
GWD-R
DRMAA-WG
drmaa-wg@ogf.org

Peter Tröger, Hasso-Plattner-Institute
(Corresponding Author)

Roger Brobst, Cadence Design Systems
Daniel Gruber, Univa

Mariusz Mamoński, PSNC
Daniel Templeton, Cloudera

June 2011

1

Distributed Resource Management Application API Version 22

(DRMAA) - Draft 63

Status of This Document4

Group Working Draft Recommendation (GWD-R)5

(See footnote)
1

6

Obsoletes7

This document obsoletes GFD-R.022 [7], GFD-R-P.130 [9], and GWD-R.133 [8].8

Copyright Notice9

Copyright c© Open Grid Forum (2005-2011). Some Rights Reserved. Distribution is unlimited.10

Trademark11

All company, product or service names referenced in this document are used for identification purposes only12

and may be trademarks of their respective owners.13

Abstract14

This document describes the Distributed Resource Management Application API Version 2 (DRMAA), which15

provides a generalized API to Distributed Resource Management (DRM) systems in order to facilitate the16

development of portable application programs and high-level libraries for such systems. DRMAA defines17

interfaces for a tightly coupled, but still portable access by abstracting the fundamental functions available18

in the majority of DRM systems. The scope is limited to job submission, job control, and retrieval of job19

and machine monitoring information.20

This document acts as root specification for the abstract API concepts and the behavioral rules that must be21

fulfilled by a DRMAA-compliant implementation. The programming language representation of the abstract22

API concepts must be formulated by a separate language binding specification derived from this document.23

The intended audience for this specification are DRMAA language binding designers, DRM system vendors,24

high-level API designers and meta-scheduler architects. End users are expected to rely on product-specific25

documentation for the DRMAA API implementation in their particular programming language.26

1 This is the non-normative annotated version of the specification with line numbers. It includes historical information
concerning the content and why features were included or discarded by the working group. It also emphasizes the consequences
of some aspects that may not be immediately apparent. This document in only intended for internal working group discussions.

drmaa-wg@ogf.org 1

mailto:drmaa-wg@ogf.org
http://www.drmaa.org/
http://www.drmaa.org/
mailto:drmaa-wg@ogf.org

GWD-R June 2011

Contents27

1 Introduction . 428

1.1 Notational Conventions . 429

1.2 Language Bindings . 530

1.3 Slots and Queues . 631

1.4 Multithreading . 632

2 Namespace . 633

3 Common Type Definitions . 634

4 Enumerations . 835

4.1 OperatingSystem enumeration . 836

4.2 CpuArchitecture enumeration . 937

4.3 ResourceLimitType enumeration . 1038

4.4 JobTemplatePlaceholder enumeration . 1139

4.5 DrmaaCapability . 1240

5 Extensible Data Structures . 1341

5.1 QueueInfo structure . 1342

5.2 Version structure . 1343

5.3 MachineInfo structure . 1444

5.4 SlotInfo structure . 1645

5.5 JobInfo structure . 1646

5.6 ReservationInfo structure . 1947

5.7 JobTemplate structure . 2148

5.8 ReservationTemplate structure . 2949

5.9 DrmaaReflective Interface . 3250

6 Common Exceptions . 3351

7 The DRMAA Session Concept . 3552

7.1 SessionManager Interface . 3553

8 Working with Jobs . 3854

8.1 The DRMAA State Model . 3855

8.2 JobSession Interface . 4056

8.3 DrmaaCallback Interface . 4357

8.4 Job Interface . 4458

8.5 JobArray Interface . 4659

8.6 The DRMAA INDEX VAR environment variable . 4860

9 Working with Advance Reservation . 4861

9.1 ReservationSession Interface . 4862

9.2 Reservation Interface . 4963

10 Monitoring the DRM System . 5064

10.1 MonitoringSession Interface . 5165

11 Annex A: Complete DRMAA IDL Specification . 5266

12 Security Considerations . 5867

13 Contributors . 5968

14 Intellectual Property Statement . 6069

15 Disclaimer . 6070

drmaa-wg@ogf.org 2

mailto:drmaa-wg@ogf.org

GWD-R June 2011

16 Full Copyright Notice . 6071

17 References . 6072

drmaa-wg@ogf.org 3

mailto:drmaa-wg@ogf.org

GWD-R June 2011

1 Introduction73

This document describes the Distributed Resource Management Application API Version 2 (DRMAA) in-74

terface semantics in a generalized way by using the OMG Interface Definition Language (IDL) [4] syntax for75

a language-agnostic description. Based on this abstract specification, language binding standards have to76

be designed that map the described concepts into a library interface for a particular programming language77

(e.g. C, Java, Python). While this document has the responsibility to ensure consistent API semantics over78

all possible DRMAA implementations, the language binding has the responsibility to ensure source-code79

portability for DRMAA applications on different DRM systems.80

An effort has been made to choose an API layout that is not unique to a particular language. However, in81

some cases, various languages disagree over some points. In those cases, the most meritous approach was82

taken, irrespective of language.83

There are other relevant OGF standards in the area of job submission and monitoring. An in-depth compar-84

ison and positioning of the obsoleted first version of the DRMAA [8] specification was provided by another85

publication [10].86

The DRMAA specification is based on the following stakeholders:87

• Distributed resource management system / DRM system / DRMS : Any system that supports the con-88

cept of distributing computational jobs on execution resources through the help of a central scheduling89

entity. Examples are multi-processor systems controlled by a operating system scheduler, cluster sys-90

tems with multiple machines controlled by a central scheduler software, grid systems, or cloud systems91

with a job concept.92

• DRMAA implementation, DRMAA library : The implementation of a DRMAA language binding spec-93

ification with the functional semantics described in this document. The resulting artifact is expected94

to be a library that is deployed together with the DRM system that is wrapped by the particular95

implementation.96

• (DRMAA-based) application: Software that utilizes the DRMAA implementation for gaining access to97

one or multiple DRM systems in a standardized way.98

• Submission host : An execution resource in the DRM system that runs the DRMAA-based application.99

A submission host MAY also be able to act as execution host.100

• Execution host : An execution resource in the DRM system that can run a job submitted through the101

DRMAA implementation.102

Provide
mapping
to GLUE
(GFD.147)

103

1.1 Notational Conventions104

In this document, IDL language elements and definitions are represented in a fixed-width font.105

The key words “MUST” “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD106

NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described in RFC 2119 [1].107

Memory quantities are expressed in kilobyte (KB). 1 kilobyte equals 1024 bytes.108

drmaa-wg@ogf.org 4

mailto:drmaa-wg@ogf.org

GWD-R June 2011

Parts of the specification which are normative for derived language binding specifications only are graphically
marked as shaded box.

(See footnote)
2 .109

1.2 Language Bindings110

A language binding specification derived from this document MUST define a mapping between the IDL
constructs and programming language constructs, with focus on source code portability for the resulting
DRMAA-based applications.

A language binding SHOULD NOT rely completely on the OMG language mapping standards available for
many programming languages, since they have a huge overhead of irrelevant CORBA-related mapping rules.
Therefore, language binding authors must carefully decide if a binding decision reflects a natural and simple
mapping of the intended purpose for the DRMAA interfaces. The binding SHOULD reuse OMG value type
mappings (e.g. IDL long long to Java long), and SHOULD define custom mappings for the other types.
The language binding MUST use the described concept mapping in a consistent manner for its overal API
layout.

Due to the usage of IDL, all method groups for a particular purpose (e.g. job control) are described in terms
of interfaces, and not classes. The mapping to a class concept depends on the specific language-mapping
rules.

It may be the case that IDL constructs do not map directly to any language construct. In this case it MUST
be ensured that the chosen mapping retains the intended semantic of the DRMAA interface definition.

Access to scalar attributes (string, boolean, long) MUST operate in a pass-by-value mode. A language
binding must ensure that this behavior is always fulfilled. For non-scalar attributes, the language binding
MUST specify a consistent access strategy for all these attributes – either pass-by-value or pass-by-reference
– according to the use cases of language binding implementations.

This specification tries to consider the possibility of a Remote Procedure Call (RPC) scenario in a DRMAA-
conformant language mapping. It SHOULD therefore be ensured that the programming language type for
an IDL struct definition supports the serialization and comparison of instances. These capabilities should
be accomplished through whatever mechanism is most natural for the programming language.

A language binding MUST define a way to declare an invalid value (UNSET). In case, a definition per data
type needs to be provided. Evaluating an UNSET boolean value MUST result in a negative result, e.g. for
JobTemplate::emailOnStarted.

(See footnote)
3

111

2The usage of kikibyte as memory quantity unit, as well as the usage of bytes as in JSDL, was rejected by the group (conf
call Apr. 13th 2011)

3 The concept of a UNSET value was decided on a conf call (Aug 25th 2010). Boolean in C can use custom enumeration
(TRUE, FALSE, INVALID) or pointer to static values. A numerical UNSET in C should use a magic number, since all long
attributes are unsigned, it could be MIN INT. With Python, just use None. For Java, Dan has an idea.

drmaa-wg@ogf.org 5

mailto:drmaa-wg@ogf.org

GWD-R June 2011

1.3 Slots and Queues112

DRMAA supports the notion of slots and queues as resources of a DRM system. A DRMAA application113

can request them in advance reservation and job submission. However, slots and queues SHALL be opaque114

concepts from the viewpoint of a DRMAA implementation, meaning that the requirements given by the115

application are just passed through to the DRM system. This is reasoned by the large variation in interpreting116

that concepts in the different DRM systems, which makes it impossible to define a common understanding117

on the level of the DRMAA API.118

(See footnote)
4

119

1.4 Multithreading120

High-level APIs such as SAGA [3] are expected to utilize DRMAA for asynchronous operations, based on the121

assumption that re-entrancy is supported by DRMAA implementations. For this reason, implementations122

SHOULD ensure the proper functioning of the library in case of re-entrant library calls. A DRMAA library123

SHOULD allow a multithreaded application to use DRMAA interfaces without any explicit synchronization124

among the application threads. DRMAA implementers should document their work as thread safe if they125

meet the above criteria. Providers of non-thread-safe DRMAA implementations should document all the126

interfaces that are thread unsafe and provide a list of interfaces and their dependencies on external thread127

unsafe routines.128

2 Namespace129

The DRMAA interfaces and structures are encapsulated by a naming scope, which avoids conflicts with130

other APIs used in the same application.131

module DRMAA2 {132

Language binding authors MUST map the IDL module encapsulation to an according package or namespace
concept and MAY change the module name according to programming language conventions.

(See footnote)
5

133

3 Common Type Definitions134

The DRMAA specification defines some custom types to express special value semantics not expressible in135

IDL.136

typedef sequence <string > OrderedStringList;137

typedef sequence <string > StringList;138

typedef sequence <Job > JobList;139

typedef sequence <QueueInfo > QueueInfoList;140

typedef sequence <MachineInfo > MachineInfoList;141

4 As one example, queues can be either treated as representation of execution hosts (Sun Grid Engine) or as central waiting
line located at the scheduler (LSF).

5 Comparison to DRMAA v1.0: The IDL module name was change to DRMAA2, in order to intentionally break backward
compatibility of the interface.

drmaa-wg@ogf.org 6

mailto:drmaa-wg@ogf.org

GWD-R June 2011

typedef sequence <SlotInfo > SlotInfoList;142

typedef sequence <Reservation > ReservationList;143

typedef sequence < sequence <string ,2> > Dictionary;144

typedef string AbsoluteTime;145

typedef long long TimeAmount;146

native ZERO_TIME;147

native INFINITE_TIME;148

native NOW;149

OrderedStringList: An unbounded list of strings, which supports element insertion, element deletion, and150

iteration over elements while keeping an element order.151

StringList: An unbounded list of strings, without any demand on element order.152

JobList: An unbounded list of Job instances, without any demand on element order.153

JobArrayList: An unbounded list of JobArray instances, without any demand on element order.154

QueueInfoList: An unbounded list of QueueInfo instances, without any demand on element order.155

MachineInfoList: An unbounded list of MachineInfo instances, without any demand on element order.156

SlotInfoList: An unbounded list of SlotInfo instances, without any demand on element order.157

ReservationList: An unbounded list of Reservation instances, without any demand on element order.158

Dictionary: An unbounded dictionary type for storing key-value pairs, without any demand on element159

order.160

AbsoluteTime: Expression of a point in time, with a resolution at least to seconds.161

TimeAmount: Expression of an amount of time, with a resolution at least to seconds.162

ZERO TIME: A constant value of type TimeAmount that expresses a zero amount of time.163

INFINITE TIME: A constant value of type TimeAmount that expresses an infinite amount of time.164

NOW: A constant value of type AbsoluteTime that stands for the point in time at which it is evaluated165

by some function.166

A language binding MUST replace these type definitions with semantically equal reference or value types in
the according language. This may include the creation of new complex language types for one or more of the
above concepts. The language binding MUST define a consistent mapping on module level, and a mechanism
for obtaining the RFC822 string representation from a given AbsoluteTime or TimeAmount instance.

(See footnote)
6

167

6 The PartialTimestamp functionality from DRMAA 1.0 was completely removed. Absolute date and time values are now
expressed as RFC822 conformant data items with stringification support (conf. call Mar 31st 2009). String list for job identifiers
are replaced by Job object lists (F2F meeting July 2009)

drmaa-wg@ogf.org 7

mailto:drmaa-wg@ogf.org

GWD-R June 2011

4 Enumerations168

Language bindings SHOULD define numerical values for all DRMAA constants and enumeration members,
in order to foster binary portability of DRMAA-based applications.

4.1 OperatingSystem enumeration169

DRMAA supports the identification of an operating system installation on execution resources in the DRM170

system. The OperatingSystem enumeration is used as data type both in the advance reservation and the171

DRM system monitoring functionalities. It defines a set of standardized identifiers for operating system172

types. The list is a shortened version of the according CIM Schema [6]. It includes only operating systems173

that are supported by the majority of DRM systems available at the time of writing:174

enum OperatingSystem {175

AIX , BSD , LINUX , HPUX , IRIX , MACOS , SUNOS , TRUE64 , UNIXWARE , WIN ,176

WINNT , OTHER_OS };177

AIX: AIX Unix by IBM.178

BSD: All operating system distributions based on the BSD kernel.179

LINUX: All operating system distributions based on the Linux kernel.180

HPUX: HP-UX Unix by Hewlett-Packard.181

IRIX: The IRIX operating system by SGI.182

MACOS: The MAC OS X operating system by Apple.183

SUNOS: SunOS or Solaris operating system by Sun / Oracle.184

TRUE64: True64 Unix by Hewlett-Packard, or DEC Digital Unix, or DEC OSF/1 AXP.185

UNIXWARE: UnixWare system by SCO group.186

WIN: Windows 95, Windows 98, Windows ME.187

WINNT: Microsoft Windows operating systems based on the NT kernel188

OTHER OS: An operating system type not specified in this list.189

Implementations SHOULD NOT add new operating system identifiers to this enumeration, even if they are190

supported by the underlying DRM system.191

The operating system information is only useful in conjunction with version information (see Section 10.1),192

which is also the reporting approach taken in most DRM systems. Examples:193

• The Apple MacOS X operating system commonly denoted as “Snow Leopard” would be reported as194

“MACOS” with the version structure [“10”,“6”]195

• The Microsoft Windows 7 operating system would be reported as “WINNT” with the version infor-196

mation [“6”,“1”], which is the internal version number reported by the Windows API.197

• All Linux distributions would be reported as operating system type “LINUX” with the major revision198

of the kernel, such as [“2”,“6”].199

drmaa-wg@ogf.org 8

mailto:drmaa-wg@ogf.org

GWD-R June 2011

• The Solaris operating system is reported as “SUNOS”, together with the internal version number, e.g.200

[“5”,“10”] for Solaris 10.201

The DRMAA OperatingSystem enumeration can be mapped to other high-level APIs. Table 1 gives a202

non-normative set of examples.203

DRMAA OperatingSystem value JSDL jsdl:OperatingSystemTypeEnumeration value
HPUX HPUX
LINUX LINUX
IRIX IRIX

TRUE64 Tru64 UNIX, OSF
MACOS MACOS
SUNOS SunOS, SOLARIS

WIN WIN95, WIN98, Windows R Me
WINNT WINNT, Windows 2000, Windows XP

AIX AIX
UNIXWARE SCO UnixWare, SCO OpenServer

BSD BSDUNIX, FreeBSD, NetBSD, OpenBSD
OTHER OS Other

Table 1: Mapping example for the DRMAA OperatingSystem enumeration

4.2 CpuArchitecture enumeration204

DRMAA supports identifying the processor instruction set architecture on execution resources in the DRM205

system. The CpuArchitecture enumeration is used as data type both in the advance reservation and the206

DRM system monitoring functionalities. It defines a set of standardized identifiers for processor architecture207

families. The list is a shortened version of the according CIM Schema [6], It includes only processor families208

that are supported by the majority of DRM systems available at the time of writing:209

enum CpuArchitecture {210

ALPHA , ARM , CELL , PARISC , X86 , X64 , IA64 , MIPS , PPC , PPC64 ,211

SPARC , SPARC64 , OTHER_CPU };212

ALPHA: The DEC Alpha / Alpha AXP processor architecture.213

ARM: The ARM processor architecture.214

CELL: The Cell processor architecture.215

PARISC: The PA-RISC processor architecture.216

X86: The IA-32 line of the X86 processor architecture family, with 32bit support only.217

X64: The X86-64 line of the X86 processor architecture family, with 64bit support.218

IA64: The Itanium processor architecture.219

MIPS: The MIPS processor architecture.220

PPC: The PowerPC processor architecture, all models with 32bit support only.221

PPC64: The PowerPC processor architecture, all models with 64bit support.222

drmaa-wg@ogf.org 9

mailto:drmaa-wg@ogf.org

GWD-R June 2011

SPARC: The SPARC processor architecture, all models with 32bit support only.223

SPARC64: The SPARC processor architecture, all models with 64bit support.224

OTHER CPU: A processor architecture not specified in this list.225

The DRMAA CpuArchitecture enumeration can be mapped to other high-level APIs. Table 2 gives a226

non-normative set of examples.227

The reporting and job configuration for processor architectures SHOULD operate on a “as-is” base, if sup-228

ported by the DRM system. This means that the reported architecture should reflect the current operation229

mode of the processor with the running operating system. For example, X64 processors executing a 32-bit230

operating system typically report themself as X86 processor.231

DRMAA CpuArchitecture value JSDL jsdl:ProcessorArchitectureEnumeration value
ALPHA other

ARM arm
CELL other

PARISC parisc
X86 x86 32
X64 x86 64
IA64 ia64
MIPS mips
PPC powerpc

PPC64 powerpc
SPARC sparc

SPARC64 sparc
OTHER other

Table 2: Mapping example for DRMAA CpuArchitecture enumeration

4.3 ResourceLimitType enumeration232

Modern DRM systems expose resource constraint capabilities from the operating system for jobs on the exe-233

cution host. The ResourceLimitType enumeration represents the typical setrlimit parameters [5] supported234

for jobs in different DRM systems. Resource limitations MUST work on the level of jobs. If a job gets more235

than one slot, the interpretation of limits is implementation-specific.236

(See footnote)
7

237

enum ResourceLimitType {238

CORE_FILE_SIZE , CPU_TIME , DATA_SEG_SIZE , FILE_SIZE , OPEN_FILES ,239

STACK_SIZE , VIRTUAL_MEMORY , WALLCLOCK_TIME };240

CORE FILE SIZE: The maximum size of the core dump file created on fatal errors of the job, in kilobyte.241

Setting this value to zero SHOULD disable the creation of core dump files on the execution host.242

7 The June 2011 face-to-face meeting had hard discussion on the relation between operating system processes, jobs, and
slots. It was decided that slot is a truly opaque concept, which means that you cannot do resource contraints on something that
is implementation-specific. Therefore, the spec semantics must focus on jobs only, and leave the interpretation to the DRM
system / DRMAA implementation.This leads to some intentional fuzzying of descriptions for ResourceLimitType members.

drmaa-wg@ogf.org 10

mailto:drmaa-wg@ogf.org

GWD-R June 2011

CPU TIME: The maximum accumulated time in seconds the job is allowed to perform computations.243

This value includes only time the job is spending in JobState::RUNNING (see Section 8.1).244

DATA SEG SIZE: The maximum amount of memory the job can allocate on the heap e.g. for object245

creation, in kilobyte.246

FILE SIZE: The maximum file size the job can generate, in kilobyte.247

OPEN FILES: The maximum number of file descriptors the job is allowed to have open at the same time.248

STACK SIZE: The maximum amount of memory the job can allocate on the stack, e.g. for local variables,249

in kilobyte.250

VIRTUAL MEMORY: The maximum amount of memory the job is allowed to allocate, in kilobyte.251

WALLCLOCK TIME: The maximum wall clock time in seconds the job is allowed to exist. The time252

amount MUST include the time spent in RUNNING state, and MAY also include the time spent in253

SUSPENDED state (see Section 8.1).254

(See footnote)
8

255

4.4 JobTemplatePlaceholder enumeration256

The JobTemplatePlaceholder enumeration defines constant macros to be used in string attributes of a257

JobTemplate instance.258

enum JobTemplatePlaceholder {259

HOME_DIRECTORY ,WORKING_DIRECTORY ,PARAMETRIC_INDEX };260

A HOME_DIRECTORY placeholder SHOULD be only allowed at the beginning of a JobTemplate attribute value.261

It denotes the remaining portion as a directory / file path resolved relative to the job users home directory262

at the execution host.263

A WORKING_DIRECTORY placeholder SHOULD be only allowed at the beginning of a JobTemplate attribute264

value. It denotes the remaining portion as a directory / file path resolved relative to the jobs working265

directory at the execution host.266

The PARAMETRIC_INDEX placeholder SHOULD be usable at any position within an attribute value that267

supports place holders. It SHALL be substituted by the parametric job index in a JobSession::runBulkJobs268

call (see Section 8.2.7). If the job template is used for a JobSession:runJob call, PARAMETRIC_INDEX269

SHOULD be substituted with a constant implementation-specific value.270

(See footnote)
9

271

8 “Pipe size” was not added, since there is no use case in DRM systems with a job concept. “Max user processes” was
omitted because it operates on the notion of users, which is not an explicit concept in DRMAA.

The understanding of wall clock time was decided in the Apr 6th and 13th 2011 conf call. Condor and Grid Engine also add
the SUSPEND time, but LSF does not.

9 Placeholders for other job template attributes were rejected, in order to avoid circular dependencies (Conf. call Oct 20th
2010). Any extended semantic of placeholders in comparison to DRMAA1 was rejected, since the support in the DRM system
didn’t change. (conf call Apr. 20th 2011)

drmaa-wg@ogf.org 11

mailto:drmaa-wg@ogf.org

GWD-R June 2011

4.5 DrmaaCapability272

The DrmaaCapability enumeration expresses DRMAA features and data attributes that may or may not273

be supported by a particular implementation. Applications are expected to check the availability of optional274

capabilities through the SessionManager::supports method (see Section 7.1).275

enum DrmaaCapability {276

ADVANCE_RESERVATION , RESERVE_SLOTS , CALLBACK ,277

BULK_JOBS_MAXPARALLEL ,278

JT_EMAIL , JT_STAGING , JT_DEADLINE , JT_MAXSLOTS ,279

JT_ACCOUNTINGID , RT_STARTNOW ,280

RT_DURATION , RT_MACHINEOS , RT_MACHINEARCH281

};282

ADVANCE RESERVATION: Indicates that the advance reservation interfaces (ReservationSession,283

Reservation) are functional in this implementation.284

RESERVE SLOTS: Indicates that the advance reservation support is targeting slots. If this capability is285

not given, the advance reservation is targeting whole machines as granularity level.286

CALLBACK: Indicates that the implementation supports event notification through a DrmaaCallback287

interface in the application.288

BULK JOBS MAXPARALLEL: Indicates that the maxParallel parameter in the JobSession::runBulkJobs289

method is considered and supported by the implementation.290

JT EMAIL: Indicates that the optional JobTemplate::email, JobTemplate::emailOnStarted, and JobTemplate::emailonTerminated291

attributes are supported by the implementation.292

JT STAGING: Indicates that the optional JobTemplate::stageInFiles and JobTemplate::stageOutFiles293

attributes are supported by the implementation.294

JT DEADLINE: Indicates that the optional JobTemplate::deadlineTime attribute is supported by the295

implementation.296

JT MAXSLOTS: Indicates that the optional JobTemplate::maxSlots attribute is supported by the297

implementation.298

JT ACCOUNTINGID: Indicates that the optional JobTemplate::accountingId attribute is supported299

by the implementation.300

RT STARTNOW: Indicates that the ReservationTemplate::startTime attribute accepts the NOW value.301

RT DURATION: Indicates that the optional ReservationTemplate::duration attribute is supported302

by the implementation.303

RT MACHINEOS: Indicates that the optional ReservationTemplate::machineOS attribute is supported304

by the implementation.305

RT MACHINEARCH: Indicates that the optional ReservationTemplate::machineArch attribute is306

supported by the implementation.307

drmaa-wg@ogf.org 12

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5 Extensible Data Structures308

DRMAA defines a set of data structures commonly used by different interfaces to express information309

for and from the DRM system. A DRMAA implementation is allowed to extend these structures with310

implementation-specific attributes in all cases. Behavioral aspects of such extended attributes are out of311

scope for DRMAA. The interpretation is implementation-specific, implementations MAY even ignore such312

attribute values.313

Implementations SHALL only extend data structures in the way specified by the language binding. The314

introspection about supported implementation-specific attributes is supported by the DrmaaReflective315

interface (see Section 5.9). Implementations SHOULD also support native introspection functionalities if316

defined by the language binding.317

A language binding MUST define a consistent mechanism to realize implementation-specific structure ex-
tension, without breaking the portability of DRMAA-based applications that relies on the original version
of the structure. Object oriented languages MAY use inheritance mechanisms for this purpose. Instances
of these structures SHALL be treated in a “call-by-value” fashion, meaning that the collection of struct
member values is handed over as one to the called interface method.

Language bindings MAY define how native introspection capabilities of the language or it’s runtime envi-
ronment can also be used to work with implementation-specific attributes. These mechanisms MUST work
in parallel to the DrmaaReflective interface.

(See footnote)
10

318

5.1 QueueInfo structure319

A queue is an opaque concept from the perspective of the DRMAA application (see Section 1.3). The320

QueueInfo struct contains read-only information, which can be extended by the implementation as described321

in Section 5.322

struct QueueInfo {323

string name;324

};325

5.1.1 name326

This attribute contains the name of the queue as reported by the DRM system. The format of the queue327

name is implementation-specific. The naming scheme SHOULD be consistent for all strings returned.328

5.2 Version structure329

The Version structure denotes versioning information for an operating system, DRM system, or DRMAA330

implementation.331

10 Comparison to DRMAA 1.0: The binding of job template attribute names and exception names to strings was removed.
Language bindings have to define their own mapping, if needed.

One example for native language introspection support could be attributes.
There was a discussion to remove the attribute ignorance possibility for implementations, in order to have a defined error

when unknown attributes are used. This was rejected on the Apr. 13th conf call, since applications do not need the error as
indication for missing attribute support. Instead, they should use the given introspection capabilities.

drmaa-wg@ogf.org 13

mailto:drmaa-wg@ogf.org

GWD-R June 2011

struct Version {332

string major;333

string minor;334

};335

Both the major and the minor part are expressed as strings, in order to allow extensions with character336

combinations such as “rev”. Original version strings containing a dot, e.g. Linux “2.6”, SHOULD be337

interpreted as having the major part before the dot, and the minor part after the dot. The dot character338

SHOULD NOT be added to the Version attributes.339

Implementations SHOULD NOT extend this structure with implementation-specific attributes.340

(See footnote)
11

341

5.3 MachineInfo structure342

The MachineInfo structure describes the properties of a particular execution host in the DRM system. It343

contains read-only information. An implementation or its DRM system MAY restrict jobs in their resource344

utilization even below the limits described in the MachineInfo structure. The limits given here MAY be345

imposed by the hardware configuration, or MAY be be imposed by DRM system policies.346

struct MachineInfo {347

string name;348

boolean available;349

long sockets;350

long coresPerSocket;351

long threadsPerCore;352

double load;353

long physMemory;354

long virtMemory;355

OperatingSystem machineOS;356

Version machineOSVersion;357

CpuArchitecture machineArch;358

};359

5.3.1 name360

This attribute describes the name of the machine as reported by the DRM system. The format of the361

machine name is implementation-specific, but MAY be a DNS host name. The naming scheme SHOULD be362

consistent among all machine struct instances.363

subsubsectionavailable364

This attribute expresses the usability of the machine for job execution at the time of querying. The value365

of this attribute SHALL NOT influence the validity of job template instances containing a candidateHosts366

setting, since the availability of machines is expected to change at any point in time. DRM systems may allow367

to submit jobs for unavailable machines, where these jobs are queued until the machine becomes available368

again.369

11 We could see no use case in doing implementation-specific extensions here, so this structure is not considered in DrmaaRe-
flective.

drmaa-wg@ogf.org 14

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.3.2 sockets370

This attribute describes the number of processor sockets (CPUs) usable for jobs on the machine from oper-371

ating system perspective. The attribute value MUST be greater than 0. In the case where the correct value372

is unknown to the implementation, the value MUST be set to 1.373

5.3.3 coresPerSocket374

This attribute describes the number of cores per socket usable for jobs on the machine from operating system375

perspective. The attribute value MUST be greater than 0. In case where the correct value is unknown to376

the implementation, the value MUST be set to 1.377

5.3.4 threadsPerCore378

This attribute describes the number of threads that can be executed in parallel by a job’s process on one core379

in the machine. The attribute value MUST be greater than 0. In case where the correct value is unknown380

to the implementation, the value MUST be set to 1.381

5.3.5 load382

This attributes describes the 1-minute average load on the given machine, similar to the Unix uptime com-383

mand. The value has only informative character, and should not be utilized by end user applications for job384

scheduling purposes. An implementation MAY provide delayed or averaged data here, if necessary due to385

implementation issues. The implementation strategy on non-Unix systems is undefined.386

5.3.6 physMemory387

This attribute describes the amount of physical memory in kilobyte available on the machine.388

5.3.7 virtMemory389

This attribute describes the amount of virtual memory in kilobyte available for a job executing on this390

machine. The virtual memory amount is defined as the sum of physical memory installed plus the configured391

swap space for the operating system. The value is expected to be used as indicator whether or not an392

application is able to get its memory allocation needs fulfilled on a particular machine. Implementations393

SHOULD derive this value directly from operating system information, without further consideration of394

additional memory allocation restrictions such as address space range or already running processes.395

5.3.8 machineOS396

This attribute describes the operating system installed on the described machine, with semantics as specified397

in Section 4.1.398

5.3.9 machineOSVersion399

This attribute describes the operating system version of the machine, with semantics as specified in Section400

4.1.401

drmaa-wg@ogf.org 15

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.3.10 machineArch402

This attribute describes the instruction set architecture of the machine, with semantics as specified in Section403

4.2.404

5.4 SlotInfo structure405

The SlotInfo structure describes the amount of reserved slots on a machine, resulting from an advance406

reservation operation (see also Section 1.3).407

Implementations SHOULD NOT extend this structure with implementation-specific attributes.408

(See footnote)
12

409

struct SlotInfo {410

string machineName;411

string slots;412

};413

5.4.1 machineName414

The name of the machine. Strings returned here SHOULD be equal to the MachineInfo::name attribute in415

the matching MachineInfo instance.416

5.4.2 slots417

The number of slots reserved on the given machine. Depending on the intepretation of slots in the imple-418

mentation, this value MAY be always one.419

5.5 JobInfo structure420

The JobInfo structure describes job information that is available for the DRMAA-based application.421

struct JobInfo {422

string jobId;423

long exitStatus;424

string terminatingSignal;425

string annotation;426

JobState jobState;427

any jobSubState;428

OrderedStringList allocatedMachines;429

string submissionMachine;430

string jobOwner;431

long slots;432

string queueName;433

TimeAmount wallclockTime;434

long cpuTime;435

AbsoluteTime submissionTime;436

12 We could see no use case in realizing implementation-specific extensions here, so this structure is not considered in
DrmaaReflective.

drmaa-wg@ogf.org 16

mailto:drmaa-wg@ogf.org

GWD-R June 2011

AbsoluteTime dispatchTime;437

AbsoluteTime finishTime;438

};439

The structure is used in two occasions - first for the expression of information about a single job, and second440

as filter expression when retrieving a list of jobs from the DRMAA implementation.441

In both usage scenarios, the structure information has to be understood as snapshot of the live DRM system.442

Multiple values being set in one structure instance should be interpreted as “occurring at the same time”.443

In real implementations, some granularity limits must be assumed - for example, the wallclockTime and444

the cpuTime attributes might hold values that were measured with a very small delay one after each other.445

DRMAA makes no assumption on the JobInfo availability for jobs in a a “Terminated” state (see Section446

8.1). Implementations SHOULD allow to fetch information about such jobs, complete or incomplete, for447

a reasonable amount of time. For such terminated jobs, implementations MAY also decide to return only448

partially filled JobInfo instances due to performance restrictions in the communication with the DRM449

system.450

For additional DRMS-specific information, the JobInfo structure MAY be extended by the DRMAA imple-451

mentation (see Section 5).452

(See footnote)
13

453

5.5.1 jobId454

For monitoring: Returns the stringified job identifier assigned to the job by the DRM system.455

For filtering: Returns the job with the chosen job identifier.456

5.5.2 exitStatus457

For monitoring: The process exit status of the job, as reported by the operating system. If the job is not in458

one of the terminated states, the value should be UNSET.459

For filtering: Return the jobs with the given exitStatus value. Jobs without exit status information should460

be filtered out by asking for the appropriate states.461

5.5.3 terminatingSignal462

For monitoring: This attribute specifies the UNIX signal that reasoned the end of the job. Implementations463

should document the extent to which they can gather such information in the particular DRM system (e.g.464

with Windows hosts).465

For filtering: Returns the jobs with the given terminatingSignal value.466

13 In comparison to DRMAA 1.0, the JobInfo value type was heavily extended for providing more information (solves issue
#2827). JobInfo::hasCoreDump is no longer supported, since the information is useless without according core file staging
support, which is not implementable in a portable way. (conf. call Jun 9th 2010) resourceUsage is no longer supported, since
this should be modelled with implementation-specific attributes (conf call Apr 13th 2011).

Some DRM systems (SGE / Condor at least) support the automated modification of job template attributes after submission,
and therefore allow to fetch the true job template attributes at run-time from the job. The monitoring for such data was
intentionally not included in DRMAA (mailing list July 2010).

A comment attribute was rejected (conf call May 11th).
Several conf. calls in 2011 ended up in the conclusion that data reaping cannot be clarified by DRMAA. There are too many

completely different use cases in local and distributed systems.

drmaa-wg@ogf.org 17

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.5.4 annotation467

For monitoring: Gives a human-readable annotation describing why the job is in its current state or sub-state.468

Implementations MAY decide to offer such description only in specific cases.469

For filtering: This attribute is ignored for filtering.470

5.5.5 jobState471

For monitoring: This attribute specifies the jobs current state according to the DRMAA job state model472

(see Section 8.1).473

For filtering: Returns all jobs in the specified state. If the given state is simulated by the implementation474

(see Section 8.1), the implementation SHOULD raise an InvalidArgumentException explaining that this475

filter can never match.476

5.5.6 jobSubState477

For monitoring: This attribute specifies the jobs current DRMAA implementation specific sub-state (see478

Section 8.1).479

For filtering: Returns all jobs in the specified sub-state. If the given sub-state is not supported by the imple-480

mentation (see Section 8.1), the implementation SHOULD raise an InvalidArgumentException explaining481

that this filter can never match.482

5.5.7 allocatedMachines483

This attribute expresses the set of machines that are utilized for job execution. Implementations MAY484

decide to give the ordering of machine names a particular meaning, for example putting the master node in a485

parallel job at first position. This decision should be documented for the user. For performance reasons, only486

the machine names are returned, and SHOULD be equal to the according MachineInfo::name attribute in487

monitoring data.488

For monitoring: This attribute lists the set of names of the machines to which this job has been assigned.489

For filtering: Returns the list of jobs which have a set of assigned machines that is a superset of the given490

set of machines.491

5.5.8 submissionMachine492

This attribute provides the machine name of the submission host for this job. For performance reasons, only493

the machine name is returned, and SHOULD be equal to the according MachineInfo::name attribute in494

monitoring data.495

For monitoring: This attribute specifies the machine from which this job was submitted.496

For filtering: Returns the set of jobs that were submitted from the specified machine.497

5.5.9 jobOwner498

For monitoring: This attribute specifies the job owner as reported by the DRM system.499

For filtering: Returns all jobs owned by the specified user.500

drmaa-wg@ogf.org 18

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.5.10 slots501

For monitoring: This attribute reports the number slots that were allocated for the job. The value SHOULD502

be in between JobTemplate::minSlots and JobTemplate::maxSlots.503

For filtering: Return all jobs with the specified number of reserved slots.504

5.5.11 queueName505

For monitoring: This attribute specifies the name of the queue in which the job was queued or started (see506

Section 1.3).507

For filtering: Returns all jobs that were queued or started in the queue with the specified name.508

5.5.12 wallclockTime509

For monitoring: The accumulated wall clock time, with the semantics as defined in Section 4.3.510

For filtering: Returns all jobs that have consumed at least the specified amount of wall clock time.511

5.5.13 cpuTime512

For monitoring: The accumulated CPU time, with the semantics as defined in Section 4.3.513

For filtering: Returns all jobs that have consumed at least the specified amount of CPU time.514

5.5.14 submissionTime515

For monitoring: This attribute specifies the time at which the job was submitted. Implementations SHOULD516

use the submission time recorded by the DRM system, if available.517

For filtering: Returns all jobs that were submitted at or after the specified submission time.518

5.5.15 dispatchTime519

For monitoring: The time the job first entered a “Started” state (see Section 8.1). On job restart or re-520

scheduling, this value does not change.521

For filtering: Returns all jobs that entered a “Started” state at, or after the specified dispatch time.522

5.5.16 finishTime523

For monitoring: The time the job first entered a “Terminated” state (see Section 8.1).524

For filtering: Returns all jobs that entered a “Terminated” state at or after the specified finish time.525

5.6 ReservationInfo structure526

The ReservationInfo structure describes reservation information information that is available for the527

DRMAA-based application.528

drmaa-wg@ogf.org 19

mailto:drmaa-wg@ogf.org

GWD-R June 2011

struct ReservationInfo {529

string reservationId;530

string reservationName;531

AbsoluteTime reservedStartTime;532

AbsoluteTime reservedEndTime;533

StringList usersACL;534

long reservedSlots;535

SlotInfoList reservedMachines;536

boolean inErrorState;537

};538

The structure is used for the expression of information about a single advance reservation. Information539

provided in this structure SHOULD NOT change over the reservation lifetime. However, implementations540

MAY reflect the altering of advance reservations outside of DRMAA sessions.541

For additional DRMS-specific information, the ReservationInfo structure MAY be extended by the DR-542

MAA implementation (see Section 5).543

5.6.1 reservationId544

Returns the stringified job identifier assigned to the advance reservation by the DRM system.545

5.6.2 reservationName546

This attribute describes the reservation name that was stored by the implementation or DRM system, derived547

from the original reservationName attribute given in the ReservationTemplate.548

5.6.3 reservedStartTime549

This attribute describes the start time for the reservation. If the value is UNSET, it expresses an unrestricted550

start time (i.e. “minus infinity”) for this reservation.551

5.6.4 reservedEndTime552

This attribute describes the end time for the reservation. If the value is UNSET, the behavior is implementation-553

specific.554

(See footnote)
14

555

5.6.5 usersACL556

The list of the users that are permitted to submit jobs to the reservation.557

5.6.6 reservedSlots558

This attribute describes the number of slots that was reserved by the DRM system. The value SHOULD be559

in between ReservationTemplate::minSlots and ReservationTemplate::maxSlots.560

14Mai 18th 2011 conf call rejected to treat UNSET as unrestricted end time (i.e. “plus infinity”) here.

drmaa-wg@ogf.org 20

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.6.7 reservedMachines561

This attribute describes the set of machines that were reserved under the conditions described in the according562

reservation template. Each SlotInfo instance in the result describes the reservation of a particular machine,563

and of a set of slots related to this machine. The sum of all slot counts in the sequence SHOULD be equal564

to ReservationInfo::reservedSlots.565

5.7 JobTemplate structure566

In order to define the attributes associated with a job, a DRMAA application uses the JobTemplate struc-567

ture. It specifies any required job parameters and is passed to the DRMAA JobSession instance when job568

execution is requested.569

struct JobTemplate {570

string remoteCommand;571

OrderedStringList args;572

boolean submitAsHold;573

boolean rerunnable;574

Dictionary jobEnvironment;575

string workingDirectory;576

string jobCategory;577

StringList email;578

boolean emailOnStarted;579

boolean emailOnTerminated;580

string jobName;581

string inputPath;582

string outputPath;583

string errorPath;584

boolean joinFiles;585

string reservationId;586

string queueName;587

long minSlots;588

long maxSlots;589

long priority;590

OrderedStringList candidateMachines;591

long minPhysMemory;592

OperatingSystem machineOS;593

CpuArchitecture machineArch;594

AbsoluteTime startTime;595

AbsoluteTime deadlineTime;596

Dictionary stageInFiles;597

Dictionary stageOutFiles;598

Dictionary resourceLimits;599

string accountingId;600

};601

The DRMAA job template concept makes a distinction between mandatory and optional attributes. Manda-602

tory attributes MUST be supported by the implementation in the sense that they are evaluated on job603

drmaa-wg@ogf.org 21

mailto:drmaa-wg@ogf.org

GWD-R June 2011

submission. Optional attributes MAY be evaluated on job submission, but MUST be provided as part of the604

JobTemplate structure in the implementation. If an unsupported optional attribute has a value different to605

UNSET, the job submission MUST fail with a UnsupportedAttributeException. DRMAA applications are606

expected to check for the availability of optional attributes before using them (see Section 4.5).607

Implementations MUST set all attribute values to UNSET on struct allocation. This ensures that both the608

DRMAA application and the library implementation can determine untouched attribute members. If not609

described differently in the following sections, all attributes SHOULD be allowed to have the UNSET value610

on job submission.611

An implementation MAY support JobTemplatePlaceholder macros in more occasions than defined in this612

specification.613

A language binding specification SHOULD define how a JobTemplate instance is convertible to a string
for printing, through whatever mechanism is most natural for the implementation language. The resulting
string MUST contain the values of all set properties.

The initialization to UNSET SHOULD be realized without additional methods in the DRMAA interface, if
possible. The according approach MUST be specified by the language binding.

(See footnote)
15

614

5.7.1 remoteCommand615

This attribute describes the command to be executed on the remote host. In case this parameter contains616

path information, it MUST be seen as relative to the execution host file system and is therefore evaluated617

there. The implementation SHOULD NOT relate the value of this attribute to binary file management or618

file staging activities. The behavior with an UNSET value is implementation-specific.619

The support for this attribute is mandatory.620

5.7.2 args621

This attribute contains the list of command-line arguments for the job(s) to be executed.622

The support for this attribute is mandatory.623

5.7.3 submitAsHold624

This attribute defines if the job(s) should be submitted as QUEUED or QUEUED_HELD (see Section 8.1). Since625

the boolean UNSET value defaults to False, jobs are submitted as non-held if this attribute is not set.626

15 Comparison to DRMAA 1.0: JobTemplate is now a value type, meaning that it maps to a struct in C. This removes the
need for DRMAA-defined methods for construction and destruction of job templates. An eventual RPC scenario for DRMAA
gets easier with this approach, since it is closer to the JSDL concept of a job description document.

Supported string placeholders for job template attributes are now listed in the JobTemplatePlaceholder enumeration, and
must be filled with values by the language binding. Invalid job template settings are now only detected on job submission, not
when the attribute is set.

DRMAA1 supported the utilization of new DRM features through an old DRMAA implementation, based on the
nativeSpecification field. A conf call (Jul 14th 2010) voted for dropping this intentionally. Implementations should use
according implementation-specific attributes for this.

GridEngine does not support to request a number of slots per machine - of course in a default installation, since you can do
everything in GridEngine ... This is the reason for not having such an attribute.

drmaa-wg@ogf.org 22

mailto:drmaa-wg@ogf.org

GWD-R June 2011

The support for this attribute is mandatory.627

5.7.4 rerunnable628

This flag indicates if the submitted job(s) can safely be restarted by the DRM system, for example on a629

node failure or some other re-scheduling event. Since the boolean UNSET value defaults to False, jobs are630

submitted as not rerunnable if this attribute is not set. This attribute SHOULD NOT be used by the631

implementation to let the application denote the checkpointability of a job.632

The support for this attribute is mandatory.633

(See footnote)
16

634

5.7.5 jobEnvironment635

This attribute holds the environment variable key-value pairs for the execution machine(s). The values636

SHOULD override the execution host environment values if there is a collision.637

The support for this attribute is mandatory.638

5.7.6 workingDirectory639

This attribute specifies the directory where the job or the bulk jobs are executed. If the attribute value640

is UNSET, the behavior is implementation dependent. Otherwise, the attribute value MUST be evaluated641

relative to the file system on the execution host. The attribute value MUST be allowed to contain either the642

JobTemplatePlaceholder::HOME_DIRECTORY or the JobTemplatePlaceholder::PARAMETRIC_INDEX place-643

holder (see Section 4.4).644

The workingDirectory attribute should be specified by the application in a syntax that is common at the645

host where the job is executed. Implementations MAY perform according validity checks on job submission.646

If the attribute is set and no placeholder is used, an absolute directory specification is expected. If the647

attribute is set and the job was submitted successfully and the directory does not exist on the execution648

host, the job MUST enter the state JobState::FAILED.649

The support for this attribute is mandatory.650

5.7.7 jobCategory651

DRMAA facilitates writing DRM-enabled applications even though the deployment properties, in particular652

the configuration of the DRMS, cannot be known in advance.653

Through the jobCategory string attribute, a DRMAA application can specify additional needs of the job(s)654

that are to be mapped by the implementation or DRM system itself to DRMS-specific options. It is intended655

as non-programmatic extension of DRMAA job submission features. The mapping is performed during the656

process of job submission. Each category expresses a particular type of job execution that demands site-657

specific configuration, for example path settings, environment variables, or application starters such as658

MPIRUN.659

A valid input SHOULD be one of the returned strings in MonitoringSession::drmsJobCategoryNames (see660

Section 10.1), otherwise an InvalidArgumentException SHOULD be raised.661

16 The differentiation between rerunnable and checkpointable was decided on a conf call (Aug 25th 2010). Checkpointability
indication was intentionally left out, since there is no common understanding in the DRM systems (conf call Apr. 27th, 2011).

drmaa-wg@ogf.org 23

mailto:drmaa-wg@ogf.org

GWD-R June 2011

A non-normative recommendation of category names is maintained at:662

http://www.drmaa.org/jobcategories/663

In case the name is not taken from the DRMAA working group recommendations, it should be self-664

explanatory for the user to understand the implications on job execution. Implementations are recommended665

to provide a library configuration facility, which allows site administrators to link job category names with666

specific product- and site-specific configuration options, such as submission wrapper shell scripts.667

The interpretation of the supported jobCategory values is implementation-specific. The order of precedence668

for the jobCategory attribute value or other attribute values is implementation-specific. It is RECOM-669

MENDED to overrule job template settings with a conflicting jobCategory setting.670

The support for this attribute is mandatory.671

5.7.8 email672

This attribute holds a list of email addresses that should be used to report DRM information. Content and673

formatting of the emails are defined by the implementation or the DRM system. If the attribute value is674

UNSET, no emails SHOULD be sent to the user running the job(s), even if the DRM system default behavior675

is to send emails on some event.676

The support for this attribute is optional, expressed by the DrmaaCapability::JT_EMAIL flag. If an imple-677

mentation cannot configure the email notification functionality of the DRM system, or if the DRM system678

has no such functionality, the attribute SHOULD NOT be supported in the implementation.679

(See footnote)
17

680

5.7.9 emailOnStarted / emailOnTerminated681

The emailOnStarted flag indicates if the given email address(es) SHOULD get a notification when the job682

(or any of the bulk jobs) entered one of the “Started” states. emailOnTerminated fulfills the same purpose683

for the ”Terminated” states. Since the boolean UNSET value defaults to False, the notification about state684

changes SHOULD NOT be sent if the attribute is not set.685

The support for these attributes is optional, expressed by the expressed by the DrmaaCapability::JT_EMAIL686

flag.687

5.7.10 jobName688

The job name attributes allows the specification of an additional non-unique string identifier for the job(s).689

The implementation MAY truncate any client-provided job name to an implementation-defined length.690

The support for this attribute is mandatory.691

5.7.11 inputPath / outputPath / errorPath692

This attribute specifies standard input / output / error stream of the job as a path to a file. If the attribute693

value is UNSET, the behavior is implementation dependent. Otherwise, the attribute value MUST be evaluated694

relative to the file system of the execution host in a syntax that is common at the host. Implementations695

17 The blockEmail attribute in the JobTemplate was replaced by the UNSET semantic for the email adresses. (conf. call
July 28th 2010). This became an optional attribute, since we mandate the ’switch off’ semantic in case of UNSET.

drmaa-wg@ogf.org 24

http://www.drmaa.org/jobcategories/
mailto:drmaa-wg@ogf.org

GWD-R June 2011

MAY perform according validity checks on job submission. The attribute value MUST be allowed to contain696

any of the JobTemplatePlaceholder placeholders (see Section 4.4). If the attribute is set and no placeholder697

is used, an absolute file path specification is expected.698

If the outputPath or errorPath file does not exist at the time the job is about to be executed, the file699

SHALL first be created. An existing outputPath or errorPath file SHALL be opened in append mode.700

If the attribute is set and the job was submitted successfully and the file cannot be created / read / written701

on the execution host, the job MUST enter the state JobState::FAILED.702

The support for this attribute is mandatory.703

5.7.12 joinFiles704

Specifies whether the error stream should be intermixed with the output stream. Since the boolean UNSET705

value defaults to False, intermixing SHALL NOT happen if the attribute is not set.706

If this attribute is set to True, the implementation SHALL ignore the value of the errorPath attribute and707

intermix the standard error stream with the standard output stream as specified by the outputPath.708

The support for this attribute is mandatory.709

5.7.13 stageInFiles / stageOutFiles710

Specifies what files should be transfered (staged) as part of the job execution. The data staging operation711

MUST be a copy operation between the submission host and the execution host(s) (see also Section 1 for712

host types). File transfers between execution hosts are not covered by DRMAA.713

The attribute value is formulated as dictionary. For each key-value pair in the dictionary, the key defines714

the source path of one file or directory, and the value defines the destination path of one file or directory715

for the copy operation. For stageInFiles, the submission host acts as source, and the execution host(s)716

act as destination. For stageOutFiles, the execution host(s) acts as source, and the submission host act as717

destination.718

All values MUST be evaluated relative to the file system on the host in a syntax that is common at that719

host. Implementations MAY perform according validity checks on job submission. Paths on the execution720

host(s) MUST be allowed to contain any of the JobTemplatePlaceholder placeholders. Paths on the sub-721

mission host MUST be allowed to contain the JobTemplatePlaceholder::PARAMETRIC_INDEX placeholder722

(see Section 4.4). If no placeholder is used in the values, an absolute path specification on the particular723

host SHOULD be assumed by the implementation.724

Relative path specifications for the submission host should be interpreted starting from the current working725

directory of the DRMAA application at the time of job submission. The behavior for relative path specifica-726

tions on the execution is implementation-specific. Implementations MAY use JobTemplate::workingDirectory727

as starting point on the execution host in this case, if given by the application.728

Jobs SHOULD NOT enter JobState::DONE unless all staging operations are finished. The behavior in729

case of missing files is implementation-specific. The support for wildcard operators in path specifications is730

implementation-specific. Any kind of recursive or non-recursive copying behavior is implementation-specific.731

If the job category (see Section 5.7.7) implies a parallel job (e.g. MPI), the copy operation SHOULD target732

the parallel job master host as destination. It MAY also distribute the files to the other hosts participating733

in the parallel job execution.734

drmaa-wg@ogf.org 25

mailto:drmaa-wg@ogf.org

GWD-R June 2011

The support for this attribute is optional, expressed by the DrmaaCapability::JT_STAGING flag.735

(See footnote)
18

736

5.7.14 reservationId737

Specifies the identifier of the advance reservation associated with the job(s). The application is expected738

to create an advance reservation through the ReservationSession interface, the resulting reservationId739

(see Section 9.2) then acts as valid input for this job template attribute. Implementations MAY support an740

reservation identifier from non-DRMAA information sources as valid input.741

The support for this attribute is mandatory.742

5.7.15 queueName743

This attribute specifies the name of the queue the job(s) should be submitted to. In case this attribute744

value is UNSET, and MonitoringSession::getAllQueues returns a list with a minimum length of 1, the745

implementation SHOULD use the DRM systems default queue.746

The MonitoringSession::getAllQueues method (see 10.1) supports the determination of valid queue747

names. Implementations SHOULD allow these queue names to be used in the queueName attribute. Imple-748

mentations MAY also support queue names from other non-DRMAA information sources as valid input. If749

no default queue is defined or if the given queue name is not valid, the job submission MUST lead to an750

InvalidArgumentException.751

If MonitoringSession::getAllQueues returns an empty list, this attribute MUST be only accepted with752

the value UNSET.753

Since the meaning of “queues” is implementation-specific, there is no implication on the effects in the DRM754

system when using this attribute. As one example, requesting a number of slots for a job in one queue has no755

implication on the number of utilized machines at run-time. Implementations therefore SHOULD document756

the effects of this attribute accordingly.757

The support for this attribute is mandatory.758

5.7.16 minSlots759

This attribute expresses the minimum number of slots requested per job (see also Section 1.3). If the value760

of minSlots is UNSET, it SHOULD default to 1.761

Implementations MAY interprete the slot count as number of concurrent processes being allowed on one762

machine. If this interpretation is taken, and minSlots is greater than 1, than the jobCategory SHOULD763

also be demanded on job submission, in order to express the nature of the intended parallel job execution.764

The support for this attribute is mandatory.765

18 Comparsion to DRMAA 1.0: New job template attributes for file transfers were introduced. They allow to express a set
of file staging activities, similar to the approach in LSF and SAGA. They replace the old transferFiles attribute, the according
FileTransferMode data structure and the special host definition syntax in inputPath / outputPath / errorPath (different conf.
calls, SAGA F2F meeting, solves issue #5876)

drmaa-wg@ogf.org 26

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.7.17 maxSlots766

This attribute expresses the maximum number of slots requested per job (see also Section 1.3). If the value767

of maxSlots is UNSET, it SHOULD default to the value of minSlots.768

Implementations MAY interprete the slot count as number of concurrent processes being allowed to run.769

If this interpretation is taken, and maxSlots is greater than 1, than the jobCategory SHOULD also be770

demanded on job submission, in order to express the nature of the intended parallel job execution.771

The support for this attribute is optional, as indicated by the DrmaaCapability::JT_MAXSLOTS flag.772

(See footnote)
19 .773

5.7.18 priority774

This attribute specifies the scheduling priority for the job. The intepretation of the given value incl. an775

UNSET value is implementation-specific.776

The support for this attribute is mandatory.777

5.7.19 candidateMachines778

Requests that the job(s) should run on any subset (with minimum size of 1), or all of the given machines.779

If the attribute value is UNSET, it should default to the result of the MonitoringSession::getAllMachines780

method. If this resource demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised781

on job submission time. If the problem can only be detected after job submission, the job should enter782

JobState::FAILED.783

The support for this attribute is mandatory.784

5.7.20 minPhysMemory785

This attribute denotes the minimum amount of physical memory in kilobyte that should be available for the786

job. If the job gets more than one slot, the interpretation of this value is implementation-specific. If this787

resource demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised at job submission788

time. If the problem can only be detected after job submission, the job SHOULD enter JobState::FAILED789

accordingly.790

The support for this attribute is mandatory.791

5.7.21 machineOS792

This attribute denotes the expected operating system type on the / all execution host(s). If this resource de-793

mand cannot be fulfilled, an InvalidArgumentException SHOULD be raised on job submission time. If the794

problem can only be detected after job submission, the job SHOULD enter JobState::FAILED accordingly.795

The support for this attribute is mandatory.796

(See footnote)
20

797

19Torque does not support maxSlots on job submission, conf call on May 11th decided to keep it as optional feature. Expected
use cases are billing limitations and parallel job scalability considerations

20 Requesting a specific operating system version beyond the type is not supported by the majority of DRM systems (conf
call Jul 28th 2010)

drmaa-wg@ogf.org 27

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.7.22 machineArch798

This attribute denotes the expected machine architecture on the / all execution host(s). If this resource799

demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised on job submission time. If800

the problem can only be detected after job submission, the job should enter JobState::FAILED.801

The support for this attribute is mandatory.802

5.7.23 startTime803

This attribute specifies the earliest time when the job may be eligible to be run.804

The support for this attribute is mandatory.805

5.7.24 deadlineTime806

Specifies a deadline after which the implementation or the DRM system SHOULD change the job state to807

any of the “Terminated” states (see Section 8.1).808

The support for this attribute is optional, as expressed by the DrmaaCapability::JT_DEADLINE.809

5.7.25 resourceLimits810

This attribute specifies the limits on resource utilization of the job(s) on the execution host(s). The valid811

dictionary keys and their value semantics are defined in Section 4.3.812

The following resource restrictions should operate as soft limit, meaning that exceeding the limit SHOULD813

NOT influence the job state from a DRMAA perspective:814

• CORE_FILE_SIZE815

• DATA_SEG_SIZE816

• FILE_SIZE817

• OPEN_FILES818

• STACK_SIZE819

• VIRTUAL_MEMORY820

The following resource restrictions should operate as hard limit, meaning that exceeding the limit MAY821

terminate the job. The termination could be performed by the DRM system, or by the job itself if it reacts822

on a signal from the DRM system resp. execution host operating system:823

• CPU_TIME824

• WALLCLOCK_TIME825

The support for this attribute is mandatory. If only a subset of the attributes from ResourceLimitType826

is supported by the implementation, and some of the unsupported attributes are used, the job submission827

SHOULD raise an InvalidArgumentException expressing the fact that resource limits are supported in828

general.829

Conflicts of these attribute values with any other job template attribute or with referenced advance reser-830

vations are handled in an implementation-specific manner. Implementations SHOULD try to delegate the831

drmaa-wg@ogf.org 28

mailto:drmaa-wg@ogf.org

GWD-R June 2011

decision about parameter combination validity to the DRM system, in order to ensure similar semantics in832

different DRMAA implementations for this system.833

(See footnote)
21

834

5.7.26 accountingId835

This attribute denotes a string that can be used by the DRM system for job accounting purposes. Im-836

plementations SHOULD NOT utilize this information as authentication token, but only as identification837

information in addition to the implementation-specific authentication (see Section 12).838

The support for this attribute is optional, as described by the DrmaaCapability::JT_ACCOUNTINGID flag.839

5.8 ReservationTemplate structure840

In order to define the attributes associated with an advance reservation, the DRMAA application creates841

an ReservationTemplate instance and requests the fulfilment through the ReservationSession methods842

in the DRM system.843

struct ReservationTemplate {844

string reservationName;845

AbsoluteTime startTime;846

AbsoluteTime endTime;847

TimeAmount duration;848

long minSlots;849

long maxSlots;850

StringList usersACL;851

OrderedStringList candidateMachines;852

long minPhysMemory;853

OperatingSystem machineOS;854

CpuArchitecture machineArch;855

};856

Similar to the JobTemplate concept (see Section 5.7), there is a distinction between mandatory and op-857

tional attributes. Mandatory attributes MUST be supported by the implementation in the sense that they858

are evaluated in a ReservationSession::requestReservation call. Optional attributes MAY NOT be859

evaluated by the particular implementation, but MUST be provided as part of the ReservationTemplate860

structure in the implementation. If an optional attribute is not evaluated by the particular implementation,861

but has a value different to UNSET, the call to ReservationSession::requestReservation MUST fail with862

a UnsupportedAttributeException.863

Implementations MUST set all attribute values to UNSET on struct allocation. This ensures that both the864

DRMAA application and the library implementation can determine untouched attribute members.865

21 In comparison to DRMAA 1.0, resource usage limitations can now be expressed by two dictionaries and an according
standardized set of valid dictionary keys (LimitType). The idea is to allow a direct mapping to ulimit(3) semantics, which are
supported by the majority of DRM system today. A separate run duration limit is no longer needed, since this is covered by
the new CPU TIME limit parameter. (conf. call Jun 9th 2010).

This distinguishing between different reactions on limit violation was restricted to the job entering, or not entering, the
FAILED state. All further effects (e.g. no more open() calls possible) are out of scope for DRMAA, since they relate to
operating system behavior on execution host (conf call May 4th 2011).

The attribute is mandatory, since the missing general support for resource limits can be simply expressed by raising Invali-
dArgumentException for aall types.

drmaa-wg@ogf.org 29

mailto:drmaa-wg@ogf.org

GWD-R June 2011

A language binding specification SHOULD model the ReservationTemplate representation the same way as
the JobTemplate interface (see Section 5.7), and therefore MUST define the realization of implementation-
specific attributes, printing, and and the initialization of attribute values.

5.8.1 reservationName866

A human-readable reservation name. The implementation MAY truncate or alter any application-provided867

job name in order to adjust it to the DRMS specific constraints. The name of the reservation SHALL be868

automatically defined by the implementation if this application provides no value on its own.869

The support for this attribute is mandatory.870

5.8.2 startTime / endTime / duration871

The time frame in which resources should be reserved. Table 3 explains the different possible parameter872

combinations and their semantic.873

startTime endTime duration Description
UNSET UNSET UNSET Invalid, SHALL leave to a InvalidArgumentException on the reser-

vation attempt.
Set UNSET UNSET Invalid, SHALL leave to a InvalidArgumentException on the reser-

vation attempt.
UNSET Set UNSET Invalid, SHALL leave to a InvalidArgumentException on the reser-

vation attempt.
Set Set UNSET Perform reservation attempt to get resources in the specified time

frame.
UNSET UNSET Set Perform reservation attempt the get resources at least for the time

amount given in duration.
Set UNSET Set Implies endTime = startTime + duration

UNSET Set Set Implies startTime = endTime - duration

Set Set Set If endTime - startTime is larger than duration, perform a reser-
vation attempt where the demanded duration is fulfilled at the ear-
liest point in time after startTime, and without extending endTime.
If endTime - startTime is smaller than duration, the reserva-
tion attempt SHALL leave to a InvalidArgumentException. If
endTime - startTime and duration are equal, duration SHALL
be ignored.

Table 3: Parameter combinations for the advance reservation time frame. If duration is not supported, it
should be treated as UNSET.

The support for startTime and endTime is mandatory. The support for duration is optional, as described874

by the DrmaaCapability::RT_DURATION flag. Implementations that do not support the described ”sliding875

window” approach for the SET / SET / SET case SHOULD express this by NOT supporting the duration876

attribute.877

Implementations MAY supportstartTime to have the constant value NOW (see Section 3), which expresses878

that the reservation should start at the time of reservation template approval in the DRM system. The879

drmaa-wg@ogf.org 30

mailto:drmaa-wg@ogf.org

GWD-R June 2011

support for this feature is declared by the DrmaaCapability::RT_STARTNOW flag.880

5.8.3 minSlots881

The minimum number of requested slots (see also Section 1.3). If the attribute value is UNSET, it should882

default to 1.883

The support for this attribute is mandatory.884

5.8.4 maxSlots885

The maximum number of requested slots (see also Section 1.3). If the attribute value is UNSET, it should886

default to the value of minSlots.887

The support for this attribute is mandatory.888

5.8.5 usersACL889

The list of the users that would be permitted to submit jobs to the created reservation.If the attribute value890

is UNSET, it should default to the user running the application.891

The support for this attribute is mandatory.892

5.8.6 candidateMachines893

Requests that the reservation SHALL be created for exactly the given set of machines. Implementations894

and their DRM systems MAY decide to reserve only a subset of the given machines.If this attribute is not895

specified, it should default to the result of MonitoringSession::getAllMachines (see Section 10.1).896

The support for this attribute is mandatory.897

(See footnote)
22

898

5.8.7 minPhysMemory899

Requests that the reservation SHALL be created with machines that have at least the given amount of900

physical memory in kilobyte. Implementations MAY interpret this attribute value as filter for candidate901

machines, or as memory reservation demand on a shared execution resource.902

The support for this attribute is mandatory.903

(See footnote)
23

904

5.8.8 machineOS905

Requests that the reservation must be created with machines that have the given type of operating system,906

regardless of its version, with semantics as specified in Section 4.1.907

The support for this attribute is optional, as described by the DrmaaCapability::RT_MACHINEOS flag.908

22May 18th 2011 conf call identified the subset reservation feature to be only available in some of the systems, so it is no
promise here.

23May 18th 2011 conf call identified the different understandings of memory reservation.

drmaa-wg@ogf.org 31

mailto:drmaa-wg@ogf.org

GWD-R June 2011

(See footnote)
24

909

5.8.9 machineArch910

Requests that the reservation must be created with machines that have the given instruction set architecture,911

with semantics as specified in Section 4.2.912

The support for this attribute is optional, as described by the DrmaaCapability::RT_MACHINEARCH flag.913

(See footnote)
25

914

5.9 DrmaaReflective Interface915

The DrmaaReflective interface allows an application to determine the set of supported implementation-916

specific attributes in the DRMAA structures (see also Section 5). It also standardizes the read / write access917

to such attributes when their existence is determined at run-time by the application.918

Applications are expected to determine the supported optional attributes with the SessionManager::supports919

method (see Section 7.1).920

interface DrmaaReflective {921

readonly attribute StringList jobTemplateImplSpec;922

readonly attribute StringList jobInfoImplSpec;923

readonly attribute StringList reservationTemplateImplSpec;924

readonly attribute StringList reservationInfoImplSpec;925

readonly attribute StringList queueInfoImplSpec;926

readonly attribute StringList machineInfoImplSpec;927

readonly attribute StringList notificationImplSpec;928

929

string getInstanceValue(in any instance , in string name);930

void setInstanceValue(in any instance , in string name , in string value);931

string describeAttribute(in any instance , in string name);932

};933

5.9.1 jobTemplateImplSpec934

This attribute provides the list of supported implementation-specific JobTemplate attributes.935

5.9.2 jobInfoImplSpec936

This attribute provides the list of supported implementation-specific JobInfo attributes.937

5.9.3 reservationTemplateImplSpec938

This attribute provides the list of supported implementation-specific ReservationTemplate attributes.939

5.9.4 reservationInfoImplSpec940

This attribute provides the list of supported implementation-specific ReservationInfo attributes.941

24May 18th 2011 conf call identified support in DRM systems to be mainly given by additional configuration only.
25May 18th 2011 conf call identified support in DRM systems to be mainly given by additional configuration only.

drmaa-wg@ogf.org 32

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.9.5 queueInfoImplSpec942

This attribute provides the list of supported implementation-specific QueueInfo attributes.943

5.9.6 machineInfoImplSpec944

This attribute provides the list of supported implementation-specific MachineInfo attributes.945

5.9.7 notificationImplSpec946

This attribute provides the list of supported implementation-specific DrmaaNotification attributes.947

5.9.8 getInstanceValue948

This method allows to retrieve the attribute value for name from the structure instance given in the instance949

parameter. The return value is the stringified current attribute value.950

5.9.9 setInstanceValue951

This method allows to set the attribute name to value in the structure instance given in the instance952

parameter. In case the conversion from string input into the native attribute type leads to an error,953

InvalidArgumentException SHALL be thrown.954

5.9.10 describeAttribute955

This method returns a human-readable description of an attributes purpose, for the attribute described by956

name in the structure instance referenced by instance. The content and language of the return value is957

implementation-specific, but should consider the use case of portal applications.958

6 Common Exceptions959

The exception model specifies error information that can be returned by a DRMAA implementation on960

method calls.961

exception DeniedByDrmsException {string message ;};962

exception DrmCommunicationException {string message ;};963

exception TryLaterException {string message ;};964

exception SessionManagementException {string message ;};965

exception TimeoutException {string message ;};966

exception InternalException {string message ;};967

exception InvalidArgumentException {string message ;};968

exception InvalidSessionException {string message ;};969

exception InvalidStateException {string message ;};970

exception OutOfResourceException {string message ;};971

exception UnsupportedAttributeException {string message ;};972

exception UnsupportedOperationException {string message ;};973

If not defined otherwise, the exceptions have the following meaning:974

DeniedByDrmsException: The DRM system rejected the operation due to security issues.975

drmaa-wg@ogf.org 33

mailto:drmaa-wg@ogf.org

GWD-R June 2011

DrmCommunicationException: The DRMAA implementation could not contact the DRM system. The976

problem source is unknown to the implementation, so it is unknown if the problem is transient or not.977

TryLaterException: The DRMAA implementation detected a transient problem with performing the978

operation, for example due to excessive load. The application is recommended to retry the call.979

TimeoutException: The timeout given in one the waiting functions was reached without successfully980

finishing the waiting attempt.981

InternalException: An unexpected or internal error occurred in the DRMAA library, for example a system982

call failure. It is unknown if the problem is transient or not.983

InvalidArgumentException: From the viewpoint of the DRMAA library, a function parameter is in-984

valid or inappropriate for the particular function call. If the parameter is a structure, the exception985

description SHOULD contain the name(s) of the problematic attribute(s).986

InvalidSessionException: The session used for the function is not valid, for example since it was closed987

before.988

InvalidStateException: The function call is not allowed in the current state of the job.989

OutOfResourceException: This exception can be thrown by any method at any time when the DRMAA990

implementation has run out of operating system resources, such as buffer, main memory, or disk space.991

UnsupportedAttributeException: The optional attribute is not supported by the DRMAA implemen-992

tation.993

UnsupportedOperationException: The function is not supported by the DRMAA implementation. One994

example is the registration of an event callback function.995

The DRMAA specification assumes that programming languages targeted by language bindings typically
support the concept of exceptions. If a destination language does not support them (like ANSI C), the
language binding specification SHOULD map error conditions to an appropriate consistent concept. A
language binding MAY chose to model exceptions as numeric error code return values, and return values as
additional output parameters of the operation. In this case, the language binding specification SHOULD
specify numeric values for all DRMAA error constants.

The representation of exceptions in the language binding MUST support a possibility to express an exception
cause as textual description. Implementations MAY use this text to express DRMS-specific error conditions
that are outside of the DRMAA scope.

Object-oriented language bindings MAY decide to derive all exceptions from one or multiple exception base
classes, in order to support generic catch clauses. Whenever it is appropriate, language bindings SHOULD
replace DRMAA exceptions by their semantically equivalent native exception from the application runtime
environment.

Language bindings MAY decide to introduce a hierarchical ordering of the DRMAA exceptions through class
derivation. In this case, any new exceptions added for aggregation purposes SHOULD be prevented from
being thrown, for example by marking them as abstract.

The UnsupportedAttributeException may either be raised by the setter function for the attribute or by
the job submission function. A consistent decision for either one or the other approach MUST be made by
the language binding specification.

drmaa-wg@ogf.org 34

mailto:drmaa-wg@ogf.org

GWD-R June 2011

(See footnote)
26

996

7 The DRMAA Session Concept997

DRMAA relies on an overall session concept, which supports the persistency of job and advance reservation998

information over multiple application runs. This supports short-lived applications that need to work with999

DRM system state spanning multiple application runs. Typical examples are job submission portals or1000

command-line tools. The session concept is also intended to allow implementations to perform DRM system1001

attach / detach operations at dedicated points in the application control flow.1002

7.1 SessionManager Interface1003

interface SessionManager{1004

readonly attribute string drmsName;1005

readonly attribute Version drmsVersion;1006

readonly attribute Version drmaaVersion;1007

boolean supports(in DrmaaCapability capability);1008

JobSession createJobSession(in string sessionName ,1009

in string contactString);1010

ReservationSession createReservationSession(in string sessionName ,1011

in string contactString);1012

MonitoringSession createMonitoringSession (in string contactString);1013

JobSession openJobSession(in string sessionName);1014

ReservationSession openReservationSession(in string sessionName);1015

void closeJobSession(in JobSession s);1016

void closeReservationSession(in ReservationSession s);1017

void closeMonitoringSession(in MonitoringSession s);1018

void destroyJobSession(in string sessionName);1019

void destroyReservationSession(in string sessionName);1020

StringList getJobSessions ();1021

StringList getReservationSessions ();1022

void registerEventNotification(in DrmaaCallback callback);1023

};1024

The SessionManager interface is the main interface for establishing communication with a given DRM sys-1025

tem. By the help of this interface, sessions for job management, monitoring, and/or reservation management1026

can be maintained.1027

Job and reservation sessions maintain persistent state information (about jobs and reservations created)1028

between application runs. State data SHOULD be persisted by the library implementation or the DRMS1029

itself (if supported) after closing the session through the according method in the SessionManager interface.1030

The re-opening of a session MUST be possible on the machine where the session was originally created.1031

Implementations MAY also offer to re-open the session on another machine.1032

26 Comparsion to DRMAA 1.0: The InconsistentStateException was removed, since it is semantically equal to the In-
validStateException (conf. call Jan 7th 2010) The former HoldInconsistentStateException, ReleaseInconsistentStateException,
ResumeInconsistentStateException, and SuspendInconsistentStateException from DRMAA v1.0 are now expressed as single
InvalidStateException with different meaning per raising method. (F2F meeting July 2009)

drmaa-wg@ogf.org 35

mailto:drmaa-wg@ogf.org

GWD-R June 2011

The state information SHOULD be kept until the job or reservation session is explicitly reaped by the1033

according destroy method in the SessionManager interface. If an implementation runs out of resources1034

for storing the session information, the closing function SHOULD throw a OutOfResourceException. If1035

an application ends without closing the session properly, the behavior of the DRMAA implementation is1036

undefined.1037

An implementation MUST allow the application to have multiple sessions of the same or different types1038

instantiated at the same time. This includes the proper coordination of parallel calls to session methods1039

that share state information.1040

(See footnote)
27

1041

7.1.1 drmsName1042

A system identifier denoting a specific type of DRM system, e.g. “LSF” or “GridWay”. It is intended1043

to support conditional code blocks in the DRMAA application that rely on DRMS-specific details of the1044

DRMAA implementation. Implementations SHOULD NOT make versioning information of the particular1045

DRM system a part of this attribute value.1046

7.1.2 drmsVersion1047

This attribute provides the DRM-system specific version information. Applications are not expected to make1048

decisions based on versioning information from this attribute - instead, the value should only be utilized for1049

informative output to the end user.1050

7.1.3 drmaaVersion1051

A combination of minor / major version number information for the DRMAA implementation. The major1052

version number MUST be the constant value “2”, the minor version number SHOULD be used by the1053

DRMAA implementation for expressing its own versioning information.1054

7.1.4 createJobSession / createReservationSession / createMonitoringSession1055

The method creates a new session instance of the particular type for the application. On successful completion1056

of this method, the necessary initalization for making the session usable MUST be completed. Examples are1057

the connection establishment from the DRMAA library to the DRM system, or the prefetching of information1058

from non-thread-safe operating system calls, such as getHostByName.1059

The contactString parameter is an implementation-dependent string that SHALL allow the application to1060

specify which DRM system instance to use. A contact string represents a specific installation of a specific1061

DRM system, e.g. a Condor central manager machine at a given IP address, or a Grid Engine ‘root’ and1062

‘cell’. Contact strings are always implementation dependent and therefore opaque to the application. If1063

contactString has the value UNSET, a default DRM system SHOULD be contacted. The manual configu-1064

ration or automated detection of a default contact is implementation-specific.1065

27 Comparison to DRMAA 1.0: The concept of a factory from GFD.130 was removed (solves issue #6276). Version 2.0 of
DRMAA supports restartable sessions by the newly introduced SessionManager interface. It allows creating multiple concurrent
sessions for job submission (solves issue #2821), which can be restarted by their generated session name (solves issue #2820).
Session.init() and Session.exit() functionalities are moved to the according session creation and closing routines. The descriptions
were fixed accordingly (solves issue #2822). The AlreadyActiveSession error was removed. (F2F meeting July 2009) The
drmaaImplementation attribute from DRMAA 1.0 was removed, since it was redundant to the drmsInfo attribute. This one is
now available in the new SessionManager interface. (F2F meeting July 2009).

drmaa-wg@ogf.org 36

mailto:drmaa-wg@ogf.org

GWD-R June 2011

The sessionName parameter denotes a unique name to be used for the new session. If a session with such1066

a name was created before, the method MUST throw an InvalidArgumentException. In all other cases,1067

including if the provided name has the value UNSET, a new session MUST be created with a unique name1068

generated by the implementation. A MonitoringSession instance has no persistent state, and therefore1069

does not support the name concept.1070

If the DRM system does not support advance reservation, than createReservationSession SHALL throw1071

an UnsupportedOperationException.1072

7.1.5 openJobSession / openReservationSession1073

The method is used to open a persisted JobSession or ReservationSession instance that has previously1074

been created under the given sessionName. The implementation MUST support the case that the session1075

have been created by the same application or by a different application running on the same machine. The1076

implementation MAY support the case that the session was created or updated on a different machine. If1077

no session with the given sessionName exists, an InvalidArgumentException MUST be raised.1078

If the session described by sessionName was already opened before, implementations MAY return the same1079

job or reservation session instance.1080

If the DRM system does not support advance reservation, openReservationSession SHALL throw an1081

UnsupportedOperationException.1082

7.1.6 closeJobSession / closeReservationSession / closeMonitoringSession1083

The method MUST do whatever work is required to disengage from the DRM system. It SHOULD be callable1084

only once, by only one of the application threads. This SHOULD be ensured by the library implementation.1085

Additional calls beyond the first SHOULD lead to a NoActiveSessionException error notification.1086

For JobSession or ReservationSession instances, the according state information MUST be saved to some1087

stable storage before the method returns. This method SHALL NOT affect any jobs or reservations in the1088

session (e.g., queued and running jobs remain queued and running).1089

If the DRM system does not support advance reservation, closeReservationSession SHALL throw an1090

UnsupportedOperationException.1091

7.1.7 destroyJobSession / destroyReservationSession1092

The method MUST do whatever work is required to reap persistent session state and cached job state1093

information for the given session name. If session instances for the given name exist, they MUST become1094

invalid after this method was finished sucessfully. Invalid sessions MUST throw InvalidSessionException1095

on every attempt of utilization. This method SHALL NOT affect any jobs or reservations in the session in1096

their operation, e.g. queued and running jobs remain queued and running.1097

If the DRM system does not support advance reservation, destroyReservationSession SHALL throw an1098

UnsupportedOperationException.1099

7.1.8 getJobSessions / getReservationSessions1100

This method returns a list of JobSession or ReservationSession names that are valid input for a openJobSession1101

or openReservationSession call.1102

drmaa-wg@ogf.org 37

mailto:drmaa-wg@ogf.org

GWD-R June 2011

If the DRM system does not support advance reservation, getReservationSessions SHALL throw an1103

UnsupportedOperationException.1104

7.1.9 registerEventNotification1105

This method is used to register a DrmaaCallback interface (see Section 8.3) implemented by the DRMAA-1106

based application. If the callback functionality is not supported by the DRMAA implementation, the method1107

SHALL raise an UnsupportedOperationException, and the capability DrmaaCapability::CALLBACK MUST1108

NOT be indicated (see Section 4.5). Implementations with callback support SHOULD allow to perform mul-1109

tiple registration calls, which updates the callback target function.1110

If the argument of the method call is UNSET, the currently registered callback MUST be unregistered. After1111

this method call returned, no more events SHALL be delivered to the application. If no callback target is1112

registered, the method should return immediately.1113

A language binding specification MUST define how the reference to an interface-compliant method can be
given as argument to this method. It MUST also clarify how to pass an UNSET callback method reference.

8 Working with Jobs1114

A DRMAA job represents a single computational activity that is executed by the DRM system on one or1115

more execution hosts, as one or more operating system processes. The JobSession interface represents all1116

control and monitoring functions commonly available in DRM systems for such jobs as a whole, while the Job1117

interface represents the common functionality for single jobs. Sets of jobs resulting from a bulk submission1118

are separately represented by the JobArray interface. JobTemplate instances allow to formulate conditions1119

and requirements for the job execution by the DRM system.1120

8.1 The DRMAA State Model1121

DRMAA defines the following job states:1122

enum JobState {1123

UNDETERMINED , QUEUED , QUEUED_HELD , RUNNING , SUSPENDED , REQUEUED ,1124

REQUEUED_HELD , DONE , FAILED };1125

UNDETERMINED: The job status cannot be determined. This is a permanent issue, not being solvable1126

by querying again for the job state.1127

QUEUED: The job is queued for being scheduled and executed.1128

QUEUED HELD: The job has been placed on hold by the system, the administrator, or the submitting1129

user.1130

RUNNING: The job is running on a execution host.1131

SUSPENDED: The job has been suspended by the user, the system or the administrator.1132

REQUEUED: The job was re-queued by the DRM system, and is eligible to run.1133

REQUEUED HELD: The job was re-queued by the DRM system, and is currently placed on hold.1134

drmaa-wg@ogf.org 38

mailto:drmaa-wg@ogf.org

GWD-R June 2011

DONE: The job finished without an error.1135

FAILED: The job exited abnormally before finishing.1136

If a DRMAA job state has no representation in the underlying DRMS, the DRMAA implementation MAY1137

never report that job state value. However, all DRMAA implementations MUST provide the JobState1138

enumeration as given here. An implementation SHOULD NOT return any job state value other than those1139

defined in the JobState enumeration.1140

The status values relate to the DRMAA job state transition model, as shown in Figure 1.1141

TerminatedStartedQueued

QUEUED

QUEUED_HELD

RUNNING

SUSPENDED

DONE

FAILED

UNDETERMINED

REQUEUED

REQUEUED_HELD

runJob()
runBulkJobs()

Figure 1: DRMAA Job State Transition Model

The transition diagram in Figure 1 expresses the clasification of possible job states into “Queued”, “Started”,1142

and “Terminated”. This is relevant for the job waiting functions (see Section 8.2 and Section 8.4), which1143

operate on job state classes only. The “Terminated” class of states is final, meaning that further state1144

transition is not allowed.1145

Implementations SHALL NOT introduce other job transitions (e.g. from RUNNING to QUEUED) beside the ones1146

stated in Figure 1, even if they might happen in the underlying DRM system. In this case, implementations1147

MAY emulate the neccessary intermediate steps for the DRMAA-based application.1148

When an application requests job state information, the implementation SHOULD also provide the subState1149

value to explain DRM-specific information about the job state. The possible values of this attribute are1150

implementation-specific, but should be documented properly. Examples are extra states for staging phases1151

drmaa-wg@ogf.org 39

mailto:drmaa-wg@ogf.org

GWD-R June 2011

or details on the hold reason. Implementations SHOULD define a DRMS-specific data structure for the1152

sub-state information that can be converted to / from the data type defined by the language binding.1153

The IDL definition declares the sub state attributes as type any, expressing the fact that the language
binding MUST map the data type to a generic language type (e.g. void*, Object) that maintains source code
portability across DRMAA implementations and still accepts an UNSET value.

The DRMAA job state model can be mapped to other high-level API state models. Table 4 gives a non-1154

normative set of examples.1155

DRMAA JobState SAGA JobState [3] OGSA-BES Job State [2]
UNDETERMINED N/A N/A
QUEUED Running Pending (Queued)
QUEUED HELD Running Pending (Queued)
RUNNING Running Running (Executing)
SUSPENDED Suspended Running (Suspended)
REQUEUED Running Running (Queued)
REQUEUED HELD Running Running (Queued)
DONE Done Finished
FAILED Cancelled, Failed Cancelled, Failed

Table 4: Example Mapping of DRMAA Job States

(See footnote)
28

1156

8.2 JobSession Interface1157

A job session instance acts as container for job instances controlled through the DRMAA API. The session1158

methods support the submission of new jobs, the monitoring and the control of existing jobs. The relationship1159

between jobs and their session MUST be persisted, as described in Section 7.1.1160

interface JobSession {1161

readonly attribute string contact;1162

readonly attribute string sessionName;1163

readonly attribute StringList jobCategories;1164

JobList getJobs(in JobInfo filter);1165

JobArray getJobArray(in string jobArrayId);1166

28 Comparison to DRMAA 1.0:
The differentiation between the system hold, user hold, and system / user hold job states was removed (conf. call Jan

20th 2009). There is only one hold state now. A job can now change its state from one of the SUSPENDED states to the
QUEUED ACTIVE state (conf. call Jan 20th 2009, solves issue #2788). The job state UNDETERMINED is now clearer
defined. It expressed a permanent issue, meaning that the job state will not change by just waiting. Temporary problems in
the detection of the job state are now expressed by the TryLaterException (conf. call Feb 5th 2009, solves issue #2783). The
description of the FAILED state was extended to support a more specific differentiation between different job failure reasons.
The new subState feature allows the DRMAA implementation to provide better information, if available. There was no portable
way of standardizing extended failure information in a better way. (conf. call May 12th 2009, solves issue #5875) The different
suspend job states from DRMAA1 (user suspended, system suspended, user / system suspended) are now combined into one
suspend state. DRM systems with the need to express the different suspend reasons can use the new sub-state feature (conf.
call Mar 5th 2010).

REQUEUED and REQUEUED HELD maps to RUNNING in BES, since BES does not allow a transition between Running
and Pending (mailing list, APr. 2011)

drmaa-wg@ogf.org 40

mailto:drmaa-wg@ogf.org

GWD-R June 2011

Job runJob(in JobTemplate jobTemplate);1167

JobArray runBulkJobs(1168

in JobTemplate jobTemplate ,1169

in long beginIndex ,1170

in long endIndex ,1171

in long step ,1172

in long maxParallel);1173

Job waitAnyStarted(in JobList jobs , in TimeAmount timeout);1174

Job waitAnyTerminated(in JobList jobs , in TimeAmount timeout);1175

};1176

(See footnote)
29

1177

8.2.1 contact1178

This attribute contains the contact value that was used in the SessionManager::createJobSession call1179

for this instance (see Section 7.1). If no value was originally provided, the default contact string from the1180

implementation MUST be returned. This attribute is read-only.1181

8.2.2 sessionName1182

This attribute contains the sessionName value that was used in the SessionManager::createJobSession1183

or SessionManager::openJobSession call for this instance (see Section 7.1). This attribute is read-only.1184

8.2.3 jobCategories1185

This method provides the list of of valid job category names which can be used for the jobCategory attribute1186

in a JobTemplate instance. The semantics are described in Section 5.7.7.1187

8.2.4 getJobs1188

This method returns a sequence of jobs that belong to the job session. The filter parameter allows one1189

to choose a subset of the session jobs as return value. The attribute semantics for the filter argument are1190

explained in Section 5.5. If no job matches or the session has no jobs attached, the method MUST return1191

an empty sequence instance. If filter is UNSET, all session jobs MUST be returned.1192

Time-dependent effects of this method, such as jobs no longer matching to filter criteria on evaluation time,1193

are implementation-specific. The purpose of the filter parameter is to keep scalability with a large number1194

29 Comparison to DRMAA 1.0: The original separation between synchronize() and wait() was replaced by a complete new
synchronization semantic in the API. DRMAA2 has now two methods, waitStarted() and waitTerminated(). The first waits
for any state that expresses that the job was started, the second for any terminal status. Both methods are available on
session level (wait for any of the given jobs to start / end) or on single job level (solves issue #5880 and #2838). The function
returns always a Job object, in order to allow chaining, e.g. job.wait(JobStatus.RUNNING).hold(). The session-level functions
implement the old DRMAA wait(SESSION ANY). The old synchronize() semantics are no longer directly supported - instead,
the DRMAA application should use a looped Job.wait... / JobSession.waitAny... call. The result is a more condensed and
responsive API, were the application can decide to keep the user informed during synchronization on a set of jobs. DRMAA
library implementations should also become easier to design, since the danger of multithreading side effects inside the DRMAA
API is reduced by this change. As a side effect, JOB IDS SESSION ANY and JOB IDS SESSION ALL are no longer needed.
The special consideration of a partial failures during SESSION ALL wait activities is also no longer necessary (F2F meeting
July 2009). The JobSession now allows to fetch also information about jobs that were not submitted through DRMAA (conf.
call June 23th 2010).

drmaa-wg@ogf.org 41

mailto:drmaa-wg@ogf.org

GWD-R June 2011

of jobs per session. Applications therefore must consider the possibly changed state of jobs during their1195

evaluation of the method result.1196

8.2.5 getJobArray1197

This method returns the JobArray instance with the given ID. If the session does not / no longer contain1198

the according job array, InvalidArgumentException SHALL be thrown.1199

(See footnote)
30

1200

8.2.6 runJob1201

The runJob method submits a job with the attributes defined in the job template parameter. It returns a1202

Job object that represents the job in the underlying DRM system. Depending on the job template settings,1203

submission attempts may be rejected with an InvalidArgumentException. The error details SHOULD1204

provide further information about the attribute(s) responsible for the rejection.1205

When this method returns a valid Job instance, the following conditions SHOULD be fulfilled:1206

• The job is part of the persistent state of the job session.1207

• All non-DRMAA and DRMAA interfaces to the DRM system report the job as being submitted to1208

the DRM system.1209

• The job has one of the DRMAA job states.1210

8.2.7 runBulkJobs1211

The runBulkJobs method creates a set of parametric jobs, each with attributes defined in the given1212

job template. Each job in the set is identical, except for the job template attributes that include the1213

JobTemplatePlaceholder::PARAMETRIC_INDEX macro (see Section 5.7).1214

If any of the resulting parametric job templates is not accepted by the DRM system, the method call MUST1215

raise an InvalidArgumentException. No job from the set SHOULD be submitted in this case.1216

The first job in the set has an index equal to the beginIndex parameter of the method call. The smallest valid1217

value for beginIndex is 1. The next job has an index equal to beginIndex + step, and so on. The last job1218

has an index equal to beginIndex + n * step, where n is equal to(endIndex - beginIndex) / step. The1219

index of the last job may not be equal to endIndex if the difference between beginIndex and endIndex is not1220

evenly divisible by step. The beginIndex value must be less than or equal to the endIndex value, and only1221

positive index numbers are allowed, otherwise the method SHOULD raise an InvalidArgumentException.1222

Jobs can determine the index number at run time with the mechanism described in Section 8.6.1223

The maxParallel parameter allows to specify how many of the bulk job’s instances are allowed to run1224

in parallel on the utilized resources. Implementations MAY consider this value if the DRM system sup-1225

ports such functionality, otherwise the parameter MUST be silently ignored. If the parameter value is1226

UNSET, no limit SHOULD be applied on the bulk job. If given, the support MUST be expressed by the1227

DrmaaCapability::BULK_JOBS_MAXPARALLEL capability flag (see Section 4.5).1228

30 June 2011 conf. call decided to not support JobArray filtering in the session at this point. The face-to-face meeting in
June 2011 identified that DRM systems typically do not support the identification of bulk jobs in the system, so it would be
hard to implement the according reporting function.

drmaa-wg@ogf.org 42

mailto:drmaa-wg@ogf.org

GWD-R June 2011

The runBulkJobs method returns a JobArray (see Section 8.5) instance that represents the set of Job objects1229

created by the method call under a common array identifier. For each of the jobs in the array, the same1230

conditions as for the result of runJob SHOULD apply.1231

The largest (syntactically) allowed value for endIndex MUST be defined by the language binding.

Further restrictions on the maximum endIndex MAY be implied by the implementation.1232

(See footnote)
31

1233

8.2.8 waitAnyStarted / waitAnyTerminated1234

The waitAnyStarted method blocks until any of the jobs referenced in the jobs parameter entered one of1235

the “Started” states. The waitAnyTerminated method blocks until any of the jobs referenced in the jobs1236

parameter entered one of the “Terminated” states (see Section 8.1). If the input list contains jobs that are1237

not part of the session, waitAnyStarted SHALL fail with an InvalidArgumentException.1238

The timeout argument specifies the desired behavior when a result is not immediately available. The con-1239

stant value INFINITE_TIME may be specified to wait indefinitely for a result. The constant value ZERO_TIME1240

may be specified to return immediately. Alternatively, a number of seconds may be specified to indicate1241

how long to wait for a result to become available. If the invocation exits on timeout, an TimeoutException1242

SHALL be raised.1243

An application waiting for some condition to happen in all jobs of a set is expected to perform looped calls1244

of these waiting functions.1245

(See footnote)
32

1246

8.3 DrmaaCallback Interface1247

The DrmaaCallback interface allows the DRMAA library or the DRM system to inform the application1248

about relevant events from the DRM system in a asynchronous fashion. One expected use case is con-1249

tinuous monitoring of job state transitions. However, the implementation MAY decide to not deliver all1250

events occurring in the DRM system. The support for such callback functionality is optional, indicated1251

by DrmaaCallback::CALLBACK, but all implementations MUST define the DrmaaCallback interface type as1252

given in the language binding.1253

interface DrmaaCallback {1254

void notify(in DrmaaNotification notification);1255

};1256

31 There was a discussion (mailing list Jan 2011) about having specialized job templates for bulk submission, with support
for the start / end index and a slots limit. We rejected that, since job templates are intended for re-usage.

The May 4th 2011 conf call identified Grid Engine, Torque and LSF as the only systems having support for maxParallel. The
feature was determined as critical enough for still adding it, therefore the ignorance rule and the MAY semantics are applied.

32 People typically ask for the waitAll..() counterparts of these functions. Since they are so easy to implement in the
application itself, we could not see any benefit in adding them. Due to there intended long-blocking operation, the DRM
system would no be able to offer any better (meaning much faster) implementation to be wrapped by DRMAA.

A section on synchronization of multi-threaded parallel wait calls was removed. This would complicate DRMAA implementa-
tions, since synchronization does not map to the obvious state polling approach. An optimization like this would be classically
a task of application-oriented APIs - so, Andre has to solve it.

drmaa-wg@ogf.org 43

mailto:drmaa-wg@ogf.org

GWD-R June 2011

struct DrmaaNotification {1257

DrmaaEvent event;1258

Job job;1259

JobState jobState;1260

};1261

enum DrmaaEvent {1262

NEW_STATE , MIGRATED , ATTRIBUTE_CHANGE1263

};1264

The application callback interface is registered through the SessionManager::registerEventNotification1265

method (see Section 7.1). The DrmaaNotification structure represents the notification information from the1266

DRM system. Implementations MAY extend this structure for further information (see Section 5). All given1267

information SHOULD be valid at least at the time of notification generation. The DrmaaNotification::jobState1268

attribute expresses the state of the job at the time of notification generation, while the DrmaaNotification::job1269

attribute allows to retrieve latest job information.1270

The DrmaaEvent enumeration defines standard event types for notification:1271

NEW STATE The job entered a new state, which is described in the jobState attribute of the notification1272

structure.1273

MIGRATED The job was migrated to another execution host, and is now in the given state.1274

ATTRIBUTE CHANGE A monitoring attribute of the job, such as the memory consumption, changed1275

to a new value. The jobState attribute MAY have the value UNSET on this event.1276

DRMAA implementations SHOULD protect themself from unexpected behavior of the called application.1277

This includes indefinite delays or unexpected exceptions from the callee. The implementation SHOULD1278

prevent a nested callback at the time of occurence, and MAY decide to deliver the according events at a1279

later point in time.1280

Scalability issues of the notification facility are out of scope for this specification. Implementations MAY1281

decide to support non-standardized throttling configuration options.1282

(See footnote)
33

1283

8.4 Job Interface1284

Every job in the JobSession is expressed by an own instance of the Job interface. It allows one to instruct1285

the DRM system for a job status change, and to query the status attributes of the job in the DRM system.1286

Implementations MAY return Job objects for jobs created outside of a DRMAA session.1287

interface Job {1288

readonly attribute string jobId;1289

readonly attribute JobSession session;1290

readonly attribute JobTemplate jobTemplate;1291

void suspend ();1292

void resume ();1293

33 We intentionally did not add subState to the notification information, since this would make callback interface implemen-
tations specific for the DRM system, without any chance for creating a portable DRMAA application.

drmaa-wg@ogf.org 44

mailto:drmaa-wg@ogf.org

GWD-R June 2011

void hold ();1294

void release ();1295

void terminate ();1296

JobState getState(out any jobSubState);1297

JobInfo getInfo ();1298

Job waitStarted(in TimeAmount timeout);1299

Job waitTerminated(in TimeAmount timeout);1300

};1301

(See footnote)
34

1302

8.4.1 jobId1303

This attribute provides the string job identifier assigned to the job by the DRM system. It is intended as1304

performant alternative for fetching a complete JobInfo instance for this information.1305

8.4.2 session1306

This attribute offers a reference to the JobSession instance that represents the session used for the job1307

submission creating this Job instance.1308

8.4.3 jobTemplate1309

This attribute provides a reference to a JobTemplate instance that has equal values to the one that was1310

used for the job submission creating this Job instance.1311

For jobs created outside of a DRMAA session, implementations MUST also return a JobTemplate instance,1312

which MAY be empty or only partially filled.1313

8.4.4 suspend / resume / hold / release / terminate1314

The job control functions allow modifying the status of the single job in the DRM system, according to the1315

state model presented in Section 8.1.1316

The suspend method triggers a transition from RUNNING to SUSPENDED state. The resume method triggers1317

a transition from SUSPENDED to RUNNING state. The hold method triggers a transition from QUEUED to1318

QUEUED_HELD, or from REQUEUED to REQUEUED_HELD state. The release method triggers a transition from1319

QUEUED_HELD to QUEUED, or from REQUEUED_HELD to REQUEUED state. The terminate method triggers a1320

transition from any of the “Started” states to one of the “Terminated” states. If the job is in an inappropriate1321

state for the particular method, the method MUST raise an InvalidStateException.1322

The methods SHOULD return after the action has been acknowledged by the DRM system, but MAY1323

return before the action has been completed. Some DRMAA implementations MAY allow this method1324

34 In comparison to DRMAA v1.0, DRMAA2 replaces the identification of jobs by strings with Job objects. This enables a
tighter integration of job meta-data and identity, for the price of reduced performance in (so far not existing) DRMAA RPC
scenarios. The former DRMAA control() with the JobControlAction structure is now split up into dedicated functions (such
as hold() and release()) on the Job object.

Even though the DRMAAv2 surveys showed interest in interactive job support, this feature was intentionally left out. Reasons
are the missing support in some major DRM systems, and the lack of a relevant DRMAA-related use case (conf. call Jan 7th
2010)

Issue #5877 (support for direct job signaling) was rejected, even though there was an according request from the SAGA WG.
Issue #2782 (change attributes of submitted, but pending jobs) was rejected based on group decision.

drmaa-wg@ogf.org 45

mailto:drmaa-wg@ogf.org

GWD-R June 2011

to be used to control jobs submitted externally to the DRMAA session, such as jobs submitted by other1325

DRMAA sessions in other DRMAA implementations or jobs submitted via native utilities. This behavior is1326

implementation-specific.1327

8.4.5 getState1328

This method allows one to gather the current status of the job according to the DRMAA state model,1329

together with an implementation specific sub state (see Section 8.1). It is intended as performant alternative1330

for fetching a complete JobInfo instance for state checks. The timing conditions are described in Section1331

5.5.1332

(See footnote)
35

1333

8.4.6 getInfo1334

This method returns a JobInfo instance for the particular job under the conditions described in Section 5.5.1335

8.4.7 waitStarted / waitTerminated1336

The waitStarted method blocks until the job entered one of the “Started” states. The waitTerminated1337

method blocks until the job entered one of the “Terminated” states (see Section 8.1). The timeout argument1338

specifies the desired behavior when a result is not immediately available. The constant value INFINITE_TIME1339

may be specified to wait indefinitely for a result. The constant value ZERO_TIME may be specified to return1340

immediately. Alternatively, a number of seconds may be specified to indicate how long to wait for a result to1341

become available. If the invocation exits on timeout, an TimeoutException SHALL be raised. If the job is1342

in an inappropriate state for the particular method, the method MUST raise an InvalidStateException.1343

8.5 JobArray Interface1344

The following section explains the methods and attributes defined in the JobArray interface. An instance1345

of this interface represent a job array, a common concept in many DRM systems for a set of jobs created by1346

one operation. In DRMAA, JobArray instances are only created by the runBulkJobs operation (see Section1347

8.2). JobArray instances differ from the JobList data structure due to their potential for representing1348

a DRM system concept, while JobList is a DRMAA-only concept realized by language binding support.1349

Implementations SHOULD realize the JobArray functionality as wrapper for DRM system job arrays, if1350

possible. If the DRM system has only single job support or incomplete job array support with respect to the1351

DRMAA-provided functionality, implementations MUST realize the JobArray functionality on their own,1352

for example based on looped operations with a list of jobs.1353

interface JobArray {1354

readonly attribute string jobArrayId;1355

readonly attribute JobList jobs;1356

readonly attribute JobSession session;1357

readonly attribute JobTemplate jobTemplate;1358

void suspend ();1359

void resume ();1360

void hold ();1361

35 The getState() function now also returns job subState information. This is intended as additional information for the given
DRMAA job state, and can be used for expressing the hold state differentiation from DRMAA 1.0 (conf. call Mar 31st 2009).

drmaa-wg@ogf.org 46

mailto:drmaa-wg@ogf.org

GWD-R June 2011

void release ();1362

void terminate ();1363

};1364

(See footnote)
36

1365

8.5.1 jobArrayId1366

This attribute provides the string job identifier assigned to the job array by the DRM system. If the DRM1367

system has no job array support, the implementation MUST generate a system-wide unique identifier for1368

the result of the successful runBulkJobs operation.1369

8.5.2 jobs1370

This attribute provides the static list of jobs that are part of the job array.1371

(See footnote)
37

1372

8.5.3 session1373

This attribute offers a reference to a JobSession instance that represents the session which was used for the1374

job submission creating this JobArray instance.1375

8.5.4 jobTemplate1376

This attribute provides a reference to a JobTemplate instance that has equal values to the one that was1377

used for the job submission creating this JobArray instance.1378

(See footnote)
38

1379

8.5.5 suspend / resume / hold / release / terminate1380

The job control functions allow modifying the status of the job array in the DRM system, with the same1381

semantic as with the counterparts in the Job interface (see Section 8.4). If one of the jobs in the array is in1382

an inappropriate state for the particular method, the method MUST raise an InvalidStateException.1383

The methods SHOULD return after the action has been acknowledged by the DRM system for all jobs in1384

the array, but MAY return before the action has been completed. Some DRMAA implementations MAY1385

allow this method to be used to control job arrays created externally to the DRMAA session, such as job1386

arrays submitted by other DRMAA sessions in other DRMAA implementations or job arrays submitted via1387

native utilities. This behavior is implementation-specific.1388

36 We are aware of the fact that some systems (e.g. LSF at the time of writing) do not support all DRMAA control operations
offered for job arrays. Since we intended to avoid optional DRMAA operations wherever we could, the text here mandates the
implementation to simulate the array support on its own. For example, looping over all jobs in the array and calling “suspend”
for each one is trivial to implement and fulfills the same purpose.

37 We were asked for offering a filter support similar to JobSession here. This was rejected by discussion on the list (Jan
2011), since the number of jobs returned here is normally comparatively short. In this case, the DRM system cannot provide
any benefit over the looped check in the application itself.

38 The use case from SAGA perspective is that the user can easily resubmit the same job - just changing for example some
command line parameter, but leaving the remainder fixed (mail by Andre Merzky, July 29th 2010).

drmaa-wg@ogf.org 47

mailto:drmaa-wg@ogf.org

GWD-R June 2011

8.6 The DRMAA INDEX VAR environment variable1389

DRMAA implementations SHOULD implicitely set a environment variable with the name DRMAA_INDEX_VAR1390

for each submitted job. This environment variable MUST contain the name of the environment variable1391

provided by the DRM system that holds the parametric job index. Examples are TASK_ID in GridEngine,1392

PBS_ARRAYID in Torque, or LSB_JOBINDEX in LSF. By using an indirect fetching of the environment variable1393

value, jobs are enabled to get their own parametric index regardless of the DRM system type. For DRM1394

systems that do not set such a environment variable, DRMAA_INDEX_VAR SHOULD not be set.1395

An expected implementation strategy would be the transparent addition an environment variable spec-1396

ification on job submission. However, this definition SHOULD NOT be visible for the application in1397

the JobTemplate instances. If the application defines its own DRMAA_INDEX_VAR environment variable, it1398

SHOULD override the implementation-defined value.1399

9 Working with Advance Reservation1400

Advance reservation is a DRM system concept that allows the reservation of execution resources for jobs1401

to be submitted. DRMAA encapsulates such functionality of a DRM system with the interfaces and data1402

structures described in this chapter.1403

DRMAA implementations for DRM systems that do not support advance reservation still MUST imple-1404

mented the described interfaces, in order to keep source code portability for DRMAA-based applications.1405

Support for advance reservation is expressed by the DrmaaCapability::ADVANCE_RESERVATION flag (see Sec-1406

tion 4.5). If no support is given by the implementation, all methods related to advance reservation MUST1407

raise an UnsupportedOperationExeption if being used.1408

9.1 ReservationSession Interface1409

Every ReservationSession instance represents a set of advance reservations in the DRM system. Every1410

Reservation instance SHALL belong only to one ReservationSession instance.1411

interface ReservationSession {1412

readonly attribute string contact;1413

readonly attribute string sessionName;1414

Reservation getReservation(in string reservationId);1415

Reservation requestReservation(in ReservationTemplate reservationTemplate);1416

ReservationList getReservations ();1417

};1418

9.1.1 contact1419

This attribute contains the contact value that was used in the createReservationSession call for this1420

instance (see Section 7.1). If no value was originally provided, the default contact string from the implemen-1421

tation MUST be returned. This attribute is read-only.1422

9.1.2 sessionName1423

This attribute contains the name of the session that was used for creating or opening this Reservation1424

instance (see Section 7.1). This attribute is read-only.1425

drmaa-wg@ogf.org 48

mailto:drmaa-wg@ogf.org

GWD-R June 2011

9.1.3 getReservation1426

This method returns a Reservation instance that has the given reservationId. Implementations MAY1427

support the access to reservations created outside of a DRMAA session scope, under the same regulari-1428

ties as for the MonitoringSession::getAllReservations method (see Section 10.1.1). If no reservation1429

matches, the method SHALL raise an InvalidArgumentException. Time-dependent effects of this method1430

are implementation-specific.1431

9.1.4 requestReservation1432

The requestReservation method SHALL request an advance reservation in the DRM system with at-1433

tributes defined in the provided ReservationTemplate. On a successful reservation, the method returns a1434

Reservation instance that represents the advance reservation in the underlying DRM system.1435

If the current user is not authorized to create reservations, DeniedByDrmsException SHALL be raised. If1436

the reservation cannot be performed by the DRM system due to invalid ReservationTemplate attributes,1437

or if the demanded combination of resource demands is not available, InvalidArgumentException SHALL1438

be raised. The exception SHOULD provide further details about the rejection cause in the extended error1439

information (see Section 6).1440

Some of the requested conditions might be not fulfilled after the reservation was succesfully created, for1441

example due to execution host outages. In this case, the reservation itself SHOULD remain valid. A job1442

using such a reservation may spend additional time in one of the non-RUNNING states. In this case, the1443

JobInfo::jobSubState information SHOULD inform about this situation.1444

(See footnote)
39

1445

9.1.5 getReservations1446

This method returns the list of reservations successfully created so far in this session, regardless of their start1447

and end time. The list of Reservation instances is only cleared in conjunction with the destruction of the1448

actual session instance through SessionManager::destroyReservationSession (see also Section 7.1).1449

9.2 Reservation Interface1450

The Reservation interface represents attributes and methods available for an advance reservation success-1451

fully created in the DRM system. Applications MAY be able to access Reservation instances for advance1452

reservations performed outside of a DRMAA session.1453

interface Reservation {1454

readonly attribute string reservationId;1455

readonly attribute ReservationSession session;1456

readonly attribute ReservationTemplate reservationTemplate;1457

ReservationInfo getInfo ();1458

void terminate ();1459

};1460

39In DRMAA 2.0 we do not have an explcit state model for advance reservations as the reservation state can be easily deducted
by comparing current time with reservation start and time. For this reason, we use the subState approach for informing the
user about the described situation.

drmaa-wg@ogf.org 49

mailto:drmaa-wg@ogf.org

GWD-R June 2011

9.2.1 reservationId1461

The reservationId is an opaque string identifier for the advance reservation. If the DRM system has1462

identifiers for advance reservations, this attribute SHOULD provide the according stringified value. If not,1463

the DRMAA implementation MUST generate value this is unique in time and extend of the DRM system.1464

9.2.2 session1465

This attribute references the ReservationSession which was used to create the advance reservation instance.1466

9.2.3 reservationTemplate1467

This attribute provides a reference to a ReservationTemplate instance that has equal values to the one that1468

was used for the advance reservation creating this Reservation instance. For reservations created outside1469

of a DRMAA session, implementations MUST also return a ReservationTemplate instance, which MAY1470

be empty or only partially filled.1471

9.2.4 getInfo1472

This method returns a ReservationInfo instance for the particular job under the conditions described in1473

Section 5.6. This method SHOULD throw InvalidArgumentException if the reservation is already expired1474

(i.e. its end time passed) or was terminated before.1475

9.2.5 terminate1476

This method terminates the advance reservation represented by this Reservation instance. All jobs submit-1477

ted with a reference to this reservation SHOULD be terminated by the DRM system or the implementation,1478

regardless of their current state.1479

10 Monitoring the DRM System1480

The DRMAA monitoring facility supports four basic units of monitoring:1481

• Properties of the DRM system as a whole (e.g. DRM system version number) that are independent1482

from the particular session and contact string,1483

• Properties of the DRM system that depend on the current contact string (e.g. list of machines in the1484

currently accessed Grid Engine cell)1485

• Properties of individual queues known from a getAllQueues call1486

• Properties of individual machines available with the current contact string (e.g. amount of physical1487

memory in a chosen machine)1488

The MonitoringSession interface in DRMAA supports the monitoring of execution resources in the DRM1489

system. This is distinct from the monitoring of jobs running in the DRM system, which is covered by the1490

JobSession and the Job interface.1491

drmaa-wg@ogf.org 50

mailto:drmaa-wg@ogf.org

GWD-R June 2011

10.1 MonitoringSession Interface1492

The MonitoringSession interface represents a set of stateless methods for fetching information about the1493

DRM system and the DRMAA implementation itself. It MAY be used to implement DRM system monitoring1494

tools like qstat.1495

interface MonitoringSession {1496

ReservationList getAllReservations ();1497

JobList getAllJobs(in JobInfo filter);1498

QueueInfoList getAllQueues(in StringList names);1499

MachineInfoList getAllMachines(in StringList names);1500

};1501

All returned data SHOULD be related to the current user running the DRMAA-based application. For1502

example, the getAllQueues function MAY be reduced to only denote queues that are usable or generally1503

accessible for the DRMAA application and user performing the query.1504

Because no guarantee can be made as to future accessibility, and because of cases where list reduction may1505

demand excessive overhead in the DRMAA implementation, an unreduced or partially reduced result MAY1506

be returned on all methods returning lists. The behavior of the DRMAA implementation in this regard1507

should be clearly documented. In all cases, the list items MUST all be valid input for job submission or1508

advance reservation through the DRMAA API.1509

10.1.1 getAllReservations1510

This method returns the list of all DRMS advance reservations accessible for the user running the DRMAA-1511

based application. In contrast to a ReservationSession::getReservations call, this method SHOULD1512

also return reservations that were created outside of DRMAA (e.g. through command-line tools) by this user.1513

The returned list MAY also contain reservations that were created by other users if the security policies of1514

the DRM system allow such global visibility. The DRM system or the DRMAA implementation is at liberty,1515

however, to restrict the set of returned reservations based on site or system policies, such as security settings1516

or scheduler load restrictions.1517

This method SHALL raise an UnsupportedOperationException if advance reservation is not supported by1518

the implementation.1519

10.1.2 getAllJobs1520

This method returns the list of all DRMS jobs visible to the user running the DRMAA-based application. In1521

contrast to a JobSession::getJobs call, this method SHOULD also return jobs that were submitted outside1522

of DRMAA (e.g. through command-line tools) by this user. The returned list MAY also contain jobs that1523

were submitted by other users if the security policies of the DRM system allow such global visibility. The1524

DRM system or the DRMAA implementation is at liberty, however, to restrict the set of returned jobs based1525

on site or system policies, such as security settings or scheduler load restrictions.1526

Querying the DRM system for all jobs might result in returning an excessive number of Job objects. Impli-1527

cations to the library implementation are out of scope for this specification.1528

The method supports a filter argument for fetching only a subset of the job information available. Both1529

the return value semantics and the filter semantics SHOULD be similar to the ones described for the1530

JobSession::getJobs method (see Section 8.2).1531

drmaa-wg@ogf.org 51

mailto:drmaa-wg@ogf.org

GWD-R June 2011

Language bindings SHOULD NOT try to solve the scalability issues by replacing the sequence type of
the return value with some iterator-like solution. This approach would break the basic snapshot semantic
intended for this method.

(See footnote)
40

1532

10.1.3 getAllQueues1533

This method returns a list of queues available for job submission in the DRM system. The names from1534

all QueueInfo instances in this list SHOULD be a valid input for the JobTemplate::queueName attribute1535

(see Section 5.7). The result can be an empty list or might be incomplete, based on queue, host, or system1536

policies. It might also contain queues that are not accessible for the user (because of queue configuration1537

limits) at job submission time.1538

The names parameter supports restricting the result to QueueInfo instances that have one of the names1539

given in the argument. If the names parameter value is UNSET, all QueueInfo instances should be returned.1540

10.1.4 getAllMachines1541

This method returns the list of machines available in the DRM system as execution host. The returned list1542

might be empty or incomplete based on machine or system policies. The returned list might also contain1543

machines that are not accessible by the user, e.g. because of host configuration limits.1544

The names parameter supports restricting the result to MachineInfo instances that have one of the names1545

given in the argument. If the names parameter value is UNSET, all MachineInfo instances should be returned.1546

11 Annex A: Complete DRMAA IDL Specification1547

The following text shows the complete IDL specification for the DRMAAv2 application programming inter-1548

face. The ordering of IDL constructs here has no normative meaning, but ensures the correct compilation1549

with a standard CORBA IDL compiler for syntactical correctness checks. This demands only some additional1550

forward declarations to resolve circular dependencies.1551

module DRMAA2 {1552

enum JobState {1553

UNDETERMINED , QUEUED , QUEUED_HELD , RUNNING , SUSPENDED , REQUEUED ,1554

REQUEUED_HELD , DONE , FAILED };1555

enum OperatingSystem {1556

AIX , BSD , LINUX , HPUX , IRIX , MACOS , SUNOS , TRUE64 , UNIXWARE , WIN ,1557

WINNT , OTHER_OS };1558

enum CpuArchitecture {1559

ALPHA , ARM , CELL , PARISC , X86 , X64 , IA64 , MIPS , PPC , PPC64 ,1560

SPARC , SPARC64 , OTHER_CPU };1561

40 The non-argumentation about the scalability problem was the final result of a clarification attempt. We hand this one
over to the implementors. (conf call Jul 14th 2010)

drmaa-wg@ogf.org 52

mailto:drmaa-wg@ogf.org

GWD-R June 2011

enum ResourceLimitType {1562

CORE_FILE_SIZE , CPU_TIME , DATA_SEG_SIZE , FILE_SIZE , OPEN_FILES ,1563

STACK_SIZE , VIRTUAL_MEMORY , WALLCLOCK_TIME };1564

enum JobTemplatePlaceholder {1565

HOME_DIRECTORY ,WORKING_DIRECTORY ,PARAMETRIC_INDEX };1566

enum DrmaaEvent {1567

NEW_STATE , MIGRATED , ATTRIBUTE_CHANGE1568

};1569

enum DrmaaCapability {1570

ADVANCE_RESERVATION , RESERVE_SLOTS , CALLBACK ,1571

BULK_JOBS_MAXPARALLEL ,1572

JT_EMAIL , JT_STAGING , JT_DEADLINE , JT_MAXSLOTS ,1573

JT_ACCOUNTINGID , RT_STARTNOW ,1574

RT_DURATION , RT_MACHINEOS , RT_MACHINEARCH1575

};1576

typedef sequence <string > OrderedStringList;1577

typedef sequence <string > StringList;1578

typedef sequence <Job > JobList;1579

typedef sequence <QueueInfo > QueueInfoList;1580

typedef sequence <MachineInfo > MachineInfoList;1581

typedef sequence <SlotInfo > SlotInfoList;1582

typedef sequence <Reservation > ReservationList;1583

typedef sequence < sequence <string ,2> > Dictionary;1584

typedef string AbsoluteTime;1585

typedef long long TimeAmount;1586

native ZERO_TIME;1587

native INFINITE_TIME;1588

native NOW;1589

struct JobInfo {1590

string jobId;1591

long exitStatus;1592

string terminatingSignal;1593

string annotation;1594

JobState jobState;1595

any jobSubState;1596

OrderedStringList allocatedMachines;1597

string submissionMachine;1598

string jobOwner;1599

long slots;1600

string queueName;1601

TimeAmount wallclockTime;1602

long cpuTime;1603

AbsoluteTime submissionTime;1604

drmaa-wg@ogf.org 53

mailto:drmaa-wg@ogf.org

GWD-R June 2011

AbsoluteTime dispatchTime;1605

AbsoluteTime finishTime;1606

};1607

struct ReservationInfo {1608

string reservationId;1609

string reservationName;1610

AbsoluteTime reservedStartTime;1611

AbsoluteTime reservedEndTime;1612

StringList usersACL;1613

long reservedSlots;1614

SlotInfoList reservedMachines;1615

boolean inErrorState;1616

};1617

struct JobTemplate {1618

string remoteCommand;1619

OrderedStringList args;1620

boolean submitAsHold;1621

boolean rerunnable;1622

Dictionary jobEnvironment;1623

string workingDirectory;1624

string jobCategory;1625

StringList email;1626

boolean emailOnStarted;1627

boolean emailOnTerminated;1628

string jobName;1629

string inputPath;1630

string outputPath;1631

string errorPath;1632

boolean joinFiles;1633

string reservationId;1634

string queueName;1635

long minSlots;1636

long maxSlots;1637

long priority;1638

OrderedStringList candidateMachines;1639

long minPhysMemory;1640

OperatingSystem machineOS;1641

CpuArchitecture machineArch;1642

AbsoluteTime startTime;1643

AbsoluteTime deadlineTime;1644

Dictionary stageInFiles;1645

Dictionary stageOutFiles;1646

Dictionary resourceLimits;1647

string accountingId;1648

};1649

drmaa-wg@ogf.org 54

mailto:drmaa-wg@ogf.org

GWD-R June 2011

struct ReservationTemplate {1650

string reservationName;1651

AbsoluteTime startTime;1652

AbsoluteTime endTime;1653

TimeAmount duration;1654

long minSlots;1655

long maxSlots;1656

StringList usersACL;1657

OrderedStringList candidateMachines;1658

long minPhysMemory;1659

OperatingSystem machineOS;1660

CpuArchitecture machineArch;1661

};1662

struct DrmaaNotification {1663

DrmaaEvent event;1664

Job job;1665

JobState jobState;1666

};1667

struct QueueInfo {1668

string name;1669

};1670

struct Version {1671

string major;1672

string minor;1673

};1674

struct MachineInfo {1675

string name;1676

boolean available;1677

long sockets;1678

long coresPerSocket;1679

long threadsPerCore;1680

double load;1681

long physMemory;1682

long virtMemory;1683

OperatingSystem machineOS;1684

Version machineOSVersion;1685

CpuArchitecture machineArch;1686

};1687

struct SlotInfo {1688

string machineName;1689

string slots;1690

};1691

drmaa-wg@ogf.org 55

mailto:drmaa-wg@ogf.org

GWD-R June 2011

exception DeniedByDrmsException {string message ;};1692

exception DrmCommunicationException {string message ;};1693

exception TryLaterException {string message ;};1694

exception SessionManagementException {string message ;};1695

exception TimeoutException {string message ;};1696

exception InternalException {string message ;};1697

exception InvalidArgumentException {string message ;};1698

exception InvalidSessionException {string message ;};1699

exception InvalidStateException {string message ;};1700

exception OutOfResourceException {string message ;};1701

exception UnsupportedAttributeException {string message ;};1702

exception UnsupportedOperationException {string message ;};1703

interface DrmaaReflective {1704

readonly attribute StringList jobTemplateImplSpec;1705

readonly attribute StringList jobInfoImplSpec;1706

readonly attribute StringList reservationTemplateImplSpec;1707

readonly attribute StringList reservationInfoImplSpec;1708

readonly attribute StringList queueInfoImplSpec;1709

readonly attribute StringList machineInfoImplSpec;1710

readonly attribute StringList notificationImplSpec;1711

1712

string getInstanceValue(in any instance , in string name);1713

void setInstanceValue(in any instance , in string name , in string value);1714

string describeAttribute(in any instance , in string name);1715

};1716

interface DrmaaCallback {1717

void notify(in DrmaaNotification notification);1718

};1719

interface ReservationSession {1720

readonly attribute string contact;1721

readonly attribute string sessionName;1722

Reservation getReservation(in string reservationId);1723

Reservation requestReservation(in ReservationTemplate reservationTemplate);1724

ReservationList getReservations ();1725

};1726

interface Reservation {1727

readonly attribute string reservationId;1728

readonly attribute ReservationSession session;1729

readonly attribute ReservationTemplate reservationTemplate;1730

ReservationInfo getInfo ();1731

void terminate ();1732

};1733

drmaa-wg@ogf.org 56

mailto:drmaa-wg@ogf.org

GWD-R June 2011

interface JobArray {1734

readonly attribute string jobArrayId;1735

readonly attribute JobList jobs;1736

readonly attribute JobSession session;1737

readonly attribute JobTemplate jobTemplate;1738

void suspend ();1739

void resume ();1740

void hold ();1741

void release ();1742

void terminate ();1743

};1744

interface JobSession {1745

readonly attribute string contact;1746

readonly attribute string sessionName;1747

readonly attribute StringList jobCategories;1748

JobList getJobs(in JobInfo filter);1749

JobArray getJobArray(in string jobArrayId);1750

Job runJob(in JobTemplate jobTemplate);1751

JobArray runBulkJobs(1752

in JobTemplate jobTemplate ,1753

in long beginIndex ,1754

in long endIndex ,1755

in long step ,1756

in long maxParallel);1757

Job waitAnyStarted(in JobList jobs , in TimeAmount timeout);1758

Job waitAnyTerminated(in JobList jobs , in TimeAmount timeout);1759

};1760

interface Job {1761

readonly attribute string jobId;1762

readonly attribute JobSession session;1763

readonly attribute JobTemplate jobTemplate;1764

void suspend ();1765

void resume ();1766

void hold ();1767

void release ();1768

void terminate ();1769

JobState getState(out any jobSubState);1770

JobInfo getInfo ();1771

Job waitStarted(in TimeAmount timeout);1772

Job waitTerminated(in TimeAmount timeout);1773

};1774

interface MonitoringSession {1775

ReservationList getAllReservations ();1776

JobList getAllJobs(in JobInfo filter);1777

QueueInfoList getAllQueues(in StringList names);1778

drmaa-wg@ogf.org 57

mailto:drmaa-wg@ogf.org

GWD-R June 2011

MachineInfoList getAllMachines(in StringList names);1779

};1780

interface SessionManager{1781

readonly attribute string drmsName;1782

readonly attribute Version drmsVersion;1783

readonly attribute Version drmaaVersion;1784

boolean supports(in DrmaaCapability capability);1785

JobSession createJobSession(in string sessionName ,1786

in string contactString);1787

ReservationSession createReservationSession(in string sessionName ,1788

in string contactString);1789

MonitoringSession createMonitoringSession (in string contactString);1790

JobSession openJobSession(in string sessionName);1791

ReservationSession openReservationSession(in string sessionName);1792

void closeJobSession(in JobSession s);1793

void closeReservationSession(in ReservationSession s);1794

void closeMonitoringSession(in MonitoringSession s);1795

void destroyJobSession(in string sessionName);1796

void destroyReservationSession(in string sessionName);1797

StringList getJobSessions ();1798

StringList getReservationSessions ();1799

void registerEventNotification(in DrmaaCallback callback);1800

};1801

};1802

12 Security Considerations1803

The DRMAA API does not specifically assume the existence of a particular security infrastructure in the1804

DRM system. The scheduling scenario described herein presumes that security is handled at the point of job1805

authorization/execution on a particular resource. It is assumed that credentials owned by the application1806

using the API are in effect for the DRMAA implementation too.1807

It is conceivable an authorized but malicious user could use a DRMAA implementation or a DRMAA enabled1808

application to saturate a DRM system with a flood of requests. Unfortunately for the DRM system this1809

case is not distinguishable from the case of an authorized good-natured user who has many jobs to be1810

processed. For temporary load defense, implementations SHOULD utilize the TryLaterException. In case1811

of permanent issues, the implementation SHOULD raise the DeniedByDrmsException.1812

DRMAA implementers should guard against buffer overflows that could be exploited through DRMAA1813

enabled interactive applications or web portals. Implementations of the DRMAA API will most likely1814

require a network to coordinate subordinate DRMS; however the API makes no assumptions about the1815

security posture provided the networking environment. Therefore, application developers should further1816

consider the security implications of “on-the-wire” communications.1817

For environments that allow remote or protocol based DRMAA clients, the implementation SHOULD offer1818

support for secure transport layers to prevent man in the middle attacks.1819

drmaa-wg@ogf.org 58

mailto:drmaa-wg@ogf.org

GWD-R June 2011

13 Contributors1820

Roger Brobst1821

Cadence Design Systems, Inc.1822

555 River Oaks Parkway1823

San Jose, CA 951341824

Email: rbrobst@cadence.com1825

1826

Daniel Gruber1827

Univa GmbH1828

c/o Rüter und Partner1829

Prielmayerstr. 3 80335 München1830

Email: dgruber@univa.com1831

1832

Mariusz Mamoński1833

Poznań Supercomputing and Networking Center1834

ul. Noskowskiego 101835

61-704 Poznań, Poland1836

Email: mamonski@man.poznan1837

1838

Daniel Templeton1839

Cloudera Inc.1840

210 Portage Avenue1841

Palo Alto, CA 943061842

Email: daniel@cloudera.com1843

1844

Peter Tröger (Corresponding Author)1845

Hasso-Plattner-Institute at University of Potsdam1846

Prof.-Dr.-Helmert-Str. 2-31847

14482 Potsdam, Germany1848

Email: peter@troeger.eu1849

1850

We are grateful to numerous colleagues for support and discussions on the topics covered in this document,1851

in particular (in alphabetical order, with apologies to anybody we have missed):1852

Guillaume Alleon, Ali Anjomshoaa, Ed Baskerville, Harald Böhme, Nadav Brandes, Matthieu Cargnelli,1853

Karl Czajkowski, Piotr Domagalski, Fritz Ferstl, Paul Foley, Nicholas Geib, Becky Gietzel, Alleon Guillaume,1854

Daniel S. Katz, Andreas Haas, Tim Harsch, Greg Hewgill, Rayson Ho, Eduardo Huedo, Dieter Kranzmüller,1855

Krzysztof Kurowski, Peter G. Lane, Miron Livny, Ignacio M. Llorente, Martin v. Löwis, Andre Merzky,1856

Ruben S. Montero, Greg Newby, Steven Newhouse, Michael Primeaux, Greg Quinn, Hrabri L. Rajic, Martin1857

Sarachu, Jennifer Schopf, Enrico Sirola, Chris Smith, Ancor Gonzalez Sosa, Douglas Thain, John Tollefsrud,1858

Jose R. Valverde, and Peter Zhu.1859

drmaa-wg@ogf.org 59

mailto:drmaa-wg@ogf.org

GWD-R June 2011

14 Intellectual Property Statement1860

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that1861

might be claimed to pertain to the implementation or use of the technology described in this document or the1862

extent to which any license under such rights might or might not be available; neither does it represent that1863

it has made any effort to identify any such rights. Copies of claims of rights made available for publication1864

and any assurances of licenses to be made available, or the result of an attempt made to obtain a general1865

license or permission for the use of such proprietary rights by implementers or users of this specification can1866

be obtained from the OGF Secretariat.1867

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications,1868

or other proprietary rights which may cover technology that may be required to practice this recommendation.1869

Please address the information to the OGF Executive Director.1870

15 Disclaimer1871

This document and the information contained herein is provided on an “as-is” basis and the OGF disclaims1872

all warranties, express or implied, including but not limited to any warranty that the use of the information1873

herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular1874

purpose.1875

16 Full Copyright Notice1876

Copyright c© Open Grid Forum (2005-2011). Some Rights Reserved.1877

This document and translations of it may be copied and furnished to others, and derivative works that1878

comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and1879

distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice1880

and this paragraph are included on all such copies and derivative works. However, this document itself1881

may not be modified in any way, such as by removing the copyright notice or references to the OGF or1882

other organizations, except as needed for the purpose of developing Grid Recommendations in which case1883

the procedures for copyrights defined in the OGF Document process must be followed, or as required to1884

translate it into languages other than English.1885

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors1886

or assignees.1887

17 References18881889

[1] Scott Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119 (Best Current1890

Practice), March 1997. URL http://tools.ietf.org/html/rfc2119.1891

[2] I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pickles, D. Pulsipher, C. Smith,1892

and M. Theimer. OGSA Basic Execution Service v1.0 (GFD-R.108), nov 2008.1893

[3] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Kleijer, Andre Merzky, John1894

Shalf, and Christopher Smith. A Simple API for Grid Applications (SAGA) Version 1.1 (GFD-R-P.90),1895

jan 2008.1896

drmaa-wg@ogf.org 60

http://tools.ietf.org/html/rfc2119
mailto:drmaa-wg@ogf.org

GWD-R June 2011

[4] Object Management Group. Common Object Request Broker Architecture (CORBA) Specification,1897

Version 3.1. http://www.omg.org/spec/CORBA/3.1/Interfaces/PDF, jan 2008.1898

[5] The IEEE and The Open Group. The Open Group Base Specifications Issue 6 IEEE Std 1003.1.1899

http://www.opengroup.org/onlinepubs/000095399/utilities/ulimit.html.1900

[6] Distributed Management Task Force (DMTF) Inc. CIM System Model White Paper CIM Version 2.7,1901

jun 2003.1902

[7] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas Haas, Bill Nitzberg,1903

Daniel Templeton, John Tollefsrud, and Peter Tröger. Distributed Resource Management Application1904

API Specification 1.0 (GFD-R.022), aug 2007.1905

[8] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas Haas, Bill Nitzberg,1906

Daniel Templeton, John Tollefsrud, and Peter Tröger. Distributed Resource Management Application1907

API Specification 1.0 (GWD-R.133), jun 2008.1908

[9] Peter Tröger, Daniel Templeton, Roger Brobst, Andreas Haas, and Hrabri Rajic. Distributed Resource1909

Management Application API 1.0 - IDL Specification (GFD-R-P.130), apr 2008.1910

[10] Peter Tröger, Hrabri Rajic, Andreas Haas, and Piotr Domagalski. Standardised job submission and1911

control in cluster and grid environments. International Journal of Grid and Utility Computing, 1:1912

134–145, dec 2009. doi: {http://dx.doi.org/10.1504/IJGUC.2009.022029}.1913

drmaa-wg@ogf.org 61

mailto:drmaa-wg@ogf.org

	Introduction
	Notational Conventions
	Language Bindings
	Slots and Queues
	Multithreading

	Namespace
	Common Type Definitions
	Enumerations
	OperatingSystem enumeration
	CpuArchitecture enumeration
	ResourceLimitType enumeration
	JobTemplatePlaceholder enumeration
	DrmaaCapability

	Extensible Data Structures
	QueueInfo structure
	Version structure
	MachineInfo structure
	SlotInfo structure
	JobInfo structure
	ReservationInfo structure
	JobTemplate structure
	ReservationTemplate structure
	DrmaaReflective Interface

	Common Exceptions
	The DRMAA Session Concept
	SessionManager Interface

	Working with Jobs
	The DRMAA State Model
	JobSession Interface
	DrmaaCallback Interface
	Job Interface
	JobArray Interface
	The DRMAA_INDEX_VAR environment variable

	Working with Advance Reservation
	ReservationSession Interface
	Reservation Interface

	Monitoring the DRM System
	MonitoringSession Interface

	Annex A: Complete DRMAA IDL Specification
	Security Considerations
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice
	References

