1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

GWD-R Peter Troger, Hasso-Plattner-Institute
DRMAA-WG (Corresponding Author)
drmaa-wgQogf.org Roger Brobst, Cadence Design Systems
Daniel Gruber, Univa

Mariusz Mamoniski, PSNC

Daniel Templeton, Cloudera

June 2011

Distributed Resource Management Application APl Version 2
(DRMAA) - Draft 6

Status of This Document

Group Working Draft Recommendation (GWD-R)

1
(See footnote)

Obsoletes

This document obsoletes GFD-R.022 [7], GFD-R-P.130 [9], and GWD-R.133 [8].

Copyright Notice

Copyright © Open Grid Forum (2005-2011). Some Rights Reserved. Distribution is unlimited.

Trademark

All company, product or service names referenced in this document are used for identification purposes only
and may be trademarks of their respective owners.

Abstract

This document describes the Distributed Resource Management Application API Version 2 (DRMAA), which
provides a generalized API to Distributed Resource Management (DRM) systems in order to facilitate the
development of portable application programs and high-level libraries for such systems. DRMAA defines
interfaces for a tightly coupled, but still portable access by abstracting the fundamental functions available
in the majority of DRM systems. The scope is limited to job submission, job control, and retrieval of job
and machine monitoring information.

This document acts as root specification for the abstract API concepts and the behavioral rules that must be
fulfilled by a DRMA A-compliant implementation. The programming language representation of the abstract
API concepts must be formulated by a separate language binding specification derived from this document.

The intended audience for this specification are DRMAA language binding designers, DRM system vendors,
high-level API designers and meta-scheduler architects. End users are expected to rely on product-specific
documentation for the DRMAA API implementation in their particular programming language.

1 This is the non-normative annotated version of the specification with line numbers. It includes historical information
concerning the content and why features were included or discarded by the working group. It also emphasizes the consequences
of some aspects that may not be immediately apparent. This document in only intended for internal working group discussions.

drmaa-wgQogf.org 1

mailto:drmaa-wg@ogf.org
http://www.drmaa.org/
http://www.drmaa.org/
mailto:drmaa-wg@ogf.org

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

GWD-R June 2011
Contents
1 Introduction L L e e e 4
1.1 Notational Conventions 4
1.2 Language Bindings 5
1.3 Slots and Queues 6
1.4 Multithreading« . e 6
2 Namespace oL e 6
3 Common Type Definitions 6
4 Enumerations e e e e e 8
4.1 OperatingSystem enumeration 8
4.2 CpuArchitecture enumeration L. 9
4.3 ResourceLimitType enumeration L 10
4.4 JobTemplatePlaceholder enumeration 11
45 DrmaaCapability o 12
5 Extensible Data Structures L 13
5.1 Queuelnfo structure L 13
5.2 Version structureo e e e e 13
5.3 Machinelnfo structure L 14
5.4 SlotInfo structure e 16
5.5 Joblnfo structure e e e 16
5.6 ReservationlInfo structure L e 19
5.7 JobTemplate structure L 21
5.8 ReservationTemplate structure L 29
5.9 DrmaaReflective Interface L 32
6 Common Exceptions L L 33
7 The DRMAA Session Concept o o i i i e e 35
7.1 SessionManager Interface L 35
8 Working with Jobs L 38
8.1 The DRMAA State Model e 38
8.2 JobSession Interface e 40
8.3 DrmaaCallback Interface e 43
8.4 JobInterface L 44
8.5 JobArray Interface L e 46
8.6 The DRMAA_INDEX_VAR environment variable 48
9 Working with Advance Reservation L 48
9.1 ReservationSession Interface 48
9.2 Reservation Interface 49
10 Monitoring the DRM System e 50
10.1 MonitoringSession Interface 51
11 Annex A: Complete DRMAA IDL Specification 52
12 Security Considerations L 58
13 Contributors L e 59
14 Intellectual Property Statement 60
15 Disclaimer e e e 60
drmaa-wgQogf.org 2

mailto:drmaa-wg@ogf.org

GWD-R June 2011

n 16 Full Copyright Notice e 60
2 17 References L e e e e e e e 60

drmaa-wgQogf.org 3

mailto:drmaa-wg@ogf.org

73

74

75

76

v

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

GWD-R June 2011

1 Introduction

This document describes the Distributed Resource Management Application API Version 2 (DRMAA) in-
terface semantics in a generalized way by using the OMG Interface Definition Language (IDL) [4] syntax for
a language-agnostic description. Based on this abstract specification, language binding standards have to
be designed that map the described concepts into a library interface for a particular programming language
(e.g. C, Java, Python). While this document has the responsibility to ensure consistent API semantics over
all possible DRMAA implementations, the language binding has the responsibility to ensure source-code
portability for DRMAA applications on different DRM systems.

An effort has been made to choose an API layout that is not unique to a particular language. However, in
some cases, various languages disagree over some points. In those cases, the most meritous approach was
taken, irrespective of language.

There are other relevant OGF standards in the area of job submission and monitoring. An in-depth compar-
ison and positioning of the obsoleted first version of the DRMAA [8] specification was provided by another
publication [10].

The DRMAA specification is based on the following stakeholders:

e Distributed resource management system / DRM system / DRMS: Any system that supports the con-
cept of distributing computational jobs on execution resources through the help of a central scheduling
entity. Examples are multi-processor systems controlled by a operating system scheduler, cluster sys-
tems with multiple machines controlled by a central scheduler software, grid systems, or cloud systems
with a job concept.

e DRMAA implementation, DRMAA library: The implementation of a DRMAA language binding spec-
ification with the functional semantics described in this document. The resulting artifact is expected
to be a library that is deployed together with the DRM system that is wrapped by the particular
implementation.

e (DRMAA-based) application: Software that utilizes the DRMAA implementation for gaining access to
one or multiple DRM systems in a standardized way.

e Submission host: An execution resource in the DRM system that runs the DRMA A-based application.
A submission host MAY also be able to act as execution host.

e FEzxecution host: An execution resource in the DRM system that can run a job submitted through the
DRMAA implementation.

1.1 Notational Conventions

In this document, IDL language elements and definitions are represented in a fixed-width font.

The key words “MUST” “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described in RFC 2119 [1].

Memory quantities are expressed in kilobyte (KB). 1 kilobyte equals 1024 bytes.

drmaa-wgQogf.org 4

Provide
mapping
to GLUE
(GFD.147)

mailto:drmaa-wg@ogf.org

109

110

111

GWD-R June 2011

Parts of the specification which are normative for derived language binding specifications only are graphically
marked as shaded box.

(See footnote)z .
1.2 Language Bindings

A language binding specification derived from this document MUST define a mapping between the IDL
constructs and programming language constructs, with focus on source code portability for the resulting
DRMAA-based applications.

A language binding SHOULD NOT rely completely on the OMG language mapping standards available for
many programming languages, since they have a huge overhead of irrelevant CORBA-related mapping rules.
Therefore, language binding authors must carefully decide if a binding decision reflects a natural and simple
mapping of the intended purpose for the DRMAA interfaces. The binding SHOULD reuse OMG value type
mappings (e.g. IDL long long to Java long), and SHOULD define custom mappings for the other types.
The language binding MUST use the described concept mapping in a consistent manner for its overal API
layout.

Due to the usage of IDL, all method groups for a particular purpose (e.g. job control) are described in terms
of interfaces, and not classes. The mapping to a class concept depends on the specific language-mapping
rules.

It may be the case that IDL constructs do not map directly to any language construct. In this case it MUST
be ensured that the chosen mapping retains the intended semantic of the DRMAA interface definition.

Access to scalar attributes (string, boolean, long) MUST operate in a pass-by-value mode. A language
binding must ensure that this behavior is always fulfilled. For non-scalar attributes, the language binding
MUST specify a consistent access strategy for all these attributes — either pass-by-value or pass-by-reference
— according to the use cases of language binding implementations.

This specification tries to consider the possibility of a Remote Procedure Call (RPC) scenario in a DRMAA-
conformant language mapping. It SHOULD therefore be ensured that the programming language type for
an IDL struct definition supports the serialization and comparison of instances. These capabilities should
be accomplished through whatever mechanism is most natural for the programming language.

A language binding MUST define a way to declare an invalid value (UNSET). In case, a definition per data
type needs to be provided. Evaluating an UNSET boolean value MUST result in a negative result, e.g. for
JobTemplate: :emailOnStarted.

3
(See footnote)

2The usage of kikibyte as memory quantity unit, as well as the usage of bytes as in JSDL, was rejected by the group (conf
call Apr. 13th 2011)

3 The concept of a UNSET value was decided on a conf call (Aug 25th 2010). Boolean in C can use custom enumeration
(TRUE, FALSE, INVALID) or pointer to static values. A numerical UNSET in C should use a magic number, since all long
attributes are unsigned, it could be MIN_INT. With Python, just use None. For Java, Dan has an idea.

drmaa-wgQogf.org 5

mailto:drmaa-wg@ogf.org

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

GWD-R June 2011

1.3 Slots and Queues

DRMAA supports the notion of slots and queues as resources of a DRM system. A DRMAA application
can request them in advance reservation and job submission. However, slots and queues SHALL be opaque
concepts from the viewpoint of a DRMAA implementation, meaning that the requirements given by the
application are just passed through to the DRM system. This is reasoned by the large variation in interpreting
that concepts in the different DRM systems, which makes it impossible to define a common understanding
on the level of the DRMAA API.

4
(See footnote)

1.4 Multithreading

High-level APIs such as SAGA [3] are expected to utilize DRMAA for asynchronous operations, based on the
assumption that re-entrancy is supported by DRMAA implementations. For this reason, implementations
SHOULD ensure the proper functioning of the library in case of re-entrant library calls. A DRMAA library
SHOULD allow a multithreaded application to use DRMAA interfaces without any explicit synchronization
among the application threads. DRMAA implementers should document their work as thread safe if they
meet the above criteria. Providers of non-thread-safe DRMAA implementations should document all the
interfaces that are thread unsafe and provide a list of interfaces and their dependencies on external thread
unsafe routines.

2 Namespace

The DRMAA interfaces and structures are encapsulated by a naming scope, which avoids conflicts with
other APIs used in the same application.

module DRMAA2 {

Language binding authors MUST map the IDL module encapsulation to an according package or namespace
concept and MAY change the module name according to programming language conventions.

(See footnote)

3 Common Type Definitions

The DRMAA specification defines some custom types to express special value semantics not expressible in
IDL.

typedef sequence<string> OrderedStringlist;
typedef sequence<string> Stringlist;

typedef sequence<Job> JobList;

typedef sequence<QueueInfo> QueuelInfolist;
typedef sequence<MachineInfo> MachineInfolist;

4 As one example, queues can be either treated as representation of execution hosts (Sun Grid Engine) or as central waiting
line located at the scheduler (LSF).

5 Comparison to DRMAA v1.0: The IDL module name was change to DRMAAZ2, in order to intentionally break backward
compatibility of the interface.

drmaa-wgQogf.org 6

mailto:drmaa-wg@ogf.org

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

GWD-R June 2011

typedef sequence<SlotInfo> SlotInfolist;

typedef sequence<Reservation> ReservationList;
typedef sequence< sequence<string,2> > Dictionary;
typedef string AbsoluteTime;

typedef long long TimeAmount;

native ZERO_TIME;

native INFINITE_TIME;

native NOW;

OrderedStringList: An unbounded list of strings, which supports element insertion, element deletion, and
iteration over elements while keeping an element order.

StringList: An unbounded list of strings, without any demand on element order.

JobList: An unbounded list of Job instances, without any demand on element order.

JobArrayList: An unbounded list of JobArray instances, without any demand on element order.

QueuelnfoList: An unbounded list of QueueInfo instances, without any demand on element order.

MachinelnfoList: An unbounded list of MachineInfo instances, without any demand on element order.

SlotInfoList: An unbounded list of SlotInfo instances, without any demand on element order.

ReservationList: An unbounded list of Reservation instances, without any demand on element order.

Dictionary: An unbounded dictionary type for storing key-value pairs, without any demand on element
order.

AbsoluteTime: Expression of a point in time, with a resolution at least to seconds.
TimeAmount: Expression of an amount of time, with a resolution at least to seconds.
ZERO_TIME: A constant value of type TimeAmount that expresses a zero amount of time.
INFINITE_TIME: A constant value of type TimeAmount that expresses an infinite amount of time.

NOW: A constant value of type AbsoluteTime that stands for the point in time at which it is evaluated
by some function.

A language binding MUST replace these type definitions with semantically equal reference or value types in
the according language. This may include the creation of new complex language types for one or more of the
above concepts. The language binding MUST define a consistent mapping on module level, and a mechanism
for obtaining the RFC822 string representation from a given AbsoluteTime or TimeAmount instance.

(See footnote)

6 The PartialTimestamp functionality from DRMAA 1.0 was completely removed. Absolute date and time values are now
expressed as RFC822 conformant data items with stringification support (conf. call Mar 31st 2009). String list for job identifiers
are replaced by Job object lists (F2F meeting July 2009)

drmaa-wgQogf.org 7

mailto:drmaa-wg@ogf.org

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

GWD-R June 2011

4 Enumerations

Language bindings SHOULD define numerical values for all DRMAA constants and enumeration members,
in order to foster binary portability of DRMA A-based applications.

4.1 OperatingSystem enumeration

DRMAA supports the identification of an operating system installation on execution resources in the DRM
system. The OperatingSystem enumeration is used as data type both in the advance reservation and the
DRM system monitoring functionalities. It defines a set of standardized identifiers for operating system
types. The list is a shortened version of the according CIM Schema [6]. It includes only operating systems
that are supported by the majority of DRM systems available at the time of writing:

enum OperatingSystem {
AIX, BSD, LINUX, HPUX, IRIX, MACOS, SUNOS, TRUE64, UNIXWARE, WIN,
WINNT, OTHER_O0S};
ATX: AIX Unix by IBM.
BSD: All operating system distributions based on the BSD kernel.
LINUX: All operating system distributions based on the Linux kernel.
HPUX: HP-UX Unix by Hewlett-Packard.
IRIX: The IRIX operating system by SGI.
MACOS: The MAC OS X operating system by Apple.
SUNOS: SunOS or Solaris operating system by Sun / Oracle.
TRUEG64: True64 Unix by Hewlett-Packard, or DEC Digital Unix, or DEC OSF/1 AXP.
UNIXWARE: UnixWare system by SCO group.
WIN: Windows 95, Windows 98, Windows ME.
WINNT: Microsoft Windows operating systems based on the NT kernel
OTHER _OS: An operating system type not specified in this list.

Implementations SHOULD NOT add new operating system identifiers to this enumeration, even if they are
supported by the underlying DRM system.

The operating system information is only useful in conjunction with version information (see Section 10.1),
which is also the reporting approach taken in most DRM systems. Examples:

e The Apple MacOS X operating system commonly denoted as “Snow Leopard” would be reported as
“MACOS” with the version structure [“10”,“6”]

e The Microsoft Windows 7 operating system would be reported as “WINNT” with the version infor-
mation [“6”,“1”], which is the internal version number reported by the Windows API.

e All Linux distributions would be reported as operating system type “LINUX” with the major revision
of the kernel, such as [“27,“6”].

drmaa-wgQogf.org 8

mailto:drmaa-wg@ogf.org

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

GWD-R June 2011

e The Solaris operating system is reported as “SUNOS”, together with the internal version number, e.g.
[“57,“107] for Solaris 10.

The DRMAA OperatingSystem enumeration can be mapped to other high-level APIs. Table 1 gives a
non-normative set of examples.

DRMAA OperatingSystem value | JSDL jsdl:0OperatingSystemTypeEnumeration value
HPUX HPUX
LINUX LINUX
IRIX IRIX
TRUE64 Tru64_UNIX, OSF
MACOS MACOS
SUNOS SunOS, SOLARIS
WIN WIN95, WIN98, Windows_R_Me
WINNT WINNT, Windows_2000, Windows_XP
AIX AIX
UNIXWARE SCO_UnixWare, SCO_OpenServer
BSD BSDUNIX, FreeBSD, NetBSD, OpenBSD
OTHER_-OS Other

Table 1: Mapping example for the DRMAA OperatingSystem enumeration

4.2 CpuArchitecture enumeration

DRMAA supports identifying the processor instruction set architecture on execution resources in the DRM
system. The CpuArchitecture enumeration is used as data type both in the advance reservation and the
DRM system monitoring functionalities. It defines a set of standardized identifiers for processor architecture
families. The list is a shortened version of the according CIM Schema [6], It includes only processor families
that are supported by the majority of DRM systems available at the time of writing:

enum CpuArchitecture {
ALPHA, ARM, CELL, PARISC, X86, X64, IA64, MIPS, PPC, PPC64,
SPARC, SPARC64, OTHER_CPU}Z;
ALPHA: The DEC Alpha / Alpha AXP processor architecture.
ARM: The ARM processor architecture.
CELL: The Cell processor architecture.
PARISC: The PA-RISC processor architecture.
X86: The TA-32 line of the X86 processor architecture family, with 32bit support only.
X64: The X86-64 line of the X86 processor architecture family, with 64bit support.
TA64: The Itanium processor architecture.
MIPS: The MIPS processor architecture.
PPC: The PowerPC processor architecture, all models with 32bit support only.
PPC64: The PowerPC processor architecture, all models with 64bit support.

drmaa-wgQogf.org 9

mailto:drmaa-wg@ogf.org

223

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

GWD-R June 2011
SPARC: The SPARC processor architecture, all models with 32bit support only.

SPARCG64: The SPARC processor architecture, all models with 64bit support.

OTHER_CPU: A processor architecture not specified in this list.

The DRMAA CpuArchitecture enumeration can be mapped to other high-level APIs. Table 2 gives a
non-normative set of examples.

The reporting and job configuration for processor architectures SHOULD operate on a “as-is” base, if sup-
ported by the DRM system. This means that the reported architecture should reflect the current operation
mode of the processor with the running operating system. For example, X64 processors executing a 32-bit
operating system typically report themself as X86 processor.

DRMAA CpuArchitecture value | JSDL jsdl:ProcessorArchitectureEnumeration value
ALPHA other
ARM arm
CELL other
PARISC parisc
X86 x86-32
X64 x86-64
TA64 iab4
MIPS mips
PPC powerpc
PPCo64 powerpc
SPARC sparc
SPARC64 sparc
OTHER other

Table 2: Mapping example for DRMAA CpuArchitecture enumeration

4.3 ResourceLimitType enumeration

Modern DRM systems expose resource constraint capabilities from the operating system for jobs on the exe-
cution host. The ResourceLimitType enumeration represents the typical setrlimit parameters [5] supported
for jobs in different DRM systems. Resource limitations MUST work on the level of jobs. If a job gets more
than one slot, the interpretation of limits is implementation-specific.

(See fnotnote)7

enum ResourcelLimitType {
CORE_FILE_SIZE, CPU_TIME,
STACK_SIZE, VIRTUAL_MEMORY,

DATA_SEG_SIZE, FILE_SIZE,
WALLCLOCK_TIME };

OPEN_FILES,

CORE_FILE_SIZE: The maximum size of the core dump file created on fatal errors of the job, in kilobyte.
Setting this value to zero SHOULD disable the creation of core dump files on the execution host.

7 The June 2011 face-to-face meeting had hard discussion on the relation between operating system processes, jobs, and
slots. It was decided that slot is a truly opaque concept, which means that you cannot do resource contraints on something that
is implementation-specific. Therefore, the spec semantics must focus on jobs only, and leave the interpretation to the DRM
system / DRMAA implementation.This leads to some intentional fuzzying of descriptions for ResourceLimitType members.

drmaa-wgQogf.org 10

mailto:drmaa-wg@ogf.org

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

GWD-R June 2011

CPU_TIME: The maximum accumulated time in seconds the job is allowed to perform computations.
This value includes only time the job is spending in JobState: :RUNNING (see Section 8.1).

DATA _SEG _SIZE: The maximum amount of memory the job can allocate on the heap e.g. for object
creation, in kilobyte.

FILE_SIZE: The maximum file size the job can generate, in kilobyte.
OPEN_FILES: The maximum number of file descriptors the job is allowed to have open at the same time.

STACK _SIZE: The maximum amount of memory the job can allocate on the stack, e.g. for local variables,
in kilobyte.

VIRTUAL_MEMORY: The maximum amount of memory the job is allowed to allocate, in kilobyte.

WALLCLOCK_TIME: The maximum wall clock time in seconds the job is allowed to exist. The time
amount MUST include the time spent in RUNNING state, and MAY also include the time spent in
SUSPENDED state (see Section 8.1).

8
(See footnote)

4.4 JobTemplatePlaceholder enumeration

The JobTemplatePlaceholder enumeration defines constant macros to be used in string attributes of a
JobTemplate instance.

enum JobTemplatePlaceholder {
HOME_DIRECTORY , WORKING_DIRECTORY ,PARAMETRIC_INDEX 1I;

A HOME_DIRECTORY placeholder SHOULD be only allowed at the beginning of a JobTemplate attribute value.
It denotes the remaining portion as a directory / file path resolved relative to the job users home directory
at the execution host.

A WORKING_DIRECTORY placeholder SHOULD be only allowed at the beginning of a JobTemplate attribute
value. It denotes the remaining portion as a directory / file path resolved relative to the jobs working
directory at the execution host.

The PARAMETRIC_INDEX placeholder SHOULD be usable at any position within an attribute value that
supports place holders. It SHALL be substituted by the parametric job index in a JobSession: :runBulkJobs
call (see Section 8.2.7). If the job template is used for a JobSession:runJob call, PARAMETRIC_INDEX
SHOULD be substituted with a constant implementation-specific value.

(See footnotc)g

8 “Pipe size” was not added, since there is no use case in DRM systems with a job concept. “Max user processes” was
omitted because it operates on the notion of users, which is not an explicit concept in DRMAA.

The understanding of wall clock time was decided in the Apr 6th and 13th 2011 conf call. Condor and Grid Engine also add
the SUSPEND time, but LSF does not.

9 Placeholders for other job template attributes were rejected, in order to avoid circular dependencies (Conf. call Oct 20th
2010). Any extended semantic of placeholders in comparison to DRMAA1 was rejected, since the support in the DRM system
didn’t change. (conf call Apr. 20th 2011)

drmaa-wgQogf.org 11

mailto:drmaa-wg@ogf.org

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

GWD-R June 2011

4.5 DrmaaCapability

The DrmaaCapability enumeration expresses DRMAA features and data attributes that may or may not
be supported by a particular implementation. Applications are expected to check the availability of optional
capabilities through the SessionManager: : supports method (see Section 7.1).

enum DrmaaCapability {
ADVANCE_RESERVATION, RESERVE_SLOTS, CALLBACK,
BULK_JOBS_MAXPARALLEL,
JT_EMAIL, JT_STAGING, JT_DEADLINE, JT_MAXSLOTS,
JT_ACCOUNTINGID, RT_STARTNOW,
RT_DURATION, RT_MACHINEOS, RT_MACHINEARCH
3

ADVANCE_RESERVATION: Indicates that the advance reservation interfaces (ReservationSession,
Reservation) are functional in this implementation.

RESERVE_SLOTS: Indicates that the advance reservation support is targeting slots. If this capability is
not given, the advance reservation is targeting whole machines as granularity level.

CALLBACK: Indicates that the implementation supports event notification through a DrmaaCallback
interface in the application.

BULK_JOBS_MAXPARALLEL: Indicates that the maxParallel parameter in the JobSession: :runBulkJobs
method is considered and supported by the implementation.

JT_EMAIL: Indicates that the optional JobTemplate: :email, JobTemplate: :emailOnStarted, and JobTemplate
attributes are supported by the implementation.

JT_STAGING: Indicates that the optional JobTemplate: :stageInFiles and JobTemplate: :stageOutFiles
attributes are supported by the implementation.

JT_DEADLINE: Indicates that the optional JobTemplate: :deadlineTime attribute is supported by the
implementation.

JT_MAXSLOTS: Indicates that the optional JobTemplate::maxSlots attribute is supported by the
implementation.

JT_ACCOUNTINGID: Indicates that the optional JobTemplate: :accountingId attribute is supported
by the implementation.

RT _STARTNOW: Indicates that the ReservationTemplate: :startTime attribute accepts the NOW value.

RT_DURATION: Indicates that the optional ReservationTemplate: :duration attribute is supported
by the implementation.

RT_MACHINEOS: Indicates that the optional ReservationTemplate: :machine0S attribute is supported
by the implementation.

RT_MACHINEARCH: Indicates that the optional ReservationTemplate: :machineArch attribute is
supported by the implementation.

drmaa-wgQogf.org 12

:remaile

mailto:drmaa-wg@ogf.org

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

GWD-R June 2011

5 Extensible Data Structures

DRMAA defines a set of data structures commonly used by different interfaces to express information
for and from the DRM system. A DRMAA implementation is allowed to extend these structures with
implementation-specific attributes in all cases. Behavioral aspects of such extended attributes are out of
scope for DRMAA. The interpretation is implementation-specific, implementations MAY even ignore such
attribute values.

Implementations SHALL only extend data structures in the way specified by the language binding. The
introspection about supported implementation-specific attributes is supported by the DrmaaReflective
interface (see Section 5.9). Implementations SHOULD also support native introspection functionalities if
defined by the language binding.

A language binding MUST define a consistent mechanism to realize implementation-specific structure ex-
tension, without breaking the portability of DRMA A-based applications that relies on the original version
of the structure. Object oriented languages MAY use inheritance mechanisms for this purpose. Instances
of these structures SHALL be treated in a “call-by-value” fashion, meaning that the collection of struct
member values is handed over as one to the called interface method.

Language bindings MAY define how native introspection capabilities of the language or it’s runtime envi-
ronment can also be used to work with implementation-specific attributes. These mechanisms MUST work
in parallel to the DrmaaReflective interface.

(See footnote) 10

5.1 Queuelnfo structure

A queue is an opaque concept from the perspective of the DRMAA application (see Section 1.3). The
QueueInfo struct contains read-only information, which can be extended by the implementation as described
in Section 5.

struct QueuelInfo {
string name;

};

5.1.1 name

This attribute contains the name of the queue as reported by the DRM system. The format of the queue
name is implementation-specific. The naming scheme SHOULD be consistent for all strings returned.

5.2 Version structure

The Version structure denotes versioning information for an operating system, DRM system, or DRMAA
implementation.

10 Comparison to DRMAA 1.0: The binding of job template attribute names and exception names to strings was removed.
Language bindings have to define their own mapping, if needed.

One example for native language introspection support could be attributes.

There was a discussion to remove the attribute ignorance possibility for implementations, in order to have a defined error
when unknown attributes are used. This was rejected on the Apr. 13th conf call, since applications do not need the error as
indication for missing attribute support. Instead, they should use the given introspection capabilities.

drmaa-wgQogf.org 13

mailto:drmaa-wg@ogf.org

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

GWD-R June 2011

struct Version {
string major;
string minor;

};

Both the major and the minor part are expressed as strings, in order to allow extensions with character
combinations such as “rev”. Original version strings containing a dot, e.g. Linux “2.6”, SHOULD be
interpreted as having the major part before the dot, and the minor part after the dot. The dot character

SHOULD NOT be added to the Version attributes.
Implementations SHOULD NOT extend this structure with implementation-specific attributes.

(See footnote) 1

5.3 Machinelnfo structure

The MachineInfo structure describes the properties of a particular execution host in the DRM system. It
contains read-only information. An implementation or its DRM system MAY restrict jobs in their resource
utilization even below the limits described in the MachineInfo structure. The limits given here MAY be
imposed by the hardware configuration, or MAY be be imposed by DRM system policies.

struct MachineInfo {
string name;
boolean available;
long sockets;
long coresPerSocket;
long threadsPerCore;
double 1load;
long physMemory;
long virtMemory;
OperatingSystem machine0S;
Version machineOSVersion;
CpuArchitecture machineArch;

};

5.3.1 name

This attribute describes the name of the machine as reported by the DRM system. The format of the
machine name is implementation-specific, but MAY be a DNS host name. The naming scheme SHOULD be
consistent among all machine struct instances.

subsubsectionavailable

This attribute expresses the usability of the machine for job execution at the time of querying. The value
of this attribute SHALL NOT influence the validity of job template instances containing a candidateHosts
setting, since the availability of machines is expected to change at any point in time. DRM systems may allow
to submit jobs for unavailable machines, where these jobs are queued until the machine becomes available
again.

11 We could see no use case in doing implementation-specific extensions here, so this structure is not considered in DrmaaRe-
flective.

drmaa-wgQogf.org 14

mailto:drmaa-wg@ogf.org

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

GWD-R June 2011

5.3.2 sockets

This attribute describes the number of processor sockets (CPUs) usable for jobs on the machine from oper-
ating system perspective. The attribute value MUST be greater than 0. In the case where the correct value
is unknown to the implementation, the value MUST be set to 1.

5.3.3 coresPerSocket

This attribute describes the number of cores per socket usable for jobs on the machine from operating system
perspective. The attribute value MUST be greater than 0. In case where the correct value is unknown to
the implementation, the value MUST be set to 1.

5.3.4 threadsPerCore

This attribute describes the number of threads that can be executed in parallel by a job’s process on one core
in the machine. The attribute value MUST be greater than 0. In case where the correct value is unknown
to the implementation, the value MUST be set to 1.

5.3.5 load

This attributes describes the 1-minute average load on the given machine, similar to the Unix uptime com-
mand. The value has only informative character, and should not be utilized by end user applications for job
scheduling purposes. An implementation MAY provide delayed or averaged data here, if necessary due to
implementation issues. The implementation strategy on non-Unix systems is undefined.

5.3.6 physMemory
This attribute describes the amount of physical memory in kilobyte available on the machine.
5.3.7 virtMemory

This attribute describes the amount of virtual memory in kilobyte available for a job executing on this
machine. The virtual memory amount is defined as the sum of physical memory installed plus the configured
swap space for the operating system. The value is expected to be used as indicator whether or not an
application is able to get its memory allocation needs fulfilled on a particular machine. Implementations
SHOULD derive this value directly from operating system information, without further consideration of
additional memory allocation restrictions such as address space range or already running processes.

5.3.8 machineOS

This attribute describes the operating system installed on the described machine, with semantics as specified
in Section 4.1.

5.3.9 machineOSVersion

This attribute describes the operating system version of the machine, with semantics as specified in Section
4.1.

drmaa-wgQogf.org 15

mailto:drmaa-wg@ogf.org

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

425

426

427

428

429

430

431

432

433

435

436

GWD-R June 2011

5.3.10 machineArch

This attribute describes the instruction set architecture of the machine, with semantics as specified in Section
4.2,

5.4 SlotlInfo structure

The SlotInfo structure describes the amount of reserved slots on a machine, resulting from an advance
reservation operation (see also Section 1.3).

Implementations SHOULD NOT extend this structure with implementation-specific attributes.
12
(See footnote)

struct SlotInfo {
string machineName;
string slots;

};

5.4.1 machineName

The name of the machine. Strings returned here SHOULD be equal to the MachineInfo: :name attribute in
the matching MachineInfo instance.

5.4.2 slots

The number of slots reserved on the given machine. Depending on the intepretation of slots in the imple-
mentation, this value MAY be always one.

5.5 Joblnfo structure

The JobInfo structure describes job information that is available for the DRMA A-based application.

struct JobInfo {
string jobId;
long exitStatus;
string terminatingSignal;
string annotation;
JobState jobState;
any jobSubState;
OrderedStringlList allocatedMachines;
string submissionMachine;
string jobOwner;
long slots;
string queueName;
TimeAmount wallclockTime;
long cpuTime;
AbsoluteTime submissionTime;

12 We could see no use case in realizing implementation-specific extensions here, so this structure is not considered in
DrmaaReflective.

drmaa-wgQogf.org 16

mailto:drmaa-wg@ogf.org

437

438

439

440

441

442

443

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

GWD-R June 2011

AbsoluteTime dispatchTime;
AbsoluteTime finishTime;

}s
The structure is used in two occasions - first for the expression of information about a single job, and second

as filter expression when retrieving a list of jobs from the DRMAA implementation.

In both usage scenarios, the structure information has to be understood as snapshot of the live DRM system.
Multiple values being set in one structure instance should be interpreted as “occurring at the same time”.
In real implementations, some granularity limits must be assumed - for example, the wallclockTime and
the cpuTime attributes might hold values that were measured with a very small delay one after each other.

DRMAA makes no assumption on the JobInfo availability for jobs in a a “Terminated” state (see Section
8.1). Implementations SHOULD allow to fetch information about such jobs, complete or incomplete, for
a reasonable amount of time. For such terminated jobs, implementations MAY also decide to return only
partially filled JobInfo instances due to performance restrictions in the communication with the DRM
system.

For additional DRMS-specific information, the JobInfo structure MAY be extended by the DRMAA imple-
mentation (see Section 5).

1
(See footnote)

5.5.1 jobld

For monitoring: Returns the stringified job identifier assigned to the job by the DRM system.
For filtering: Returns the job with the chosen job identifier.

5.5.2 exitStatus

For monitoring: The process exit status of the job, as reported by the operating system. If the job is not in
one of the terminated states, the value should be UNSET.

For filtering: Return the jobs with the given exitStatus value. Jobs without exit status information should
be filtered out by asking for the appropriate states.

5.5.3 terminatingSignal

For monitoring: This attribute specifies the UNIX signal that reasoned the end of the job. Implementations
should document the extent to which they can gather such information in the particular DRM system (e.g.
with Windows hosts).

For filtering: Returns the jobs with the given terminatingSignal value.

13 Tn comparison to DRMAA 1.0, the JobInfo value type was heavily extended for providing more information (solves issue
#2827). Joblnfo::hasCoreDump is no longer supported, since the information is useless without according core file staging
support, which is not implementable in a portable way. (conf. call Jun 9th 2010) resourceUsage is no longer supported, since
this should be modelled with implementation-specific attributes (conf call Apr 13th 2011).

Some DRM systems (SGE / Condor at least) support the automated modification of job template attributes after submission,
and therefore allow to fetch the true job template attributes at run-time from the job. The monitoring for such data was
intentionally not included in DRMAA (mailing list July 2010).

A comment attribute was rejected (conf call May 11th).

Several conf. calls in 2011 ended up in the conclusion that data reaping cannot be clarified by DRMAA. There are too many
completely different use cases in local and distributed systems.

drmaa-wgQogf.org 17

mailto:drmaa-wg@ogf.org

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

GWD-R June 2011

5.5.4 annotation

For monitoring: Gives a human-readable annotation describing why the job is in its current state or sub-state.
Implementations MAY decide to offer such description only in specific cases.

For filtering: This attribute is ignored for filtering.
5.5.5 jobState

For monitoring: This attribute specifies the jobs current state according to the DRMAA job state model
(see Section 8.1).

For filtering: Returns all jobs in the specified state. If the given state is simulated by the implementation
(see Section 8.1), the implementation SHOULD raise an InvalidArgumentException explaining that this
filter can never match.

5.5.6 jobSubState

For monitoring: This attribute specifies the jobs current DRMAA implementation specific sub-state (see
Section 8.1).

For filtering: Returns all jobs in the specified sub-state. If the given sub-state is not supported by the imple-
mentation (see Section 8.1), the implementation SHOULD raise an InvalidArgumentException explaining
that this filter can never match.

5.5.7 allocatedMachines

This attribute expresses the set of machines that are utilized for job execution. Implementations MAY
decide to give the ordering of machine names a particular meaning, for example putting the master node in a
parallel job at first position. This decision should be documented for the user. For performance reasons, only
the machine names are returned, and SHOULD be equal to the according MachineInfo: :name attribute in
monitoring data.

For monitoring: This attribute lists the set of names of the machines to which this job has been assigned.

For filtering: Returns the list of jobs which have a set of assigned machines that is a superset of the given
set of machines.

5.5.8 submissionMachine

This attribute provides the machine name of the submission host for this job. For performance reasons, only
the machine name is returned, and SHOULD be equal to the according MachineInfo: :name attribute in
monitoring data.

For monitoring: This attribute specifies the machine from which this job was submitted.

For filtering: Returns the set of jobs that were submitted from the specified machine.
5.5.9 jobOwner

For monitoring: This attribute specifies the job owner as reported by the DRM system.
For filtering: Returns all jobs owned by the specified user.

drmaa-wgQogf.org 18

mailto:drmaa-wg@ogf.org

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

GWD-R June 2011

5.5.10 slots

For monitoring: This attribute reports the number slots that were allocated for the job. The value SHOULD
be in between JobTemplate: :minSlots and JobTemplate: :maxSlots.

For filtering: Return all jobs with the specified number of reserved slots.
5.5.11 queueName

For monitoring: This attribute specifies the name of the queue in which the job was queued or started (see
Section 1.3).

For filtering: Returns all jobs that were queued or started in the queue with the specified name.
5.5.12 wallclockTime

For monitoring: The accumulated wall clock time, with the semantics as defined in Section 4.3.

For filtering: Returns all jobs that have consumed at least the specified amount of wall clock time.
5.5.13 cpuTime

For monitoring: The accumulated CPU time, with the semantics as defined in Section 4.3.

For filtering: Returns all jobs that have consumed at least the specified amount of CPU time.
5.5.14 submissionTime

For monitoring: This attribute specifies the time at which the job was submitted. Implementations SHOULD
use the submission time recorded by the DRM system, if available.

For filtering: Returns all jobs that were submitted at or after the specified submission time.
5.5.15 dispatchTime

For monitoring: The time the job first entered a “Started” state (see Section 8.1). On job restart or re-
scheduling, this value does not change.

For filtering: Returns all jobs that entered a “Started” state at, or after the specified dispatch time.
5.5.16 finishTime

For monitoring: The time the job first entered a “Terminated” state (see Section 8.1).

For filtering: Returns all jobs that entered a “Terminated” state at or after the specified finish time.

5.6 Reservationlnfo structure

The ReservationInfo structure describes reservation information information that is available for the
DRMAA-based application.

drmaa-wgQogf.org 19

mailto:drmaa-wg@ogf.org

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

GWD-R June 2011

struct ReservationInfo {
string reservationId;
string reservationName;
AbsoluteTime reservedStartTime;
AbsoluteTime reservedEndTime;
Stringlist usersACL;
long reservedSlots;
SlotInfolist reservedMachines;
boolean inErrorState;

};

The structure is used for the expression of information about a single advance reservation. Information
provided in this structure SHOULD NOT change over the reservation lifetime. However, implementations
MAY reflect the altering of advance reservations outside of DRMAA sessions.

For additional DRMS-specific information, the ReservationInfo structure MAY be extended by the DR-
MAA implementation (see Section 5).

5.6.1 reservationld
Returns the stringified job identifier assigned to the advance reservation by the DRM system.
5.6.2 reservationName

This attribute describes the reservation name that was stored by the implementation or DRM system, derived
from the original reservationName attribute given in the ReservationTemplate.

5.6.3 reservedStartTime

This attribute describes the start time for the reservation. If the value is UNSET, it expresses an unrestricted
start time (i.e. “minus infinity”) for this reservation.

5.6.4 reservedEndTime

This attribute describes the end time for the reservation. If the value is UNSET, the behavior is implementation-
specific.

14

(See footnote)
5.6.5 usersACL

The list of the users that are permitted to submit jobs to the reservation.
5.6.6 reservedSlots

This attribute describes the number of slots that was reserved by the DRM system. The value SHOULD be
in between ReservationTemplate: :minSlots and ReservationTemplate: :maxSlots.

14Mai 18th 2011 conf call rejected to treat UNSET as unrestricted end time (i.e. “plus infinity”) here.

drmaa-wgQogf.org 20

mailto:drmaa-wg@ogf.org

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

GWD-R June 2011

5.6.7 reservedMachines

This attribute describes the set of machines that were reserved under the conditions described in the according
reservation template. Each SlotInfo instance in the result describes the reservation of a particular machine,
and of a set of slots related to this machine. The sum of all slot counts in the sequence SHOULD be equal
to ReservationInfo: :reservedSlots.

5.7 JobTemplate structure

In order to define the attributes associated with a job, a DRMAA application uses the JobTemplate struc-
ture. It specifies any required job parameters and is passed to the DRMAA JobSession instance when job
execution is requested.

struct JobTemplate {
string remoteCommand;
OrderedStringlList args;
boolean submitAsHold;
boolean rerunnable;
Dictionary jobEnvironment;
string workingDirectory;
string jobCategory;
Stringlist email;
boolean emailOnStarted;
boolean emailOnTerminated;
string jobName;
string inputPath;
string outputPath;
string errorPath;
boolean joinFiles;
string reservationId;
string queueName;
long minSlots;
long maxSlots;
long priority;
OrderedStringlist candidateMachines;
long minPhysMemory;
OperatingSystem machine(OS;
CpuArchitecture machineArch;
AbsoluteTime startTime;
AbsoluteTime deadlineTime;
Dictionary stageImnFiles;
Dictionary stageOutFiles;
Dictionary resourcelimits;
string accountingld;

};

The DRMAA job template concept makes a distinction between mandatory and optional attributes. Manda-
tory attributes MUST be supported by the implementation in the sense that they are evaluated on job

drmaa-wgQogf.org 21

mailto:drmaa-wg@ogf.org

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

GWD-R June 2011

submission. Optional attributes MAY be evaluated on job submission, but MUST be provided as part of the
JobTemplate structure in the implementation. If an unsupported optional attribute has a value different to
UNSET, the job submission MUST fail with a UnsupportedAttributeException. DRMAA applications are
expected to check for the availability of optional attributes before using them (see Section 4.5).

Implementations MUST set all attribute values to UNSET on struct allocation. This ensures that both the
DRMAA application and the library implementation can determine untouched attribute members. If not
described differently in the following sections, all attributes SHOULD be allowed to have the UNSET value
on job submission.

An implementation MAY support JobTemplatePlaceholder macros in more occasions than defined in this
specification.

A language binding specification SHOULD define how a JobTemplate instance is convertible to a string
for printing, through whatever mechanism is most natural for the implementation language. The resulting
string MUST contain the values of all set properties.

The initialization to UNSET SHOULD be realized without additional methods in the DRMAA interface, if
possible. The according approach MUST be specified by the language binding.

(See footnote)15
5.7.1 remoteCommand

This attribute describes the command to be executed on the remote host. In case this parameter contains
path information, it MUST be seen as relative to the execution host file system and is therefore evaluated
there. The implementation SHOULD NOT relate the value of this attribute to binary file management or
file staging activities. The behavior with an UNSET value is implementation-specific.

The support for this attribute is mandatory.
5.7.2 args

This attribute contains the list of command-line arguments for the job(s) to be executed.

The support for this attribute is mandatory.
5.7.3 submitAsHold

This attribute defines if the job(s) should be submitted as QUEUED or QUEUED_HELD (see Section 8.1). Since
the boolean UNSET value defaults to False, jobs are submitted as non-held if this attribute is not set.

15 Comparison to DRMAA 1.0: JobTemplate is now a value type, meaning that it maps to a struct in C. This removes the
need for DRMAA-defined methods for construction and destruction of job templates. An eventual RPC scenario for DRMAA
gets easier with this approach, since it is closer to the JSDL concept of a job description document.

Supported string placeholders for job template attributes are now listed in the JobTemplatePlaceholder enumeration, and
must be filled with values by the language binding. Invalid job template settings are now only detected on job submission, not
when the attribute is set.

DRMAA1 supported the utilization of new DRM features through an old DRMAA implementation, based on the
nativeSpecification field. A conf call (Jul 14th 2010) voted for dropping this intentionally. Implementations should use
according implementation-specific attributes for this.

GridEngine does not support to request a number of slots per machine - of course in a default installation, since you can do
everything in GridEngine ... This is the reason for not having such an attribute.

drmaa-wgQogf.org 22

mailto:drmaa-wg@ogf.org

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

GWD-R June 2011

The support for this attribute is mandatory.
5.7.4 rerunnable

This flag indicates if the submitted job(s) can safely be restarted by the DRM system, for example on a
node failure or some other re-scheduling event. Since the boolean UNSET value defaults to False, jobs are
submitted as not rerunnable if this attribute is not set. This attribute SHOULD NOT be used by the
implementation to let the application denote the checkpointability of a job.

The support for this attribute is mandatory.

(See footnote)l
5.7.5 jobEnvironment

This attribute holds the environment variable key-value pairs for the execution machine(s). The values
SHOULD override the execution host environment values if there is a collision.

The support for this attribute is mandatory.
5.7.6 workingDirectory

This attribute specifies the directory where the job or the bulk jobs are executed. If the attribute value
is UNSET, the behavior is implementation dependent. Otherwise, the attribute value MUST be evaluated
relative to the file system on the execution host. The attribute value MUST be allowed to contain either the
JobTemplatePlaceholder: : HOME_DIRECTORY or the JobTemplatePlaceholder: : PARAMETRIC_INDEX place-
holder (see Section 4.4).

The workingDirectory attribute should be specified by the application in a syntax that is common at the
host where the job is executed. Implementations MAY perform according validity checks on job submission.
If the attribute is set and no placeholder is used, an absolute directory specification is expected. If the
attribute is set and the job was submitted successfully and the directory does not exist on the execution
host, the job MUST enter the state JobState: :FAILED.

The support for this attribute is mandatory.
5.7.7 jobCategory

DRMAA facilitates writing DRM-enabled applications even though the deployment properties, in particular
the configuration of the DRMS, cannot be known in advance.

Through the jobCategory string attribute, a DRMAA application can specify additional needs of the job(s)
that are to be mapped by the implementation or DRM system itself to DRMS-specific options. It is intended
as non-programmatic extension of DRMAA job submission features. The mapping is performed during the
process of job submission. Each category expresses a particular type of job execution that demands site-
specific configuration, for example path settings, environment variables, or application starters such as
MPIRUN.

A valid input SHOULD be one of the returned strings in MonitoringSession: :drmsJobCategoryNames (see
Section 10.1), otherwise an InvalidArgumentException SHOULD be raised.

16 The differentiation between rerunnable and checkpointable was decided on a conf call (Aug 25th 2010). Checkpointability
indication was intentionally left out, since there is no common understanding in the DRM systems (conf call Apr. 27th, 2011).

drmaa-wgQogf.org 23

mailto:drmaa-wg@ogf.org

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

GWD-R June 2011

A non-normative recommendation of category names is maintained at:
http://www.drmaa.org/jobcategories/

In case the name is not taken from the DRMAA working group recommendations, it should be self-
explanatory for the user to understand the implications on job execution. Implementations are recommended
to provide a library configuration facility, which allows site administrators to link job category names with
specific product- and site-specific configuration options, such as submission wrapper shell scripts.

The interpretation of the supported jobCategory values is implementation-specific. The order of precedence
for the jobCategory attribute value or other attribute values is implementation-specific. It is RECOM-
MENDED to overrule job template settings with a conflicting jobCategory setting.

The support for this attribute is mandatory.
5.7.8 email

This attribute holds a list of email addresses that should be used to report DRM information. Content and
formatting of the emails are defined by the implementation or the DRM system. If the attribute value is
UNSET, no emails SHOULD be sent to the user running the job(s), even if the DRM system default behavior
is to send emails on some event.

The support for this attribute is optional, expressed by the DrmaaCapability: :JT_EMAIL flag. If an imple-
mentation cannot configure the email notification functionality of the DRM system, or if the DRM system
has no such functionality, the attribute SHOULD NOT be supported in the implementation.

1
(See footnote)

5.7.9 emailOnStarted / emailOnTerminated

The emailOnStarted flag indicates if the given email address(es) SHOULD get a notification when the job
(or any of the bulk jobs) entered one of the “Started” states. emailOnTerminated fulfills the same purpose
for the ” Terminated” states. Since the boolean UNSET value defaults to False, the notification about state
changes SHOULD NOT be sent if the attribute is not set.

The support for these attributes is optional, expressed by the expressed by the DrmaaCapability: : JT_EMAIL
flag.

5.7.10 jobName

The job name attributes allows the specification of an additional non-unique string identifier for the job(s).
The implementation MAY truncate any client-provided job name to an implementation-defined length.

The support for this attribute is mandatory.
5.7.11 inputPath / outputPath / errorPath

This attribute specifies standard input / output / error stream of the job as a path to a file. If the attribute
value is UNSET, the behavior is implementation dependent. Otherwise, the attribute value MUST be evaluated
relative to the file system of the execution host in a syntax that is common at the host. Implementations

17 The blockEmail attribute in the JobTemplate was replaced by the UNSET semantic for the email adresses. (conf. call
July 28th 2010). This became an optional attribute, since we mandate the ’switch off’ semantic in case of UNSET.

drmaa-wgQogf.org 24

http://www.drmaa.org/jobcategories/
mailto:drmaa-wg@ogf.org

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

77

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

GWD-R June 2011

MAY perform according validity checks on job submission. The attribute value MUST be allowed to contain
any of the JobTemplatePlaceholder placeholders (see Section 4.4). If the attribute is set and no placeholder
is used, an absolute file path specification is expected.

If the outputPath or errorPath file does not exist at the time the job is about to be executed, the file
SHALL first be created. An existing outputPath or errorPath file SHALL be opened in append mode.

If the attribute is set and the job was submitted successfully and the file cannot be created / read / written
on the execution host, the job MUST enter the state JobState: :FAILED.

The support for this attribute is mandatory.
5.7.12 joinFiles

Specifies whether the error stream should be intermixed with the output stream. Since the boolean UNSET
value defaults to False, intermixing SHALL NOT happen if the attribute is not set.

If this attribute is set to True, the implementation SHALL ignore the value of the errorPath attribute and
intermix the standard error stream with the standard output stream as specified by the outputPath.

The support for this attribute is mandatory.
5.7.13 stagelnFiles / stageOutFiles

Specifies what files should be transfered (staged) as part of the job execution. The data staging operation
MUST be a copy operation between the submission host and the execution host(s) (see also Section 1 for
host types). File transfers between execution hosts are not covered by DRMAA.

The attribute value is formulated as dictionary. For each key-value pair in the dictionary, the key defines
the source path of one file or directory, and the value defines the destination path of one file or directory
for the copy operation. For stageInFiles, the submission host acts as source, and the execution host(s)
act as destination. For stageOutFiles, the execution host(s) acts as source, and the submission host act as
destination.

All values MUST be evaluated relative to the file system on the host in a syntax that is common at that
host. Implementations MAY perform according validity checks on job submission. Paths on the execution
host(s) MUST be allowed to contain any of the JobTemplatePlaceholder placeholders. Paths on the sub-
mission host MUST be allowed to contain the JobTemplatePlaceholder: :PARAMETRIC_INDEX placeholder
(see Section 4.4). If no placeholder is used in the values, an absolute path specification on the particular
host SHOULD be assumed by the implementation.

Relative path specifications for the submission host should be interpreted starting from the current working
directory of the DRMAA application at the time of job submission. The behavior for relative path specifica-
tions on the execution is implementation-specific. Implementations MAY use JobTemplate: :workingDirectory
as starting point on the execution host in this case, if given by the application.

Jobs SHOULD NOT enter JobState: :DONE unless all staging operations are finished. The behavior in
case of missing files is implementation-specific. The support for wildcard operators in path specifications is
implementation-specific. Any kind of recursive or non-recursive copying behavior is implementation-specific.

If the job category (see Section 5.7.7) implies a parallel job (e.g. MPI), the copy operation SHOULD target
the parallel job master host as destination. It MAY also distribute the files to the other hosts participating
in the parallel job execution.

drmaa-wgQogf.org 25

mailto:drmaa-wg@ogf.org

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

GWD-R June 2011

The support for this attribute is optional, expressed by the DrmaaCapability: : JT_STAGING flag.

(See footnote)

5.7.14 reservationld

Specifies the identifier of the advance reservation associated with the job(s). The application is expected
to create an advance reservation through the ReservationSession interface, the resulting reservationId
(see Section 9.2) then acts as valid input for this job template attribute. Implementations MAY support an
reservation identifier from non-DRMAA information sources as valid input.

The support for this attribute is mandatory.
5.7.15 queueName

This attribute specifies the name of the queue the job(s) should be submitted to. In case this attribute
value is UNSET, and MonitoringSession: :getAllQueues returns a list with a minimum length of 1, the
implementation SHOULD use the DRM systems default queue.

The MonitoringSession: :getAllQueues method (see 10.1) supports the determination of valid queue
names. Implementations SHOULD allow these queue names to be used in the queueName attribute. Imple-
mentations MAY also support queue names from other non-DRMAA information sources as valid input. If
no default queue is defined or if the given queue name is not valid, the job submission MUST lead to an
InvalidArgumentException.

If MonitoringSession: :getAllQueues returns an empty list, this attribute MUST be only accepted with
the value UNSET.

Since the meaning of “queues” is implementation-specific, there is no implication on the effects in the DRM
system when using this attribute. As one example, requesting a number of slots for a job in one queue has no
implication on the number of utilized machines at run-time. Implementations therefore SHOULD document
the effects of this attribute accordingly.

The support for this attribute is mandatory.
5.7.16 minSlots

This attribute expresses the minimum number of slots requested per job (see also Section 1.3). If the value
of minSlots is UNSET, it SHOULD default to 1.

Implementations MAY interprete the slot count as number of concurrent processes being allowed on one
machine. If this interpretation is taken, and minSlots is greater than 1, than the jobCategory SHOULD
also be demanded on job submission, in order to express the nature of the intended parallel job execution.

The support for this attribute is mandatory.

18 Comparsion to DRMAA 1.0: New job template attributes for file transfers were introduced. They allow to express a set
of file staging activities, similar to the approach in LSF and SAGA. They replace the old transferFiles attribute, the according
FileTransferMode data structure and the special host definition syntax in inputPath / outputPath / errorPath (different conf.
calls, SAGA F2F meeting, solves issue #5876)

drmaa-wgQogf.org 26

mailto:drmaa-wg@ogf.org

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

GWD-R June 2011

5.7.17 maxSlots

This attribute expresses the maximum number of slots requested per job (see also Section 1.3). If the value
of maxSlots is UNSET, it SHOULD default to the value of minSlots.

Implementations MAY interprete the slot count as number of concurrent processes being allowed to run.
If this interpretation is taken, and maxSlots is greater than 1, than the jobCategory SHOULD also be
demanded on job submission, in order to express the nature of the intended parallel job execution.

The support for this attribute is optional, as indicated by the DrmaaCapability::JT_MAXSLOTS flag.

(See footnote) 19 .

5.7.18 priority

This attribute specifies the scheduling priority for the job. The intepretation of the given value incl. an
UNSET value is implementation-specific.

The support for this attribute is mandatory.
5.7.19 candidateMachines

Requests that the job(s) should run on any subset (with minimum size of 1), or all of the given machines.
If the attribute value is UNSET, it should default to the result of the MonitoringSession: :getAl1Machines
method. If this resource demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised
on job submission time. If the problem can only be detected after job submission, the job should enter
JobState: :FAILED.

The support for this attribute is mandatory.
5.7.20 minPhysMemory

This attribute denotes the minimum amount of physical memory in kilobyte that should be available for the
job. If the job gets more than one slot, the interpretation of this value is implementation-specific. If this
resource demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised at job submission
time. If the problem can only be detected after job submission, the job SHOULD enter JobState: :FAILED
accordingly.

The support for this attribute is mandatory.
5.7.21 machineOS

This attribute denotes the expected operating system type on the / all execution host(s). If this resource de-
mand cannot be fulfilled, an InvalidArgumentException SHOULD be raised on job submission time. If the
problem can only be detected after job submission, the job SHOULD enter JobState: : FAILED accordingly.

The support for this attribute is mandatory.

(See footnotc)QO

19Torque does not support maxSlots on job submission, conf call on May 11th decided to keep it as optional feature. Expected
use cases are billing limitations and parallel job scalability considerations

20 Requesting a specific operating system version beyond the type is not supported by the majority of DRM systems (conf
call Jul 28th 2010)

drmaa-wgQogf.org 27

mailto:drmaa-wg@ogf.org

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

GWD-R June 2011

5.7.22 machineArch

This attribute denotes the expected machine architecture on the / all execution host(s). If this resource
demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised on job submission time. If
the problem can only be detected after job submission, the job should enter JobState: : FAILED.

The support for this attribute is mandatory.
5.7.23 startTime

This attribute specifies the earliest time when the job may be eligible to be run.

The support for this attribute is mandatory.
5.7.24 deadlineTime

Specifies a deadline after which the implementation or the DRM system SHOULD change the job state to
any of the “Terminated” states (see Section 8.1).

The support for this attribute is optional, as expressed by the DrmaaCapability: : JT_DEADLINE.
5.7.25 resourceLimits

This attribute specifies the limits on resource utilization of the job(s) on the execution host(s). The valid
dictionary keys and their value semantics are defined in Section 4.3.

The following resource restrictions should operate as soft limit, meaning that exceeding the limit SHOULD
NOT influence the job state from a DRMAA perspective:

e CORE_FILE_SIZE

DATA_SEG_SIZE
e FILE_SIZE
e OPEN_FILES
e STACK_SIZE
e VIRTUAL_MEMORY

The following resource restrictions should operate as hard limit, meaning that exceeding the limit MAY
terminate the job. The termination could be performed by the DRM system, or by the job itself if it reacts
on a signal from the DRM system resp. execution host operating system:

e CPU_TIME
e WALLCLOCK_TIME

The support for this attribute is mandatory. If only a subset of the attributes from ResourceLimitType
is supported by the implementation, and some of the unsupported attributes are used, the job submission
SHOULD raise an InvalidArgumentException expressing the fact that resource limits are supported in
general.

Conflicts of these attribute values with any other job template attribute or with referenced advance reser-
vations are handled in an implementation-specific manner. Implementations SHOULD try to delegate the

drmaa-wgQogf.org 28

mailto:drmaa-wg@ogf.org

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

GWD-R June 2011

decision about parameter combination validity to the DRM system, in order to ensure similar semantics in
different DRMAA implementations for this system.

(See footnote)21
5.7.26 accountingld

This attribute denotes a string that can be used by the DRM system for job accounting purposes. Im-
plementations SHOULD NOT utilize this information as authentication token, but only as identification
information in addition to the implementation-specific authentication (see Section 12).

The support for this attribute is optional, as described by the DrmaaCapability: : JT_ACCOUNTINGID flag.

5.8 ReservationTemplate structure

In order to define the attributes associated with an advance reservation, the DRMAA application creates
an ReservationTemplate instance and requests the fulfilment through the ReservationSession methods
in the DRM system.

struct ReservationTemplate {
string reservationName;
AbsoluteTime startTime;
AbsoluteTime endTime;
TimeAmount duration;
long minSlots;
long maxSlots;
Stringlist usersACL;
OrderedStringlList candidateMachines;
long minPhysMemory;
OperatingSystem machine0S;
CpuArchitecture machineArch;

};

Similar to the JobTemplate concept (see Section 5.7), there is a distinction between mandatory and op-
tional attributes. Mandatory attributes MUST be supported by the implementation in the sense that they
are evaluated in a ReservationSession::requestReservation call. Optional attributes MAY NOT be
evaluated by the particular implementation, but MUST be provided as part of the ReservationTemplate
structure in the implementation. If an optional attribute is not evaluated by the particular implementation,
but has a value different to UNSET, the call to ReservationSession: :requestReservation MUST fail with
a UnsupportedAttributeException.

Implementations MUST set all attribute values to UNSET on struct allocation. This ensures that both the
DRMAA application and the library implementation can determine untouched attribute members.

21 In comparison to DRMAA 1.0, resource usage limitations can now be expressed by two dictionaries and an according
standardized set of valid dictionary keys (LimitType). The idea is to allow a direct mapping to ulimit(3) semantics, which are
supported by the majority of DRM system today. A separate run duration limit is no longer needed, since this is covered by
the new CPU_TIME limit parameter. (conf. call Jun 9th 2010).

This distinguishing between different reactions on limit violation was restricted to the job entering, or not entering, the
FAILED state. All further effects (e.g. no more open() calls possible) are out of scope for DRMAA, since they relate to
operating system behavior on execution host (conf call May 4th 2011).

The attribute is mandatory, since the missing general support for resource limits can be simply expressed by raising Invali-
dArgumentException for aall types.

drmaa-wgQogf.org 29

mailto:drmaa-wg@ogf.org

866

867

868

869

870

871

872

873

874

875

876

877

878

879

GWD-R June 2011

A language binding specification SHOULD model the ReservationTemplate representation the same way as
the JobTemplate interface (see Section 5.7), and therefore MUST define the realization of implementation-
specific attributes, printing, and and the initialization of attribute values.

5.8.1 reservationName

A human-readable reservation name. The implementation MAY truncate or alter any application-provided
job name in order to adjust it to the DRMS specific constraints. The name of the reservation SHALL be
automatically defined by the implementation if this application provides no value on its own.

The support for this attribute is mandatory.
5.8.2 startTime / endTime / duration

The time frame in which resources should be reserved. Table 3 explains the different possible parameter
combinations and their semantic.

startTime | endTime | duration | Description
UNSET UNSET UNSET Invalid, SHALL leave to a InvalidArgumentException on the reser-
vation attempt.
Set UNSET UNSET Invalid, SHALL leave to a InvalidArgumentException on the reser-
vation attempt.
UNSET Set UNSET Invalid, SHALL leave to a InvalidArgumentException on the reser-
vation attempt.
Set Set UNSET Perform reservation attempt to get resources in the specified time
frame.
UNSET UNSET Set Perform reservation attempt the get resources at least for the time
amount given in duration.
Set UNSET Set Implies endTime = startTime + duration
UNSET Set Set Implies startTime = endTime - duration
Set Set Set If endTime - startTime is larger than duration, perform a reser-
vation attempt where the demanded duration is fulfilled at the ear-
liest point in time after startTime, and without extending endTime.
If endTime - startTime is smaller than duration, the reserva-
tion attempt SHALL leave to a InvalidArgumentException. If
endTime - startTime and duration are equal, duration SHALL
be ignored.

Table 3: Parameter combinations for the advance reservation time frame. If duration is not supported, it
should be treated as UNSET.

The support for startTime and endTime is mandatory. The support for duration is optional, as described
by the DrmaaCapability: :RT_DURATION flag. Implementations that do not support the described ”sliding
window” approach for the SET / SET / SET case SHOULD express this by NOT supporting the duration
attribute.

Implementations MAY supportstartTime to have the constant value NOW (see Section 3), which expresses
that the reservation should start at the time of reservation template approval in the DRM system. The

drmaa-wgQogf.org 30

mailto:drmaa-wg@ogf.org

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

GWD-R June 2011

support for this feature is declared by the DrmaaCapability: :RT_STARTNOW flag.
5.8.3 minSlots

The minimum number of requested slots (see also Section 1.3). If the attribute value is UNSET, it should
default to 1.

The support for this attribute is mandatory.
5.8.4 maxSlots

The maximum number of requested slots (see also Section 1.3). If the attribute value is UNSET, it should
default to the value of minSlots.

The support for this attribute is mandatory.
5.8.5 usersACL

The list of the users that would be permitted to submit jobs to the created reservation.If the attribute value
is UNSET, it should default to the user running the application.

The support for this attribute is mandatory.
5.8.6 candidateMachines

Requests that the reservation SHALL be created for exactly the given set of machines. Implementations
and their DRM systems MAY decide to reserve only a subset of the given machines.If this attribute is not
specified, it should default to the result of MonitoringSession: :getAllMachines (see Section 10.1).

The support for this attribute is mandatory.

(See footnotc)22
5.8.7 minPhysMemory

Requests that the reservation SHALL be created with machines that have at least the given amount of
physical memory in kilobyte. Implementations MAY interpret this attribute value as filter for candidate
machines, or as memory reservation demand on a shared execution resource.

The support for this attribute is mandatory.

2
(See footnote)

5.8.8 machineOS

Requests that the reservation must be created with machines that have the given type of operating system,
regardless of its version, with semantics as specified in Section 4.1.

The support for this attribute is optional, as described by the DrmaaCapability: :RT_MACHINEQS flag.

22May 18th 2011 conf call identified the subset reservation feature to be only available in some of the systems, so it is no
promise here.
23May 18th 2011 conf call identified the different understandings of memory reservation.

drmaa-wgQogf.org 31

mailto:drmaa-wg@ogf.org

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

GWD-R

24

(See footnote)

5.8.9 machineArch

June 2011

Requests that the reservation must be created with machines that have the given instruction set architecture,
with semantics as specified in Section 4.2.

The support for this attribute is optional, as described by the DrmaaCapability: :RT_MACHINEARCH flag.

2
(See footnote)

5.9 DrmaaReflective Interface

The DrmaaReflective interface allows an application to determine the set of supported implementation-
specific attributes in the DRMAA structures (see also Section 5). It also standardizes the read / write access
to such attributes when their existence is determined at run-time by the application.

Applications are expected to determine the supported optional attributes with the SessionManager: : supports
method (see Section 7.1).

interface DrmaaReflective {

readonly
readonly
readonly
readonly
readonly
readonly
readonly

string getInstanceValue(in any instance,
void setInstanceValue(in any instance,
string describeAttribute(in any instance,

};

attribute
attribute
attribute
attribute
attribute
attribute
attribute

5.9.1 jobTemplatelmplSpec

Stringlist
StringlList
StringlList
Stringlist
Stringlist
Stringlist
StringList

jobTemplateImplSpec;
jobInfoImplSpec;
reservationTemplateImplSpec;
reservationInfolImplSpec;
queueInfoImplSpec;
machineInfoImplSpec;
notificationImplSpec;

in string name);
in string name, in string value);
in string name);

This attribute provides the list of supported implementation-specific JobTemplate attributes.

5.9.2 jobInfolmplSpec

This attribute provides the list of supported implementation-specific JobInfo attributes.

5.9.3

reservation TemplatelmplSpec

This attribute provides the list of supported implementation-specific ReservationTemplate attributes.

59.4

reservationlnfolmplSpec

This attribute provides the list of supported implementation-specific ReservationInfo attributes.

24May 18th 2011 conf call identified support in DRM systems to be mainly given by additional configuration only.
25May 18th 2011 conf call identified support in DRM systems to be mainly given by additional configuration only.

drmaa-wgQogf.org

32

mailto:drmaa-wg@ogf.org

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

GWD-R June 2011

5.9.5 queuelnfolmplSpec

This attribute provides the list of supported implementation-specific QueueInfo attributes.
5.9.6 machinelnfolmplSpec

This attribute provides the list of supported implementation-specific MachineInfo attributes.
5.9.7 notificationlmplSpec

This attribute provides the list of supported implementation-specific DrmaaNotification attributes.

5.9.8 getlnstanceValue

This method allows to retrieve the attribute value for name from the structure instance given in the instance
parameter. The return value is the stringified current attribute value.

5.9.9 setlnstanceValue

This method allows to set the attribute name to value in the structure instance given in the instance
parameter. In case the conversion from string input into the native attribute type leads to an error,
InvalidArgumentException SHALL be thrown.

5.9.10 describeAttribute
This method returns a human-readable description of an attributes purpose, for the attribute described by

name in the structure instance referenced by instance. The content and language of the return value is
implementation-specific, but should consider the use case of portal applications.

6 Common Exceptions

The exception model specifies error information that can be returned by a DRMAA implementation on
method calls.

exception
exception
exception
exception
exception
exception
exception
exception
exception
exception
exception
exception

DeniedByDrmsException {string message;’};
DrmCommunicationException {string message;l};
TryLaterException {string message;};
SessionManagementException {string message;};
TimeoutException {string message;};
InternalException {string message;7};
InvalidArgumentException {string message;};
InvalidSessionException {string message;};
InvalidStateException {string message;};
OutOfResourceException {string message;};
UnsupportedAttributeException {string message;};
UnsupportedOperationException {string message;};

If not defined otherwise, the exceptions have the following meaning:

DeniedByDrmsException: The DRM system rejected the operation due to security issues.

drmaa-wgQogf.org 33

mailto:drmaa-wg@ogf.org

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

GWD-R June 2011

DrmCommunicationException: The DRMAA implementation could not contact the DRM system. The
problem source is unknown to the implementation, so it is unknown if the problem is transient or not.

TryLaterException: The DRMAA implementation detected a transient problem with performing the
operation, for example due to excessive load. The application is recommended to retry the call.

TimeoutException: The timeout given in one the waiting functions was reached without successfully
finishing the waiting attempt.

InternalException: An unexpected or internal error occurred in the DRMAA library, for example a system
call failure. It is unknown if the problem is transient or not.

InvalidArgumentException: From the viewpoint of the DRMAA library, a function parameter is in-
valid or inappropriate for the particular function call. If the parameter is a structure, the exception
description SHOULD contain the name(s) of the problematic attribute(s).

InvalidSessionException: The session used for the function is not valid, for example since it was closed
before.

InvalidStateException: The function call is not allowed in the current state of the job.

OutOfResourceException: This exception can be thrown by any method at any time when the DRMAA
implementation has run out of operating system resources, such as buffer, main memory, or disk space.

UnsupportedAttributeException: The optional attribute is not supported by the DRMAA implemen-
tation.

UnsupportedOperationException: The function is not supported by the DRMAA implementation. One
example is the registration of an event callback function.

The DRMAA specification assumes that programming languages targeted by language bindings typically
support the concept of exceptions. If a destination language does not support them (like ANSI C), the
language binding specification SHOULD map error conditions to an appropriate consistent concept. A
language binding MAY chose to model exceptions as numeric error code return values, and return values as
additional output parameters of the operation. In this case, the language binding specification SHOULD
specify numeric values for all DRMAA error constants.

The representation of exceptions in the language binding MUST support a possibility to express an exception
cause as textual description. Implementations MAY use this text to express DRMS-specific error conditions
that are outside of the DRMAA scope.

Object-oriented language bindings MAY decide to derive all exceptions from one or multiple exception base
classes, in order to support generic catch clauses. Whenever it is appropriate, language bindings SHOULD
replace DRMAA exceptions by their semantically equivalent native exception from the application runtime
environment.

Language bindings MAY decide to introduce a hierarchical ordering of the DRMAA exceptions through class
derivation. In this case, any new exceptions added for aggregation purposes SHOULD be prevented from
being thrown, for example by marking them as abstract.

The UnsupportedAttributeException may either be raised by the setter function for the attribute or by
the job submission function. A consistent decision for either one or the other approach MUST be made by
the language binding specification.

drmaa-wgQogf.org 34

mailto:drmaa-wg@ogf.org

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

GWD-R June 2011

26

(See footnote)

7 The DRMAA Session Concept

DRMAA relies on an overall session concept, which supports the persistency of job and advance reservation
information over multiple application runs. This supports short-lived applications that need to work with
DRM system state spanning multiple application runs. Typical examples are job submission portals or
command-line tools. The session concept is also intended to allow implementations to perform DRM system
attach / detach operations at dedicated points in the application control flow.

7.1 SessionManager Interface

interface SessionManager{
readonly attribute string drmsName;
readonly attribute Version drmsVersion;
readonly attribute Version drmaaVersion;
boolean supports(in DrmaaCapability capability);
JobSession createJobSession(in string sessionName,
in string contactString);
ReservationSession createReservationSession(in string sessionName,
in string contactString);
MonitoringSession createMonitoringSession (in string contactString);
JobSession openJobSession(in string sessionName);
ReservationSession openReservationSession(in string sessionName);
void closeJobSession(in JobSession s);
void closeReservationSession(in ReservationSession s);
void closeMonitoringSession(in MonitoringSession s);
void destroyJobSession(in string sessionName);
void destroyReservationSession(in string sessionName);
StringlList getJobSessions ();
Stringlist getReservationSessions();
void registerEventNotification(in DrmaaCallback callback);

};

The SessionManager interface is the main interface for establishing communication with a given DRM sys-
tem. By the help of this interface, sessions for job management, monitoring, and/or reservation management
can be maintained.

Job and reservation sessions maintain persistent state information (about jobs and reservations created)
between application runs. State data SHOULD be persisted by the library implementation or the DRMS
itself (if supported) after closing the session through the according method in the SessionManager interface.

The re-opening of a session MUST be possible on the machine where the session was originally created.
Implementations MAY also offer to re-open the session on another machine.

26 Comparsion to DRMAA 1.0: The InconsistentStateException was removed, since it is semantically equal to the In-
validStateException (conf. call Jan 7th 2010) The former HoldInconsistentStateException, ReleaseInconsistentStateException,
ResumelnconsistentStateException, and SuspendInconsistentStateException from DRMAA v1.0 are now expressed as single
InvalidStateException with different meaning per raising method. (F2F meeting July 2009)

drmaa-wgQogf.org 35

mailto:drmaa-wg@ogf.org

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

GWD-R June 2011

The state information SHOULD be kept until the job or reservation session is explicitly reaped by the
according destroy method in the SessionManager interface. If an implementation runs out of resources
for storing the session information, the closing function SHOULD throw a OutOfResourceException. If
an application ends without closing the session properly, the behavior of the DRMAA implementation is
undefined.

An implementation MUST allow the application to have multiple sessions of the same or different types
instantiated at the same time. This includes the proper coordination of parallel calls to session methods
that share state information.

(See footnotc)27

7.1.1 drmsName

A system identifier denoting a specific type of DRM system, e.g. “LSF” or “GridWay”. It is intended
to support conditional code blocks in the DRMAA application that rely on DRMS-specific details of the
DRMAA implementation. Implementations SHOULD NOT make versioning information of the particular
DRM system a part of this attribute value.

7.1.2 drmsVersion

This attribute provides the DRM-system specific version information. Applications are not expected to make
decisions based on versioning information from this attribute - instead, the value should only be utilized for
informative output to the end user.

7.1.3 drmaaVersion

A combination of minor / major version number information for the DRMAA implementation. The major
version number MUST be the constant value “2”, the minor version number SHOULD be used by the
DRMAA implementation for expressing its own versioning information.

7.1.4 createJobSession / createReservationSession / createMonitoringSession

The method creates a new session instance of the particular type for the application. On successful completion
of this method, the necessary initalization for making the session usable MUST be completed. Examples are
the connection establishment from the DRMAA library to the DRM system, or the prefetching of information
from non-thread-safe operating system calls, such as getHostByName.

The contactString parameter is an implementation-dependent string that SHALL allow the application to
specify which DRM system instance to use. A contact string represents a specific installation of a specific
DRM system, e.g. a Condor central manager machine at a given IP address, or a Grid Engine ‘root’ and
‘cell’. Contact strings are always implementation dependent and therefore opaque to the application. If
contactString has the value UNSET, a default DRM system SHOULD be contacted. The manual configu-
ration or automated detection of a default contact is implementation-specific.

27 Comparison to DRMAA 1.0: The concept of a factory from GFD.130 was removed (solves issue #6276). Version 2.0 of
DRMAA supports restartable sessions by the newly introduced SessionManager interface. It allows creating multiple concurrent
sessions for job submission (solves issue #2821), which can be restarted by their generated session name (solves issue #2820).
Session.init() and Session.exit() functionalities are moved to the according session creation and closing routines. The descriptions
were fixed accordingly (solves issue #2822). The AlreadyActiveSession error was removed. (F2F meeting July 2009) The
drmaalmplementation attribute from DRMAA 1.0 was removed, since it was redundant to the drmsInfo attribute. This one is
now available in the new SessionManager interface. (F2F meeting July 2009).

drmaa-wgQogf.org 36

mailto:drmaa-wg@ogf.org

GWD-R June 2011

w6 The sessionName parameter denotes a unique name to be used for the new session. If a session with such
wer & name was created before, the method MUST throw an InvalidArgumentException. In all other cases,
wes including if the provided name has the value UNSET, a new session MUST be created with a unique name
we generated by the implementation. A MonitoringSession instance has no persistent state, and therefore
wo does not support the name concept.

wn If the DRM system does not support advance reservation, than createReservationSession SHALL throw
w2 an UnsupportedOperationException.

wis 7.1.5 openJobSession / openReservationSession

ws The method is used to open a persisted JobSession or ReservationSession instance that has previously
wrs been created under the given sessionName. The implementation MUST support the case that the session
we have been created by the same application or by a different application running on the same machine. The
w7 implementation MAY support the case that the session was created or updated on a different machine. If
s 10 session with the given sessionName exists, an InvalidArgumentException MUST be raised.

wro If the session described by sessionName was already opened before, implementations MAY return the same
1080 job or reservation session instance.

w1 If the DRM system does not support advance reservation, openReservationSession SHALL throw an
1082 UnsupportedOperationException.

w3 7.1.6 closeJobSession / closeReservationSession / closeMonitoringSession

wss The method MUST do whatever work is required to disengage from the DRM system. It SHOULD be callable
wss only once, by only one of the application threads. This SHOULD be ensured by the library implementation.
s Additional calls beyond the first SHOULD lead to a NoActiveSessionException error notification.

sz For JobSession or ReservationSession instances, the according state information MUST be saved to some
s stable storage before the method returns. This method SHALL NOT affect any jobs or reservations in the
s session (e.g., queued and running jobs remain queued and running).

wo If the DRM system does not support advance reservation, closeReservationSession SHALL throw an
1001 UnsupportedOperationException.

we 7.1.7 destroyJobSession / destroyReservationSession

w0z The method MUST do whatever work is required to reap persistent session state and cached job state
¢ information for the given session name. If session instances for the given name exist, they MUST become
w5 invalid after this method was finished sucessfully. Invalid sessions MUST throw InvalidSessionException
wes on every attempt of utilization. This method SHALL NOT affect any jobs or reservations in the session in
o7 their operation, e.g. queued and running jobs remain queued and running.

s If the DRM system does not support advance reservation, destroyReservationSession SHALL throw an
1099 UnsupportedOperationException.

o 7.1.8 getJobSessions / getReservationSessions

no This method returns a list of JobSession or ReservationSession names that are valid input for a openJobSession
uno2 or openReservationSession call.

drmaa-wgQogf.org 37

mailto:drmaa-wg@ogf.org

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

GWD-R June 2011

If the DRM system does not support advance reservation, getReservationSessions SHALL throw an
UnsupportedOperationException.

7.1.9 registerEventNotification

This method is used to register a DrmaaCallback interface (see Section 8.3) implemented by the DRMAA-
based application. If the callback functionality is not supported by the DRMAA implementation, the method
SHALL raise an UnsupportedOperationException, and the capability DrmaaCapability: : CALLBACK MUST
NOT be indicated (see Section 4.5). Implementations with callback support SHOULD allow to perform mul-
tiple registration calls, which updates the callback target function.

If the argument of the method call is UNSET, the currently registered callback MUST be unregistered. After
this method call returned, no more events SHALL be delivered to the application. If no callback target is
registered, the method should return immediately.

A language binding specification MUST define how the reference to an interface-compliant method can be
given as argument to this method. It MUST also clarify how to pass an UNSET callback method reference.

8 Working with Jobs

A DRMAA job represents a single computational activity that is executed by the DRM system on one or
more execution hosts, as one or more operating system processes. The JobSession interface represents all
control and monitoring functions commonly available in DRM systems for such jobs as a whole, while the Job
interface represents the common functionality for single jobs. Sets of jobs resulting from a bulk submission
are separately represented by the JobArray interface. JobTemplate instances allow to formulate conditions
and requirements for the job execution by the DRM system.

8.1 The DRMAA State Model

DRMAA defines the following job states:

enum JobState {
UNDETERMINED , QUEUED, QUEUED_HELD, RUNNING, SUSPENDED, REQUEUED,
REQUEUED_HELD, DONE, FAILED};

UNDETERMINED: The job status cannot be determined. This is a permanent issue, not being solvable
by querying again for the job state.
QUEUED: The job is queued for being scheduled and executed.

QUEUED _HELD: The job has been placed on hold by the system, the administrator, or the submitting
user.

RUNNING: The job is running on a execution host.

SUSPENDED: The job has been suspended by the user, the system or the administrator.
REQUEUED: The job was re-queued by the DRM system, and is eligible to run.
REQUEUED_HELD: The job was re-queued by the DRM system, and is currently placed on hold.

drmaa-wgQogf.org 38

mailto:drmaa-wg@ogf.org

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

GWD-R June 2011

DONE: The job finished without an error.
FAILED: The job exited abnormally before finishing.

If a DRMAA job state has no representation in the underlying DRMS, the DRMAA implementation MAY
never report that job state value. However, all DRMAA implementations MUST provide the JobState
enumeration as given here. An implementation SHOULD NOT return any job state value other than those
defined in the JobState enumeration.

The status values relate to the DRMAA job state transition model, as shown in Figure 1.

runJob()
runBulkJobs()

Y
Queued Started Terminated

SUSPENDED

QUEUED > RUNNING > DONE

QUEUED_HELD

i

REQUEUED

REQUEUED_HELD

i

 —
——(FAILED)

e

v

UNDETERMINED)

Figure 1: DRMAA Job State Transition Model

|

The transition diagram in Figure 1 expresses the clasification of possible job states into “Queued”, “Started”,
and “Terminated”. This is relevant for the job waiting functions (see Section 8.2 and Section 8.4), which
operate on job state classes only. The “Terminated” class of states is final, meaning that further state
transition is not allowed.

Implementations SHALL NOT introduce other job transitions (e.g. from RUNNING to QUEUED) beside the ones
stated in Figure 1, even if they might happen in the underlying DRM system. In this case, implementations
MAY emulate the neccessary intermediate steps for the DRMA A-based application.

When an application requests job state information, the implementation SHOULD also provide the subState
value to explain DRM-specific information about the job state. The possible values of this attribute are
implementation-specific, but should be documented properly. Examples are extra states for staging phases

drmaa-wgQogf.org 39

mailto:drmaa-wg@ogf.org

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

GWD-R June 2011

or details on the hold reason. Implementations SHOULD define a DRMS-specific data structure for the
sub-state information that can be converted to / from the data type defined by the language binding.

The IDL definition declares the sub state attributes as type any, expressing the fact that the language
binding MUST map the data type to a generic language type (e.g. void*, Object) that maintains source code

portability across DRMAA implementations and still accepts an UNSET value.

The DRMAA job state model can be mapped to other high-level API state models. Table 4 gives a non-

normative set of examples.

DRMAA JobState SAGA JobState [3] OGSA-BES Job State [2]
UNDETERMINED N/A N/A

QUEUED Running Pending (Queued)
QUEUED_HELD Running Pending (Queued)
RUNNING Running Running (Executing)
SUSPENDED Suspended Running (Suspended)
REQUEUED Running Running (Queued)
REQUEUED_HELD Running Running (Queued)
DONE Done Finished

FAILED Cancelled, Failed Cancelled, Failed

Table 4: Example Mapping of DRMAA Job States

2
(See footnote)

8.2 JobSession Interface

A job session instance acts as container for job instances controlled through the DRMAA API. The session
methods support the submission of new jobs, the monitoring and the control of existing jobs. The relationship
between jobs and their session MUST be persisted, as described in Section 7.1.

interface JobSession {
readonly attribute string contact;
readonly attribute string sessionName;
readonly attribute StringList jobCategories;
JobList getJobs(in JobInfo filter);
JobArray getJobArray(in string jobArrayId);

28 Comparison to DRMAA 1.0:

The differentiation between the system hold, user hold, and system / user hold job states was removed (conf. call Jan
20th 2009). There is only one hold state now. A job can now change its state from one of the SUSPENDED states to the
QUEUED_ACTIVE state (conf. call Jan 20th 2009, solves issue #2788). The job state UNDETERMINED is now clearer
defined. It expressed a permanent issue, meaning that the job state will not change by just waiting. Temporary problems in
the detection of the job state are now expressed by the TryLaterException (conf. call Feb 5th 2009, solves issue #2783). The
description of the FAILED state was extended to support a more specific differentiation between different job failure reasons.
The new subState feature allows the DRMAA implementation to provide better information, if available. There was no portable
way of standardizing extended failure information in a better way. (conf. call May 12th 2009, solves issue #5875) The different
suspend job states from DRMAA1 (user suspended, system suspended, user / system suspended) are now combined into one
suspend state. DRM systems with the need to express the different suspend reasons can use the new sub-state feature (conf.
call Mar 5th 2010).

REQUEUED and REQUEUED_HELD maps to RUNNING in BES, since BES does not allow a transition between Running
and Pending (mailing list, APr. 2011)

drmaa-wgQogf.org 40

mailto:drmaa-wg@ogf.org

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

GWD-R June 2011

Job runJob(in JobTemplate jobTemplate);
JobArray runBulkJobs(
in JobTemplate jobTemplate,
in long beginlIndex,
in long endIndex,
in long step,
in long maxParallel);
Job waitAnyStarted(in JobList jobs, in TimeAmount timeout);
Job waitAnyTerminated(in JobList jobs, in TimeAmount timeout);

}s
(See footnote)29

8.2.1 contact

This attribute contains the contact value that was used in the SessionManager: :createJobSession call
for this instance (see Section 7.1). If no value was originally provided, the default contact string from the
implementation MUST be returned. This attribute is read-only.

8.2.2 sessionName

This attribute contains the sessionName value that was used in the SessionManager: :createJobSession
or SessionManager: :openJobSession call for this instance (see Section 7.1). This attribute is read-only.

8.2.3 jobCategories

This method provides the list of of valid job category names which can be used for the jobCategory attribute
in a JobTemplate instance. The semantics are described in Section 5.7.7.

8.2.4 getlobs

This method returns a sequence of jobs that belong to the job session. The filter parameter allows one
to choose a subset of the session jobs as return value. The attribute semantics for the filter argument are
explained in Section 5.5. If no job matches or the session has no jobs attached, the method MUST return
an empty sequence instance. If filter is UNSET, all session jobs MUST be returned.

Time-dependent effects of this method, such as jobs no longer matching to filter criteria on evaluation time,
are implementation-specific. The purpose of the filter parameter is to keep scalability with a large number

29 Comparison to DRMAA 1.0: The original separation between synchronize() and wait() was replaced by a complete new
synchronization semantic in the API. DRMAA2 has now two methods, waitStarted() and waitTerminated(). The first waits
for any state that expresses that the job was started, the second for any terminal status. Both methods are available on
session level (wait for any of the given jobs to start / end) or on single job level (solves issue #5880 and #2838). The function
returns always a Job object, in order to allow chaining, e.g. job.wait(JobStatus. RUNNING).hold(). The session-level functions
implement the old DRMAA wait(SESSION_ANY). The old synchronize() semantics are no longer directly supported - instead,
the DRMAA application should use a looped Job.wait... / JobSession.waitAny... call. The result is a more condensed and
responsive API, were the application can decide to keep the user informed during synchronization on a set of jobs. DRMAA
library implementations should also become easier to design, since the danger of multithreading side effects inside the DRMAA
API is reduced by this change. As a side effect, JOB_IDS_SESSION_ANY and JOB_IDS_SESSION_ALL are no longer needed.
The special consideration of a partial failures during SESSION_ALL wait activities is also no longer necessary (F2F meeting
July 2009). The JobSession now allows to fetch also information about jobs that were not submitted through DRMAA (conf.
call June 23th 2010).

drmaa-wgQogf.org 41

mailto:drmaa-wg@ogf.org

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

GWD-R June 2011

of jobs per session. Applications therefore must consider the possibly changed state of jobs during their
evaluation of the method result.

8.2.5 getJobArray

This method returns the JobArray instance with the given ID. If the session does not / no longer contain
the according job array, InvalidArgumentException SHALL be thrown.

0

(See footnote)3

8.2.6 runJob

The runJob method submits a job with the attributes defined in the job template parameter. It returns a
Job object that represents the job in the underlying DRM system. Depending on the job template settings,
submission attempts may be rejected with an InvalidArgumentException. The error details SHOULD
provide further information about the attribute(s) responsible for the rejection.

When this method returns a valid Job instance, the following conditions SHOULD be fulfilled:
e The job is part of the persistent state of the job session.

e All non-DRMAA and DRMAA interfaces to the DRM system report the job as being submitted to
the DRM system.

e The job has one of the DRMAA job states.
8.2.7 runBulkJobs

The runBulkJobs method creates a set of parametric jobs, each with attributes defined in the given
job template. Each job in the set is identical, except for the job template attributes that include the
JobTemplatePlaceholder: : PARAMETRIC_INDEX macro (see Section 5.7).

If any of the resulting parametric job templates is not accepted by the DRM system, the method call MUST
raise an InvalidArgumentException. No job from the set SHOULD be submitted in this case.

The first job in the set has an index equal to the beginIndex parameter of the method call. The smallest valid
value for beginIndex is 1. The next job has an index equal to beginIndex + step, and so on. The last job
has an index equal to beginIndex + n * step, where n is equal to(endIndex - beginIndex) / step. The
index of the last job may not be equal to endIndex if the difference between beginIndex and endIndex is not
evenly divisible by step. The beginIndex value must be less than or equal to the endIndex value, and only
positive index numbers are allowed, otherwise the method SHOULD raise an InvalidArgumentException.

Jobs can determine the index number at run time with the mechanism described in Section 8.6.

The maxParallel parameter allows to specify how many of the bulk job’s instances are allowed to run
in parallel on the utilized resources. Implementations MAY consider this value if the DRM system sup-
ports such functionality, otherwise the parameter MUST be silently ignored. If the parameter value is
UNSET, no limit SHOULD be applied on the bulk job. If given, the support MUST be expressed by the
DrmaaCapability: :BULK_JOBS_MAXPARALLEL capability flag (see Section 4.5).

30 June 2011 conf. call decided to not support JobArray filtering in the session at this point. The face-to-face meeting in
June 2011 identified that DRM systems typically do not support the identification of bulk jobs in the system, so it would be
hard to implement the according reporting function.

drmaa-wgQogf.org 42

mailto:drmaa-wg@ogf.org

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

GWD-R June 2011

The runBulkJobs method returns a JobArray (see Section 8.5) instance that represents the set of Job objects
created by the method call under a common array identifier. For each of the jobs in the array, the same
conditions as for the result of runJob SHOULD apply.

The largest (syntactically) allowed value for endIndex MUST be defined by the language binding.

Further restrictions on the maximum endIndex MAY be implied by the implementation.

(See footnote)31

8.2.8 waitAnyStarted / waitAnyTerminated

The waitAnyStarted method blocks until any of the jobs referenced in the jobs parameter entered one of
the “Started” states. The waitAnyTerminated method blocks until any of the jobs referenced in the jobs
parameter entered one of the “Terminated” states (see Section 8.1). If the input list contains jobs that are
not part of the session, waitAnyStarted SHALL fail with an InvalidArgumentException.

The timeout argument specifies the desired behavior when a result is not immediately available. The con-
stant value INFINITE_TIME may be specified to wait indefinitely for a result. The constant value ZERO_TIME
may be specified to return immediately. Alternatively, a number of seconds may be specified to indicate
how long to wait for a result to become available. If the invocation exits on timeout, an TimeoutException
SHALL be raised.

An application waiting for some condition to happen in all jobs of a set is expected to perform looped calls
of these waiting functions.

3
(See footnote)

8.3 DrmaaCallback Interface

The DrmaaCallback interface allows the DRMAA library or the DRM system to inform the application
about relevant events from the DRM system in a asynchronous fashion. One expected use case is con-
tinuous monitoring of job state transitions. However, the implementation MAY decide to not deliver all
events occurring in the DRM system. The support for such callback functionality is optional, indicated
by DrmaaCallback: : CALLBACK, but all implementations MUST define the DrmaaCallback interface type as
given in the language binding.

interface DrmaaCallback {
void notify(in DrmaaNotification notification);

};

31 There was a discussion (mailing list Jan 2011) about having specialized job templates for bulk submission, with support
for the start / end index and a slots limit. We rejected that, since job templates are intended for re-usage.

The May 4th 2011 conf call identified Grid Engine, Torque and LSF as the only systems having support for maxParallel. The
feature was determined as critical enough for still adding it, therefore the ignorance rule and the MAY semantics are applied.

32 People typically ask for the waitAll..() counterparts of these functions. Since they are so easy to implement in the
application itself, we could not see any benefit in adding them. Due to there intended long-blocking operation, the DRM
system would no be able to offer any better (meaning much faster) implementation to be wrapped by DRMAA.

A section on synchronization of multi-threaded parallel wait calls was removed. This would complicate DRMAA implementa-
tions, since synchronization does not map to the obvious state polling approach. An optimization like this would be classically
a task of application-oriented APIs - so, Andre has to solve it.

drmaa-wgQogf.org 43

mailto:drmaa-wg@ogf.org

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

GWD-R June 2011

struct DrmaaNotification {
DrmaaEvent event;
Job job;
JobState jobState;

};

enum DrmaaEvent {
NEW_STATE, MIGRATED, ATTRIBUTE_CHANGE
};

The application callback interface is registered through the SessionManager: :registerEventNotification
method (see Section 7.1). The DrmaaNotification structure represents the notification information from the
DRM system. Implementations MAY extend this structure for further information (see Section 5). All given
information SHOULD be valid at least at the time of notification generation. The DrmaaNotification::jobState
attribute expresses the state of the job at the time of notification generation, while the DrmaaNotification: : job
attribute allows to retrieve latest job information.

The DrmaaEvent enumeration defines standard event types for notification:

NEW _STATE The job entered a new state, which is described in the jobState attribute of the notification
structure.

MIGRATED The job was migrated to another execution host, and is now in the given state.

ATTRIBUTE_CHANGE A monitoring attribute of the job, such as the memory consumption, changed
to a new value. The jobState attribute MAY have the value UNSET on this event.

DRMAA implementations SHOULD protect themself from unexpected behavior of the called application.
This includes indefinite delays or unexpected exceptions from the callee. The implementation SHOULD
prevent a nested callback at the time of occurence, and MAY decide to deliver the according events at a
later point in time.

Scalability issues of the notification facility are out of scope for this specification. Implementations MAY
decide to support non-standardized throttling configuration options.

(See fuotnute)33

8.4 Job Interface

Every job in the JobSession is expressed by an own instance of the Job interface. It allows one to instruct
the DRM system for a job status change, and to query the status attributes of the job in the DRM system.
Implementations MAY return Job objects for jobs created outside of a DRMAA session.

interface Job {
readonly attribute string jobId;
readonly attribute JobSession session;
readonly attribute JobTemplate jobTemplate;
void suspend();
void resume ();

33 We intentionally did not add subState to the notification information, since this would make callback interface implemen-
tations specific for the DRM system, without any chance for creating a portable DRMAA application.

drmaa-wgQogf.org 44

mailto:drmaa-wg@ogf.org

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

GWD-R June 2011

void hold ();

void release ();

void terminate ();

JobState getState(out any jobSubState);
JobInfo getInfo();

Job waitStarted(in TimeAmount timeout);
Job waitTerminated(in TimeAmount timeout) ;

s
3
(See footnote)

8.4.1 jobld

This attribute provides the string job identifier assigned to the job by the DRM system. It is intended as
performant alternative for fetching a complete JobInfo instance for this information.

8.4.2 session

This attribute offers a reference to the JobSession instance that represents the session used for the job
submission creating this Job instance.

8.4.3 jobTemplate

This attribute provides a reference to a JobTemplate instance that has equal values to the one that was
used for the job submission creating this Job instance.

For jobs created outside of a DRMAA session, implementations MUST also return a JobTemplate instance,
which MAY be empty or only partially filled.

8.4.4 suspend / resume / hold / release / terminate

The job control functions allow modifying the status of the single job in the DRM system, according to the
state model presented in Section 8.1.

The suspend method triggers a transition from RUNNING to SUSPENDED state. The resume method triggers
a transition from SUSPENDED to RUNNING state. The hold method triggers a transition from QUEUED to
QUEUED_HELD, or from REQUEUED to REQUEUED_HELD state. The release method triggers a transition from
QUEUED_HELD to QUEUED, or from REQUEUED_HELD to REQUEUED state. The terminate method triggers a
transition from any of the “Started” states to one of the “Terminated” states. If the job is in an inappropriate
state for the particular method, the method MUST raise an InvalidStateException.

The methods SHOULD return after the action has been acknowledged by the DRM system, but MAY
return before the action has been completed. Some DRMAA implementations MAY allow this method

34 In comparison to DRMAA v1.0, DRMAA2 replaces the identification of jobs by strings with Job objects. This enables a
tighter integration of job meta-data and identity, for the price of reduced performance in (so far not existing) DRMAA RPC
scenarios. The former DRMAA control() with the JobControlAction structure is now split up into dedicated functions (such
as hold() and release()) on the Job object.

Even though the DRMAAv2 surveys showed interest in interactive job support, this feature was intentionally left out. Reasons
are the missing support in some major DRM systems, and the lack of a relevant DRMA A-related use case (conf. call Jan 7th
2010)

Issue #5877 (support for direct job signaling) was rejected, even though there was an according request from the SAGA WG.
Issue #2782 (change attributes of submitted, but pending jobs) was rejected based on group decision.

drmaa-wgQogf.org 45

mailto:drmaa-wg@ogf.org

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

GWD-R June 2011

to be used to control jobs submitted externally to the DRMAA session, such as jobs submitted by other
DRMAA sessions in other DRMAA implementations or jobs submitted via native utilities. This behavior is
implementation-specific.

8.4.5 getState

This method allows one to gather the current status of the job according to the DRMAA state model,
together with an implementation specific sub state (see Section 8.1). It is intended as performant alternative
for fetching a complete JobInfo instance for state checks. The timing conditions are described in Section
5.5.

(See footnote)35

8.4.6 getlnfo
This method returns a JobInfo instance for the particular job under the conditions described in Section 5.5.
8.4.7 waitStarted / waitTerminated

The waitStarted method blocks until the job entered one of the “Started” states. The waitTerminated
method blocks until the job entered one of the “Terminated” states (see Section 8.1). The timeout argument
specifies the desired behavior when a result is not immediately available. The constant value INFINITE_TIME
may be specified to wait indefinitely for a result. The constant value ZERO_TIME may be specified to return
immediately. Alternatively, a number of seconds may be specified to indicate how long to wait for a result to
become available. If the invocation exits on timeout, an TimeoutException SHALL be raised. If the job is
in an inappropriate state for the particular method, the method MUST raise an InvalidStateException.

8.5 JobArray Interface

The following section explains the methods and attributes defined in the JobArray interface. An instance
of this interface represent a job array, a common concept in many DRM systems for a set of jobs created by
one operation. In DRMAA, JobArray instances are only created by the runBulkJobs operation (see Section
8.2). JobArray instances differ from the JobList data structure due to their potential for representing
a DRM system concept, while JobList is a DRMAA-only concept realized by language binding support.
Implementations SHOULD realize the JobArray functionality as wrapper for DRM system job arrays, if
possible. If the DRM system has only single job support or incomplete job array support with respect to the
DRMAA-provided functionality, implementations MUST realize the JobArray functionality on their own,
for example based on looped operations with a list of jobs.

interface JobArray {
readonly attribute string jobArrayId;
readonly attribute JobList jobs;
readonly attribute JobSession session;
readonly attribute JobTemplate jobTemplate;
void suspend();
void resume ();
void hold ();

35 The getState() function now also returns job subState information. This is intended as additional information for the given
DRMAA job state, and can be used for expressing the hold state differentiation from DRMAA 1.0 (conf. call Mar 31st 2009).

drmaa-wgQogf.org 46

mailto:drmaa-wg@ogf.org

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

GWD-R June 2011

void release();
void terminate ();

};
(See footnote)36

8.5.1 jobArrayld

This attribute provides the string job identifier assigned to the job array by the DRM system. If the DRM
system has no job array support, the implementation MUST generate a system-wide unique identifier for
the result of the successful runBulkJobs operation.

8.5.2 jobs

This attribute provides the static list of jobs that are part of the job array.

(See footnote)37
8.5.3 session

This attribute offers a reference to a JobSession instance that represents the session which was used for the
job submission creating this JobArray instance.

8.5.4 jobTemplate

This attribute provides a reference to a JobTemplate instance that has equal values to the one that was
used for the job submission creating this JobArray instance.

(See footnote)>
8.5.5 suspend / resume / hold / release / terminate

The job control functions allow modifying the status of the job array in the DRM system, with the same
semantic as with the counterparts in the Job interface (see Section 8.4). If one of the jobs in the array is in
an inappropriate state for the particular method, the method MUST raise an InvalidStateException.

The methods SHOULD return after the action has been acknowledged by the DRM system for all jobs in
the array, but MAY return before the action has been completed. Some DRMAA implementations MAY
allow this method to be used to control job arrays created externally to the DRMAA session, such as job
arrays submitted by other DRMAA sessions in other DRMAA implementations or job arrays submitted via
native utilities. This behavior is implementation-specific.

36 We are aware of the fact that some systems (e.g. LSF at the time of writing) do not support all DRMAA control operations
offered for job arrays. Since we intended to avoid optional DRMAA operations wherever we could, the text here mandates the
implementation to simulate the array support on its own. For example, looping over all jobs in the array and calling “suspend”
for each one is trivial to implement and fulfills the same purpose.

37 We were asked for offering a filter support similar to JobSession here. This was rejected by discussion on the list (Jan
2011), since the number of jobs returned here is normally comparatively short. In this case, the DRM system cannot provide
any benefit over the looped check in the application itself.

38 The use case from SAGA perspective is that the user can easily resubmit the same job - just changing for example some
command line parameter, but leaving the remainder fixed (mail by Andre Merzky, July 29th 2010).

drmaa-wgQogf.org 47

mailto:drmaa-wg@ogf.org

GWD-R June 2011

s 3.6 The DRMAA_INDEX_VAR environment variable

oo DRMAA implementations SHOULD implicitely set a environment variable with the name DRMAA_INDEX_VAR
o1 for each submitted job. This environment variable MUST contain the name of the environment variable
12 provided by the DRM system that holds the parametric job index. Examples are TASK_ID in GridEngine,
1303 PBS_ARRAYID in Torque, or LSB_JOBINDEX in LSF. By using an indirect fetching of the environment variable
1oa value, jobs are enabled to get their own parametric index regardless of the DRM system type. For DRM
1305 systems that do not set such a environment variable, DRMAA_INDEX_VAR SHOULD not be set.

15 An expected implementation strategy would be the transparent addition an environment variable spec-
o7 ification on job submission. However, this definition SHOULD NOT be visible for the application in
130 the JobTemplate instances. If the application defines its own DRMAA_INDEX_VAR environment variable, it
13eo SHOULD override the implementation-defined value.

w 9 Working with Advance Reservation

un Advance reservation is a DRM system concept that allows the reservation of execution resources for jobs
u to be submitted. DRMAA encapsulates such functionality of a DRM system with the interfaces and data
s structures described in this chapter.

1uwas DRMAA implementations for DRM systems that do not support advance reservation still MUST imple-
s mented the described interfaces, in order to keep source code portability for DRMAA-based applications.
s Support for advance reservation is expressed by the DrmaaCapability: : ADVANCE_RESERVATION flag (see Sec-
uor tion 4.5). If no support is given by the implementation, all methods related to advance reservation MUST
s raise an UnsupportedOperationExeption if being used.

wo 9.1 ReservationSession Interface

o Every ReservationSession instance represents a set of advance reservations in the DRM system. Every
un Reservation instance SHALL belong only to one ReservationSession instance.

1412 interface ReservationSession {

1413 readonly attribute string contact;

1414 readonly attribute string sessionName;

1415 Reservation getReservation(in string reservationId);

1416 Reservation requestReservation(in ReservationTemplate reservationTemplate);
1417 Reservationlist getReservations ();

1418 } 5

1w 9.1.1 contact

0 This attribute contains the contact value that was used in the createReservationSession call for this
w2 instance (see Section 7.1). If no value was originally provided, the default contact string from the implemen-
w2 tation MUST be returned. This attribute is read-only.

w3 9.1.2 sessionName
12e This attribute contains the name of the session that was used for creating or opening this Reservation

s instance (see Section 7.1). This attribute is read-only.

drmaa-wgQogf.org 48

mailto:drmaa-wg@ogf.org

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

GWD-R June 2011

9.1.3 getReservation

This method returns a Reservation instance that has the given reservationId. Implementations MAY
support the access to reservations created outside of a DRMAA session scope, under the same regulari-
ties as for the MonitoringSession: :getAllReservations method (see Section 10.1.1). If no reservation
matches, the method SHALL raise an InvalidArgumentException. Time-dependent effects of this method
are implementation-specific.

9.1.4 requestReservation

The requestReservation method SHALL request an advance reservation in the DRM system with at-
tributes defined in the provided ReservationTemplate. On a successful reservation, the method returns a
Reservation instance that represents the advance reservation in the underlying DRM system.

If the current user is not authorized to create reservations, DeniedByDrmsException SHALL be raised. If
the reservation cannot be performed by the DRM system due to invalid ReservationTemplate attributes,
or if the demanded combination of resource demands is not available, InvalidArgumentException SHALL
be raised. The exception SHOULD provide further details about the rejection cause in the extended error
information (see Section 6).

Some of the requested conditions might be not fulfilled after the reservation was succesfully created, for
example due to execution host outages. In this case, the reservation itself SHOULD remain valid. A job
using such a reservation may spend additional time in one of the non-RUNNING states. In this case, the
JobInfo: :jobSubState information SHOULD inform about this situation.

(See footnote)39
9.1.5 getReservations

This method returns the list of reservations successfully created so far in this session, regardless of their start
and end time. The list of Reservation instances is only cleared in conjunction with the destruction of the
actual session instance through SessionManager: :destroyReservationSession (see also Section 7.1).

9.2 Reservation Interface

The Reservation interface represents attributes and methods available for an advance reservation success-
fully created in the DRM system. Applications MAY be able to access Reservation instances for advance
reservations performed outside of a DRMAA session.

interface Reservation {
readonly attribute string reservationlId;
readonly attribute ReservationSession session;
readonly attribute ReservationTemplate reservationTemplate;
ReservationInfo getInfo ();
void terminate ();

};

39In DRMAA 2.0 we do not have an explcit state model for advance reservations as the reservation state can be easily deducted
by comparing current time with reservation start and time. For this reason, we use the subState approach for informing the
user about the described situation.

drmaa-wgQogf.org 49

mailto:drmaa-wg@ogf.org

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

GWD-R June 2011

9.2.1 reservationld

The reservationId is an opaque string identifier for the advance reservation. If the DRM system has
identifiers for advance reservations, this attribute SHOULD provide the according stringified value. If not,
the DRMAA implementation MUST generate value this is unique in time and extend of the DRM system.

9.2.2 session
This attribute references the ReservationSession which was used to create the advance reservation instance.
9.2.3 reservationTemplate

This attribute provides a reference to a ReservationTemplate instance that has equal values to the one that
was used for the advance reservation creating this Reservation instance. For reservations created outside
of a DRMAA session, implementations MUST also return a ReservationTemplate instance, which MAY
be empty or only partially filled.

9.2.4 getlnfo

This method returns a ReservationInfo instance for the particular job under the conditions described in
Section 5.6. This method SHOULD throw InvalidArgumentException if the reservation is already expired
(i.e. its end time passed) or was terminated before.

9.2.5 terminate

This method terminates the advance reservation represented by this Reservation instance. All jobs submit-
ted with a reference to this reservation SHOULD be terminated by the DRM system or the implementation,
regardless of their current state.

10 Monitoring the DRM System

The DRMAA monitoring facility supports four basic units of monitoring:

e Properties of the DRM system as a whole (e.g. DRM system version number) that are independent
from the particular session and contact string,

e Properties of the DRM system that depend on the current contact string (e.g. list of machines in the
currently accessed Grid Engine cell)

e Properties of individual queues known from a getAllQueues call

e Properties of individual machines available with the current contact string (e.g. amount of physical
memory in a chosen machine)

The MonitoringSession interface in DRMAA supports the monitoring of execution resources in the DRM
system. This is distinct from the monitoring of jobs running in the DRM system, which is covered by the
JobSession and the Job interface.

drmaa-wgQogf.org 50

mailto:drmaa-wg@ogf.org

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

GWD-R June 2011

10.1 MonitoringSession Interface

The MonitoringSession interface represents a set of stateless methods for fetching information about the
DRM system and the DRMAA implementation itself. It MAY be used to implement DRM system monitoring
tools like gstat.

interface MonitoringSession {
ReservationlList getAllReservations();
JobList getAllJobs(in JobInfo filter);
QueueInfolist getAllQueues (in Stringlist names);
MachineInfolist getAllMachines (in Stringlist names);

};

All returned data SHOULD be related to the current user running the DRMAA-based application. For
example, the getAllQueues function MAY be reduced to only denote queues that are usable or generally
accessible for the DRMAA application and user performing the query.

Because no guarantee can be made as to future accessibility, and because of cases where list reduction may
demand excessive overhead in the DRMAA implementation, an unreduced or partially reduced result MAY
be returned on all methods returning lists. The behavior of the DRMAA implementation in this regard
should be clearly documented. In all cases, the list items MUST all be valid input for job submission or
advance reservation through the DRMAA APIL.

10.1.1 getAllReservations

This method returns the list of all DRMS advance reservations accessible for the user running the DRMAA-
based application. In contrast to a ReservationSession::getReservations call, this method SHOULD
also return reservations that were created outside of DRMAA (e.g. through command-line tools) by this user.
The returned list MAY also contain reservations that were created by other users if the security policies of
the DRM system allow such global visibility. The DRM system or the DRMAA implementation is at liberty,
however, to restrict the set of returned reservations based on site or system policies, such as security settings
or scheduler load restrictions.

This method SHALL raise an UnsupportedOperationException if advance reservation is not supported by
the implementation.

10.1.2 getAllJobs

This method returns the list of all DRMS jobs visible to the user running the DRMA A-based application. In
contrast to a JobSession: :getJobs call, this method SHOULD also return jobs that were submitted outside
of DRMAA (e.g. through command-line tools) by this user. The returned list MAY also contain jobs that
were submitted by other users if the security policies of the DRM system allow such global visibility. The
DRM system or the DRMAA implementation is at liberty, however, to restrict the set of returned jobs based
on site or system policies, such as security settings or scheduler load restrictions.

Querying the DRM system for all jobs might result in returning an excessive number of Job objects. Impli-
cations to the library implementation are out of scope for this specification.

The method supports a filter argument for fetching only a subset of the job information available. Both
the return value semantics and the filter semantics SHOULD be similar to the ones described for the
JobSession: :getJobs method (see Section 8.2).

drmaa-wgQogf.org 51

mailto:drmaa-wg@ogf.org

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

GWD-R June 2011

Language bindings SHOULD NOT try to solve the scalability issues by replacing the sequence type of
the return value with some iterator-like solution. This approach would break the basic snapshot semantic
intended for this method.

4
(See footnote)

10.1.3 getAllQueues

This method returns a list of queues available for job submission in the DRM system. The names from
all QueuelInfo instances in this list SHOULD be a valid input for the JobTemplate: :queueName attribute
(see Section 5.7). The result can be an empty list or might be incomplete, based on queue, host, or system
policies. Tt might also contain queues that are not accessible for the user (because of queue configuration
limits) at job submission time.

The names parameter supports restricting the result to QueueInfo instances that have one of the names
given in the argument. If the names parameter value is UNSET, all QueueInfo instances should be returned.

10.1.4 getAllMachines

This method returns the list of machines available in the DRM system as execution host. The returned list
might be empty or incomplete based on machine or system policies. The returned list might also contain
machines that are not accessible by the user, e.g. because of host configuration limits.

The names parameter supports restricting the result to MachineInfo instances that have one of the names
given in the argument. If the names parameter value is UNSET, all MachineInfo instances should be returned.

11 Annex A: Complete DRMAA IDL Specification

The following text shows the complete IDL specification for the DRMAAv2 application programming inter-
face. The ordering of IDL constructs here has no normative meaning, but ensures the correct compilation
with a standard CORBA IDL compiler for syntactical correctness checks. This demands only some additional
forward declarations to resolve circular dependencies.

module DRMAA2 {

enum JobState {
UNDETERMINED , QUEUED, QUEUED_HELD, RUNNING, SUSPENDED, REQUEUED,
REQUEUED_HELD, DONE, FAILED};

enum OperatingSystem {
AIX, BSD, LINUX, HPUX, IRIX, MACOS, SUNOS, TRUE64, UNIXWARE, WIN,
WINNT, OTHER_OS}Z};

enum CpuArchitecture {
ALPHA, ARM, CELL, PARISC, X86, X64, IA64, MIPS, PPC, PPC64,
SPARC, SPARC64, OTHER_CPU};

40 The non-argumentation about the scalability problem was the final result of a clarification attempt. We hand this one
over to the implementors. (conf call Jul 14th 2010)

drmaa-wgQogf.org 52

mailto:drmaa-wg@ogf.org

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

GWD-R

enum ResourcelLimitType {
CORE_FILE_SIZE, CPU_TIME, DATA_SEG_SIZE, FILE_SIZE,
STACK_SIZE, VIRTUAL_MEMORY, WALLCLOCK_TIME };

enum JobTemplatePlaceholder {
HOME_DIRECTORY ,WORKING_DIRECTORY ,PARAMETRIC_INDEX };

enum DrmaaEvent {
NEW_STATE, MIGRATED, ATTRIBUTE_CHANGE
};

enum DrmaaCapability {
ADVANCE_RESERVATION, RESERVE_SLOTS, CALLBACK,
BULK_JOBS_MAXPARALLEL ,
JT_EMAIL, JT_STAGING, JT_DEADLINE, JT_MAXSLOTS,
JT_ACCOUNTINGID, RT_STARTNOW,
RT_DURATION, RT_MACHINEOS, RT_MACHINEARCH
s

typedef sequence<string> OrderedStringlist;
typedef sequence<string> Stringlist;

typedef sequence<Job> JobList;

typedef sequence<QueuelInfo> QueuelInfolist;
typedef sequence<MachineInfo> MachinelInfolist;
typedef sequence<SlotInfo> SlotInfolist;
typedef sequence<Reservation> Reservationlist;
typedef sequence< sequence<string,2> > Dictionary;
typedef string AbsoluteTime;

typedef long long TimeAmount;

native ZERO_TIME;

native INFINITE_TIME;

native NOW;

struct JobInfo {
string jobId;
long exitStatus;
string terminatingSignal;
string annotation;
JobState jobState;
any jobSubState;
OrderedStringlist allocatedMachines;
string submissionMachine;
string jobOwner;
long slots;
string queueName;
TimeAmount wallclockTime;
long cpuTime;
AbsoluteTime submissionTime;

drmaa-wgQogf.org

OPEN_FILES,

June 2011

53

mailto:drmaa-wg@ogf.org

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

GWD-R

AbsoluteTime dispatchTime;
AbsoluteTime finishTime;

};

struct ReservationInfo {
string reservationId;
string reservationName;
AbsoluteTime reservedStartTime;
AbsoluteTime reservedEndTime;
Stringlist usersACL;
long reservedSlots;
SlotInfolist reservedMachines;
boolean inErrorState;

};

struct JobTemplate {
string remoteCommand;
OrderedStringlist args;
boolean submitAsHold;
boolean rerunnable;
Dictionary jobEnvironment;
string workingDirectory;
string jobCategory;
Stringlist email;
boolean emailOnStarted;
boolean emailOnTerminated;
string jobName;
string inputPath;
string outputPath;
string errorPath;
boolean joinFiles;
string reservationId;
string queueName;
long minSlots;
long maxSlots;
long priority;
OrderedStringlist candidateMachines;
long minPhysMemory;
OperatingSystem machine0S;
CpuArchitecture machineArch;
AbsoluteTime startTime;
AbsoluteTime deadlineTime;
Dictionary stagelnFiles;
Dictionary stageOutFiles;
Dictionary resourcelimits;
string accountingld;

};

drmaa-wgQogf.org

June 2011

54

mailto:drmaa-wg@ogf.org

GWD-R June 2011

1650 struct ReservationTemplate {
1651 string reservationName;

1652 AbsoluteTime startTime;

1653 AbsoluteTime endTime;

1654 TimeAmount duration;

1655 long minSlots;

1656 long maxSlots;

1657 Stringlist usersACL;

1658 OrderedStringlList candidateMachines;
1659 long minPhysMemory;

1660 OperatingSystem machine0S;
1661 CpuArchitecture machineArch;
1662 } 5

1663 struct DrmaaNotification {
1664 DrmaaEvent event;

1665 Job _] ob 5

1666 JobState jobState;

1667 } H

1668 struct QueuelInfo {

1669 string name;

1670 } ’

1671 struct Version {

1672 string major;

1673 string minor;

1674 } 5

1675 struct MachinelInfo {

1676 string name;

1677 boolean available;

1678 long sockets;

1679 long coresPerSocket;

1680 long threadsPerCore;

1681 double 1load;

1682 long physMemory;

1683 long virtMemory;

1684 OperatingSystem machine0S;
1685 Version machineOSVersion;
1686 CpuArchitecture machineArch;
1687 } N

1688 struct SlotInfo {

1689 string machineName;

1690 string slots;

1691 } M

drmaa-wgQogf.org 55

mailto:drmaa-wg@ogf.org

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

GWD-R

exception
exception
exception
exception
exception
exception
exception
exception
exception
exception
exception
exception

interface
readonly
readonly
readonly
readonly
readonly
readonly
readonly

string getInstanceValue(in any instance,
void setInstanceValue(in any instance,
string describeAttribute(in any instance,

};

DeniedByDrmsException {string message;};
DrmCommunicationException {string message;l};
TryLaterException {string message;};
SessionManagementException {string message;l};
TimeoutException {string message;};
InternalException {string message;l};
InvalidArgumentException {string message;};
InvalidSessionException {string message;};
InvalidStateException {string message;};
OutOfResourceException {string message;};
UnsupportedAttributeException {string message;};
UnsupportedOperationException {string message;};

DrmaaReflective {

attribute
attribute
attribute
attribute
attribute
attribute
attribute

Stringlist
Stringlist
Stringlist
StringlList
StringlList
StringlList
Stringlist

interface DrmaaCallback {
void notify(in DrmaaNotification notification);

};

interface ReservationSession {
readonly attribute string contact;
readonly attribute string sessionName;
Reservation getReservation(in string reservationId);

Reservation requestReservation(in ReservationTemplate reservationTemplate);

jobTemplateImplSpec;
jobInfoImplSpec;
reservationTemplateImplSpec;
reservationInfolmplSpec;
queueInfoImplSpec;
machineInfolImplSpec;
notificationImplSpec;

in string name);
in string name,
in string name);

Reservationlist getReservations ();

};

interface Reservation {
readonly attribute string reservationlId;
readonly attribute ReservationSession session;

readonly attribute ReservationTemplate reservationTemplate;

ReservationInfo getInfo ();
void terminate ();

drmaa-wgQogf.org

June 2011

in string value);

56

mailto:drmaa-wg@ogf.org

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

GWD-R

interface JobArray {

readonly attribute string jobArraylId;
readonly attribute JobList jobs;

readonly attribute JobSession session;
readonly attribute JobTemplate jobTemplate;
void suspend();

void resume ();

void hold ();

void release();

void

};

terminate () ;

interface JobSession {
readonly attribute string contact;
readonly attribute string sessionName;
readonly attribute StringList jobCategories;
JobList getJobs(in JobInfo filter);
JobArray getJobArray(in string jobArrayId);
Job runJob(in JobTemplate jobTemplate);
JobArray runBulkJobs (

i JobTemplate jobTemplate,

Job
Job
};

in
in
in
in
in

long
long
long
long

beginIndex,
endIndex,
step,
maxParallel);

waitAnyStarted(in JobList jobs, in TimeAmount timeout);

waitAnyTerminated (in JobList jobs,

interface Job {
readonly attribute string jobId;
readonly attribute JobSession session;
readonly attribute JobTemplate jobTemplate;
suspend () ;
resume () ;

void
void
void
void
void

};

hold ();

release ();

terminate () ;

JobState getState(out any jobSubState);
JobInfo getInfo();

Job waitStarted(in TimeAmount timeout);
Job waitTerminated (in TimeAmount timeout);

interface MonitoringSession {
Reservationlist getAllReservations ();
JobList getAllJobs(in JobInfo filter);
QueueInfolist getAllQueues (in StringlList names);

drmaa-wgQogf.org

in TimeAmount timeout);

June 2011

57

mailto:drmaa-wg@ogf.org

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

GWD-R June 2011

MachineInfolist getAllMachines (in Stringlist names);

};

interface SessionManager{
readonly attribute string drmsName;
readonly attribute Version drmsVersion;
readonly attribute Version drmaaVersion;
boolean supports(in DrmaaCapability capability);
JobSession createJobSession(in string sessionName,
in string contactString);
ReservationSession createReservationSession(in string sessionName,
in string contactString);
MonitoringSession createMonitoringSession (in string contactString);
JobSession openJobSession(in string sessionName);
ReservationSession openReservationSession(in string sessionName);
void closeJobSession(in JobSession s);
void closeReservationSession(in ReservationSession s);
void closeMonitoringSession(in MonitoringSession s);
void destroyJobSession(in string sessionName);
void destroyReservationSession(in string sessionName);
StringlList getJobSessions ();
Stringlist getReservationSessions ();
void registerEventNotification(in DrmaaCallback callback);

};

};

12 Security Considerations

The DRMAA API does not specifically assume the existence of a particular security infrastructure in the
DRM system. The scheduling scenario described herein presumes that security is handled at the point of job
authorization/execution on a particular resource. It is assumed that credentials owned by the application
using the API are in effect for the DRMAA implementation too.

It is conceivable an authorized but malicious user could use a DRMAA implementation or a DRMAA enabled
application to saturate a DRM system with a flood of requests. Unfortunately for the DRM system this
case is not distinguishable from the case of an authorized good-natured user who has many jobs to be
processed. For temporary load defense, implementations SHOULD utilize the TryLaterException. In case
of permanent issues, the implementation SHOULD raise the DeniedByDrmsException.

DRMAA implementers should guard against buffer overflows that could be exploited through DRMAA
enabled interactive applications or web portals. Implementations of the DRMAA API will most likely
require a network to coordinate subordinate DRMS; however the API makes no assumptions about the
security posture provided the networking environment. Therefore, application developers should further
consider the security implications of “on-the-wire” communications.

For environments that allow remote or protocol based DRMAA clients, the implementation SHOULD offer
support for secure transport layers to prevent man in the middle attacks.

drmaa-wgQogf.org 58

mailto:drmaa-wg@ogf.org

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

GWD-R June 2011

13 Contributors

Roger Brobst

Cadence Design Systems, Inc.
555 River Oaks Parkway

San Jose, CA 95134

Email: rbrobst@cadence.com

Daniel Gruber

Univa GmbH

c¢/o Riiter und Partner
Prielmayerstr. 3 80335 Miinchen
Email: dgruber@univa.com

Mariusz Mamonski

Poznan Supercomputing and Networking Center
ul. Noskowskiego 10

61-704 Poznan, Poland

Email: mamonski@man.poznan

Daniel Templeton
Cloudera Inc.

210 Portage Avenue

Palo Alto, CA 94306

Email: daniel@cloudera.com

Peter Troger (Corresponding Author)
Hasso-Plattner-Institute at University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3

14482 Potsdam, Germany

Email: peter@troeger.eu

We are grateful to numerous colleagues for support and discussions on the topics covered in this document,
in particular (in alphabetical order, with apologies to anybody we have missed):

Guillaume Alleon, Ali Anjomshoaa, Ed Baskerville, Harald Béhme, Nadav Brandes, Matthieu Cargnelli,
Karl Czajkowski, Piotr Domagalski, Fritz Ferstl, Paul Foley, Nicholas Geib, Becky Gietzel, Alleon Guillaume,
Daniel S. Katz, Andreas Haas, Tim Harsch, Greg Hewgill, Rayson Ho, Eduardo Huedo, Dieter Kranzmiiller,
Krzysztof Kurowski, Peter G. Lane, Miron Livny, Ignacio M. Llorente, Martin v. Lowis, Andre Merzky,
Ruben S. Montero, Greg Newby, Steven Newhouse, Michael Primeaux, Greg Quinn, Hrabri L. Rajic, Martin
Sarachu, Jennifer Schopf, Enrico Sirola, Chris Smith, Ancor Gonzalez Sosa, Douglas Thain, John Tollefsrud,
Jose R. Valverde, and Peter Zhu.

drmaa-wgQogf.org 59

mailto:drmaa-wg@ogf.org

1860

1861
1862
1863
1864
1865
1866

1867

1868
1869

1870

1871

1872
1873
1874

1875

1876

1877

1878
1879
1880
1881
1882
1883
1884

1885

1886

1887

1888

1890

1891

1892

1893

1894
1895

1896

GWD-R June 2011

14 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or the
extent to which any license under such rights might or might not be available; neither does it represent that
it has made any effort to identify any such rights. Copies of claims of rights made available for publication
and any assurances of licenses to be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by implementers or users of this specification can
be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to practice this recommendation.
Please address the information to the OGF Executive Director.

15 Disclaimer

This document and the information contained herein is provided on an “as-is” basis and the OGF disclaims
all warranties, express or implied, including but not limited to any warranty that the use of the information
herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular
purpose.

16 Full Copyright Notice

Copyright (© Open Grid Forum (2005-2011). Some Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice or references to the OGF or
other organizations, except as needed for the purpose of developing Grid Recommendations in which case
the procedures for copyrights defined in the OGF Document process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors
or assignees.

17 References

[1] Scott Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119 (Best Current
Practice), March 1997. URL http://tools.ietf.org/html/rfc2119.

[2] T. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pickles, D. Pulsipher, C. Smith,
and M. Theimer. OGSA Basic Execution Service v1.0 (GFD-R.108), nov 2008.

[3] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Kleijer, Andre Merzky, John
Shalf, and Christopher Smith. A Simple API for Grid Applications (SAGA) Version 1.1 (GFD-R-P.90),
jan 2008.

drmaa-wgQogf.org 60

http://tools.ietf.org/html/rfc2119
mailto:drmaa-wg@ogf.org

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

GWD-R June 2011

[4] Object Management Group. Common Object Request Broker Architecture (CORBA) Specification,
Version 3.1. http://www.omg.org/spec/CORBA /3.1 /Interfaces/PDF, jan 2008.

[5] The IEEE and The Open Group. The Open Group Base Specifications Issue 6 IEEE Std 1003.1.
http://www.opengroup.org/onlinepubs/000095399 /utilities /ulimit.html.

[6] Distributed Management Task Force (DMTF) Inc. CIM System Model White Paper CIM Version 2.7,
jun 2003.

[7] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas Haas, Bill Nitzberg,
Daniel Templeton, John Tollefsrud, and Peter Troger. Distributed Resource Management Application
API Specification 1.0 (GFD-R.022), aug 2007.

[8] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas Haas, Bill Nitzberg,
Daniel Templeton, John Tollefsrud, and Peter Troger. Distributed Resource Management Application
API Specification 1.0 (GWD-R.133), jun 2008.

[9] Peter Troger, Daniel Templeton, Roger Brobst, Andreas Haas, and Hrabri Rajic. Distributed Resource
Management Application API 1.0 - IDL Specification (GFD-R-P.130), apr 2008.

[10] Peter Troger, Hrabri Rajic, Andreas Haas, and Piotr Domagalski. Standardised job submission and
control in cluster and grid environments. International Journal of Grid and Utility Computing, 1:
134-145, dec 2009. doi: {http://dx.doi.org/10.1504/I1JGUC.2009.022029}.

drmaa-wgQogf.org 61

mailto:drmaa-wg@ogf.org

	Introduction
	Notational Conventions
	Language Bindings
	Slots and Queues
	Multithreading

	Namespace
	Common Type Definitions
	Enumerations
	OperatingSystem enumeration
	CpuArchitecture enumeration
	ResourceLimitType enumeration
	JobTemplatePlaceholder enumeration
	DrmaaCapability

	Extensible Data Structures
	QueueInfo structure
	Version structure
	MachineInfo structure
	SlotInfo structure
	JobInfo structure
	ReservationInfo structure
	JobTemplate structure
	ReservationTemplate structure
	DrmaaReflective Interface

	Common Exceptions
	The DRMAA Session Concept
	SessionManager Interface

	Working with Jobs
	The DRMAA State Model
	JobSession Interface
	DrmaaCallback Interface
	Job Interface
	JobArray Interface
	The DRMAA_INDEX_VAR environment variable

	Working with Advance Reservation
	ReservationSession Interface
	Reservation Interface

	Monitoring the DRM System
	MonitoringSession Interface

	Annex A: Complete DRMAA IDL Specification
	Security Considerations
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice
	References

