GWD-R Peter Troger, Hasso Plattner Institute!
DRMAA-WG Roger Brobst, Cadence Design Systems
drmaa-wgQogf.org Daniel Gruber, Univa
Mariusz Mamonski, PSNC

Andre Merzky, LSU

April 2012

Distributed Resource Management Application APl Version 2
(DRMAA) -
C Language Binding

Status of This Document
Group Working Draft - Proposed Recommendation (GWD-R)

Document Change History

Date Notes
April 17th, 2012 Final Draft

Copyright Notice

Copyright © Open Grid Forum (2012-2012). Some Rights Reserved. Distribution is unlimited.

Trademark

All company, product or service names referenced in this document are used for identification purposes only
and may be trademarks of their respective owners.

Abstract

This document describes the C language binding for the Distributed Resource Management Application
API Version 2 (DRMAA). The intended audience for this specification are DRMAA Version 2 interface

implementors.

LCorresponding author

drmaa-wgQogf.org 1

mailto:drmaa-wg@ogf.org
http://www.drmaa.org/
http://www.drmaa.org/
mailto:drmaa-wg@ogf.org

GWD-R April 2012

Notational Conventions

In this document, C language elements and definitions are represented in a fixed-width font.

The key words “MUST” “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described

in RFC 2119 [1].

drmaa-wgQogf.org

mailto:drmaa-wg@ogf.org

GWD-R April 2012

Contents
1 Introduction L e e 4
2 General Design L e 4
2.1 Error Handling L e 5
2.2 Lists and Dictionaries e 6
3 Implementation-specific Extensions 7
4 Complete Header File e 7
5 Security Considerations L 13
6 Contributors L L 13
7 Intellectual Property Statement 14
8 Disclaimer e s 14
9 Full Copyright Notice e 15
10 References L 15

drmaa-wgQogf.org 3

mailto:drmaa-wg@ogf.org

GWD-R April 2012

1 Introduction

The Distributed Resource Management Application API Version 2 (DRMAA) specification defines an inter-
face for tightly coupled, but still portable access to the majority of DRM systems. The scope is limited to job
submission, job control, reservation management, and retrieval of job and machine monitoring information.

The DRMAA root specification [2] describes the abstract API concepts and the behavioral rules of a compliant
implementation, while this document standardizes the representation of API concepts in the C programming
language.

2 General Design

The mapping of DRMAA IDL constructs to C follows a set of design principles. Implementation-specific
extensions of the DRMAA C API described here SHOULD follow these conventions for their own naming
and method signatures:

e Namespacing of the DRMAA API, as demanded by by the root specification, is realized with the
drmaa2_ prefix for lower- and upper-case identifiers.

39 .97

e In identifier naming, ”job” is shortened as ”j” and "reservation” is shortened as ”r” for improved
readability.

e The root specification demands a consistent parameter passing strategy for non-scalar values. In
DRMAA for C, all such values are passed as call-by-reference parameter.

e Structs and enums are typedef’ed for better readability.

e Struct types get a _s suffix on their name. Structures with a non-standardized layout are defined as
forward references for the DRMAA implementation.

e Functions with IDL return type void have drmaa2_error as return type.
e The IDL boolean type maps to the drmaa2 boolean type.

e The IDL long type maps to long long in C. One exception is the exitStatus variable, which is
defined as int in order to provide a more natural mapping to operating system interfaces.

e The IDL string type maps to char* pointer. The allocation of memory for strings returned SHALL
be done by the implementation itself. The application frees such memory regions by calling the newly
introduced function drmaa2_string free.

e The language binding defines one UNSET macro per utilized C data type (DRMAA2 UNSET_x).
e All numerical types are signed, in order to support -1 as numerical UNSET value.

e Application-created structs should be allocated by the additional support methods (such as
drmaa2_jinfo_create) to realize the neccessary initialization to UNSET.

e All structures have a specific support function for freeing them (drmaa2_* _free).

e Both AbsoluteTime and TimeAmount map directly to time_t. RFC 822 support as mandated by the
root specification is given by the %z formatter for sprintf.

e Multiple output parameters are realized by declaring all but one of them as pointer variable. For
this reason, the substate parameter in drmaa2_j_get_state SHALL be interpreted as pointer to a

drmaa-wgQogf.org 4

mailto:drmaa-wg@ogf.org

GWD-R

April 2012

character pointer variable. The DRMAA library creates the buffer and stores the pointer to it as

variable value.

e The const declarator is used to mark parameters declared as readonly in the root specification.

e The two string list types in DRMAA, ordered and unordered, are mapped to one ordered list with the

DRMAA2_STRING_LIST type.

e The largest possible value for end_index in drmaa2_js_run_bulk_jobs SHOULD be sizeof (unsigned

long)-1.

e The any member for job sub-state information is defined as char*, in order to achieve application

portability.

The following structures are only used in result values. For this reason, the according allocation functions

are not part of the API:
e drmaa2_slotinfo
e drmaa2 rinfo

e drmaa2 notification

drmaa2_queueinfo
e drmaa2 version

e drmaa2 machineinfo

The interface membership of a function is mostly expressed by an additional prefix, as show in Table 1.

DRMAA interface

C binding prefix

DrmaaReflective
SessionManager
JobSession
ReservationSession
MonitoringSession
Reservation

Job

JobArray
JobTemplate
ReservationTemplate

drmaa2_

drmaa2_
drmaa2_jsession_
drmaa2_rsession_
drmaa2 msession_
drmaa2_r_
drmaa2_j_
drmaa2_jarray._
drmaa2_jtemplate_
drmaa2_rtemplate_

Table 1: Mapping of DRMAA interfaces to C method prefix

The C binding specifies the function pointer type drmaa2_callback_t for a notification callback function,
in order to map the IDL DrmaaCallback interface. The new constant value DRMAA2 UNSET_CALLBACK can be
used by the application for the de-registration of callback functions.

2.1 Error Handling

The list of exceptions in the DRMAA root specification is mapped to the new enumeration drmaa2_error.
The enumeration member DRMAA2 LASTERROR is intended to ensure application portability while allowing

drmaa-wgQogf.org

mailto:drmaa-wg@ogf.org

GWD-R April 2012

additional implementation-specific error codes. It MUST always be the enumeration member with the
highest value.

The language binding adds two new functions for fetching error number and error message of the last
error that occurred: drmaa2 lasterror and drmaa2 lasterror_text. These functions MUST operate in
a thread-safe manner, meaning that both error informations are managed per application thread by the
DRMAA implementation.

2.2 Lists and Dictionaries

The C language binding adds generic support functions for the collection data types used by the root
specification. The newly defined drmaa2 lasterror and drmaa2 lasterror_text functions MUST return
according error information for these operations.

Both drmaa2 1ist _create and drmaa2 dict_create have an optional parameter callback. It allows the
application to provide a callback pointer to a collection element cleanup function. This function MUST be
called by the implementation once per stored item when the list / dictionary is freed. It MUST be allowed
for the application to provide NULL instead of a valid callback pointer.

The following list operations are defined:

drmaa2 list_create: Creates a new list instance for the specified type of items. Returns a pointer to the
list or NULL on error.

drmaa2_list_free: Frees the list and the contained members and returns a success indication.

drmaa2_list_get: Gets the list element at the indicated position. The element index starts at zero. If the
index is invalid, the function returns NULL.

drmaa2_list_add: Adds a new item at the end of the list and returns a success indication. The list MUST
contain only a pointer copy, not a deep copy of the provided data structure.

drmaa2_list_remove: Removes the list element at the indicated position and returns a success indication.

drmaa2_list_size: Gets the number of elements in the list. If the list is empty, then the function returns
0, which SHALL NOT be treated as an error case.

Similarly, a set of new functions for dictionary handling is introduced:

drmaa2_dict_create: Creates a new dictionary instance. Returns a pointer to the dictionary or NULL on
erTor.

drmaa2_dict_free: Frees the dictionary and the contained members and returns a success indication.

drmaa2 dict_list: Gets all dictionary keys as DRMAA drmaa2_string list. If the dictionary is empty,
a valid string list with zero elements SHALL be returned. The application is expected to use
drmaa2_list_free for freeing the returned data structure.

drmaa2_dict_has: Returns an indication if the given key exists in the dictionary. On error, the function
SHALL return NULL as result.

drmaa2_dict_get: Gets the dictionary value for the specified key. If the key is invalid, the function returns
NULL.

drmaa2_dict_del: Removes the dictionary entry with the given key and returns a success indication.

drmaa-wgQogf.org 6

mailto:drmaa-wg@ogf.org

GWD-R April 2012

drmaa2_dict_set: Sets the specified dictionary key to the specified value. Key and value strings MUST be
copied as pointer. If the dictionary already has an entry for this name, the value is replaced and the
old value is removed.

3 Implementation-specific Extensions

The DRMAA root specification allows the product-specific extension of the DRMAA API in a standardized
way.

New methods added to a DRMAA implementation SHOULD follow the conventions from Section 2. Ex-
tended struct definitions SHOULD use a product-specific prefix for a clear separation of non-portable and
portable parts of the API. The extension MUST support the casting of product-specific struct pointers to
their standard-compliant counterparts (see Listing 1). Any compiler or linking options necessary for this
feature MUST be documented accordingly by the DRMAA implementation.

Listing 1: Code example for implementation-specific extension
typedef struct

[attributes from drmaa2_jtemp1ate_s]
int gridengine_specific_attr;
} gridengine_jtemplate_s;
typedef gridengine_jtemplate_s * gridengine_jtemplate;

4 Complete Header File

The following text shows the complete C header file for the DRMAAv2 application programming interface.
DRMAA-compliant C libraries MUST declare all functions and data structures described here. Implemen-
tations MAY add custom parts in adherence to the extensibility principles of this specification and the root
specification.

The source file is also available at http://www.drmaa.org.

#include <time.h>

#ifndef DRMAA2_H
#define DRMAA2_H

typedef enum drmaa2_jstate {
DRMAA2_UNDETERMINED
DRMAA2_QUEUED
DRMAA2_QUEUED_HELD
DRMAA2_RUNNING
DRMAA2_SUSPENDED
DRMAA2_REQUEUED
DRMAA2_REQUEUED_HELD
DRMAA2_DONE
DRMAA2_FAILED

} drmaa2_jstate;

LI I (A { }
00 ~NO U WN PO

typedef enum drmaa2_os {
DRMAA2_OTHER_OS
DRMAA2_AIX
DRMAA2_BSD
DRMAA2_LINUX
DRMAA2_HPUX
DRMAA2_IRIX
DRMAA2_MACOS

DRMAA2_SUNOS

DRMAA2_TRUE64

L | | | | | N | B 1
W ~NOU e WN O

drmaa-wgQogf.org 7

http://www.drmaa.org
mailto:drmaa-wg@ogf.org

GWD-R

DRMAA2_UNIXWARE
DRMAA2_WIN
DRMAA2_WINNT

} drmaa2_os;

typedef enum drmaa2_cpu {
DRMAA2_OTHER_CPU
DRMAA2_ALPHA
DRMAA2_ARM
DRMAA2_CELL
DRMAA2_PARISC
DRMAA2_X86
DRMAA2_X64
DRMAA2_TIA64
DRMAA2_MIPS
DRMAA2_PPC
DRMAA2_PPC64
DRMAA2_SPARC
DRMAA2_SPARC64

} drmaa2_cpu;

typedef enum drmaa2_limit {
DRMAA2_CORE_FILE_SIZE
DRMAA2_CPU_TIME
DRMAA2 _DATA_SEG_SIZE
DRMAA2 _FILE_SIZE
DRMAA2_OPEN_FILES
DRMAA2_STACK_SIZE
DRMAA2_VIRTUAL_MEMORY
DRMAA2 _WALLCLOCK_TIME

} drmaa2_limit;

typedef enum drmaa2_jtemplate_placeholder {

DRMAA2_HOME_DIRECTORY
DRMAA2_WORKING_DIRECTORY
DRMAA2_PARAMETRIC_INDEX

} drmaa2_jtemplate_placeholder;

typedef enum drmaa2_event {
DRMAA2_NEW_STATE
DRMAA2_MIGRATED
DRMAA2_ATTRIBUTE_CHANGE

} drmaa2_event;

typedef enum {
DRMAA2_ADVANCE_RESERVATION
DRMAA2_RESERVE_SLOTS
DRMAA2_CALLBACK

DRMAA2_BULK_JOBS_MAXPARALLEL

DRMAA2_JT_EMAIL
DRMAA2_JT_STAGING
DRMAA2_JT_DEADLINE
DRMAA2_JT_MAXSLOTS
DRMAA2_JT_ACCOUNTINGID
DRMAA2_RT_STARTNOW
DRMAA2_RT_DURATION
DRMAA2_RT_MACHINEOS
DRMAA2_RT_MACHINEARCH
} drmaa2_capability;

typedef enum drmaa2_bool {
DRMAA2_FALSE
DRMAA2_TRUE

} drmaa2_bool;

typedef enum drmaa2_error {
DRMAA2_SUCCESS
DRMAA2_DENIED_BY_DRMS
DRMAA2_DRM_COMMUNICATION
DRMAA2_TRY_LATER
DRMAA2_SESSION_MANAGEMENT

drmaa-wgQogf.org

B> WwWN RO

0N WN PO

NOoO O WN PO

0,
1,
2

0N WN - O

April 2012

mailto:drmaa-wg@ogf.org

GWD-R

DRMAA2_TIMEOQOUT
DRMAA2_INTERNAL
DRMAA2_INVALID_ARGUMENT
DRMAA2_INVALID_SESSION
DRMAA2_INVALID_STATE
DRMAA2_OUT_OF _RESOURCE
DRMAA2_UNSUPPORTED_ATTRIBUTE
DRMAA2_UNSUPPORTED_OPERATION

DRMAA2 _IMPLEMENTATION_SPECIFIC

DRMAA2_LASTERROR

} drmaa2_error;

n
[y
w

drmaa2_error drmaa2_string_free (charx);

drmaa2_error drmaa2_lasterror (void);

char *

struct drmaa2_list_s;

struct
struct
struct
struct
struct
struct
struct

typedef
typedef
typedef
typedef
typedef
typedef
typedef

typedef

drmaa2_list_s
drmaa2_list_s
drmaa2_list_s
drmaa2_list_s
drmaa2_list_s
drmaa2_list_s
drmaa2_list_s

enum drmaa2_listtype

DRMAA2_STRINGLIST,

DRMAA2_JOBLIST,

DRMAA2_QUEUEINFOLIST,

DRMAA2_MACHINEINFOLIST,

DRMAA2_SLOTINFOLIST,

DRMAA2_RESERVATIONLIST
} drmaa2_listtype;

typedef void
drmaa2_list
drmaa2_error
const void *
drmaa2_error
drmaa2_error
int

drmaa2_list_size

struct drmaa2_dict_s;
typedef struct drmaa2_dict_s * drmaa2_dict;

drmaa2_lasterror_text (void);

/*forward*/
drmaa2_list;
drmaa2_string_list;
drmaa2_j_1list;
drmaa2_queueinfo_list;
drmaa2_machineinfo_list;
drmaa2_slotinfo_list;
drmaa2_r_list;

*
*
*
*
*
*
*

{

(x*drmaa2_list_entryfree) (void * value);
drmaa2_list_create (const drmaa2_listtype t,
drmaa2_list_free
drmaa2_list_get
drmaa2_list_add
drmaa2_list_del

April 2012

const drmaa2_list_entryfree callback);

(drmaa2_list 1);

(drmaa2_list 1, int pos);

(drmaa2_list 1, const void * value);
(drmaa2_list 1, int pos);

(const drmaa2_list 1);

/*forwardx/

typedef void (*drmaa2_dict_entryfree) (char * value);
drmaa2_dict_create (const drmaa2_dict_entryfree callback);

drmaa2_dict
drmaa2_error

drmaa2_dict_free

drmaa2_string_list drmaa2_dict_list (const
drmaa2_bool drmaa2_dict_has (const
const char * drmaa2_dict_get (const
drmaa2_error drmaa2_dict_del (
drmaa2_error drmaa2_dict_set (
#define DRMAA2_ZERO_TIME ((time_t) 0)
#define DRMAA2_INFINITE_TIME ((time_t) -1)
#define DRMAA2_NOW ((time_t) -2)
#define DRMAA2_UNSET_BOOL DRMAA2_FALSE
#define DRMAA2_UNSET_STRING NULL

#define DRMAA2_UNSET_NUM -1

#define DRMAA2_UNSET_ENUM -1

#define DRMAA2_UNSET_LIST NULL

#define DRMAA2_UNSET_DICT NULL

#define DRMAA2_UNSET_TIME ((time_t) -3)
#define DRMAA2_UNSET_CALLBACK NULL

typedef struct
char *

{
jobId;

drmaa-wgQogf.org

(drmaa2_dict d);

drmaa2_dict
drmaa2_dict
drmaa2_dict
drmaa2_dict
drmaa2_dict

d
d
d
d
d

)

B
B
B
>

const
const
const
const

char
char
char
char

key);
key);
key);
key,

const char * val);

mailto:drmaa-wg@ogf.org

GWD-R

int
char *
char *
drmaa2_jstate
char *
drmaa2_string_list
char *
char *
long long
char *
time_t
long long
time_t
time_t
time_t

} drmaa2_jinfo_s;

typedef drmaa2_jinfo_

exitStatus;
terminatingSignal;
annotation;
jobState;
jobSubState;
allocatedMachines;
submissionMachine;
jobOwner;

slots;

queueName ;
wallclockTime;
cpuTime;
submissionTime;
dispatchTime;
finishTime;

s * drmaa2_jinfo;

drmaa2_jinfo drmaa2_jinfo_create (void);
drmaa2_error drmaa2_jinfo_free (drmaa2_jinfo ji);

typedef struct {
char *
long long

} drmaa2_slotinfo_s;

machineName;
slots;

typedef drmaa2_slotinfo_s * drmaa2_slotinfo;

drmaa2_error drmaa2_slotinfo_free

typedef struct {
char *
char *
time_t
time_t
drmaa2_string_list
long long

reservationId;
reservationName;
reservedStartTime;
reservedEndTime;
usersACL;
reservedSlots;

drmaa2_slotinfo_list reservedMachines;

} drmaa2_rinfo_s;

typedef drmaa2_rinfo_

s * drmaa2_rinfo;

drmaa2_error drmaa2_rinfo_free (drmaa2_rinfo ri);

typedef struct {
char *
drmaa2_string_list
drmaa2_bool
drmaa2_bool
drmaa2_dict
char *
char *
drmaa2_string_list
drmaa2_bool
drmaa2_bool
char *
char *
char *
char *
drmaa2_bool
char *
char *
long long
long long
long long
drmaa2_string_list
long long
drmaa2_os
drmaa2_cpu
time_t
time_t
drmaa2_dict
drmaa2_dict

drmaa-wgQogf.org

remoteCommand ;
args;
submitAsHold;
rerunnable;
jobEnvironment;
workingDirectory;
jobCategory;
email;
emailOnStarted;
emailOnTerminated;
jobName;
inputPath;
outputPath;
errorPath;
joinFiles;
reservationId;
queueName ;
minSlots;
maxSlots;
priority;
candidateMachines;
minPhysMemory;
machine(0S;
machineArch;
startTime;
deadlineTime;
stageInFiles;
stageOutFiles;

(drmaa2_slotinfo si);

April 2012

10

mailto:drmaa-wg@ogf.org

GWD-R April 2012

drmaa2_dict resourcelimits;
char * accountingld;
} drmaa2_jtemplate_s;
typedef drmaa2_jtemplate_s * drmaa2_jtemplate;

drmaa2_jtemplate drmaa2_jtemplate_create (void);
drmaa2_error drmaa2_jtemplate_free (drmaa2_jtemplate jt);
char* drmaa2_jtemplate_tostring (drmaa2_jtemplate jt);

typedef struct {

char =* reservationName;
time_t startTime;
time_t endTime;

time_t duration;

long long minSlots;

long long maxSlots;

char * jobCategory;

drmaa2_string_list usersACL;
drmaa2_string_list candidateMachines;

long long minPhysMemory;
drmaa2_os machine0S;
drmaa2_cpu machineArch;

} drmaa2_rtemplate_s;
typedef drmaa2_rtemplate_s * drmaa2_rtemplate;

drmaa2_rtemplate drmaa2_rtemplate_create (void);
drmaa2_error drmaa2_rtemplate_free (drmaaQ_rtemplate rt);

typedef struct {

drmaa2_event event ;
char * joblId;
char =* sessionName;

drmaa2_jstate jobState;
} drmaa2_notification_s;
typedef drmaa2_notification_s * drmaa2_notification;

drmaa2_error drmaa2_notification_free (drmaa2_notification n);

typedef struct {
char =* name;
} drmaa2_queueinfo_s;
typedef drmaa2_queueinfo_s * drmaa2_queueinfo;

drmaa2_error drmaa2_queueinfo_free (drmaa2_queueinfo qi);
typedef struct {
char * major;
char * minor;
} drmaa2_version_s;
typedef drmaa2_version_s * drmaa2_version;

drmaa2_error drmaa2_version_free (drmaa2_version v);

typedef struct {

char =* name ;
drmaa2_bool available;

long long sockets;

long long coresPerSocket;
long long threadsPerCore;
float load;

long long physMemory;
long long virtMemory;
drmaa2_os machine0S;
drmaa2_version machineOSVersion;
drmaa2_cpu machineArch;

} drmaa2_machineinfo_s;
typedef drmaa2_machineinfo_s * drmaa2_machineinfo;

drmaa2_error drmaa2_machineinfo_free (drmaa2_machineinfo mi);

drmaa2_string_list drmaa2_jtemplate_impl_spec (void);

drmaa-wgQogf.org 11

mailto:drmaa-wg@ogf.org

GWD-R

drmaa2_string_list
drmaa2_string_list
drmaa2_string_list
drmaa2_string_list
drmaa2_string_list
drmaa2_string_list

char *
char x*

typedef void

drmaa2_get_instance_value
drmaa2_describe_attribute
drmaa2_error drmaa2_set_instance_value (

(xdrmaa2_callback) (drmaa?2

drmaa2_jinfo_impl_spec
drmaa2_rtemplate_impl_spec
drmaa2_rinfo_impl_spec
drmaa2_queueinfo_impl_spec
drmaa2_machineinfo_impl_spec
drmaa2_notification_impl_spec

(void);
(void);
(void);
(void);
(void);
(void);

(const void * instance,
(const void * instance,
void * instance,

April 2012

const
const
const

char * name);
char * name);

char * name, const char * value);

_notification * notification);

struct drmaa2_jsession_s; /*forward*/

struct drmaa2_rsession_s; /*forward*/

struct drmaa2_msession_s; /*forwardx*/

struct drmaa2_j_s; /*forward*/

struct drmaa2_jarray_s; /*forward*/

struct drmaa2_r_s; /*forward*/

typedef struct drmaa2_jsession_s * drmaa2_jsession;

typedef struct drmaa2_rsession_s * drmaa2_rsession;

typedef struct drmaa2_msession_s * drmaa2_msession;

typedef struct drmaa2_j_s * drmaa2_j;

typedef struct drmaa2_jarray_s * drmaa2_jarray;

typedef struct drmaa2_r_s * drmaa2_r;

char * drmaa2_rsession_get_contact (const drmaa2_rsession rs);

char * drmaa2_rsession_get_session_name (const drmaa2_rsession rs);

drmaa2_r drmaa2_rsession_get_reservation (const drmaa2_rsession rs, const char * reservation_id);
drmaa2_r drmaa2_rsession_request_reservation (const drmaa2_rsession rs, const drmaa2_rtemplate rt);
drmaa2_r_list drmaa2_rsession_get_reservations (const drmaa2_rsession rs);

char * drmaa2_r_get_id (const drmaa2_r r);

char * drmaa2_r_get_session_name (const drmaa2_r r);

drmaa2_rtemplate drmaa2_r_get_reservation_template (const drmaa2_r r);

drmaa2_rinfo
drmaa2_error

char *
drmaa2_j_list
char *

drmaa2_jtemplate

drmaa2_error
drmaa2_error
drmaa2_error
drmaa2_error
drmaa2_error

char *
char *

drmaa2_string_list

drmaa2_j_list
drmaa2_jarray
drmaa2_j

drmaa2_jarray

drmaa2_j

drmaa2_j

drmaa2_r_get_inf

drmaa2_r_terminate

drmaa2_jarray_get
drmaa2_jarray_get
drmaa2_jarray_get
drmaa2_jarray_get

drmaa2_jarray_suspend
drmaa2_jarray_resume
drmaa2_jarray_hold

drmaa2_jarray_rel

drmaa2_jarray_terminate

drmaa2_jsessio
drmaa2_jsessio
drmaa2_jsessio

drmaa2_jsession_get_jobs

drmaa2_jsessio

drmaa2_jsession_run_job

drmaa2_jsessio

drmaa2_jsessio

drmaa2_jsessio

drmaa-wgQogf.org

o (const drmaa2_r r);
(drmaa2_r r);

_id (const drmaa2_jarray ja);
_jobs (const drmaa2_jarray ja);
_session_name (const drmaa2_jarray ja);
_job_template (const drmaa2_jarray ja);

(drmaa2_jarray
(drmaa2_jarray
(drmaa2_jarray
(drmaa2_jarray
(drmaa2_jarray

ja);
ja);
ja);
ja);
ja);

ease

(const
(const
(const
(const
const
(const
const
(const
const

n_get_contact
n_get_session_name
n_get_job_categories

drmaa2_jsession
drmaa2_jsession
drmaa2_jsession js);
drmaa2_jsession js,
drmaa2_jinfo filter);
drmaa2_jsession js,
char * jobarray_id);
drmaa2_jsession js,
drmaa2_jtemplate jt);
(const drmaa2_jsession js,
const drmaa2_jtemplate jt,
unsigned long begin_index,
unsigned long end_index,
unsigned long step,

unsigned long max_parallel);
(const drmaa2_jsession js,
const drmaa2_j_list 1,

const time_t timeout);
(const drmaa2_jsession js,
const drmaa2_j_list 1,

const time_t timeout);

js);
js);

n_get_job_array

n_run_bulk_jobs

n_wait_any_started

n_wait_any_terminated

12

mailto:drmaa-wg@ogf.org

GWD-R

char *

char *
drmaa2_jtemplate
drmaa2_error
drmaa2_error
drmaa2_error
drmaa2_error
drmaa2_error
drmaa2_jstate
drmaa2_jinfo
drmaa2_j
drmaa2_j

drmaa2_r_list
drmaa2_j_list

drmaa2_queueinfo_list

drmaa2_machineinfo_list

char *
drmaa2_version
char =*
drmaa2_version
drmaa2_bool
drmaa2_jsession
drmaa2_rsession
drmaa2_jsession
drmaa2_rsession
drmaa2_msession
drmaa2_error
drmaa2_error
drmaa2_error
drmaa2_error
drmaa2_error

drmaa2_string_list
drmaa2_string_list

drmaa2_error

#endif

drmaa2_j_get_id
drmaa2_j_get_session_name
drmaa2_j_get_jt

drmaa2_j_suspend (drmaa2_j
drmaa2_j_resume (drmaa2_j
drmaa2_j_hold (drmaa2_j
drmaa2_j_release (drmaa2_j
drmaa2_j_terminate (drmaa2_j

drmaa2_j_get_state
drmaa2_j_get_info
drmaa2_j_wait_started
drmaa2_j_wait_terminated

(const drmaa2_j j
(const drmaa2_j j
(const drmaa2_j j

i)s
ids
ids
i)
i)

(const drmaa2_j j
(const drmaa2_j j
(const drmaa2_j j
(const drmaa2_j j

drmaa2_msession_get_all_reservations

drmaa2_msession_get_all_jobs

drmaa2_msession_get_all_queues

drmaa2_get_drms_name
drmaa2_get_drms_version
drmaa2_get_drmaa_name
drmaa2_get_drmaa_version
drmaa2_supports
drmaa2_create_jsession
drmaa2_create_rsession
drmaa2_open_jsession
drmaa2_open_rsession
drmaa2_open_msession
drmaa2_close_jsession
drmaa2_close_rsession
drmaa2_close_msession
drmaa2_destroy_jsession
drmaa2_destroy_rsession
drmaa2_get_jsession_names
drmaa2_get_rsession_names
drmaa2_register_event_notification

5 Security Considerations

drmaa2_msession_get_all_machines

(void);
(void);
(void);
(void);
(const
(const
(const
(const
(const
(const

)
)
)

, char ** substate);

)

April 2012

, const time_t timeout);
, const time_t timeout);

(const drmaa2_msession ms);
(const drmaa2_msession ms,

const drmaa2_jinfo filter);
(const drmaa2_msession ms,

const drmaa2_string_list names) ;
(const drmaa2_msession ms,

const drmaa2_string_list names);

drmaa2_capability c);

char
char
char
char
char

* session_name,
* session_name,
* session_name);
* session_name);
* session_name);

(drmaa2_jsession js);
(drmaa2_rsession rs);
(drmaa2_msession ms);
(const char * session_name);
(const char * session_name);

(void);
(void);

const char * contact);
const char * contact);

(const drmaa2_callback callback);

The DRMAA root specification [2] describes the behavioral aspects of a standard-compliant implementation.
This includes also security aspects.

Software written in C language has well-known security attack vectors, especially with memory handling.
Implementors MUST clarify in their documentation which kind of memory management is expected by the
application. Implementations MUST also consider the possibility for multi-threaded applications performing
re-entrant calls to the library. The root specification clarifies some of the behavioral aspects with this.

6 Contributors

Roger Brobst

Cadence Design Systems, Inc.

555 River Oaks Parkway

San Jose, CA 95134, United States
Email: rbrobst@cadence.com

drmaa-wgQogf.org

13

mailto:drmaa-wg@ogf.org

GWD-R April 2012

Daniel Gruber

Univa GmbH

c¢/o Riiter und Partner
Prielmayerstr. 3

80335 Miinchen, Germany
Email: dgruber@Quniva.com

Mariusz Mamonski

Poznan Supercomputing and Networking Center
ul. Noskowskiego 10

61-704 Poznan, Poland

Email: mamonski@man.poznan.pl

Andre Merzky

Center for Computation and Technology
Louisiana State University

216 Johnston Hall

70803 Baton Rouge, Louisiana, USA
Email: andre@merzky.net

Peter Troger (Corresponding Author)
Hasso Plattner Institute at University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3

14482 Potsdam, Germany

Email: peter@troeger.eu

7 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or the
extent to which any license under such rights might or might not be available; neither does it represent that
it has made any effort to identify any such rights. Copies of claims of rights made available for publication
and any assurances of licenses to be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by implementers or users of this specification can
be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to practice this recommendation.
Please address the information to the OGF Executive Director.

8 Disclaimer

This document and the information contained herein is provided on an “as-is” basis and the OGF disclaims
all warranties, express or implied, including but not limited to any warranty that the use of the information

drmaa-wgQogf.org 14

mailto:drmaa-wg@ogf.org

GWD-R April 2012

herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular
purpose.

9 Full Copyright Notice

Copyright © Open Grid Forum (2012-2012). Some Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice or references to the OGF or
other organizations, except as needed for the purpose of developing Grid Recommendations in which case
the procedures for copyrights defined in the OGF Document process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors
or assignees.

10 References

[1] Scott Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119 (Best Current
Practice), March 1997. URL http://tools.ietf.org/html/rfc2119.

[2] Peter Troger, Roger Brobst, Daniel Gruber, Mariusz Mamonski, and Daniel Templeton. Distributed
Resource Management Application API Version 2 (DRMAA). http://www.ogf.org/documents/GFD.
194 .pdf, January 2012.

drmaa-wgQogf.org 15

http://tools.ietf.org/html/rfc2119
http://www.ogf.org/documents/GFD.194.pdf
http://www.ogf.org/documents/GFD.194.pdf
mailto:drmaa-wg@ogf.org

	Introduction
	General Design
	Error Handling
	Lists and Dictionaries

	Implementation-specific Extensions
	Complete Header File
	Security Considerations
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice
	References

