GWD-R

Michel Drescher, Fujitsu

JSDL WG

Ali Anjomshoaa

15 May 2007
draft-jsdl-paramsweep-006

GWD-TYPE

Author-1, Institution

Category: TYPE
Author-2, Institution

NAME_OF_WG_OR_RG

DATE

[if applicable: Revised DATE]

JSDL Parameter Sweep Job Extension
Status of This Document

This document provides information to the Grid community about a standardized markup language specifying parameter sweep jobs. Distribution is unlimited.

Copyright Notice

Copyright © Open Grid Forum 2006, 2007. All Rights Reserved.

Abstract

This document specifies the syntax and semantics of the proposed Parameter Sweep extension to the Job Submission Description Language (JSDL) 1.0 [JSDL].

The syntax and semantics defined in this document provide an alternative to explicitly submitting thousands of individual JSDL job submissions of the same base job template
, but, each with a different parameter set.

Contents

1Abstract

21.
Introduction

21.1
Notational Conventions

21.2
XML Namespaces

32.
Parameter Sweep

32.1
[parameter sweep]

32.2
[function]

42.3
[parameter]

52.4
[assignment]

72.5
[sweep]

83.
Parameter Sweep Functions

93.1
[value]

93.2
[value list] function

103.3
[loop] function

124.
Integration with JSDL v1.0

125.
Examples

125.1
Example 1

155.2
Example 2

165.3
Example 3

175.4
Example 4

185.5
Example 5

195.6
Example 6

215.7
Example 7

225.8
Example 8

236.
Security Considerations

237.
Contributors

238.
Intellectual Property Statement

239.
Disclaimer

2310.
Full Copyright Notice

2411.
References

1. Introduction

A Parameter Sweep is a job that internally defines a collection of jobs. For each of the jobs in the collection, the value of one or more of the job parameters may be changed in some preordained fashion, from the previous job in the collection. Hence, an array of values may be assigned to a parameter whose value is to be changed to successive elements in that array, for each consecutive job in the collection. This can be done for multiple parameters, so that more than one parameter’s value can change between each successive job in the collection.
In the definition of a Parameter Sweep for submission of a collection of jobs, the goal is to capture the array of values for each parameter, whose value is to be changed, in a succinct and systematic manner. For this to be possible, a means to describe Parameter Sweeps for submission are needed (i.e. a Parameter Sweep schema specification).

Given a succinct means to describe a Parameter Sweep (using a suitable schema), a resource management system can then instantiate and manage each job in the job collection defined in that Parameter Sweep.

1.1 Notational Conventions

The key words ‘MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” are to be interpreted as described in RFC 2119 [BRADNER].
This document describes XML Information Sets and inherits the square bracket notation of [INFOSET].

When describing concrete XML schemas [SCHEMA1], [SCHEMA2], this specification uses the notational convention of WS-Security [WSSEC]. Specifically, each member of an element’s [children] or [attributes] properties, is described using an XPath-like notation (e.g.: /x:MyHeader/x:SomeProperty/@value1). The use of {any} indicates the presence of an element wildcard (<xsd:any/>). The use of @{any} indicates the presence of an attribute wildcard (<xsd:anyAttribute/>).

Pseudo-schemas are provided for each component, before the description of the component. They use BNF-style conventions for attributes and elements: ‘?’ denotes zero or one occurrences; ‘*’ denotes zero or more occurrences; ‘+’ denotes one or more occurrences. Attributes are conventionally assigned a value which corresponds to their type, as defined in the normative schema.
<!-- sample pseudo-schema -->

<defined_element

required_attribute_of_type_string="xsd:string"

optional_attribute_of_type_int="xsd:int"? >

<required_element />

<optional_element />?

<one_or_more_of_this_element />+

</defined_element>

1.2 XML Namespaces
This specification uses a number of namespace prefixes throughout; they are listed in Table 1. Note that the choice of any namespace prefix is arbitrary and not semantically significant (see [BRAY]).

2. Parameter Sweep
This section defines the core information elements of the Parameter Sweep extension to JSDL 1.0.

2.1 [parameter sweep]
This section describes the [parameter sweep] Information Set.

This Information Set defines a set of elements and attributes that describe how to modify an existing JSDL Job Template in order to get a Parameter Sweep JSDL Job Template, which is spanned by an instantiation of this Information Set.

A [parameter sweep] consists of one or many [sweep] child elements. When evaluating the [parameter sweep], its [sweep] child elements are evaluated, resulting in a collection of JSDL Job Templates that constitute the Parameter Sweep JSDL Job Template.
2.1.1 XML Representation
When rendered in XML, the [parameter sweep] information element is described as follows:

<sweep:Sweep>+

Where:

/sweep:Sweep
Represents the [sweep] information element as described below. Sibling [sweep] elements within the same XML document constitute a single [parameter sweep] definition. If this is not the desired behaviour, higher level XML document partitioning must be used to ensure proper scope of the [sweep] elements in defining multiple [parameter sweep] definitions.

The remainder of this section defines the elements and attributes in a “bottom up” order, i.e. building blocks are defined first and used as child items in higher level composite elements.

2.2 [function]

The [function] element is the source of the values that are assigned to [parameter]s in a Parameter Sweep, as described below.

A [function] is not necessarily a function in a mathematical sense. Rather, it is better described as a mathematical sequence. A [function] MUST have the following properties:

· A [function] yields a finite set of values;
· A [function] has a first value;
· A [function] has a last value;
· A [function] has concepts of “current” and “next” values; and
· A [function] yields the same parameter values in the same order every time it is used from the beginning, which is defined by its initial conditions.
The cardinality of a [function] is defined as the number of values it yields.
A [function] is an abstract element in the [parameter sweep] Information Set. Concrete definitions of [function]s are given in section 3. In concrete JSDL Job Templates, XML renderings of concrete functions substitute for the XML rendering of the abstract [function] element.

.
The [function] element serves as an extension point in this Parameter Sweep extension specification, i.e. if necessary users may define their own concrete [function]s
 and use these instead of the pre-defined [loop] and [value list] functions
given in Chapter 3.

The values of a [function] substitute are not limited to a particular data type
(e.g. integers, doubles, etc.). Instead, values can be anything, from primitive scalar values
(Boolean, Integers, etc.) to complete XML Information Sets. Concrete [function] definitions define the data type of its values. For example, the [loop] function defines that all values are of data type xsd:integer.
2.2.1 XML Representation
Since [function] is an abstract information element, it does not have a representation in a XML document instance.

The [function] information element is rendered in XML as:
<sweep:Function abstract=”true”/>

Where:
/sweep:Function
Represents the [function] information element. It does not have a XML type as it is an abstract XML element.

2.3 [parameter]

The [parameter] element dictates how an XML element or attribute value in a JSDL Job Template, which is effected by the defined Parameter Sweep, must be changed.

A [parameter] element does not only apply to the “command line” parameters of an executable specified in the JSDL Job Template. It can apply to any XML element or attribute value that is specified in the JSDL Job Template.

The type of the [parameter] element is an XPath 2.0 expression [XPATH]
. The evaluation of the XPath 2.0 expression MUST yield a [sequence]
 containing exactly one [item]. The [item] can be a [node] or an [atomic value] as per the XPath 2.0 specification.

If the value of the [parameter] element is not a valid XPath 2.0 expression, or if the evaluation yields a [sequence] containing zero, two, or more [item] elements, then the [parameter sweep] definition is not valid and MUST be rejected.

Any two [parameter] elements that address the same JSDL document element or attribute value, either entirely or in part, are disallowed if the two [parameter] elements are within the same [sweep] element scope. A [parameter sweep] thus defined MUST be rejected.
2.3.1 XML Representation

The [parameter] information element is rendered in XML as:
<sweep:Parameter>xsd:string</sweep:Parameter>

Where:
/sweep:Parameter
Represents the [parameter] information element. Its XML type is defined as xsd:string.
2.3.2 Example 1

The following example illustrates the use of the [parameter] information element.

<sweep:Parameter>

 /*//jsdl-posix:POSIXApplication[1]/jsdl-posix:Argument[2]

</sweep:Parameter>

In this example, the XPath 2.0 expression selects the value of the second jsdl-posix:Argument of the first jsdl-posix:POSIXApplication element found at an arbitrary depth in the JSDL Template document being addressed.
2.3.3 Example 2

The following example illustrates an invalid use of the [parameter] information element.

<sweep:Sweep>
...

<sweep:Parameter>

 /*//jsdl-posix:POSIXApplication/jsdl-posix:Argument[2]

</sweep:Parameter>

...

<sweep:Parameter>

 substring(/*//jsdl-posix:POSIXApplication/jsdl-posix:Argument[2],
 0, 1)

</sweep:Parameter>
...
</sweep:Sweep>
The two [parameter] elements defined in the sample XML above, both address the same XML document element value. The first [parameter] addresses the value entirely, while the second [parameter] addresses only a fraction of it. Both [parameter] elements cannot be used together in the same [sweep] element scope, even though both [parameter] elements are valid on their own.
2.4 [assignment]

The [assignment] element describes which XML document [item] values receive the values that result from a [function] element.

The type of the [assignment] element is a composition of one child [function] element and a non-null list of child [parameter] elements. Each of the child [parameter] elements receives the current value of the [function] child element in the current iteration of the Parameter Sweep.

The [assignment] element contains only [parameter] and [function] child elements, and carries no other content.

The [assignment] element inherits the properties of its child [function] element as follows:

· An [assignment] yields a finite set of value assignments;
· An [assignment] has a first value assignment;
· An [assignment] has a last value assignment;
· An [assignment] has concepts of “current” and a “next” value assignments; and
· An [assignment] yields the same value assignments in the same order every time it is used from the beginning, which is defined by its initial conditions.
Each individual value assignment generated by the [assignment] element maps a [function] value, as a key, to a list of [parameter] elements as a value. When evaluated, the [function] value is applied to each XML element selected by the associated [parameter] element values.
The cardinality of an [assignment] is defined as the number of value assignments it yields. Hence, the cardinality of an [assignment] element is always the same as the cardinality of its child [function] element.

Implicit type-casting is not allowed. Therefore, if the data type of the values of a child [function] element do not match the data type of the XML elements or attributes that are addressed by the child [parameter] elements, the defined [parameter sweep] is not valid and MUST be rejected.
2.4.1 XML Representation
The [assignment] information element is rendered in XML as:
<sweep:Assignment>

 <sweep:Parameter/>+

 <sweep:Function/>

</sweep:Assignment>

Where:
/sweep:Assignment
Represents the [assignment] information element. Its XML type is defined as xsd:complexType with no content other than XML elements.
/sweep:Assignment/sweep:Parameter
Represents the [parameter] information element as defined in section 2.2. The [parameter] element MUST appear at least once.
/sweep:Assignment/sweep:Function
Represents the [function] information element as defined in section 2.1. The [function] element MUST appear exactly once within an [assignment] element. Note that in XML Document instances, the <sweep:Function/> XML element itself never appears instead, XML Schema substitution group member elements may appear.
2.4.2 Example

The following example illustrates the use of the [assignment] information element.

<sweep:Assignment>

 <sweep:Parameter>

 /*//jsdl-posix:POSIXApplication[1]/jsdl-posix:Argument[2]

 </sweep:Parameter>

 <sweep:Parameter>

 /*//jsdl-posix:POSIXApplication[1]/jsdl-posix:Argument[4]

 </sweep:Parameter>

 <sweepfunc:Values>

 <sweepfunc:Value>foo</sweepfunc:Value>

 <sweepfunc:Value>bar</sweepfunc:Value>

 <sweepfunc:Value>baz</sweepfunc:Value>

 <sweepfunc:Values>

</sweep:Assignment>

In this example, two [parameter] elements are associated to one [value list] function. The second and fourth jsdl-posix:Arguments of the first jsdl-posix:POSIXApplication element found at an arbitrary depth in the JSDL Template document being addressed, will, at the same time, each receive the values “foo”, “bar” and “baz”, at each iteration of the [assignment] element respectively. Chapter 5 provides more detailed examples.
2.5 [sweep]

The [sweep] information element defines the coordination of [function] value generation and application to associated [parameter] elements. The evaluation of a [sweep] element creates the individual jobs defined by the Parameter Sweep job collection.
The [sweep] information element is of type composite; at least one [assignment] information element MUST appear as a child element of the [sweep] element. Mixed contents (i.e. child information elements and attributes, and other scalar, typed contents) are not allowed. Zero or more nested [sweep] child elements MAY be present.

All direct child [assignment] elements MUST have an identical cardinality.

Conceptually, a [sweep] element is evaluated iteratively until the child [assignment] elements do not yield any more value assignments.
For each iteration of the [sweep] element, the next set of value assignments of each child [assignment] element are accumulated. The accumulated value assignments are then applied to a copy of the JSDL Job Template associated with the current [sweep] element. The modified template copy thus produced, then represents an individual job from the collection of jobs defined by the [parameter sweep], and concludes one iteration over a [sweep] element.

2.5.1 Nested [sweep] elements
A [sweep] element may contain nested child [sweep] elements. Nested [sweep] elements are evaluated recursively as per the evaluation rules outlined above, with the exception that releasing a template job copy as an individual job from the [parameter sweep] collection is deferred to each of the child [sweep] elements. The modified template copy of the current [sweep] element is associated with the nested child [sweep] element, which is then evaluated as described above.

Sibling, nested child [sweep] elements are evaluated individually in their order of appearance in the outer most parent [sweep] element.
2.5.2 Scope

The scope of XML element transformation is defined as follows. Nested [sweep] elements inherit the scope of the parent [sweep] element and thus inherit all value assignments collected for the parent [sweep] element’s current iteration. Hence, [parameter] elements that appear in such a scope tree MUST abide by the constraints as outlined in section 2.3
Sibling [sweep] elements do not share a common scope except for the value assignments inherited from their shared parent [sweep] element. The value constraints given in section 2.3 are valid independently for the shared, individual value assignments within the scope of each sibling [sweep] element.
2.5.3 XML Representation
The [sweep] information element is rendered in XML as:
<sweep:Sweep_Type>

 <sweep:Assignment/>+

 <sweep:Sweep/>*

</sweep:Sweep_Type>
<sweep:Sweep>sweep:Sweep_Type</sweep:Sweep>
Where:
/sweep:Sweep_Type

Represents the global XML type of the [sweep] information element. It allows only XML child elements as described below.
/sweep:Sweep_Type/sweep:Assignment
Represents the [assignment] information element as defined in section 2.4 The [assignment] child element MUST appear once. It MAY appear more than once.
/sweep:Sweep_Type/sweep:Sweep
Represents a nested,[sweep] child element as defined in this section
. Its XML type is sweep:Sweep_Type. It MAY appear zero or more times.

/sweep:Sweep
Represents the global XML element definition for the [sweep] information element. When specifying a [parameter sweep] in XML, this global XML element SHOULD be used. However, a different XML element name MAY be chosen when integrating this JSDL extension with other XML Information Sets
.
2.5.4 Example

The following example illustrates the use of the [sweep] information element.

<sweep:Sweep>

 <sweep:Assignment>

 <sweep:Parameter>

 /*//jsdl-posix:POSIXApplication[1]/jsdl-posix:Argument[2]

 </sweep:Parameter>

 <sweepfunc:Loop start=”1” end=”10” />

 </sweep:Assignment>

</sweep:Sweep>

In this example, one [parameter] element is associated with one [loop] function. The second jsdl-posix:Argument of the first jsdl-posix:POSIXApplication element found at an arbitrary depth in the JSDL Template document being addressed, will receive the values 1, 2, 3, 4, etc. up to 10, constituting a collection of jobs defined by this [parameter sweep] definition with 10 individual jobs.
3. Parameter Sweep Functions
This chapter describes the default functions defined for the [parameter sweep] Information Set. These functions are extension functions to the abstract [function] element defined earlier in this document.
Each function described in this section, when composed with the base [parameter sweep] information set, is an instance of the abstract [function] information element. In an XML rendering, the [function] element itself does not appear. The XML rendering of the selected extension function appears instead. For each appearance of the [function] element an extension function can be used instead, either one of the default functions, or a self-defined extension function in a different namespace.

The functions described in this section MUST be supported by implementations of this specification.
3.1 [value]

The [value] information element describes a single value in an ordered list of [value] elements.

The type of [value] is variable.

3.1.1 XML Representation

The [value] information element is rendered in XML as:
<sweepfunc:Value> xsd:anyType <sweepfunc:Value>

Where:

/sweepfunc:Value

represents the [value] information element. Its type is defined as xsd:anyType.

3.2 [value list] function
The [value list] function provides an ordered list of otherwise unconnected, or independent values. When iterated over, the [value list] function returns the first element, then the second, etc. until it returns the last element.

A [value list] functions has one or more child [value] elements. Each [value] child is returned once and only once in a full iteration over a [value list] function. However, any two [value] children can provide identical values. Within the scope of the parent [value list] element, all [value] element MUST have the same type.
3.2.1 XML Representation
The [value list] information element is rendered in XML as:
<sweepfunc:Values substitutes=”sweep:Function”>

 <sweepfunc:Value/>+

</sweepfunc:Values>

Where:

/sweepfunc:Values
represents the [value list] information element. It MUST contain at least one [value] child element. This element MAY replace the sweep:Function element in an XML representation of the enclosing [parameter sweep].
/sweepfunc:Values/sweepfunc:Value

represents the [value] information element as described in section 3.1
3.2.2 Example

The following example illustrates the usage of the [value list] function:

<sweepfunc:Values>

 <sweepfunc:Value> The </sweepFunc:Value>

 <sweepfunc:Value> quick </sweepFunc:Value>

 <sweepfunc:Value> brown </sweepFunc:Value>

 <sweepfunc:Value> brown </sweepFunc:Value>

 <sweepfunc:Value> fox </sweepFunc:Value>

 <sweepfunc:Value> jumps </sweepFunc:Value>

 <sweepfunc:Value> over </sweepFunc:Value>

 <sweepfunc:Value> the </sweepFunc:Value>

 <sweepfunc:Value> lazy </sweepFunc:Value>

 <sweepfunc:Value> dog </sweepFunc:Value>

<sweepfunc:Values>

In this example, the [value list] yields nine values which, if concatenated using whitespace, would form the string “The quick brown fox jumps over the lazy dog”.
3.3 [loop] function
The [loop] function provides an ordered list of integer values that are calculated based on the previous value, beginning with the start value, and ending with a final value smaller or equal to the end value.

The [loop] function is of type composite. It has a [start] child element of type integer, an [end] child element of type integer, and a [delta] child element of type integer, too. Finally, the child element [exception] may occur zero, one or many times. The [start] and [end] children are MANDATORY, the [delta] child is OPTIONAL.

This function yields values that are calculated as follows. The first value equals the value of the [start] child. Any subsequent value is calculated as using the following rule:

 nextValue ::= currentValue + valueOf([delta])

If “nextValue” exceeds the value of [end], then “nextValue” is discarded and the [loop] has reached its end with “currentValue”. If [delta] is not given, the default value of “1” is assumed for the [delta] child element.

If the [loop] function contains [exception] elements, then the “nextValue” is not returned if “nextValue” equals the value of any of the [exception] child elements. Instead, “nextValue” becomes “currentValue”, and the new “nextValue” is calculated and tested against all [exception] children until no [exception] has the same value as “nextValue”. In other words, the [exception] child elements act as limiting filters on the list of values returned by the [loop] function.
3.3.1 XML Representation
The [loop] information element is rendered in XML as:
<sweepfunc:Loop substitutes=”sweep:Function”

 start=”xsd:integer”

 end=”xsd:integer”

 step=”xsd:positiveInteger”? >

 <sweepfunc:Exception> xsd:positiveInteger </sweepfunc:Exception>*

</sweepfunc:Loop>

Where:
/sweepfunc:Loop
represents the [loop] information element. Its XML type is defined as xsd:complexType with no content other than XML elements and attributes. This element MAY replace the sweep:Function element in an XML representation of the [parameter sweep].

/sweepfunc:Loop/@start
represents the [start] child element of the [loop] element. Its XML type is defined as xsd:integer. The [start] element is MANDATORY.
/sweepfunc:Loop/@end
represents the [end] child element of the [loop] element. Its XML type is defined as xsd:integer. The [end] element is MANDATORY.
/sweepfunc:Loop/@step
represents the [delta] child element of the [loop] element. Its XML type is defined as xsd:positiveInteger, i.e. the allowed value range starts at 1 and ends at “positive infinity”. The [delta] element is OPTIONAL. If no value is defined (i.e. this element is not present in the XML representation), then a default value of 1 is assumed for this element.

/sweepfunc:Loop/sweepfunc:Exception
represents the [exception] child element. Its XML type is defined as xsd:integer. [exception] elements are OPTIONAL; if no [exception] element is given, then the [loop] function yields all calculated values as specified above.
3.3.2 Example 1

The following example illustrates the usage of the [loop] function:

<sweepfunc:Loop start=”1” end=”10”>

</sweepfunc:Loop>

In this example, the [loop] function yields the ten values “1”, “2”, “3”, etc. up to “10”.
3.3.3 Example 2

The following example illustrates the usage of the [loop] function:

<sweepfunc:Loop start=”1” end=”10”>

 <sweepfunc:Exception> 5 </sweepfunc:Exception>

 <sweepfunc:Exception> 7 </sweepfunc:Exception>

</sweepfunc:Loop>

In this example, the [loop] function yields eight values: “1”, “2”, “3”, “4”, “6”, “8”, “9”, “10”.
3.3.4 Example 3

The following example illustrates the usage of the [loop] function:

<sweepfunc:Loop start=”1” end=”10” step=”2”>

 <sweepfunc:Exception> 7 </sweepfunc:Exception>

</sweepfunc:Loop>

In this example, the [loop] function yields four values: “1”, “3”, “5”, and “9”.

4. Integration with JSDL v1.0

The information set described in this specification defines, in a compressed format, the individual jobs that span the Parameter Sweep. In JSDL v1.0, the element jsdl:JobDefinition has only one defined child; jsdl:JobDescription, except providing extension points for both XML attributes and elements. While this is mostly for historical reasons, it is valid to treat the jsdl:JobDescription element as the real JSDL Job Template defining the nuts and bolts of the job that needs to be executed, and use the jsdl:JobDefinition element as a scoping closure to anything a JSDL Job Template is composed with.

Hence the most appropriate way of composing a JSDL Job Template with aParameter Sweep definition is to mix-in the [parameter sweep] element as a direct child element of the jsdl:JobDefinition element.

Having said that, a Parameter Sweep declaration MUST be given as follows:
<jsdl:JobDefinition>

 <jsdl:JobDescription/>

 <sweep:Sweep/>+

<jsdl:JobDefinition>

5. Examples
The following examples illustrate the use of the defined JSDL extensions; the information given in this section is purely informational.
All examples given in this section use the same JSDL Job template. This template, when executed, invokes the POSIX application “/usr/bin/echo” with a finite set of command line arguments. When executed correctly, the application would echo the string “The quick brown fox jumps over the lazy dog”. When evaluated using the Parameter Sweep extension as defined in this document, the result will be different.

The first example is fully worked out, i.e. the JSDL Job template is given including the [parameter sweep] elements, and the resulting set of individual jobs are given that constitute the intended Parameter Sweep. Along with each individual job template its expected outcome is given, too.

The following examples use the same JSDL Job template as the first example but illustrate different use cases for the [parameter sweep] information set. These examples are not worked out as the first example. Instead, only the expected outcome is given for each individual job of the Array Job definition.

As a notational convention, differences compared to the initial JSDL Job template are given in underlined italic.

5.1 Example 1
This example illustrates the basic use of the [parameter sweep] information set as described in this document.

First the submitted JSDL Job Template is shown. Then the resultant individual jobs are given, together with their expected outcome.
5.1.1 Submitted JSDL Job template

The following is the JSDL Job template composed with the [parameter sweep] information element, in XML representation:

<?xml version="1.0" encoding="UTF-8"?>

<jsdl:JobDefinition

 xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 xmlns:jsdl-posix="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"

 xmlns:sweep="http://schemas.ggf.org/jsdl/2007/04/sweep"

 xmlns:sweepfunc="http://schemas.ogf.org/jsdl/2007/04/sweep/functions">

 <jsdl:JobDescription>

 <jsdl:Application>

 <jsdl-posix:POSIXApplication>

 <jsdl-posix:Executable>/bin/echo</jsdl-posix:Executable>

 <jsdl-posix:Argument>The</jsdl-posix:Argument>

 <jsdl-posix:Argument>quick</jsdl-posix:Argument>

 <jsdl-posix:Argument>brown</jsdl-posix:Argument>

 <jsdl-posix:Argument>fox</jsdl-posix:Argument>

 <jsdl-posix:Argument>jumps</jsdl-posix:Argument>

 <jsdl-posix:Argument>over</jsdl-posix:Argument>

 <jsdl-posix:Argument>the</jsdl-posix:Argument>

 <jsdl-posix:Argument>lazy</jsdl-posix:Argument>

 <jsdl-posix:Argument>dog</jsdl-posix:Argument>

 </jsdl-posix:POSIXApplication>

 </jsdl:Application>

 </jsdl:JobDescription>

 <sweep:Sweep>

 <sweep:Assignment>

 <sweep:Parameter>//jsdl-posix:Argument[4]</sweep:Parameter>

 <sweepfunc:Values>

 <sweepfunc:Value>cat</sweepfunc:Value>

 <sweepfunc:Value>dog</sweepfunc:Value>

 <sweepfunc:Value>bird</sweepfunc:Value>

 </sweepfunc:Values>

 </sweep:Assignment>

 </sweep:Sweep>

</jsdl:JobDefinition>
For brevity reasons the XPath 2.0 expression used to select a [parameter] is kept very short. It suits the use for this specific document only; in real life applications the [parameter] expressions are expected to be of much more complexity.
5.1.2 Parameter Sweep individual job templates
The following XML representations give each individual job template that altogether constitute the Parameter Sweep submitted as given above.

The first individual job template would be:
<?xml version="1.0" encoding="UTF-8"?>

<jsdl:JobDefinition

 xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 xmlns:jsdl-posix="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"

 xmlns:sweep="http://schemas.ggf.org/jsdl/2007/04/sweep"

 xmlns:sweepfunc="http://schemas.ogf.org/jsdl/2007/04/sweep/functions">

 <jsdl:JobDescription>

 <jsdl:Application>

 <jsdl-posix:POSIXApplication>

 <jsdl-posix:Executable>/bin/echo</jsdl-posix:Executable>

 <jsdl-posix:Argument>The</jsdl-posix:Argument>

 <jsdl-posix:Argument>quick</jsdl-posix:Argument>

 <jsdl-posix:Argument>brown</jsdl-posix:Argument>

 <jsdl-posix:Argument>cat</jsdl-posix:Argument>

 <jsdl-posix:Argument>jumps</jsdl-posix:Argument>

 <jsdl-posix:Argument>over</jsdl-posix:Argument>

 <jsdl-posix:Argument>the</jsdl-posix:Argument>

 <jsdl-posix:Argument>lazy</jsdl-posix:Argument>

 <jsdl-posix:Argument>dog</jsdl-posix:Argument>

 </jsdl-posix:POSIXApplication>

 </jsdl:Application>

 </jsdl:JobDescription>

</jsdl:JobDefinition>
The expected outcome is “The quick brown cat jumps over the lazy dog”.

The second individual job template would be:
<?xml version="1.0" encoding="UTF-8"?>

<jsdl:JobDefinition

 xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 xmlns:jsdl-posix="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"

 xmlns:sweep="http://schemas.ggf.org/jsdl/2007/04/sweep"

 xmlns:sweepfunc="http://schemas.ogf.org/jsdl/2007/04/sweep/functions">

 <jsdl:JobDescription>

 <jsdl:Application>

 <jsdl-posix:POSIXApplication>

 <jsdl-posix:Executable>/bin/echo</jsdl-posix:Executable>

 <jsdl-posix:Argument>The</jsdl-posix:Argument>

 <jsdl-posix:Argument>quick</jsdl-posix:Argument>

 <jsdl-posix:Argument>brown</jsdl-posix:Argument>

 <jsdl-posix:Argument>dog</jsdl-posix:Argument>

 <jsdl-posix:Argument>jumps</jsdl-posix:Argument>

 <jsdl-posix:Argument>over</jsdl-posix:Argument>

 <jsdl-posix:Argument>the</jsdl-posix:Argument>

 <jsdl-posix:Argument>lazy</jsdl-posix:Argument>

 <jsdl-posix:Argument>dog</jsdl-posix:Argument>

 </jsdl-posix:POSIXApplication>

 </jsdl:Application>

 </jsdl:JobDescription>

</jsdl:JobDefinition>
The expected outcome is “The quick brown dog jumps over the lazy dog”.

The third individual job template would be:
<?xml version="1.0" encoding="UTF-8"?>

<jsdl:JobDefinition

 xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 xmlns:jsdl-posix="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"

 xmlns:sweep="http://schemas.ggf.org/jsdl/2007/04/sweep"

 xmlns:sweepfunc="http://schemas.ogf.org/jsdl/2007/04/sweep/functions">

 <jsdl:JobDescription>

 <jsdl:Application>

 <jsdl-posix:POSIXApplication>

 <jsdl-posix:Executable>/bin/echo</jsdl-posix:Executable>

 <jsdl-posix:Argument>The</jsdl-posix:Argument>

 <jsdl-posix:Argument>quick</jsdl-posix:Argument>

 <jsdl-posix:Argument>brown</jsdl-posix:Argument>

 <jsdl-posix:Argument>bird</jsdl-posix:Argument>

 <jsdl-posix:Argument>jumps</jsdl-posix:Argument>

 <jsdl-posix:Argument>over</jsdl-posix:Argument>

 <jsdl-posix:Argument>the</jsdl-posix:Argument>

 <jsdl-posix:Argument>lazy</jsdl-posix:Argument>

 <jsdl-posix:Argument>dog</jsdl-posix:Argument>

 </jsdl-posix:POSIXApplication>

 </jsdl:Application>

 </jsdl:JobDescription>

</jsdl:JobDefinition>
The expected outcome is “The quick brown bird jumps over the lazy dog”.

Hence the Parameter Sweep specified in section 5.1.1 yields three individual jobs spanning the one-dimensional parameter space {cat, dog, bird}.
5.2 Example 2

This example is a variation of example one in that the parameter space is still one-dimensional: {cat, dog, bird} but its elements are assigned to two arguments to the POSIX application as follows:

<?xml version="1.0" encoding="UTF-8"?>

<jsdl:JobDefinition

 xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 xmlns:jsdl-posix="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"

 xmlns:sweep="http://schemas.ggf.org/jsdl/2007/04/sweep"

 xmlns:sweepfunc="http://schemas.ogf.org/jsdl/2007/04/sweep/functions">

 <jsdl:JobDescription>

 <jsdl:Application>

 <jsdl-posix:POSIXApplication>

 <jsdl-posix:Executable>/bin/echo</jsdl-posix:Executable>

 <jsdl-posix:Argument>The</jsdl-posix:Argument>

 <jsdl-posix:Argument>quick</jsdl-posix:Argument>

 <jsdl-posix:Argument>brown</jsdl-posix:Argument>

 <jsdl-posix:Argument>fox</jsdl-posix:Argument>

 <jsdl-posix:Argument>jumps</jsdl-posix:Argument>

 <jsdl-posix:Argument>over</jsdl-posix:Argument>

 <jsdl-posix:Argument>the</jsdl-posix:Argument>

 <jsdl-posix:Argument>lazy</jsdl-posix:Argument>

 <jsdl-posix:Argument>dog</jsdl-posix:Argument>

 </jsdl-posix:POSIXApplication>

 </jsdl:Application>

 </jsdl:JobDescription>

 <sweep:Sweep>

 <sweep:Assignment>

 <sweep:Parameter>//jsdl-posix:Argument[4]</sweep:Parameter>

 <sweep:Parameter>//jsdl-posix:Argument[9]</sweep:Parameter>

 <sweepfunc:Values>

 <sweepfunc:Value>cat</sweepfunc:Value>

 <sweepfunc:Value>dog</sweepfunc:Value>

 <sweepfunc:Value>bird</sweepfunc:Value>

 </sweepfunc:Values>

 </sweep:Assignment>

 </sweep:Sweep>

</jsdl:JobDefinition>

The Array Job contains again three individual jobs. The expected outcomes of those three jobs would be:

· “The quick brown cat jumps over the lazy cat”

· “The quick brown dog jumps over the lazy dog”

· “The quick brown bird jumps over the lazy bird”
5.3 Example 3

This example illustrates how to assign two independent parameter spaces at the same time in a Parameter Sweep. This example performs a two-dimensional parameter sweep, using the following parameter value pairs: {(black,cat), (grey,dog), blue,bird) }.

<?xml version="1.0" encoding="UTF-8"?>

<jsdl:JobDefinition

 xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 xmlns:jsdl-posix="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"

 xmlns:sweep="http://schemas.ggf.org/jsdl/2007/04/sweep"

 xmlns:sweepfunc="http://schemas.ogf.org/jsdl/2007/04/sweep/functions">

 <jsdl:JobDescription>

 <jsdl:Application>

 <jsdl-posix:POSIXApplication>

 <jsdl-posix:Executable>/bin/echo</jsdl-posix:Executable>

 <jsdl-posix:Argument>The</jsdl-posix:Argument>

 <jsdl-posix:Argument>quick</jsdl-posix:Argument>

 <jsdl-posix:Argument>brown</jsdl-posix:Argument>

 <jsdl-posix:Argument>fox</jsdl-posix:Argument>

 <jsdl-posix:Argument>jumps</jsdl-posix:Argument>

 <jsdl-posix:Argument>over</jsdl-posix:Argument>

 <jsdl-posix:Argument>the</jsdl-posix:Argument>

 <jsdl-posix:Argument>lazy</jsdl-posix:Argument>

 <jsdl-posix:Argument>dog</jsdl-posix:Argument>

 </jsdl-posix:POSIXApplication>

 </jsdl:Application>

 </jsdl:JobDescription>

 <sweep:Sweep>

 <sweep:Assignment>

 <sweep:Parameter>//jsdl-posix:Argument[3]</sweep:Parameter>

 <sweepfunc:Values>

 <sweepfunc:Value>black</sweepfunc:Value>

 <sweepfunc:Value>grey</sweepfunc:Value>

 <sweepfunc:Value>blue</sweepfunc:Value>

 </sweepfunc:Values>

 </sweep:Assignment>

 <sweep:Assignment>

 <sweep:Parameter>//jsdl-posix:Argument[4]</sweep:Parameter>

 <sweepfunc:Values>

 <sweepfunc:Value>cat</sweepfunc:Value>

 <sweepfunc:Value>dog</sweepfunc:Value>

 <sweepfunc:Value>bird</sweepfunc:Value>

 </sweepfunc:Values>

 </sweep:Assignment>

 </sweep:Sweep>

</jsdl:JobDefinition>

The Array Job contains again three individual jobs. The expected outcomes of those three jobs would be:

· “The quick black cat jumps over the lay dog”

· “The quick grey dog jumps over the lay dog”

· “The quick blue bird jumps over the lay dog”
5.4 Example 4

This example illustrates how to assign two otherwise independent parameter spaces to two different [parameter] elements.

<?xml version="1.0" encoding="UTF-8"?>

<jsdl:JobDefinition

 xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 xmlns:jsdl-posix="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"

 xmlns:sweep="http://schemas.ggf.org/jsdl/2007/04/sweep"

 xmlns:sweepfunc="http://schemas.ogf.org/jsdl/2007/04/sweep/functions">

 <jsdl:JobDescription>

 <jsdl:Application>

 <jsdl-posix:POSIXApplication>

 <jsdl-posix:Executable>/bin/echo</jsdl-posix:Executable>

 <jsdl-posix:Argument>The</jsdl-posix:Argument>

 <jsdl-posix:Argument>quick</jsdl-posix:Argument>

 <jsdl-posix:Argument>brown</jsdl-posix:Argument>

 <jsdl-posix:Argument>fox</jsdl-posix:Argument>

 <jsdl-posix:Argument>jumps</jsdl-posix:Argument>

 <jsdl-posix:Argument>over</jsdl-posix:Argument>

 <jsdl-posix:Argument>the</jsdl-posix:Argument>

 <jsdl-posix:Argument>lazy</jsdl-posix:Argument>

 <jsdl-posix:Argument>dog</jsdl-posix:Argument>

 </jsdl-posix:POSIXApplication>

 </jsdl:Application>

 </jsdl:JobDescription>

 <sweep:Sweep>

 <sweep:Assignment>

 <sweep:Parameter>//jsdl-posix:Argument[3]</sweep:Parameter>

 <sweepfunc:Values>

 <sweepfunc:Value>black</sweepfunc:Value>

 <sweepfunc:Value>grey</sweepfunc:Value>

 <sweepfunc:Value>blue</sweepfunc:Value>

 </sweepfunc:Values>

 </sweep:Assignment>

 </sweep:Sweep>

 <sweep:Sweep>

 <sweep:Assignment>

 <sweep:Parameter>//jsdl-posix:Argument[4]</sweep:Parameter>

 <sweepfunc:Values>

 <sweepfunc:Value>cat</sweepfunc:Value>

 <sweepfunc:Value>dog</sweepfunc:Value>

 <sweepfunc:Value>bird</sweepfunc:Value>

 </sweepfunc:Values>

 </sweep:Assignment>

 </sweep:Sweep>

</jsdl:JobDefinition>

The Array Job contains six individual jobs. The expected outcomes of those six jobs would be:

· “The quick black fox jumps over the lay dog”

· “The quick grey fox jumps over the lay dog”

· “The quick blue fox jumps over the lay dog”

· “The quick brown cat jumps over the lay dog”

· “The quick brown dog jumps over the lay dog”

· “The quick brown bird jumps over the lay dog”

5.5 Example 5

This example illustrates the scoping of the [parameter] elements. It is very similar to example 4, except that in both [sweep] elements the same XML element is selected in the [parameter] element. This is valid because the scope of the two [parameter] elements is different:

<?xml version="1.0" encoding="UTF-8"?>

<jsdl:JobDefinition

 xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 xmlns:jsdl-posix="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"

 xmlns:sweep="http://schemas.ggf.org/jsdl/2007/04/sweep"

 xmlns:sweepfunc="http://schemas.ogf.org/jsdl/2007/04/sweep/functions">

 <jsdl:JobDescription>

 <jsdl:Application>

 <jsdl-posix:POSIXApplication>

 <jsdl-posix:Executable>/bin/echo</jsdl-posix:Executable>

 <jsdl-posix:Argument>The</jsdl-posix:Argument>

 <jsdl-posix:Argument>quick</jsdl-posix:Argument>

 <jsdl-posix:Argument>brown</jsdl-posix:Argument>

 <jsdl-posix:Argument>fox</jsdl-posix:Argument>

 <jsdl-posix:Argument>jumps</jsdl-posix:Argument>

 <jsdl-posix:Argument>over</jsdl-posix:Argument>

 <jsdl-posix:Argument>the</jsdl-posix:Argument>

 <jsdl-posix:Argument>lazy</jsdl-posix:Argument>

 <jsdl-posix:Argument>dog</jsdl-posix:Argument>

 </jsdl-posix:POSIXApplication>

 </jsdl:Application>

 </jsdl:JobDescription>

 <sweep:Sweep>

 <sweep:Assignment>

 <sweep:Parameter>//jsdl-posix:Argument[4]</sweep:Parameter>

 <sweepfunc:Values>

 <sweepfunc:Value>spider</sweepfunc:Value>

 <sweepfunc:Value>ant</sweepfunc:Value>

 <sweepfunc:Value>butterfly</sweepfunc:Value>

 </sweepfunc:Values>

 </sweep:Assignment>

 </sweep:Sweep>

 <sweep:Sweep>

 <sweep:Assignment>

 <sweep:Parameter>//jsdl-posix:Argument[4]</sweep:Parameter>

 <sweepfunc:Values>

 <sweepfunc:Value>cat</sweepfunc:Value>

 <sweepfunc:Value>dog</sweepfunc:Value>

 <sweepfunc:Value>bird</sweepfunc:Value>

 </sweepfunc:Values>

 </sweep:Assignment>

 </sweep:Sweep>

</jsdl:JobDefinition>

The Array Job contains six individual jobs. The expected outcomes of those six jobs would be:

· “The quick brown spider jumps over the lay dog”

· “The quick brown ant jumps over the lay dog”

· “The quick brown butterfly jumps over the lay dog”

· “The quick brown cat jumps over the lay dog”

· “The quick brown dog jumps over the lay dog”

· “The quick brown bird jumps over the lay dog”
5.6 Example 6

This example illustrates the use of nested [sweep] elements. It performs a two-dimensional parameter sweep over the parameter spaces {black, grey, blue} and {cat, dog, bird}. The resulting Array Job covers the complete set of permutations over the two parameter spaces. The submitted JSDL Job template looks as follows.

<?xml version="1.0" encoding="UTF-8"?>

<jsdl:JobDefinition

 xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 xmlns:jsdl-posix="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"

 xmlns:sweep="http://schemas.ggf.org/jsdl/2007/04/sweep"

 xmlns:sweepfunc="http://schemas.ogf.org/jsdl/2007/04/sweep/functions">

 <jsdl:JobDescription>

 <jsdl:Application>

 <jsdl-posix:POSIXApplication>

 <jsdl-posix:Executable>/bin/echo</jsdl-posix:Executable>

 <jsdl-posix:Argument>The</jsdl-posix:Argument>

 <jsdl-posix:Argument>quick</jsdl-posix:Argument>

 <jsdl-posix:Argument>brown</jsdl-posix:Argument>

 <jsdl-posix:Argument>fox</jsdl-posix:Argument>

 <jsdl-posix:Argument>jumps</jsdl-posix:Argument>

 <jsdl-posix:Argument>over</jsdl-posix:Argument>

 <jsdl-posix:Argument>the</jsdl-posix:Argument>

 <jsdl-posix:Argument>lazy</jsdl-posix:Argument>

 <jsdl-posix:Argument>dog</jsdl-posix:Argument>

 </jsdl-posix:POSIXApplication>

 </jsdl:Application>

 </jsdl:JobDescription>

 <sweep:Sweep>

 <sweep:Assignment>

 <sweep:Parameter>//jsdl-posix:Argument[3]</sweep:Parameter>

 <sweepfunc:Values>

 <sweepfunc:Value>black</sweepfunc:Value>

 <sweepfunc:Value>grey</sweepfunc:Value>

 <sweepfunc:Value>blue</sweepfunc:Value>

 </sweepfunc:Values>

 </sweep:Assignment>

 <sweep:Sweep>

 <sweep:Assignment>

 <sweep:Parameter>

 //jsdl-posix:Argument[4]

 </sweep:Parameter>

 <sweepfunc:Values>

 <sweepfunc:Value>cat</sweepfunc:Value>

 <sweepfunc:Value>dog</sweepfunc:Value>

 <sweepfunc:Value>bird</sweepfunc:Value>

 </sweepfunc:Values>

 </sweep:Assignment>

 </sweep:Sweep>

 </sweep:Sweep>

</jsdl:JobDefinition>

The Array Job contains nine individual jobs. The expected outcomes of those nine jobs would be:

· “The quick black cat jumps over the lay dog”

· “The quick black dog jumps over the lay dog”

· “The quick black bird jumps over the lay dog”

· “The quick grey cat jumps over the lay dog”

· “The quick grey dog jumps over the lay dog”

· “The quick grey bird jumps over the lay dog”

· “The quick blue cat jumps over the lay dog”

· “The quick blue dog jumps over the lay dog”

· “The quick blue bird jumps over the lay dog”

5.7 Example 7

This example illustrates illegal scoping of the [parameter] element. It is illegal because the two infringing [parameter] elements reside within the same [sweep] element even though they are children of different [assignment] elements.

<?xml version="1.0" encoding="UTF-8"?>

<jsdl:JobDefinition

 xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 xmlns:jsdl-posix="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"

 xmlns:sweep="http://schemas.ggf.org/jsdl/2007/04/sweep"

 xmlns:sweepfunc="http://schemas.ogf.org/jsdl/2007/04/sweep/functions">

 <jsdl:JobDescription>

 <jsdl:Application>

 <jsdl-posix:POSIXApplication>

 <jsdl-posix:Executable>/bin/echo</jsdl-posix:Executable>

 <jsdl-posix:Argument>The</jsdl-posix:Argument>

 <jsdl-posix:Argument>quick</jsdl-posix:Argument>

 <jsdl-posix:Argument>brown</jsdl-posix:Argument>

 <jsdl-posix:Argument>fox</jsdl-posix:Argument>

 <jsdl-posix:Argument>jumps</jsdl-posix:Argument>

 <jsdl-posix:Argument>over</jsdl-posix:Argument>

 <jsdl-posix:Argument>the</jsdl-posix:Argument>

 <jsdl-posix:Argument>lazy</jsdl-posix:Argument>

 <jsdl-posix:Argument>dog</jsdl-posix:Argument>

 </jsdl-posix:POSIXApplication>

 </jsdl:Application>

 </jsdl:JobDescription>

 <sweep:Sweep>

 <sweep:Assignment>

 <sweep:Parameter>//jsdl-posix:Argument[3]</sweep:Parameter>
 <sweepfunc:Values>

 <sweepfunc:Value>black</sweepfunc:Value>

 <sweepfunc:Value>grey</sweepfunc:Value>

 <sweepfunc:Value>blue</sweepfunc:Value>

 </sweepfunc:Values>

 </sweep:Assignment>

 <sweep:Assignment>

 <sweep:Parameter>//jsdl-posix:Argument[3]</sweep:Parameter>

 <sweepfunc:Values>

 <sweepfunc:Value>cat</sweepfunc:Value>

 <sweepfunc:Value>dog</sweepfunc:Value>

 <sweepfunc:Value>bird</sweepfunc:Value>

 </sweepfunc:Values>

 </sweep:Assignment>

 </sweep:Sweep>

</jsdl:JobDefinition>
5.8 Example 8

This example illustrates illegal scoping of the [parameter] element. It is illegal because the two infringing [parameter] elements reside in the same nesting [sweep] element path and are hence sharing the same scope.

<?xml version="1.0" encoding="UTF-8"?>

<jsdl:JobDefinition

 xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"

 xmlns:jsdl-posix="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"

 xmlns:sweep="http://schemas.ggf.org/jsdl/2007/04/sweep"

 xmlns:sweepfunc="http://schemas.ogf.org/jsdl/2007/04/sweep/functions">

 <jsdl:JobDescription>

 <jsdl:Application>

 <jsdl-posix:POSIXApplication>

 <jsdl-posix:Executable>/bin/echo</jsdl-posix:Executable>

 <jsdl-posix:Argument>The</jsdl-posix:Argument>

 <jsdl-posix:Argument>quick</jsdl-posix:Argument>

 <jsdl-posix:Argument>brown</jsdl-posix:Argument>

 <jsdl-posix:Argument>fox</jsdl-posix:Argument>

 <jsdl-posix:Argument>jumps</jsdl-posix:Argument>

 <jsdl-posix:Argument>over</jsdl-posix:Argument>

 <jsdl-posix:Argument>the</jsdl-posix:Argument>

 <jsdl-posix:Argument>lazy</jsdl-posix:Argument>

 <jsdl-posix:Argument>dog</jsdl-posix:Argument>

 </jsdl-posix:POSIXApplication>

 </jsdl:Application>

 </jsdl:JobDescription>

 <sweep:Sweep>

 <sweep:Assignment>

 <sweep:Parameter>//jsdl-posix:Argument[3]</sweep:Parameter>

 <sweepfunc:Values>

 <sweepfunc:Value>black</sweepfunc:Value>

 <sweepfunc:Value>grey</sweepfunc:Value>

 <sweepfunc:Value>blue</sweepfunc:Value>

 </sweepfunc:Values>

 </sweep:Assignment>

 <sweep:Sweep>

 <sweep:Assignment>

 <sweep:Parameter>

 //jsdl-posix:Argument[3]

 </sweep:Parameter>

 <sweepfunc:Values>

 <sweepfunc:Value>cat</sweepfunc:Value>

 <sweepfunc:Value>dog</sweepfunc:Value>

 <sweepfunc:Value>bird</sweepfunc:Value>

 </sweepfunc:Values>

 </sweep:Assignment>

 </sweep:Sweep>

 </sweep:Sweep>

</jsdl:JobDefinition>

6. Security Considerations
This document defines a language that can be used to declare the member jobs of a Parameter Sweep. It does not define any security related semantics such as format and possible contents of security tokens.

Having said that, security as such is, even though an important part of Grids, orthogonal to the contents of this document.

7. Contributors

Michel Drescher

Fujitsu Laboratories of Europe, Ltd.

Hayes Park Central, Hayes End Road

Hayes, Middlesex UB4 8FE

United Kingdom
Ali Anjomshoaa
, (Independent)
<Other active document authors please put your contact information here>
The authors wish to thank everybody who contributed for their valuable comments including, but not limited to and in no particular order, Andreas Savva, the NAREGI project as a whole, David Snelling, Hans-Christian Hoppe, Jay Unger, Steven McGough.

8. Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this recommendation. Please address the information to the OGF Executive Director.

9. Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the OGF disclaims all warranties, express or implied, including but not limited to any warranty that the use of the information herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular purpose.

10. Full Copyright Notice

Copyright (C) Open Grid Forum 2006, 2007. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the OGF or other organizations, except as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the OGF Document process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors or assignees.

11. References

[BRADNER] Bradner, S. et al Key Words for Use in RFCs to Indicate Requirement Levels, RFC 2119. March 1997.

[BRAY] Bray, T. et al Namespaces in XML 1.0, W3C Recommendation. March 1997.

[INFOSET] Cowan, J. et al XML Information Set (Second Edition), W3C Recommendation. February 2004.
[JSDL] Anjomshoaa, A. et al Job Submission Description Language (JSDL) Specification, Version 1.0, GFD.56. November 2005.
[SCHEMA1] Thompson, H. et al XML Schema Part 1: Structures (Second Edition), W3C Recommendation. October 2004.
[SCHEMA2] Biron, P. et al XML Schema Part 2: Datatypes (Second Edition) , W3C Recommendation. October 2004.
[WSSEC] Nadalin, A. et al Web Services Security: SOAP Message Security 1.1, OASIS Standard. February 2006.
[XPATH] Berglund, A. et al XML Path Language (XPath) 2.0, W3C Recommendation. January 2007.
Appendix A. Normative XML Schema for the Parameter Sweep Information Set

The following defines the normative XML Schema for the Parameter Sweep Information Set as defined in section 2.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="http://schemas.ggf.org/jsdl/2007/04/sweep"

 xmlns:sweep="http://schemas.ggf.org/jsdl/2007/04/sweep"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified" version="1">

 <xsd:element name="Function" abstract="true"/>

 <xsd:element name="Parameter" type="xsd:string"/>

 <xsd:element name="Assignment">

 <xsd:complexType mixed="false">

 <xsd:sequence>

 <xsd:element ref="sweep:Parameter"

 minOccurs="1" maxOccurs="unbounded"/>

 <xsd:element ref="sweep:Function"

 minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:complexType name="Sweep_Type" mixed="false">

 <xsd:sequence>

 <xsd:element ref="sweep:Assignment"

 minOccurs="1" maxOccurs="unbounded"/>

 <xsd:element ref="sweep:Sweep"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="Sweep" type="sweep:Sweep_Type"/>

</xsd:schema>

Appendix B. Normative XML Schema for the Parameter Sweep Functions Information Set

The following defines the normative XML Schema for the Parameter Sweep Functions Information Set as defined in section 3.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="http://schemas.ggf.org/jsdl/2007/04/sweep/functions"

 xmlns:sweep="http://schemas.ggf.org/jsdl/2007/04/sweep"

 xmlns:sweepfunc="http://schemas.ggf.org/jsdl/2007/04/sweep/functions"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified" version="1">

 <xsd:import

 namespace="http://schemas.ggf.org/jsdl/2007/04/sweep"

 schemaLocation="./sweep.xsd"/>

 <xsd:element name="Values" substitutionGroup="sweep:Function">

 <xsd:complexType mixed="false">

 <xsd:sequence>

 <xsd:element name="Value" type="xsd:anyType"

 nillable="false"

 minOccurs="1" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="Loop" substitutionGroup="sweep:Function">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="Exception" type="xsd:positiveInteger"

 maxOccurs="unbounded" minOccurs="0" />

 </xsd:sequence>

 <xsd:attribute name="start" type="xsd:integer"

 use="required"/>

 <xsd:attribute name="end" type="xsd:integer"

 use="required"/>

 <xsd:attribute name="step" use="optional"

 type="xsd:positiveInteger" default="1"/>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

[image: image1.png]

Prefix�
Namespace�
�
jsdl�
http://schemas.ggf.org/jsdl/2005/11/jsdl�
�
jsdl-posix�
http://schemas.ggf.org/jsdl/2005/11/jsdl-posix�
�
sweep�
http://schemas.ggf.org/jsdl/2007/04/sweep�
�
sweepfunc�
http://schemas.ogf.org/jsdl/2007/04/sweep/functions�
�
xsd�
http://www.w3.org/2001/XMLSchema�
�

� The Information Set elements named [sequence], [item], [node] and [atomic value] are defined in XPath 2.0 � REF XPATH \h ��[XPATH]�� REF XPATH \h ��� REF XPATH \h ��.

� Hence, it is perfectly allowable to select only fractions of the values of the XML elements or XML attributes that are specified in the target JSDL Job Template, e.g. by using the XPath 2.0 function “fn:substring()”.

�Does this make sense? It may need rewording again.

MDr: Yes, this definitely needs rewording

�Searching for “{any}” in the doc doesn’t find any instances! Can we delete this sentence? Or do we need it as boiler-plate just in case we insert {any} in future revisions/versions?

MDr: I think we should keep it in even though we do not currently use it. But we quite likely will need it if a broader audience wants to stick their extension into this extension…

�Should we use ‘types’ instead of instances? Concrete instances sounds incorrect and make me imagine running instances of functions. Change to ‘types’?

�types?

�types?

�Ah! Overloaded. How about ‘[basic] data types’ to distinguish from ‘function types’?

�Change to ‘data types’?

�Again, I have trouble with this. Change to types? So that this sentence would read: “Function types define complex data types and how their values are set“.

�I’ve just realised that this notation for references and for Information Set definitions is confusing. How about we use numbers for the references, i.e. [1], [2], etc. rather than a reference name as in this case.

MDr: Dunno – the non-numeric reference style is the default of this document; the distinction is that information set elements are in mixed case while references are uppercase only.

�I’m not sure that this is clear! Probably needs re-writing. Best check with third party reviewer that it makes sense.

�This sounds like implementation to me! I don't like the whole accumulation business. Do we really need to specify this? Just a sanity check that this is really needed and if we delete this paragraph, the spec is not left ambiguous and open to interpretation.

MDr: The [sweep] element is all about coordinating which value assignments together constitute a JADL Job Template as part of a Parameter Sweep. We ought to describe this somehow: The semantics must be normative, the description how to reach this may be informative.

�This is not clear to me! What is this all about?

MDr: Think of nested loops and the scope of their index variables.

�I don’t understand what this means! (

�I think that we need to work on this definition.

�For example?

author@email.address

2

