to indicate that for the current DRMAA implementation the accessed attribute of a job template is unsupported.

7.2 Correlation of DRMAA and OO job template attributes

The following table shows the relation between DRMAA attribute names and the attribute names used in this document in a job template.

	DRMAA Attribute
	OO Attribute

	drmaa_remote_command
	remoteCommand

	drmaa_v_argv
	args

	drmaa_js_state
	jobSubmissionState

	drmaa_v_env
	jobEnvironment

	drmaa_wd
	workingDirectory

	drmaa_job_category
	jobCategory

	drmaa_native_specification
	nativeSpecification

	drmaa_v_email
	email

	drmaa_block_email
	blockEmail

	drmaa_start_time
	startTime

	drmaa_job_name
	jobName

	drmaa_input_path
	inputPath

	drmaa_output_path
	outputPath

	drmaa_error_path
	errorPath

	drmaa_join_files
	joinFiles

	drmaa_transfer_files
	transferFiles

	drmaa_deadline_time
	deadlineTime

	drmaa_wct_hlimit
	hardWallclockTimeLimit

	drmaa_wct_slimit
	softWallclockTimeLimit

	drmaa_run_duration_hlimit
	hardRunDurationLimit

	drmaa_run_duration_slimit
	softRunDurationLimit

8 Security Considerations

Security issues are not discussed in this document. The scheduling scenario described here assumes that security is handled at the point of job authorization/execution on a particular resource.

9 References

[OMG IDL]
Object Management Group. Common Object Request Broker Architecture: Core Specification, Chapter 3, March 2004

[RFC 2119]
S. Bradner. RFC 2119 – Key words for use in RFCs to Indicate Requirement Levels, March 1997

10 Author Information

Roger Brobst

rbrobst@cadence.com

Cadence Design Systems, Inc

555 River Oaks Parkway

San Jose, CA 95134

Andreas Haas

andreas.haas@sun.com

Sun Microsystems GmbH

Dr.-Leo-Ritter-Str. 7

D-93049 Regensburg

Germany

Hrabri L. Rajic

hrabri.rajic@intel.com

Intel Americas Inc.

1906 Fox Drive

Champaign, IL 61820

Daniel Templeton

dan.templeton@sun.com

Sun Microsystems

18 Network Circle, UMPK18-117

Menlo Park, CA 94025

Peter Tröger

peter.troeger@hpi.uni-potsdam.de

Hasso-Plattner-Institute at

University of Potsdam

Prof.-Dr.-Helmert-Str. 2-3

D-14482 Potsdam

Germany

11 Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this recommendation. Please address the information to the GGF Executive Director.

12 Full Copyright Notice

Copyright (C) Global Grid Forum (2006). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the GGF or other organizations, except as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the GGF Document process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

�This is better, but I still find it to be an awkward distinction. The problem is that our SPI is part of the API. Perhaps we should rephrase out the SPI stuff and explain what vendors have to do to implement it.

�This attribute should throw an exception if exited is false, but which one ? Maybe UnsupportedAttributeException, or something new ?

�This is ugly. There should be a better way to handle the different job status modes. What about some kind of enumeration instead of the series of function calls ?

�This attribute should throw an exception if signaled is false, but which one ? (see above)

�This attribute should throw an exception if signaled is false, but which one ? (see above)

�Languages without introspection might need setAttribute() and getAttribute() in this case. Do we ignore this?

�In OO world this should be a StringList type instead. Same for the other attributes that return comma-separated strings. We could also split up the functionality before and after init() in two attributes.

drmaa-wg@gridforum.org

1

