
GWD-R
DRMAA-WG
drmaa-wg@ogf.org

Peter Tröger, Hasso Plattner Institute1

Roger Brobst, Cadence Design Systems
Daniel Gruber, Univa

Mariusz Mamoński, PSNC
Andre Merzky, LSU

April 2012

Distributed Resource Management Application API Version 2
(DRMAA) -

C Language Binding

Status of This Document

Group Working Draft - Proposed Recommendation (GWD-R)

Document Change History

Date Notes
April 17th, 2012 Final Draft

Copyright Notice

Copyright c© Open Grid Forum (2012-2012). Some Rights Reserved. Distribution is unlimited.

Trademark

All company, product or service names referenced in this document are used for identification purposes only
and may be trademarks of their respective owners.

Abstract

This document describes the C language binding for the Distributed Resource Management Application
API Version 2 (DRMAA). The intended audience for this specification are DRMAA Version 2 interface
implementors.

1Corresponding author

drmaa-wg@ogf.org 1

mailto:drmaa-wg@ogf.org
http://www.drmaa.org/
http://www.drmaa.org/
mailto:drmaa-wg@ogf.org

GWD-R April 2012

Notational Conventions

In this document, C language elements and definitions are represented in a fixed-width font.

The key words “MUST” “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described
in RFC 2119 [1].

drmaa-wg@ogf.org 2

mailto:drmaa-wg@ogf.org

GWD-R April 2012

Contents

1 Introduction . 4

2 General Design . 4
2.1 Error Handling . 5
2.2 Lists and Dictionaries . 6

3 Implementation-specific Extensions . 7

4 Complete Header File . 7

5 Security Considerations . 13

6 Contributors . 13

7 Intellectual Property Statement . 14

8 Disclaimer . 14

9 Full Copyright Notice . 15

10 References . 15

drmaa-wg@ogf.org 3

mailto:drmaa-wg@ogf.org

GWD-R April 2012

1 Introduction

The Distributed Resource Management Application API Version 2 (DRMAA) specification defines an inter-
face for tightly coupled, but still portable access to the majority of DRM systems. The scope is limited to job
submission, job control, reservation management, and retrieval of job and machine monitoring information.

The DRMAA root specification [2] describes the abstract API concepts and the behavioral rules of a compliant
implementation, while this document standardizes the representation of API concepts in the C programming
language.

2 General Design

The mapping of DRMAA IDL constructs to C follows a set of design principles. Implementation-specific
extensions of the DRMAA C API described here SHOULD follow these conventions for their own naming
and method signatures:

• Namespacing of the DRMAA API, as demanded by by the root specification, is realized with the
drmaa2 prefix for lower- and upper-case identifiers.

• In identifier naming, ”job” is shortened as ”j” and ”reservation” is shortened as ”r” for improved
readability.

• The root specification demands a consistent parameter passing strategy for non-scalar values. In
DRMAA for C, all such values are passed as call-by-reference parameter.

• Structs and enums are typedef’ed for better readability.

• Struct types get a s suffix on their name. Structures with a non-standardized layout are defined as
forward references for the DRMAA implementation.

• Functions with IDL return type void have drmaa2 error as return type.

• The IDL boolean type maps to the drmaa2 boolean type.

• The IDL long type maps to long long in C. One exception is the exitStatus variable, which is
defined as int in order to provide a more natural mapping to operating system interfaces.

• The IDL string type maps to char* pointer. The allocation of memory for strings returned SHALL
be done by the implementation itself. The application frees such memory regions by calling the newly
introduced function drmaa2 string free.

• The language binding defines one UNSET macro per utilized C data type (DRMAA2 UNSET *).

• All numerical types are signed, in order to support -1 as numerical UNSET value.

• Application-created structs should be allocated by the additional support methods (such as
drmaa2 jinfo create) to realize the neccessary initialization to UNSET.

• All structures have a specific support function for freeing them (drmaa2 * free).

• Both AbsoluteTime and TimeAmount map directly to time t. RFC 822 support as mandated by the
root specification is given by the %z formatter for sprintf.

• Multiple output parameters are realized by declaring all but one of them as pointer variable. For
this reason, the substate parameter in drmaa2 j get state SHALL be interpreted as pointer to a

drmaa-wg@ogf.org 4

mailto:drmaa-wg@ogf.org

GWD-R April 2012

character pointer variable. The DRMAA library creates the buffer and stores the pointer to it as
variable value.

• The const declarator is used to mark parameters declared as readonly in the root specification.

• The two string list types in DRMAA, ordered and unordered, are mapped to one ordered list with the
DRMAA2 STRING LIST type.

• The largest possible value for end index in drmaa2 js run bulk jobs SHOULD be sizeof(unsigned

long)-1.

• The any member for job sub-state information is defined as char*, in order to achieve application
portability.

The following structures are only used in result values. For this reason, the according allocation functions
are not part of the API:

• drmaa2 slotinfo

• drmaa2 rinfo

• drmaa2 notification

• drmaa2 queueinfo

• drmaa2 version

• drmaa2 machineinfo

The interface membership of a function is mostly expressed by an additional prefix, as show in Table 1.

DRMAA interface C binding prefix
DrmaaReflective drmaa2

SessionManager drmaa2

JobSession drmaa2 jsession

ReservationSession drmaa2 rsession

MonitoringSession drmaa2 msession

Reservation drmaa2 r

Job drmaa2 j

JobArray drmaa2 jarray

JobTemplate drmaa2 jtemplate

ReservationTemplate drmaa2 rtemplate

Table 1: Mapping of DRMAA interfaces to C method prefix

The C binding specifies the function pointer type drmaa2 callback t for a notification callback function,
in order to map the IDL DrmaaCallback interface. The new constant value DRMAA2 UNSET CALLBACK can be
used by the application for the de-registration of callback functions.

2.1 Error Handling

The list of exceptions in the DRMAA root specification is mapped to the new enumeration drmaa2 error.
The enumeration member DRMAA2 LASTERROR is intended to ensure application portability while allowing

drmaa-wg@ogf.org 5

mailto:drmaa-wg@ogf.org

GWD-R April 2012

additional implementation-specific error codes. It MUST always be the enumeration member with the
highest value.

The language binding adds two new functions for fetching error number and error message of the last
error that occurred: drmaa2 lasterror and drmaa2 lasterror text. These functions MUST operate in
a thread-safe manner, meaning that both error informations are managed per application thread by the
DRMAA implementation.

2.2 Lists and Dictionaries

The C language binding adds generic support functions for the collection data types used by the root
specification. The newly defined drmaa2 lasterror and drmaa2 lasterror text functions MUST return
according error information for these operations.

Both drmaa2 list create and drmaa2 dict create have an optional parameter callback. It allows the
application to provide a callback pointer to a collection element cleanup function. This function MUST be
called by the implementation once per stored item when the list / dictionary is freed. It MUST be allowed
for the application to provide NULL instead of a valid callback pointer.

The following list operations are defined:

drmaa2 list create: Creates a new list instance for the specified type of items. Returns a pointer to the
list or NULL on error.

drmaa2 list free: Frees the list and the contained members and returns a success indication.

drmaa2 list get: Gets the list element at the indicated position. The element index starts at zero. If the
index is invalid, the function returns NULL.

drmaa2 list add: Adds a new item at the end of the list and returns a success indication. The list MUST
contain only a pointer copy, not a deep copy of the provided data structure.

drmaa2 list remove: Removes the list element at the indicated position and returns a success indication.

drmaa2 list size: Gets the number of elements in the list. If the list is empty, then the function returns
0, which SHALL NOT be treated as an error case.

Similarly, a set of new functions for dictionary handling is introduced:

drmaa2 dict create: Creates a new dictionary instance. Returns a pointer to the dictionary or NULL on
error.

drmaa2 dict free: Frees the dictionary and the contained members and returns a success indication.

drmaa2 dict list: Gets all dictionary keys as DRMAA drmaa2 string list. If the dictionary is empty,
a valid string list with zero elements SHALL be returned. The application is expected to use
drmaa2 list free for freeing the returned data structure.

drmaa2 dict has: Returns an indication if the given key exists in the dictionary. On error, the function
SHALL return NULL as result.

drmaa2 dict get: Gets the dictionary value for the specified key. If the key is invalid, the function returns
NULL.

drmaa2 dict del: Removes the dictionary entry with the given key and returns a success indication.

drmaa-wg@ogf.org 6

mailto:drmaa-wg@ogf.org

GWD-R April 2012

drmaa2 dict set: Sets the specified dictionary key to the specified value. Key and value strings MUST be
copied as pointer. If the dictionary already has an entry for this name, the value is replaced and the
old value is removed.

3 Implementation-specific Extensions

The DRMAA root specification allows the product-specific extension of the DRMAA API in a standardized
way.

New methods added to a DRMAA implementation SHOULD follow the conventions from Section 2. Ex-
tended struct definitions SHOULD use a product-specific prefix for a clear separation of non-portable and
portable parts of the API. The extension MUST support the casting of product-specific struct pointers to
their standard-compliant counterparts (see Listing 1). Any compiler or linking options necessary for this
feature MUST be documented accordingly by the DRMAA implementation.

Listing 1: Code example for implementation-specific extension
typedef struct
{

[attributes from drmaa2_jtemplate_s] ...
int gridengine_specific_attr;

} gridengine_jtemplate_s;
typedef gridengine_jtemplate_s * gridengine_jtemplate;

4 Complete Header File

The following text shows the complete C header file for the DRMAAv2 application programming interface.
DRMAA-compliant C libraries MUST declare all functions and data structures described here. Implemen-
tations MAY add custom parts in adherence to the extensibility principles of this specification and the root
specification.

The source file is also available at http://www.drmaa.org.

#include <time.h>

#ifndef DRMAA2_H
#define DRMAA2_H

typedef enum drmaa2_jstate {
DRMAA2_UNDETERMINED = 0,
DRMAA2_QUEUED = 1,
DRMAA2_QUEUED_HELD = 2,
DRMAA2_RUNNING = 3,
DRMAA2_SUSPENDED = 4,
DRMAA2_REQUEUED = 5,
DRMAA2_REQUEUED_HELD = 6,
DRMAA2_DONE = 7,
DRMAA2_FAILED = 8

} drmaa2_jstate;

typedef enum drmaa2_os {
DRMAA2_OTHER_OS = 0,
DRMAA2_AIX = 1,
DRMAA2_BSD = 2,
DRMAA2_LINUX = 3,
DRMAA2_HPUX = 4,
DRMAA2_IRIX = 5,
DRMAA2_MACOS = 6,
DRMAA2_SUNOS = 7,
DRMAA2_TRUE64 = 8,

drmaa-wg@ogf.org 7

http://www.drmaa.org
mailto:drmaa-wg@ogf.org

GWD-R April 2012

DRMAA2_UNIXWARE = 9,
DRMAA2_WIN = 10,
DRMAA2_WINNT = 11

} drmaa2_os;

typedef enum drmaa2_cpu {
DRMAA2_OTHER_CPU = 0,
DRMAA2_ALPHA = 1,
DRMAA2_ARM = 2,
DRMAA2_CELL = 3,
DRMAA2_PARISC = 4,
DRMAA2_X86 = 5,
DRMAA2_X64 = 6,
DRMAA2_IA64 = 7,
DRMAA2_MIPS = 8,
DRMAA2_PPC = 9,
DRMAA2_PPC64 = 10,
DRMAA2_SPARC = 11,
DRMAA2_SPARC64 = 12

} drmaa2_cpu;

typedef enum drmaa2_limit {
DRMAA2_CORE_FILE_SIZE = 0,
DRMAA2_CPU_TIME = 1,
DRMAA2_DATA_SEG_SIZE = 2,
DRMAA2_FILE_SIZE = 3,
DRMAA2_OPEN_FILES = 4,
DRMAA2_STACK_SIZE = 5,
DRMAA2_VIRTUAL_MEMORY = 6,
DRMAA2_WALLCLOCK_TIME = 7

} drmaa2_limit;

typedef enum drmaa2_jtemplate_placeholder {
DRMAA2_HOME_DIRECTORY = 0,
DRMAA2_WORKING_DIRECTORY = 1,
DRMAA2_PARAMETRIC_INDEX = 2

} drmaa2_jtemplate_placeholder;

typedef enum drmaa2_event {
DRMAA2_NEW_STATE = 0,
DRMAA2_MIGRATED = 1,
DRMAA2_ATTRIBUTE_CHANGE = 2

} drmaa2_event;

typedef enum {
DRMAA2_ADVANCE_RESERVATION = 0,
DRMAA2_RESERVE_SLOTS = 1,
DRMAA2_CALLBACK = 2,
DRMAA2_BULK_JOBS_MAXPARALLEL = 3,
DRMAA2_JT_EMAIL = 4,
DRMAA2_JT_STAGING = 5,
DRMAA2_JT_DEADLINE = 6,
DRMAA2_JT_MAXSLOTS = 7,
DRMAA2_JT_ACCOUNTINGID = 8,
DRMAA2_RT_STARTNOW = 9,
DRMAA2_RT_DURATION = 10,
DRMAA2_RT_MACHINEOS = 11,
DRMAA2_RT_MACHINEARCH = 12

} drmaa2_capability;

typedef enum drmaa2_bool {
DRMAA2_FALSE = 0,
DRMAA2_TRUE = 1

} drmaa2_bool;

typedef enum drmaa2_error {
DRMAA2_SUCCESS = 0,
DRMAA2_DENIED_BY_DRMS = 1,
DRMAA2_DRM_COMMUNICATION = 2,
DRMAA2_TRY_LATER = 3,
DRMAA2_SESSION_MANAGEMENT = 4,

drmaa-wg@ogf.org 8

mailto:drmaa-wg@ogf.org

GWD-R April 2012

DRMAA2_TIMEOUT = 5,
DRMAA2_INTERNAL = 6,
DRMAA2_INVALID_ARGUMENT = 7,
DRMAA2_INVALID_SESSION = 8,
DRMAA2_INVALID_STATE = 9,
DRMAA2_OUT_OF_RESOURCE = 10,
DRMAA2_UNSUPPORTED_ATTRIBUTE = 11,
DRMAA2_UNSUPPORTED_OPERATION = 12,
DRMAA2_IMPLEMENTATION_SPECIFIC = 13,
DRMAA2_LASTERROR = 14

} drmaa2_error;

drmaa2_error drmaa2_string_free(char *);

drmaa2_error drmaa2_lasterror(void);
char * drmaa2_lasterror_text(void);

struct drmaa2_list_s; /* forward */
typedef struct drmaa2_list_s * drmaa2_list;
typedef struct drmaa2_list_s * drmaa2_string_list;
typedef struct drmaa2_list_s * drmaa2_j_list;
typedef struct drmaa2_list_s * drmaa2_queueinfo_list;
typedef struct drmaa2_list_s * drmaa2_machineinfo_list;
typedef struct drmaa2_list_s * drmaa2_slotinfo_list;
typedef struct drmaa2_list_s * drmaa2_r_list;

typedef enum drmaa2_listtype {
DRMAA2_STRINGLIST ,
DRMAA2_JOBLIST ,
DRMAA2_QUEUEINFOLIST ,
DRMAA2_MACHINEINFOLIST ,
DRMAA2_SLOTINFOLIST ,
DRMAA2_RESERVATIONLIST

} drmaa2_listtype;

typedef void (* drmaa2_list_entryfree)(void * value);
drmaa2_list drmaa2_list_create (const drmaa2_listtype t, const drmaa2_list_entryfree callback);
drmaa2_error drmaa2_list_free (drmaa2_list l);
const void * drmaa2_list_get (drmaa2_list l, int pos);
drmaa2_error drmaa2_list_add (drmaa2_list l, const void * value);
drmaa2_error drmaa2_list_del (drmaa2_list l, int pos);
int drmaa2_list_size (const drmaa2_list l);

struct drmaa2_dict_s; /* forward */
typedef struct drmaa2_dict_s * drmaa2_dict;

typedef void (* drmaa2_dict_entryfree)(char * value);
drmaa2_dict drmaa2_dict_create (const drmaa2_dict_entryfree callback);
drmaa2_error drmaa2_dict_free (drmaa2_dict d);
drmaa2_string_list drmaa2_dict_list (const drmaa2_dict d);
drmaa2_bool drmaa2_dict_has (const drmaa2_dict d, const char * key);
const char * drmaa2_dict_get (const drmaa2_dict d, const char * key);
drmaa2_error drmaa2_dict_del (drmaa2_dict d, const char * key);
drmaa2_error drmaa2_dict_set (drmaa2_dict d, const char * key , const char * val);

#define DRMAA2_ZERO_TIME ((time_t) 0)
#define DRMAA2_INFINITE_TIME ((time_t) -1)
#define DRMAA2_NOW ((time_t) -2)

#define DRMAA2_UNSET_BOOL DRMAA2_FALSE
#define DRMAA2_UNSET_STRING NULL
#define DRMAA2_UNSET_NUM -1
#define DRMAA2_UNSET_ENUM -1
#define DRMAA2_UNSET_LIST NULL
#define DRMAA2_UNSET_DICT NULL
#define DRMAA2_UNSET_TIME ((time_t) -3)
#define DRMAA2_UNSET_CALLBACK NULL

typedef struct {
char * jobId;

drmaa-wg@ogf.org 9

mailto:drmaa-wg@ogf.org

GWD-R April 2012

int exitStatus;
char * terminatingSignal;
char * annotation;
drmaa2_jstate jobState;
char * jobSubState;
drmaa2_string_list allocatedMachines;
char * submissionMachine;
char * jobOwner;
long long slots;
char * queueName;
time_t wallclockTime;
long long cpuTime;
time_t submissionTime;
time_t dispatchTime;
time_t finishTime;

} drmaa2_jinfo_s;
typedef drmaa2_jinfo_s * drmaa2_jinfo;

drmaa2_jinfo drmaa2_jinfo_create (void);
drmaa2_error drmaa2_jinfo_free (drmaa2_jinfo ji);

typedef struct {
char * machineName;
long long slots;

} drmaa2_slotinfo_s;
typedef drmaa2_slotinfo_s * drmaa2_slotinfo;

drmaa2_error drmaa2_slotinfo_free (drmaa2_slotinfo si);

typedef struct {
char * reservationId;
char * reservationName;
time_t reservedStartTime;
time_t reservedEndTime;
drmaa2_string_list usersACL;
long long reservedSlots;
drmaa2_slotinfo_list reservedMachines;

} drmaa2_rinfo_s;
typedef drmaa2_rinfo_s * drmaa2_rinfo;

drmaa2_error drmaa2_rinfo_free (drmaa2_rinfo ri);

typedef struct {
char * remoteCommand;
drmaa2_string_list args;
drmaa2_bool submitAsHold;
drmaa2_bool rerunnable;
drmaa2_dict jobEnvironment;
char * workingDirectory;
char * jobCategory;
drmaa2_string_list email;
drmaa2_bool emailOnStarted;
drmaa2_bool emailOnTerminated;
char * jobName;
char * inputPath;
char * outputPath;
char * errorPath;
drmaa2_bool joinFiles;
char * reservationId;
char * queueName;
long long minSlots;
long long maxSlots;
long long priority;
drmaa2_string_list candidateMachines;
long long minPhysMemory;
drmaa2_os machineOS;
drmaa2_cpu machineArch;
time_t startTime;
time_t deadlineTime;
drmaa2_dict stageInFiles;
drmaa2_dict stageOutFiles;

drmaa-wg@ogf.org 10

mailto:drmaa-wg@ogf.org

GWD-R April 2012

drmaa2_dict resourceLimits;
char * accountingId;

} drmaa2_jtemplate_s;
typedef drmaa2_jtemplate_s * drmaa2_jtemplate;

drmaa2_jtemplate drmaa2_jtemplate_create (void);
drmaa2_error drmaa2_jtemplate_free (drmaa2_jtemplate jt);
char* drmaa2_jtemplate_tostring (drmaa2_jtemplate jt);

typedef struct {
char * reservationName;
time_t startTime;
time_t endTime;
time_t duration;
long long minSlots;
long long maxSlots;
char * jobCategory;
drmaa2_string_list usersACL;
drmaa2_string_list candidateMachines;
long long minPhysMemory;
drmaa2_os machineOS;
drmaa2_cpu machineArch;

} drmaa2_rtemplate_s;
typedef drmaa2_rtemplate_s * drmaa2_rtemplate;

drmaa2_rtemplate drmaa2_rtemplate_create (void);
drmaa2_error drmaa2_rtemplate_free (drmaa2_rtemplate rt);

typedef struct {
drmaa2_event event;
char * jobId;
char * sessionName;
drmaa2_jstate jobState;

} drmaa2_notification_s;
typedef drmaa2_notification_s * drmaa2_notification;

drmaa2_error drmaa2_notification_free (drmaa2_notification n);

typedef struct {
char * name;

} drmaa2_queueinfo_s;
typedef drmaa2_queueinfo_s * drmaa2_queueinfo;

drmaa2_error drmaa2_queueinfo_free (drmaa2_queueinfo qi);

typedef struct {
char * major;
char * minor;

} drmaa2_version_s;
typedef drmaa2_version_s * drmaa2_version;

drmaa2_error drmaa2_version_free (drmaa2_version v);

typedef struct {
char * name;
drmaa2_bool available;
long long sockets;
long long coresPerSocket;
long long threadsPerCore;
float load;
long long physMemory;
long long virtMemory;
drmaa2_os machineOS;
drmaa2_version machineOSVersion;
drmaa2_cpu machineArch;

} drmaa2_machineinfo_s;
typedef drmaa2_machineinfo_s * drmaa2_machineinfo;

drmaa2_error drmaa2_machineinfo_free (drmaa2_machineinfo mi);

drmaa2_string_list drmaa2_jtemplate_impl_spec (void);

drmaa-wg@ogf.org 11

mailto:drmaa-wg@ogf.org

GWD-R April 2012

drmaa2_string_list drmaa2_jinfo_impl_spec (void);
drmaa2_string_list drmaa2_rtemplate_impl_spec (void);
drmaa2_string_list drmaa2_rinfo_impl_spec (void);
drmaa2_string_list drmaa2_queueinfo_impl_spec (void);
drmaa2_string_list drmaa2_machineinfo_impl_spec (void);
drmaa2_string_list drmaa2_notification_impl_spec (void);

char * drmaa2_get_instance_value (const void * instance , const char * name);
char * drmaa2_describe_attribute (const void * instance , const char * name);
drmaa2_error drmaa2_set_instance_value (void * instance , const char * name , const char * value);

typedef void (* drmaa2_callback)(drmaa2_notification * notification);

struct drmaa2_jsession_s; /* forward */
struct drmaa2_rsession_s; /* forward */
struct drmaa2_msession_s; /* forward */
struct drmaa2_j_s; /* forward */
struct drmaa2_jarray_s; /* forward */
struct drmaa2_r_s; /* forward */

typedef struct drmaa2_jsession_s * drmaa2_jsession;
typedef struct drmaa2_rsession_s * drmaa2_rsession;
typedef struct drmaa2_msession_s * drmaa2_msession;
typedef struct drmaa2_j_s * drmaa2_j;
typedef struct drmaa2_jarray_s * drmaa2_jarray;
typedef struct drmaa2_r_s * drmaa2_r;

char * drmaa2_rsession_get_contact (const drmaa2_rsession rs);
char * drmaa2_rsession_get_session_name (const drmaa2_rsession rs);
drmaa2_r drmaa2_rsession_get_reservation (const drmaa2_rsession rs, const char * reservation_id);
drmaa2_r drmaa2_rsession_request_reservation (const drmaa2_rsession rs , const drmaa2_rtemplate rt);
drmaa2_r_list drmaa2_rsession_get_reservations (const drmaa2_rsession rs);

char * drmaa2_r_get_id (const drmaa2_r r);
char * drmaa2_r_get_session_name (const drmaa2_r r);
drmaa2_rtemplate drmaa2_r_get_reservation_template (const drmaa2_r r);
drmaa2_rinfo drmaa2_r_get_info (const drmaa2_r r);
drmaa2_error drmaa2_r_terminate (drmaa2_r r);

char * drmaa2_jarray_get_id (const drmaa2_jarray ja);
drmaa2_j_list drmaa2_jarray_get_jobs (const drmaa2_jarray ja);
char * drmaa2_jarray_get_session_name (const drmaa2_jarray ja);
drmaa2_jtemplate drmaa2_jarray_get_job_template (const drmaa2_jarray ja);
drmaa2_error drmaa2_jarray_suspend (drmaa2_jarray ja);
drmaa2_error drmaa2_jarray_resume (drmaa2_jarray ja);
drmaa2_error drmaa2_jarray_hold (drmaa2_jarray ja);
drmaa2_error drmaa2_jarray_release (drmaa2_jarray ja);
drmaa2_error drmaa2_jarray_terminate (drmaa2_jarray ja);

char * drmaa2_jsession_get_contact (const drmaa2_jsession js);
char * drmaa2_jsession_get_session_name (const drmaa2_jsession js);
drmaa2_string_list drmaa2_jsession_get_job_categories (const drmaa2_jsession js);
drmaa2_j_list drmaa2_jsession_get_jobs (const drmaa2_jsession js ,

const drmaa2_jinfo filter);
drmaa2_jarray drmaa2_jsession_get_job_array (const drmaa2_jsession js,

const char * jobarray_id);
drmaa2_j drmaa2_jsession_run_job (const drmaa2_jsession js,

const drmaa2_jtemplate jt);
drmaa2_jarray drmaa2_jsession_run_bulk_jobs (const drmaa2_jsession js,

const drmaa2_jtemplate jt ,
unsigned long begin_index ,
unsigned long end_index ,
unsigned long step ,
unsigned long max_parallel);

drmaa2_j drmaa2_jsession_wait_any_started (const drmaa2_jsession js ,
const drmaa2_j_list l,
const time_t timeout);

drmaa2_j drmaa2_jsession_wait_any_terminated (const drmaa2_jsession js,
const drmaa2_j_list l,
const time_t timeout);

drmaa-wg@ogf.org 12

mailto:drmaa-wg@ogf.org

GWD-R April 2012

char * drmaa2_j_get_id (const drmaa2_j j);
char * drmaa2_j_get_session_name (const drmaa2_j j);
drmaa2_jtemplate drmaa2_j_get_jt (const drmaa2_j j);
drmaa2_error drmaa2_j_suspend (drmaa2_j j);
drmaa2_error drmaa2_j_resume (drmaa2_j j);
drmaa2_error drmaa2_j_hold (drmaa2_j j);
drmaa2_error drmaa2_j_release (drmaa2_j j);
drmaa2_error drmaa2_j_terminate (drmaa2_j j);
drmaa2_jstate drmaa2_j_get_state (const drmaa2_j j, char ** substate);
drmaa2_jinfo drmaa2_j_get_info (const drmaa2_j j);
drmaa2_j drmaa2_j_wait_started (const drmaa2_j j, const time_t timeout);
drmaa2_j drmaa2_j_wait_terminated (const drmaa2_j j, const time_t timeout);

drmaa2_r_list drmaa2_msession_get_all_reservations (const drmaa2_msession ms);
drmaa2_j_list drmaa2_msession_get_all_jobs (const drmaa2_msession ms,

const drmaa2_jinfo filter);
drmaa2_queueinfo_list drmaa2_msession_get_all_queues (const drmaa2_msession ms,

const drmaa2_string_list names);
drmaa2_machineinfo_list drmaa2_msession_get_all_machines (const drmaa2_msession ms ,

const drmaa2_string_list names);

char * drmaa2_get_drms_name (void);
drmaa2_version drmaa2_get_drms_version (void);
char * drmaa2_get_drmaa_name (void);
drmaa2_version drmaa2_get_drmaa_version (void);
drmaa2_bool drmaa2_supports (const drmaa2_capability c);
drmaa2_jsession drmaa2_create_jsession (const char * session_name , const char * contact);
drmaa2_rsession drmaa2_create_rsession (const char * session_name , const char * contact);
drmaa2_jsession drmaa2_open_jsession (const char * session_name);
drmaa2_rsession drmaa2_open_rsession (const char * session_name);
drmaa2_msession drmaa2_open_msession (const char * session_name);
drmaa2_error drmaa2_close_jsession (drmaa2_jsession js);
drmaa2_error drmaa2_close_rsession (drmaa2_rsession rs);
drmaa2_error drmaa2_close_msession (drmaa2_msession ms);
drmaa2_error drmaa2_destroy_jsession (const char * session_name);
drmaa2_error drmaa2_destroy_rsession (const char * session_name);
drmaa2_string_list drmaa2_get_jsession_names (void);
drmaa2_string_list drmaa2_get_rsession_names (void);
drmaa2_error drmaa2_register_event_notification (const drmaa2_callback callback);

#endif

5 Security Considerations

The DRMAA root specification [2] describes the behavioral aspects of a standard-compliant implementation.
This includes also security aspects.

Software written in C language has well-known security attack vectors, especially with memory handling.
Implementors MUST clarify in their documentation which kind of memory management is expected by the
application. Implementations MUST also consider the possibility for multi-threaded applications performing
re-entrant calls to the library. The root specification clarifies some of the behavioral aspects with this.

6 Contributors

Roger Brobst
Cadence Design Systems, Inc.
555 River Oaks Parkway
San Jose, CA 95134, United States
Email: rbrobst@cadence.com

drmaa-wg@ogf.org 13

mailto:drmaa-wg@ogf.org

GWD-R April 2012

Daniel Gruber
Univa GmbH
c/o Rüter und Partner
Prielmayerstr. 3
80335 München, Germany
Email: dgruber@univa.com

Mariusz Mamoński
Poznań Supercomputing and Networking Center
ul. Noskowskiego 10
61-704 Poznań, Poland
Email: mamonski@man.poznan.pl

Andre Merzky
Center for Computation and Technology
Louisiana State University
216 Johnston Hall
70803 Baton Rouge, Louisiana, USA
Email: andre@merzky.net

Peter Tröger (Corresponding Author)
Hasso Plattner Institute at University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany
Email: peter@troeger.eu

7 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or the
extent to which any license under such rights might or might not be available; neither does it represent that
it has made any effort to identify any such rights. Copies of claims of rights made available for publication
and any assurances of licenses to be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by implementers or users of this specification can
be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to practice this recommendation.
Please address the information to the OGF Executive Director.

8 Disclaimer

This document and the information contained herein is provided on an “as-is” basis and the OGF disclaims
all warranties, express or implied, including but not limited to any warranty that the use of the information

drmaa-wg@ogf.org 14

mailto:drmaa-wg@ogf.org

GWD-R April 2012

herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular
purpose.

9 Full Copyright Notice

Copyright c© Open Grid Forum (2012-2012). Some Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice or references to the OGF or
other organizations, except as needed for the purpose of developing Grid Recommendations in which case
the procedures for copyrights defined in the OGF Document process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors
or assignees.

10 References

[1] Scott Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119 (Best Current
Practice), March 1997. URL http://tools.ietf.org/html/rfc2119.

[2] Peter Tröger, Roger Brobst, Daniel Gruber, Mariusz Mamonski, and Daniel Templeton. Distributed
Resource Management Application API Version 2 (DRMAA). http://www.ogf.org/documents/GFD.

194.pdf, January 2012.

drmaa-wg@ogf.org 15

http://tools.ietf.org/html/rfc2119
http://www.ogf.org/documents/GFD.194.pdf
http://www.ogf.org/documents/GFD.194.pdf
mailto:drmaa-wg@ogf.org

	Introduction
	General Design
	Error Handling
	Lists and Dictionaries

	Implementation-specific Extensions
	Complete Header File
	Security Considerations
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice
	References

