1

10

11

12

13

14

15

16

17

GWD-R Peter Troger, Hasso Plattner Institute!
DRMAA-WG Roger Brobst, Cadence Design Systems
drmaa-wgQogf.org Daniel Gruber, Univa
Mariusz Mamonski, PSNC

Andre Merzky, LSU

April 2012

Distributed Resource Management Application APl Version 2
(DRMAA) -
C Language Binding
Status of This Document
Group Working Draft - Proposed Recommendation (GWD-R)

1
(See footnote)

Document Change History

Date Notes

April 17th, 2012 Final Draft

Copyright Notice
Copyright © Open Grid Forum (2012-2012). Some Rights Reserved. Distribution is unlimited.
Trademark

All company, product or service names referenced in this document are used for identification purposes only
and may be trademarks of their respective owners.

Abstract

This document describes the C language binding for the Distributed Resource Management Application
API Version 2 (DRMAA). The intended audience for this specification are DRMAA Version 2 interface
implementors.

1 This is the non-normative annotated version of the specification with line numbers. It includes historical information
concerning the content and why features were included or discarded by the working group. It also emphasizes the consequences
of some aspects that may not be immediately apparent. This document in only intended for internal working group discussions.

LCorresponding author

drmaa-wgQogf.org 1

mailto:drmaa-wg@ogf.org
http://www.drmaa.org/
http://www.drmaa.org/
mailto:drmaa-wg@ogf.org

18

19

20

21

22

GWD-R April 2012

Notational Conventions

In this document, C language elements and definitions are represented in a fixed-width font.

The key words “MUST” “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described
in RFC 2119 [1].

drmaa-wgQogf.org 2

mailto:drmaa-wg@ogf.org

23

24

25

26

27

28

29

30

31

32

33

34

35

GWD-R April 2012

Contents
1 Introduction L e e 4
2 General Design e 4
2.1 Error Handling L e 6
2.2 Lists and Dictionaries L e 6
3 Implementation-specific Extensions 7
4 Complete Header File e 7
5 Security Considerations 13
6 Contributors L e 14
7 Intellectual Property Statement 14
8 Disclaimer e 15
9 Full Copyright Notice e e 15
10 References L 15

drmaa-wgQogf.org 3

mailto:drmaa-wg@ogf.org

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

GWD-R April 2012

1 Introduction

The Distributed Resource Management Application API Version 2 (DRMAA) specification defines an inter-
face for tightly coupled, but still portable access to the majority of DRM systems. The scope is limited to job
submission, job control, reservation management, and retrieval of job and machine monitoring information.

The DRMAA root specification [2] describes the abstract API concepts and the behavioral rules of a compliant
implementation, while this document standardizes the representation of API concepts in the C programming
language.

2 General Design

The mapping of DRMAA IDL constructs to C follows a set of design principles. Implementation-specific
extensions of the DRMAA C API described here SHOULD follow these conventions for their own naming
and method signatures:

e Namespacing of the DRMAA API, as demanded by by the root specification, is realized with the
drmaa2_ prefix for lower- and upper-case identifiers.

39 .97

e In identifier naming, ”job” is shortened as ”j” and "reservation” is shortened as ”r” for improved
readability.

e The root specification demands a consistent parameter passing strategy for non-scalar values. In
DRMAA for C, all such values are passed as call-by-reference parameter.

e Structs and enums are typedef’ed for better readability.

e Struct types get a _s suffix on their name. Structures with a non-standardized layout are defined as
forward references for the DRMAA implementation. (see footnote)?

e Functions with IDL return type void have drmaa2_error as return type.
e The IDL boolean type maps to the drmaa2 boolean type.

e The IDL long type maps to long long in C. One exception is the exitStatus variable, which is
defined as int in order to provide a more natural mapping to operating system interfaces.

e The IDL string type maps to char* pointer. The allocation of memory for strings returned SHALL
be done by the implementation itself. The application frees such memory regions by calling the newly
introduced function drmaa2_string free.

e The language binding defines one UNSET macro per utilized C data type (DRMAA2 UNSET *). (sce

footnote)
e All numerical types are signed, in order to support -1 as numerical UNSET value.

e Application-created structs should be allocated by the additional support methods (such as
drmaa2_jinfo_create) to realize the neccessary initialization to UNSET.

2This avoids the usage of void* pointers, f.e. with dictionaries and lists.
3For UNSET values, the language binding adheres mainly to typical language conventions and not to GLUE as mandated
in the root spec.

drmaa-wgQogf.org 4

mailto:drmaa-wg@ogf.org

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

84

85

86

87

88

89

90

GWD-R

April 2012

All structures have a specific support function for freeing them (drmaa2 * free). (sce footnote)*

Both AbsoluteTime and TimeAmount map directly to time_t. RFC 822 support as mandated by the
root specification is given by the %z formatter for sprintf.

Multiple output parameters are realized by declaring all but one of them as pointer variable. For
this reason, the substate parameter in drmaa2_j_get_state SHALL be interpreted as pointer to a
character pointer variable. The DRMAA library creates the buffer and stores the pointer to it as
variable value.

The const declarator is used to mark parameters declared as readonly in the root specification.

The two string list types in DRMAA, ordered and unordered, are mapped to one ordered list with the
DRMAA2_STRING_LIST type.

The largest possible value for end_index in drmaa2_js_run_bulk_jobs SHOULD be sizeof (unsigned
long)-1.

The any member for job sub-state information is defined as char*, in order to achieve application
portability.

The following structures are only used in result values. For this reason, the according allocation functions
are not part of the API:

drmaa2_slotinfo
drmaa2_rinfo

drmaa2 notification
drmaa2_queueinfo
drmaa2_version

drmaa2 machineinfo

The interface membership of a function is mostly expressed by an additional prefix, as show in Table 1.

DRMAA interface C binding prefix
DrmaaReflective drmaa2_
SessionManager drmaa2_
JobSession drmaa2_jsession_
ReservationSession drmaa2_rsession._
MonitoringSession drmaa2 msession._
Reservation drmaa2_r_

Job drmaa2_j_
JobArray drmaa2_jarray-
JobTemplate drmaa2_jtemplate_
ReservationTemplate drmaa2_rtemplate_

Table 1: Mapping of DRMAA interfaces to C method prefix

4The deallocation functions are needed to make sure that the allocating entity (the library) also performs the freeing
operation. This is needed for cases where the DRMAA library is compiled with a different heap allocator than the DRMAA-
based application. It is mainly a problem with Windows-based implementations.

drmaa-wgQogf.org

mailto:drmaa-wg@ogf.org

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

GWD-R April 2012

The C binding specifies the function pointer type drmaa2_callback_t for a notification callback function,
in order to map the IDL DrmaaCallback interface. The new constant value DRMAA2 UNSET_CALLBACK can be
used by the application for the de-registration of callback functions.

2.1 Error Handling

The list of exceptions in the DRMAA root specification is mapped to the new enumeration drmaa2_error.
The enumeration member DRMAA2 _LASTERROR is intended to ensure application portability while allowing
additional implementation-specific error codes. It MUST always be the enumeration member with the
highest value.

The language binding adds two new functions for fetching error number and error message of the last
error that occurred: drmaa2 lasterror and drmaa2_lasterror_text. These functions MUST operate in
a thread-safe manner, meaning that both error informations are managed per application thread by the
DRMAA implementation.

2.2 Lists and Dictionaries

The C language binding adds generic support functions for the collection data types used by the root
specification. The newly defined drmaa2_lasterror and drmaa2 lasterror_text functions MUST return
according error information for these operations.

(See footnote)5

Both drmaa2_list_create and drmaa2_dict_create have an optional parameter callback. It allows the
application to provide a callback pointer to a collection element cleanup function. This function MUST be
called by the implementation once per stored item when the list / dictionary is freed. It MUST be allowed
for the application to provide NULL instead of a valid callback pointer.

(See footnotc)G
The following list operations are defined:

drmaa2_list_create: Creates a new list instance for the specified type of items. Returns a pointer to the
list or NULL on error.

drmaa2_list_free: Frees the list and the contained members and returns a success indication.

drmaa2_list_get: Gets the list element at the indicated position. The element index starts at zero. If the
index is invalid, the function returns NULL.

drmaa2_list_add: Adds a new item at the end of the list and returns a success indication. The list MUST
contain only a pointer copy, not a deep copy of the provided data structure.

drmaa2_list_remove: Removes the list element at the indicated position and returns a success indication.

drmaa2_list_size: Gets the number of elements in the list. If the list is empty, then the function returns
0, which SHALL NOT be treated as an error case.

Similarly, a set of new functions for dictionary handling is introduced:

5The definition of list operations in the language binding keeps the application code portable. The original DRMAA error
codes are good enough to support them, there is no need for additional ones. DRMAA dictionaries are only used for strings,
so we make the dictionary interface less general.

6This is again for the heap allocator problem. The entity allocating some memory should also free it.

drmaa-wgQogf.org 6

mailto:drmaa-wg@ogf.org

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147
148
149
150
151
152

153

154

155

156

157

158

159
160
161
162
163
164

GWD-R April 2012

drmaa2_dict_create: Creates a new dictionary instance. Returns a pointer to the dictionary or NULL on
erTor.

drmaa2_dict_free: Frees the dictionary and the contained members and returns a success indication.

drmaa2 dict_list: Gets all dictionary keys as DRMAA drmaa2_string list. If the dictionary is empty,
a valid string list with zero elements SHALL be returned. The application is expected to use
drmaa2_list_free for freeing the returned data structure.

drmaa2_dict_has: Returns an indication if the given key exists in the dictionary. On error, the function
SHALL return NULL as result.

drmaa2_dict_get: Gets the dictionary value for the specified key. If the key is invalid, the function returns
NULL.

drmaa2_dict_del: Removes the dictionary entry with the given key and returns a success indication.

drmaa2_dict_set: Sets the specified dictionary key to the specified value. Key and value strings MUST be
copied as pointer. If the dictionary already has an entry for this name, the value is replaced and the
old value is removed.

3 Implementation-specific Extensions

The DRMAA root specification allows the product-specific extension of the DRMAA API in a standardized
way.

New methods added to a DRMAA implementation SHOULD follow the conventions from Section 2. Ex-
tended struct definitions SHOULD use a product-specific prefix for a clear separation of non-portable and
portable parts of the API. The extension MUST support the casting of product-specific struct pointers to
their standard-compliant counterparts (see Listing 1). Any compiler or linking options necessary for this
feature MUST be documented accordingly by the DRMAA implementation.

Listing 1: Code example for implementation-specific extension
typedef struct
[attributes from drmaa2_jtemplate_s]
int gridengine_specific_attr;

} gridengine_jtemplate_s;
typedef gridengine_jtemplate_s * gridengine_jtemplate;

4 Complete Header File

The following text shows the complete C header file for the DRMAAv2 application programming interface.
DRMAA-compliant C libraries MUST declare all functions and data structures described here. Implemen-
tations MAY add custom parts in adherence to the extensibility principles of this specification and the root
specification.

The source file is also available at http://www.drmaa.org.

#include <time.h>

#ifndef DRMAA2_H
#define DRMAA2_H

typedef enum drmaa2_jstate {

drmaa-wgQogf.org 7

http://www.drmaa.org
mailto:drmaa-wg@ogf.org

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

GWD-R

DRMAA2_UNDETERMINED
DRMAA2_QUEUED
DRMAA2_QUEUED_HELD
DRMAA2_RUNNING
DRMAA2_SUSPENDED
DRMAA2_REQUEUED
DRMAA2_REQUEUED_HELD
DRMAA2_DONE
DRMAA2_FAILED

} drmaa2_jstate;

typedef enum drmaa2_os {
DRMAA2_OTHER_OS
DRMAA2_AIX
DRMAA2_BSD
DRMAA2_LINUX
DRMAA2_HPUX
DRMAA2_IRIX
DRMAA2_MACOS
DRMAA2_SUNOS
DRMAA2_TRUE64
DRMAA2_UNIXWARE
DRMAA2_WIN
DRMAA2_WINNT

} drmaa2_os;

typedef enum drmaa2_cpu {
DRMAA2_OTHER_CPU
DRMAA2_ALPHA
DRMAA2_ARM
DRMAA2_CELL
DRMAA2_PARISC
DRMAA2_X86
DRMAA2_X64
DRMAA2_TA64
DRMAA2_MIPS
DRMAA2_PPC
DRMAA2_PPC64
DRMAA2_SPARC
DRMAA2_SPARC64

} drmaa2_cpu;

typedef enum drmaa2_limit {
DRMAA2_CORE_FILE_SIZE
DRMAA2_CPU_TIME
DRMAA2_DATA_SEG_SIZE
DRMAA2_FILE_SIZE
DRMAA2_OPEN_FILES
DRMAA2_STACK_SIZE
DRMAA2_VIRTUAL_MEMORY
DRMAA2 _WALLCLOCK_TIME

} drmaa2_limit;

typedef enum drmaa2_jtemplate_placeholder {

DRMAA2_HOME_DIRECTORY
DRMAA2_WORKING_DIRECTORY
DRMAA2_PARAMETRIC_INDEX

} drmaa2_jtemplate_placeholder;

typedef enum drmaa2_event {
DRMAA2_NEW_STATE
DRMAA2_MIGRATED
DRMAA2 _ATTRIBUTE_CHANGE

} drmaa2_event;

typedef enum {
DRMAA2 _ADVANCE_RESERVATION
DRMAA2_RESERVE_SLOTS
DRMAA2_CALLBACK
DRMAA2_BULK_JOBS_MAXPARALLEL
DRMAA2_JT_EMAIL

drmaa-wgQogf.org

0N D WN - O

=
P O WOWOONO®ODd WNERO

W ~NOOd WN O

N s WN PO

0,
1,
2

April 2012

mailto:drmaa-wg@ogf.org

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

GWD-R

DRMAA2_JT_STAGING = 5,
DRMAA2_JT_DEADLINE = 6,
DRMAA2_JT_MAXSLOTS = 7,
DRMAA2_JT_ACCOUNTINGID = 8,
DRMAA2_RT_STARTNOW = 9,
DRMAA2_RT_DURATION = 10,
DRMAA2_RT_MACHINEOS = 11,
DRMAA2_RT_MACHINEARCH = 12

} drmaa2_capability;

typedef enum drmaa2_bool {
DRMAA2_FALSE = 0,
DRMAA2_TRUE = 1
} drmaa2_bool;

typedef enum drmaa2_error {
DRMAA2_SUCCESS =
DRMAA2_DENIED_BY_DRMS =
DRMAA2_DRM_COMMUNICATION =
DRMAA2_TRY_LATER =
DRMAA2_SESSION_MANAGEMENT =
DRMAA2_TIMEQOUT =
DRMAA2_INTERNAL =
DRMAA2_INVALID_ARGUMENT =
DRMAA2_INVALID_SESSION =
DRMAA2_INVALID_STATE = 9,
DRMAA2_OUT_OF _RESOURCE = 10,
DRMAA2_UNSUPPORTED_ATTRIBUTE
DRMAA2_UNSUPPORTED_OPERATION
DRMAA2_IMPLEMENTATION_SPECIFIC
DRMAA2_LASTERROR = 14

} drmaa2_error;

W ~NOOUd WN O

o n
o e
W N =

drmaa2_error drmaa2_string_free (char*);

drmaa2_error drmaa2_lasterror (void);
char * drmaa2_lasterror_text (void);

struct drmaa2_list_s; /*forward*/

typedef struct drmaa2_list_s * drmaa2_list;

typedef struct drmaa2_list_s * drmaa2_string_list;
typedef struct drmaa2_list_s * drmaa2_j_list;

typedef struct drmaa2_list_s * drmaa2_queueinfo_list;
typedef struct drmaa2_list_s * drmaa2_machineinfo_list;
typedef struct drmaa2_list_s * drmaa2_slotinfo_list;
typedef struct drmaa2_list_s * drmaa2_r_list;

-~

typedef enum drmaa2_listtype
DRMAA2_STRINGLIST,
DRMAA2_JOBLIST,
DRMAA2_QUEUEINFOLIST,
DRMAA2_MACHINEINFOLIST,
DRMAA2_SLOTINFOLIST,
DRMAA2 _RESERVATIONLIST

} drmaa2_listtype;

typedef void (*drmaa2_list_entryfree)(void * value);

April 2012

drmaa2_list drmaa2_list_create (const drmaa2_listtype t, const drmaa2_list_entryfree callback);

drmaa2_error drmaa2_list_free (drmaa2_list 1);

const void * drmaa2_list_get (drmaa2_list 1, int pos);
drmaa2_error drmaa2_list_add (drmaa2_list 1, const void * value);
drmaa2_error drmaa2_list_del (drmaa2_list 1, int pos);

int drmaa2_list_size (const drmaa2_list 1);

struct drmaa2_dict_s; /*forward*/

typedef struct drmaa2_dict_s * drmaa2_dict;

typedef void (*drmaa2_dict_entryfree)(char * value);

drmaa2_dict drmaa2_dict_create (const drmaa2_dict_entryfree callback);
drmaa2_error drmaa2_dict_free (drmaa2_dict d);
drmaa2_string_list drmaa2_dict_list (const drmaa2_dict d);

drmaa-wgQogf.org

mailto:drmaa-wg@ogf.org

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

GWD-R

drmaa2_bool drmaa2_dict_has (const drmaa2_dict
const char * drmaa2_dict_get (const drmaa2_dict
drmaa2_error drmaa2_dict_del (drmaa2_dict
drmaa2_error drmaa2_dict_set (drmaa2_dict
#define DRMAA2_ZERO_TIME ((time_t) 0)
#define DRMAA2_INFINITE_TIME ((time_t) -1)
#define DRMAA2_NOW ((time_t) -2)
#define DRMAA2_UNSET_BOOL DRMAA2_FALSE
#define DRMAA2_UNSET_STRING NULL
#define DRMAA2_UNSET_NUM -1
#define DRMAA2_UNSET_ENUM -1
#define DRMAA2_UNSET_LIST NULL
#define DRMAA2_UNSET_DICT NULL
#define DRMAA2_UNSET_TIME ((time_t) -3)
#define DRMAA2_UNSET_CALLBACK NULL
typedef struct {
char * jobId;
int exitStatus;
char * terminatingSignal;
char =* annotation;
drmaa2_jstate jobState;
char * jobSubState;
drmaa2_string_list allocatedMachines;
char * submissionMachine;
char * jobOwner;
long long slots;
char * queueName ;
time_t wallclockTime;
long long cpuTime;
time_t submissionTime;
time_t dispatchTime;
time_t finishTime;

} drmaa2_jinfo_s;
typedef drmaa2_jinfo_s * drmaa2_jinfo;

drmaa2_jinfo drmaa2_jinfo_create (void);
drmaa2_error drmaa2_jinfo_free (drmaa2_jinfo ji);

typedef struct {
char *
long long
} drmaa2_slotinfo_s;
typedef drmaa2_slotinfo_s * drmaa2_slotinfo;

machineName;
slots;

drmaa2_error drmaa2_slotinfo_free (drmaa2_slotinfo

typedef struct {

char * reservationId;
char * reservationName;
time_t reservedStartTime;
time_t reservedEndTime;
drmaa2_string_list usersACL;

long long reservedSlots;

drmaa2_slotinfo_list reservedMachines;
} drmaa2_rinfo_s;
typedef drmaa2_rinfo_s * drmaa2_rinfo;
drmaa2_error drmaa2_rinfo_free (drmaa2_rinfo ri);
typedef struct {
char *
drmaa2_string_list
drmaa2_bool
drmaa2_bool
drmaa2_dict
char *
char x*

remoteCommand ;
args;
submitAsHold;
rerunnable;
jobEnvironment;
workingDirectory;
jobCategory;

drmaa-wgQogf.org

si);

const
const
const
const

char
char
char
char

key);
key);
key);
key,

const char * val);

April 2012

10

mailto:drmaa-wg@ogf.org

378
379
380
381
382
383
384
385
386
387
388
380
390
391
392
303
304
395
396
307
308
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

445
446
447
448

GWD-R

drmaa2_string_list email;

drmaa2_bool emailOnStarted;
drmaa2_bool emailOnTerminated;
char * jobName;

char * inputPath;

char * outputPath;
char =* errorPath;
drmaa2_bool joinFiles;

char * reservationlId;
char * queueName ;

long long minSlots;

long long maxSlots;

long long priority;
drmaa2_string_list candidateMachines;
long long minPhysMemory;
drmaa2_os machine0S;
drmaa2_cpu machineArch;
time_t startTime;
time_t deadlineTime;
drmaa2_dict stagelnFiles;
drmaa2_dict stageOutFiles;
drmaa2_dict resourcelimits;
char * accountingld;

} drmaa2_jtemplate_s;
typedef drmaa2_jtemplate_s * drmaa2_jtemplate;

drmaa2_jtemplate drmaa2_jtemplate_create (void);
drmaa2_error drmaa2_jtemplate_free (drmaa2_jtemplate jt);
char* drmaa2_jtemplate_tostring (drmaa2_jtemplate jt);

typedef struct {

char =* reservationName;
time_t startTime;
time_t endTime;

time_t duration;

long long minSlots;

long long maxSlots;

char * jobCategory;

drmaa2_string_list usersACL;
drmaa2_string_list candidateMachines;

long long minPhysMemory;
drmaa2_os machine0S;
drmaa2_cpu machineArch;

} drmaa2_rtemplate_s;
typedef drmaa2_rtemplate_s * drmaa2_rtemplate;

drmaa2_rtemplate drmaa2_rtemplate_create (void);
drmaa2_error drmaa2_rtemplate_free (drmaa2_rtemplate rt);

typedef struct {

drmaa2_event event ;
char * joblId;
char * sessionName;

drmaa2_jstate jobState;
} drmaa2_notification_s;
typedef drmaa2_notification_s * drmaa2_notification;

drmaa2_error drmaa2_notification_free (drmaa2_notification n);

typedef struct {
char =* name ;
} drmaa2_queueinfo_s;
typedef drmaa2_queueinfo_s * drmaa2_queueinfo;

drmaa2_error drmaa2_queueinfo_free (drmaa2_queueinfo qi)

typedef struct {
char * major;
char =* minor;
} drmaa2_version_s;
typedef drmaa2_version_s * drmaa2_version;

drmaa-wgQogf.org

April 2012

11

mailto:drmaa-wg@ogf.org

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513

515
516
517
518
519

GWD-R

drmaa2_error

drmaa2_version_free

typedef struct {

char *
drmaa2_bool
long long
long long
long long
float

long long
long long
drmaa2_os
drmaa2_vers
drmaa2_cpu

name ;
available;
sockets;
coresPerSocket;
threadsPerCore;
load;

physMemory;
virtMemory;
machine0S;
machineOSVersion;
machineArch;

ion

} drmaa2_machineinfo_s;
typedef drmaa2_machineinfo_s * drmaa2_machineinfo;

drmaa2_error

drmaa2_string_list
drmaa2_string_list
drmaa2_string_list
drmaa2_string_list
drmaa2_string_list
drmaa2_string_list
drmaa2_string_list

char *
char *
drmaa2_error

typedef void

drmaa2_machineinfo_free

drmaa2_jtemplate_impl_spec
drmaa2_jinfo_impl_spec
drmaa2_rtemplate_impl_spec
drmaa2_rinfo_impl_spec
drmaa2_queueinfo_impl_spec
drmaa2_machineinfo_impl_spec
drmaa2_notification_impl_spec

drmaa2_get_instance_value
drmaa2_describe_attribute
drmaa2_set_instance_value (

(drmaa2_version v);

(drmaa2_machineinfo mi);

(void);
(void);
(void);
(void);
(void);
(void);
(void);

(const void * instance,
(const void * instance,
void * instance,

const
const
const

(x*drmaa2_callback) (drmaa2_notification * notification);

char * name);
char * name);
char * name,

struct drmaa2_jsession_s; /*forward*/

struct drmaa2_rsession_s; /*forward*/

struct drmaa2_msession_s; /*forward*/

struct drmaa2_j_s; /*forward*/

struct drmaa2_jarray_s; /*forward*/

struct drmaa2_r_s; /* forward*/

typedef struct drmaa2_jsession_s * drmaa2_jsession;

typedef struct drmaa2_rsession_s * drmaa2_rsession;

typedef struct drmaa2_msession_s * drmaa2_msession;

typedef struct drmaa2_j_s * drmaa2_j;

typedef struct drmaa2_jarray_s * drmaa2_jarray;

typedef struct drmaa2_r_s * drmaa2_r;

char * drmaa2_rsession_get_contact (const drmaa2_rsession rs);
char * drmaa2_rsession_get_session_name (const drmaa2_rsession rs);
drmaa2_r drmaa2_rsession_get_reservation (const drmaa2_rsession rs,
drmaa2_r drmaa2_rsession_request_reservation (const drmaa2_rsession rs,
drmaa2_r_list drmaa2_rsession_get_reservations (const drmaa2_rsession rs);
char * drmaa2_r_get_id (const drmaa2_r r);

char * drmaa2_r_get_session_name (const drmaa2_r r);
drmaa2_rtemplate drmaa2_r_get_reservation_template (const drmaa2_r r);
drmaa2_rinfo drmaa2_r_get_info (const drmaa2_r r);

drmaa2_error

char *
drmaa2_j_list
char *

drmaa2_jtemplate

drmaa2_error
drmaa2_error
drmaa2_error
drmaa2_error
drmaa2_error

char *

drmaa2_r_terminate

drmaa2_jarray_get_id
drmaa2_jarray_get_jobs
drmaa2_jarray_get_session_name
drmaa2_jarray_get_job_template
drmaa2_jarray_suspend
drmaa2_jarray_resume
drmaa2_jarray_hold
drmaa2_jarray_release
drmaa2_jarray_terminate

drmaa2_jsession_get_contact

drmaa-wgQogf.org

(drmaa2_r r);

(const
(const
(const
(const

(drmaa2_jarray
(drmaa2_jarray
(drmaa2_jarray
(drmaa2_jarray
(drmaa2_jarray

drmaa2_jarray
drmaa2_jarray
drmaa2_jarray
drmaa2_jarray
ja);
ja);
ja);
ja);
ja);

ja);
ja);
ja);
ja);

const char *
const drmaa2_rtemplate rt);

April 2012

const char * value);

reservation_id);

(const drmaa2_jsession js);

12

mailto:drmaa-wg@ogf.org

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581

582

583

584

GWD-R

char *

drmaa2_string_list

drmaa2_j_list
drmaa2_jarray
drmaa2_j

drmaa2_jarray

drmaa2_j

drmaa2_j

char *

char *
drmaa2_jtemplate
drmaa2_error
drmaa2_error
drmaa2_error
drmaa2_error
drmaa2_error
drmaa2_jstate
drmaa2_jinfo
drmaa2_j
drmaa2_j

drmaa2_r_list
drmaa2_j_list

drmaa2_queueinfo_list

drmaa2_machineinfo_list

char =
drmaa2_version
char *
drmaa2_version
drmaa2_bool
drmaa2_jsession
drmaa2_rsession
drmaa2_jsession
drmaa2_rsession
drmaa2_msession
drmaa2_error
drmaa2_error
drmaa2_error
drmaa2_error
drmaa2_error
drmaa2_string_list
drmaa2_string_list
drmaa2_error

#endif

drmaa2_jsession_get_session_name
drmaa2_jsession_get_job_categories
drmaa2_jsession_get_jobs
drmaa2_jsession_get_job_array

drmaa2_jsession_run_job

drmaa2_jsession_run_bulk_jobs

drmaa2_jsession_wait_any_started

drmaa2_jsession_wait_any_terminated

drmaa2_j_get_id
drmaa2_j_get_session_name
drmaa2_j_get_jt

(const
(const
(const
const
(const
const
(const
const

drmaa2_jsession js);
drmaa2_jsession js);
drmaa2_jsession js,
drmaa2_jinfo filter);
drmaa2_jsession js,
char * jobarray_id);
drmaa2_jsession js,
drmaa2_jtemplate jt);
(const drmaa2_jsession js,
const drmaa2_jtemplate jt,
unsigned long begin_index,
unsigned long end_index,
unsigned long step,
unsigned long max_parallel);

April 2012

(const drmaa2_j
(const drmaa2_j
(const drmaa2_j

(const
const
const

(const
const
const

drmaa2_jsession js,
drmaa2_j_1list 1,
time_t timeout);
drmaa2_jsession js,
drmaa2_j_list 1,
time_t timeout);

i)
i)
i)

drmaa2_j_suspend (drmaa2_j j);

drmaa2_j_resume (drmaa2_j j);

drmaa2_j_hold (drmaa2_j j);

drmaa2_j_release (drmaa2_j j);

drmaa2_j_terminate (drmaa2_j j);

drmaa2_j_get_state (const drmaa2_j j, char ** substate);
drmaa2_j_get_info (const drmaa2_j j);

drmaa2_j_wait_started (const drmaa2_j j, const time_t timeout);
drmaa2_j_wait_terminated (const drmaa2_j j, const time_t timeout);

drmaa2_msession_get_all_reservations

drmaa2_msession_get_all_jobs

drmaa2_msession_get_all_queues

drmaa2_get_drms_name
drmaa2_get_drms_version
drmaa2_get_drmaa_name
drmaa2_get_drmaa_version
drmaa2_supports
drmaa2_create_jsession
drmaa2_create_rsession
drmaa2_open_jsession
drmaa2_open_rsession
drmaa2_open_msession
drmaa2_close_jsession
drmaa2_close_rsession
drmaa2_close_msession
drmaa2_destroy_jsession
drmaa2_destroy_rsession
drmaa2_get_jsession_names
drmaa2_get_rsession_names
drmaa2_register_event_notification

5 Security Considerations

The DRMAA root specification [2] describes the behavioral aspects of a standard-compliant implementation.

This includes also security aspects.

drmaa-wgQogf.org

drmaa2_msession_get_all_machines

(void);
(void);
(void);
(void);
(const
(const
(const
(const
(const
(const

(const drmaa2_msession ms);
(const drmaa2_msession ms,

const drmaa2_jinfo filter);
(const drmaa2_msession ms,

const drmaa2_string_list names) ;
(const drmaa2_msession ms,

const drmaa2_string_list names) ;

drmaa2_capability c);
char * session_name,
char * session_name,
char * session_name);
char * session_name);
char * session_name);

(drmaa2_jsession js);
(drmaa2_rsession rs);
(drmaa2_msession ms);

(const
(const
(void);
(void);
(const

char * session_name);
char * session_name);

drmaa2_callback callback);

const char * contact);
const char * contact);

mailto:drmaa-wg@ogf.org

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

GWD-R April 2012

Software written in C language has well-known security attack vectors, especially with memory handling.
Implementors MUST clarify in their documentation which kind of memory management is expected by the
application. Implementations MUST also consider the possibility for multi-threaded applications performing
re-entrant calls to the library. The root specification clarifies some of the behavioral aspects with this.

6 Contributors

Roger Brobst

Cadence Design Systems, Inc.

555 River Oaks Parkway

San Jose, CA 95134, United States
Email: rbrobst@cadence.com

Daniel Gruber

Univa GmbH

c¢/o Riiter und Partner
Prielmayerstr. 3

80335 Miinchen, Germany
Email: dgruber@Quniva.com

Mariusz Mamonski

Poznan Supercomputing and Networking Center
ul. Noskowskiego 10

61-704 Poznan, Poland

Email: mamonski@man.poznan.pl

Andre Merzky

Center for Computation and Technology
Louisiana State University

216 Johnston Hall

70803 Baton Rouge, Louisiana, USA
Email: andre@merzky.net

Peter Troger (Corresponding Author)
Hasso Plattner Institute at University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3

14482 Potsdam, Germany

Email: peter@troeger.eu

7 Intellectual Property Statement
The OGF takes no position regarding the validity or scope of any intellectual property or other rights that

might be claimed to pertain to the implementation or use of the technology described in this document or the
extent to which any license under such rights might or might not be available; neither does it represent that

drmaa-wgQogf.org 14

mailto:drmaa-wg@ogf.org

626
627
628

629

630
631

632

633

634
635
636

637

638

639

640
641
642
643
644
645
646

647

648

649

688

652

653

654
655

656

GWD-R April 2012

it has made any effort to identify any such rights. Copies of claims of rights made available for publication
and any assurances of licenses to be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by implementers or users of this specification can
be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to practice this recommendation.
Please address the information to the OGF Executive Director.

8 Disclaimer

This document and the information contained herein is provided on an “as-is” basis and the OGF disclaims
all warranties, express or implied, including but not limited to any warranty that the use of the information
herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular
purpose.

9 Full Copyright Notice

Copyright © Open Grid Forum (2012-2012). Some Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice or references to the OGF or
other organizations, except as needed for the purpose of developing Grid Recommendations in which case
the procedures for copyrights defined in the OGF Document process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors
or assignees.

10 References

[1] Scott Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119 (Best Current
Practice), March 1997. URL http://tools.ietf.org/html/rfc2119.

[2] Peter Troger, Roger Brobst, Daniel Gruber, Mariusz Mamonski, and Daniel Templeton. Distributed
Resource Management Application API Version 2 (DRMAA). http://www.ogf.org/documents/GFD.
194 .pdf, January 2012.

drmaa-wgQogf.org 15

http://tools.ietf.org/html/rfc2119
http://www.ogf.org/documents/GFD.194.pdf
http://www.ogf.org/documents/GFD.194.pdf
http://www.ogf.org/documents/GFD.194.pdf
mailto:drmaa-wg@ogf.org

	Introduction
	General Design
	Error Handling
	Lists and Dictionaries

	Implementation-specific Extensions
	Complete Header File
	Security Considerations
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice
	References

