
GWD-R
DRMAA-WG
drmaa-wg@ogf.org

Peter Tröger, Hasso-Plattner-Institute
(Corresponding Author)

Roger Brobst, Cadence Design Systems
Daniel Gruber, Univa

Mariusz Mamoński, PSNC
Daniel Templeton, Cloudera

June 2011

1

Distributed Resource Management Application API Version 22

(DRMAA) - Draft 73

Status of This Document4

Group Working Draft Recommendation (GWD-R)5

(See footnote)
1

6

Obsoletes7

This document obsoletes GFD-R.022 [7], GFD-R-P.130 [9], and GWD-R.133 [8].8

Copyright Notice9

Copyright c© Open Grid Forum (2005-2011). Some Rights Reserved. Distribution is unlimited.10

Trademark11

All company, product or service names referenced in this document are used for identification purposes only12

and may be trademarks of their respective owners.13

Abstract14

This document describes the Distributed Resource Management Application API Version 2 (DRMAA), which15

provides a generalized API to Distributed Resource Management (DRM) systems in order to facilitate the16

development of portable application programs and high-level libraries for such systems. DRMAA defines17

interfaces for a tightly coupled, but still portable access by abstracting the fundamental functions available in18

the majority of DRM systems. The scope is limited to job submission, job control, reservation management,19

and retrieval of job and machine monitoring information.20

This document acts as root specification for the abstract API concepts and the behavioral rules that must be21

fulfilled by a DRMAA-compliant implementation. The programming language representation of the abstract22

API concepts must be formulated by a separate language binding specification derived from this document.23

The intended audience for this specification are DRMAA language binding designers, DRM system vendors,24

high-level API designers and meta-scheduler architects. End users are expected to rely on product-specific25

documentation for the DRMAA API implementation in their particular programming language.26

1 This is the non-normative annotated version of the specification with line numbers. It includes historical information
concerning the content and why features were included or discarded by the working group. It also emphasizes the consequences
of some aspects that may not be immediately apparent. This document in only intended for internal working group discussions.

drmaa-wg@ogf.org 1

mailto:drmaa-wg@ogf.org
http://www.drmaa.org/
http://www.drmaa.org/
mailto:drmaa-wg@ogf.org

GWD-R June 2011

Contents27

1 Introduction . 428

1.1 Notational Conventions . 429

1.2 Language Bindings . 530

1.3 Slots and Queues . 631

1.4 Job Categories . 632

1.5 Multithreading . 633

2 Namespace . 734

3 Common Type Definitions . 735

4 Enumerations . 836

4.1 OperatingSystem enumeration . 837

4.2 CpuArchitecture enumeration . 1038

4.3 ResourceLimitType enumeration . 1039

4.4 JobTemplatePlaceholder enumeration . 1240

4.5 DrmaaCapability . 1241

5 Extensible Data Structures . 1342

5.1 QueueInfo structure . 1443

5.2 Version structure . 1444

5.3 MachineInfo structure . 1545

5.4 SlotInfo structure . 1746

5.5 JobInfo structure . 1747

5.6 ReservationInfo structure . 2148

5.7 JobTemplate structure . 2249

5.8 ReservationTemplate structure . 3050

5.9 DrmaaReflective Interface . 3351

6 Common Exceptions . 3452

7 The DRMAA Session Concept . 3653

7.1 SessionManager Interface . 3654

8 Working with Jobs . 4055

8.1 The DRMAA State Model . 4056

8.2 JobSession Interface . 4257

8.3 DrmaaCallback Interface . 4558

8.4 Job Interface . 4659

8.5 JobArray Interface . 4860

8.6 The DRMAA INDEX VAR environment variable . 5061

9 Working with Advance Reservation . 5062

9.1 ReservationSession Interface . 5063

9.2 Reservation Interface . 5164

10 Monitoring the DRM System . 5265

10.1 MonitoringSession Interface . 5266

11 Annex A: Complete DRMAA IDL Specification . 5467

12 Security Considerations . 6068

13 Contributors . 6169

14 Intellectual Property Statement . 6270

drmaa-wg@ogf.org 2

mailto:drmaa-wg@ogf.org

GWD-R June 2011

15 Disclaimer . 6271

16 Full Copyright Notice . 6272

17 References . 6273

drmaa-wg@ogf.org 3

mailto:drmaa-wg@ogf.org

GWD-R June 2011

1 Introduction74

This document describes the Distributed Resource Management Application API Version 2 (DRMAA) in-75

terface semantics in a generalized way by using the OMG Interface Definition Language (IDL) [4] syntax for76

a language-agnostic description. Based on this abstract specification, language binding standards have to77

be designed that map the described concepts into a library interface for a particular programming language78

(e.g. C, Java, Python). While this document has the responsibility to ensure consistent API semantics over79

all possible DRMAA implementations, the language binding has the responsibility to ensure source-code80

portability for DRMAA applications on different DRM systems.81

An effort has been made to choose an API layout that is not unique to a particular language. However, in82

some cases, various languages disagree over some points. In those cases, the most meritous approach was83

taken, irrespective of language.84

There are other relevant OGF standards in the area of job submission and monitoring. An in-depth compar-85

ison and positioning of the obsoleted first version of the DRMAA [8] specification was provided by another86

publication [10]. This document was created in close collaboration with the OGF SAGA and the OGF OCCI87

working group.88

The DRMAA specification is based on the following stakeholders:89

• Distributed resource management system / DRM system / DRMS : Any system that supports the con-90

cept of distributing computational jobs on execution resources through the help of a central scheduling91

entity. Examples are multi-processor systems controlled by a operating system scheduler, cluster sys-92

tems with multiple machines controlled by a central scheduler software, grid systems, or cloud systems93

with a job concept.94

• DRMAA implementation, DRMAA library : The implementation of a DRMAA language binding spec-95

ification with the functional semantics described in this document. The resulting artifact is expected96

to be a library that is deployed together with the DRM system that is wrapped by the particular97

implementation.98

• (DRMAA-based) application: Software that utilizes the DRMAA implementation for gaining access to99

one or multiple DRM systems in a standardized way.100

• Submission host : An execution resource in the DRM system that runs the DRMAA-based application.101

A submission host MAY also be able to act as execution host.102

• Execution host : An execution resource in the DRM system that can run a job submitted through the103

DRMAA implementation.104

Provide
mapping
to GLUE
(GFD.147)

105

1.1 Notational Conventions106

In this document, IDL language elements and definitions are represented in a fixed-width font.107

The key words “MUST” “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD108

NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described in RFC 2119 [1].109

Memory quantities are expressed in kilobyte (KB). 1 kilobyte equals 1024 bytes.110

drmaa-wg@ogf.org 4

mailto:drmaa-wg@ogf.org

GWD-R June 2011

Parts of the specification which are normative for derived language binding specifications only are graphically
marked as shaded box.

(See footnote)
2 .111

1.2 Language Bindings112

A language binding specification derived from this document MUST define a mapping between the IDL
constructs and programming language constructs, with focus on source code portability for the resulting
DRMAA-based applications.

A language binding SHOULD NOT rely completely on the OMG language mapping standards available for
many programming languages, since they have a huge overhead of irrelevant CORBA-related mapping rules.
Therefore, language binding authors must carefully decide if a binding decision reflects a natural and simple
mapping of the intended purpose for the DRMAA interfaces. The binding SHOULD reuse OMG value type
mappings (e.g. IDL long long to Java long), and SHOULD define custom mappings for the other types.
The language binding MUST use the described concept mapping in a consistent manner for its overal API
layout.

Due to the usage of IDL, all method groups for a particular purpose (e.g. job control) are described in terms
of interfaces, and not classes. The mapping to a class concept depends on the specific language-mapping
rules.

It may be the case that IDL constructs do not map directly to any language construct. In this case it MUST
be ensured that the chosen mapping retains the intended semantic of the DRMAA interface definition.

Access to scalar attributes (string, boolean, long) MUST operate in a pass-by-value mode. A language
binding must ensure that this behavior is always fulfilled. For non-scalar attributes, the language binding
MUST specify a consistent access strategy for all these attributes – either pass-by-value or pass-by-reference
– according to the use cases of language binding implementations.

This specification tries to consider the possibility of a Remote Procedure Call (RPC) scenario in a DRMAA-
conformant language mapping. It SHOULD therefore be ensured that the programming language type for
an IDL struct definition supports the serialization and comparison of instances. These capabilities should
be accomplished through whatever mechanism is most natural for the programming language.

A language binding MUST define a way to declare an invalid value (UNSET). In case, a definition per data
type needs to be provided. Evaluating an UNSET boolean value MUST result in a negative result, e.g. for
JobTemplate::emailOnStarted.

(See footnote)
3

113

2The usage of kikibyte as memory quantity unit, as well as the usage of bytes as in JSDL, was rejected by the group (conf
call Apr. 13th 2011)

3 The concept of a UNSET value was decided on a conf call (Aug 25th 2010). Boolean in C can use custom enumeration
(TRUE, FALSE, INVALID) or pointer to static values. A numerical UNSET in C should use a magic number, since all long
attributes are unsigned, it could be MIN INT. With Python, just use None. For Java, Dan has an idea.

drmaa-wg@ogf.org 5

mailto:drmaa-wg@ogf.org

GWD-R June 2011

1.3 Slots and Queues114

DRMAA supports the notion of slots and queues as resources of a DRM system. A DRMAA application115

can request them in advance reservation and job submission. However, slots and queues SHALL be opaque116

concepts from the viewpoint of a DRMAA implementation, meaning that the requirements given by the117

application are just passed through to the DRM system. This is reasoned by the large variation in interpreting118

that concepts in the different DRM systems, which makes it impossible to define a common understanding119

on the level of the DRMAA API.120

(See footnote)
4

121

1.4 Job Categories122

DRMAA facilitates writing DRM-enabled applications even though the deployment properties, in particular123

the configuration of the DRMS, cannot be known in advance. This is realized by a set of standardized124

attributes that can be specified for job submission or advance reservation.125

One of these attributes is the job category, which allows to give an indication about the nature of the job at126

execution time. Examples are parallel MPI jobs, OpenMP jobs, jobs targeting specific accelerator hardware,127

or jobs demanding managed runtime environments (e.g. Java). For bulk job submissions, the category is128

expected to be valid for each of the jobs created.129

Job categories typically map to site-specific reservation or submission options. Each category expresses130

a particular type of job execution that demands site-specific configuration such as example path settings,131

environment variables, or application starters such as MPIRUN. This mapping SHOULD take place at132

submission time of the job or advance reservation.133

A non-normative recommendation of category names is maintained at:134

http://www.drmaa.org/jobcategories/135

Implementations SHOULD use the recommended names, if applicable. In case the name is not taken from136

the non-normative recommendation, it should be self-explanatory for the user so that she can understand137

the implications on job execution.138

Implementations MAY provide a library configuration facility, which allows a site administrator to link job139

category names with specific product- and site-specific configuration options, such as submission wrapper140

shell scripts.141

The order of precedence between the job category and other attributes is implementation-specific. It is142

RECOMMENDED to overrule job / reservation settings with a conflicting jobCategory setting.143

(See footnote)
5

144

1.5 Multithreading145

High-level APIs such as SAGA [3] are expected to utilize DRMAA for asynchronous operations, based on the146

assumption that re-entrancy is supported by DRMAA implementations. For this reason, implementations147

4 As one example, queues can be either treated as representation of execution hosts (Sun Grid Engine) or as central waiting
line located at the scheduler (LSF).

5There was a discussion on supporting the specification of multiple categories at the same time. Since this would put more
burden on the implementation in terms of conflict resolving, we avoided that intentionally. This allows to map categories simply
to some additional job submission command line arguments, similar to the old nativeSpecification thing.

drmaa-wg@ogf.org 6

http://www.drmaa.org/jobcategories/
mailto:drmaa-wg@ogf.org

GWD-R June 2011

SHOULD ensure the proper functioning of the library in case of re-entrant library calls. A DRMAA library148

SHOULD allow a multithreaded application to use DRMAA interfaces without any explicit synchronization149

among the application threads. DRMAA implementers should document their work as thread safe if they150

meet the above criteria. Providers of non-thread-safe DRMAA implementations should document all the151

interfaces that are thread unsafe and provide a list of interfaces and their dependencies on external thread152

unsafe routines.153

2 Namespace154

The DRMAA interfaces and structures are encapsulated by a naming scope, which avoids conflicts with155

other APIs used in the same application.156

module DRMAA2 {157

Language binding authors MUST map the IDL module encapsulation to an according package or namespace
concept and MAY change the module name according to programming language conventions.

(See footnote)
6

158

3 Common Type Definitions159

The DRMAA specification defines some custom types to express special value semantics not expressible in160

IDL.161

typedef sequence <string > OrderedStringList;162

typedef sequence <string > StringList;163

typedef sequence <Job > JobList;164

typedef sequence <QueueInfo > QueueInfoList;165

typedef sequence <MachineInfo > MachineInfoList;166

typedef sequence <SlotInfo > SlotInfoList;167

typedef sequence <Reservation > ReservationList;168

typedef sequence < sequence <string ,2> > Dictionary;169

typedef string AbsoluteTime;170

typedef long long TimeAmount;171

native ZERO_TIME;172

native INFINITE_TIME;173

native NOW;174

OrderedStringList: An unbounded list of strings, which supports element insertion, element deletion, and175

iteration over elements while keeping an element order.176

StringList: An unbounded list of strings, without any demand on element order.177

JobList: An unbounded list of Job instances, without any demand on element order.178

JobArrayList: An unbounded list of JobArray instances, without any demand on element order.179

6 Comparison to DRMAA v1.0: The IDL module name was change to DRMAA2, in order to intentionally break backward
compatibility of the interface.

drmaa-wg@ogf.org 7

mailto:drmaa-wg@ogf.org

GWD-R June 2011

QueueInfoList: An unbounded list of QueueInfo instances, without any demand on element order.180

MachineInfoList: An unbounded list of MachineInfo instances, without any demand on element order.181

SlotInfoList: An unbounded list of SlotInfo instances, without any demand on element order.182

ReservationList: An unbounded list of Reservation instances, without any demand on element order.183

Dictionary: An unbounded dictionary type for storing key-value pairs, without any demand on element184

order.185

AbsoluteTime: Expression of a point in time, with a resolution at least to seconds.186

TimeAmount: Expression of an amount of time, with a resolution at least to seconds.187

ZERO TIME: A constant value of type TimeAmount that expresses a zero amount of time.188

INFINITE TIME: A constant value of type TimeAmount that expresses an infinite amount of time.189

NOW: A constant value of type AbsoluteTime that stands for the point in time at which it is evaluated190

by some function.191

A language binding MUST replace these type definitions with semantically equal reference or value types in
the according language. This may include the creation of new complex language types for one or more of the
above concepts. The language binding MUST define a consistent mapping on module level, and a mechanism
for obtaining the RFC822 string representation from a given AbsoluteTime or TimeAmount instance.

(See footnote)
7

192

4 Enumerations193

Language bindings SHOULD define numerical values for all DRMAA constants and enumeration members,
in order to foster binary portability of DRMAA-based applications.

4.1 OperatingSystem enumeration194

DRMAA supports the identification of an operating system installation on execution resources in the DRM195

system. The OperatingSystem enumeration is used as data type both in the advance reservation and the196

DRM system monitoring functionalities. It defines a set of standardized identifiers for operating system197

types. The list is a shortened version of the according CIM Schema [6]. It includes only operating systems198

that are supported by the majority of DRM systems available at the time of writing:199

enum OperatingSystem {200

AIX , BSD , LINUX , HPUX , IRIX , MACOS , SUNOS , TRUE64 , UNIXWARE , WIN ,201

WINNT , OTHER_OS };202

AIX: AIX Unix by IBM.203

BSD: All operating system distributions based on the BSD kernel.204

7 The PartialTimestamp functionality from DRMAA 1.0 was completely removed. Absolute date and time values are now
expressed as RFC822 conformant data items with stringification support (conf. call Mar 31st 2009). String list for job identifiers
are replaced by Job object lists (F2F meeting July 2009)

drmaa-wg@ogf.org 8

mailto:drmaa-wg@ogf.org

GWD-R June 2011

LINUX: All operating system distributions based on the Linux kernel.205

HPUX: HP-UX Unix by Hewlett-Packard.206

IRIX: The IRIX operating system by SGI.207

MACOS: The MAC OS X operating system by Apple.208

SUNOS: SunOS or Solaris operating system by Sun / Oracle.209

TRUE64: True64 Unix by Hewlett-Packard, or DEC Digital Unix, or DEC OSF/1 AXP.210

UNIXWARE: UnixWare system by SCO group.211

WIN: Windows 95, Windows 98, Windows ME.212

WINNT: Microsoft Windows operating systems based on the NT kernel213

OTHER OS: An operating system type not specified in this list.214

Implementations SHOULD NOT add new operating system identifiers to this enumeration, even if they are215

supported by the underlying DRM system.216

The operating system information is only useful in conjunction with version information (see Section 10.1),217

which is also the reporting approach taken in most DRM systems. Examples:218

• The Apple MacOS X operating system commonly denoted as “Snow Leopard” would be reported as219

“MACOS” with the version structure [“10”,“6”]220

• The Microsoft Windows 7 operating system would be reported as “WINNT” with the version infor-221

mation [“6”,“1”], which is the internal version number reported by the Windows API.222

• All Linux distributions would be reported as operating system type “LINUX” with the major revision223

of the kernel, such as [“2”,“6”].224

• The Solaris operating system is reported as “SUNOS”, together with the internal version number, e.g.225

[“5”,“10”] for Solaris 10.226

The DRMAA OperatingSystem enumeration can be mapped to other high-level APIs. Table 1 gives a227

non-normative set of examples.228

DRMAA OperatingSystem value JSDL jsdl:OperatingSystemTypeEnumeration value
HPUX HPUX
LINUX LINUX
IRIX IRIX

TRUE64 Tru64 UNIX, OSF
MACOS MACOS
SUNOS SunOS, SOLARIS

WIN WIN95, WIN98, Windows R Me
WINNT WINNT, Windows 2000, Windows XP

AIX AIX
UNIXWARE SCO UnixWare, SCO OpenServer

BSD BSDUNIX, FreeBSD, NetBSD, OpenBSD
OTHER OS Other

Table 1: Mapping example for the DRMAA OperatingSystem enumeration

drmaa-wg@ogf.org 9

mailto:drmaa-wg@ogf.org

GWD-R June 2011

4.2 CpuArchitecture enumeration229

DRMAA supports identifying the processor instruction set architecture on execution resources in the DRM230

system. The CpuArchitecture enumeration is used as data type in job submission, advance reservation and231

system monitoring. It defines a set of standardized identifiers for processor architecture families. The list is232

a shortened version of the according CIM Schema [6], It includes only processor families that are supported233

by the majority of DRM systems available at the time of writing:234

enum CpuArchitecture {235

ALPHA , ARM , CELL , PARISC , X86 , X64 , IA64 , MIPS , PPC , PPC64 ,236

SPARC , SPARC64 , OTHER_CPU };237

ALPHA: The DEC Alpha / Alpha AXP processor architecture.238

ARM: The ARM processor architecture.239

CELL: The Cell processor architecture.240

PARISC: The PA-RISC processor architecture.241

X86: The IA-32 line of the X86 processor architecture family, with 32bit support only.242

X64: The X86-64 line of the X86 processor architecture family, with 64bit support.243

IA64: The Itanium processor architecture.244

MIPS: The MIPS processor architecture.245

PPC: The PowerPC processor architecture, all models with 32bit support only.246

PPC64: The PowerPC processor architecture, all models with 64bit support.247

SPARC: The SPARC processor architecture, all models with 32bit support only.248

SPARC64: The SPARC processor architecture, all models with 64bit support.249

OTHER CPU: A processor architecture not specified in this list.250

The DRMAA CpuArchitecture enumeration can be mapped to other high-level APIs. Table 2 gives a251

non-normative set of examples.252

The reporting and job configuration for processor architectures SHOULD operate on a “as-is” base, if sup-253

ported by the DRM system. This means that the reported architecture should reflect the current operation254

mode of the processor with the running operating system. For example, X64 processors executing a 32-bit255

operating system typically report themself as X86 processor.256

4.3 ResourceLimitType enumeration257

Modern DRM systems expose resource constraint capabilities from the operating system for jobs on the exe-258

cution host. The ResourceLimitType enumeration represents the typical setrlimit parameters [5] supported259

for jobs in different DRM systems. Resource limitations MUST work on the level of jobs. If a job gets more260

than one slot, the interpretation of limits is implementation-specific.261

drmaa-wg@ogf.org 10

mailto:drmaa-wg@ogf.org

GWD-R June 2011

DRMAA CpuArchitecture value JSDL jsdl:ProcessorArchitectureEnumeration value
ALPHA other

ARM arm
CELL other

PARISC parisc
X86 x86 32
X64 x86 64
IA64 ia64
MIPS mips
PPC powerpc

PPC64 powerpc
SPARC sparc

SPARC64 sparc
OTHER other

Table 2: Mapping example for DRMAA CpuArchitecture enumeration

(See footnote)
8

262

enum ResourceLimitType {263

CORE_FILE_SIZE , CPU_TIME , DATA_SEG_SIZE , FILE_SIZE , OPEN_FILES ,264

STACK_SIZE , VIRTUAL_MEMORY , WALLCLOCK_TIME };265

CORE FILE SIZE: The maximum size of the core dump file created on fatal errors of the job, in kilobyte.266

Setting this value to zero SHOULD disable the creation of core dump files on the execution host.267

CPU TIME: The maximum accumulated time in seconds the job is allowed to perform computations.268

This value includes only time the job is spending in JobState::RUNNING (see Section 8.1).269

DATA SEG SIZE: The maximum amount of memory the job can allocate on the heap e.g. for object270

creation, in kilobyte.271

FILE SIZE: The maximum file size the job can generate, in kilobyte.272

OPEN FILES: The maximum number of file descriptors the job is allowed to have open at the same time.273

STACK SIZE: The maximum amount of memory the job can allocate on the stack, e.g. for local variables,274

in kilobyte.275

VIRTUAL MEMORY: The maximum amount of memory the job is allowed to allocate, in kilobyte.276

WALLCLOCK TIME: The maximum wall clock time in seconds the job is allowed to exist. The time277

amount MUST include the time spent in RUNNING state, and MAY also include the time spent in278

SUSPENDED state (see Section 8.1). The limit value MAY also be used for job scheduling decisions279

in the DRM system.280

Clarify CPU
time and
wallclock
time for jobs
with multiple
processes

281

8 The June 2011 face-to-face meeting had hard discussion on the relation between operating system processes, jobs, and
slots. It was decided that slot is a truly opaque concept, which means that you cannot do resource contraints on something that
is implementation-specific. Therefore, the spec semantics must focus on jobs only, and leave the interpretation to the DRM
system / DRMAA implementation.This leads to some intentional fuzzying of descriptions for ResourceLimitType members.

drmaa-wg@ogf.org 11

mailto:drmaa-wg@ogf.org

GWD-R June 2011

(See footnote)
9

282

4.4 JobTemplatePlaceholder enumeration283

The JobTemplatePlaceholder enumeration defines constant macros to be used in string attributes of a284

JobTemplate instance.285

enum JobTemplatePlaceholder {286

HOME_DIRECTORY ,WORKING_DIRECTORY ,PARAMETRIC_INDEX };287

A HOME_DIRECTORY placeholder SHOULD be only allowed at the beginning of a JobTemplate attribute value.288

It denotes the remaining portion as a directory / file path resolved relative to the job users home directory289

at the execution host.290

A WORKING_DIRECTORY placeholder SHOULD be only allowed at the beginning of a JobTemplate attribute291

value. It denotes the remaining portion as a directory / file path resolved relative to the jobs working292

directory at the execution host.293

The PARAMETRIC_INDEX placeholder SHOULD be usable at any position within an attribute value that294

supports place holders. It SHALL be substituted by the parametric job index in a JobSession::runBulkJobs295

call (see Section 8.2.7). If the job template is used for a JobSession:runJob call, PARAMETRIC_INDEX296

SHOULD be substituted with a constant implementation-specific value.297

(See footnote)
10

298

4.5 DrmaaCapability299

The DrmaaCapability enumeration expresses DRMAA features and data attributes that may or may not300

be supported by a particular implementation. Applications are expected to check the availability of optional301

capabilities through the SessionManager::supports method (see Section 7.1).302

enum DrmaaCapability {303

ADVANCE_RESERVATION , RESERVE_SLOTS , CALLBACK ,304

BULK_JOBS_MAXPARALLEL ,305

JT_EMAIL , JT_STAGING , JT_DEADLINE , JT_MAXSLOTS ,306

JT_ACCOUNTINGID , RT_STARTNOW ,307

RT_DURATION , RT_MACHINEOS , RT_MACHINEARCH308

};309

ADVANCE RESERVATION: Indicates that the advance reservation interfaces (ReservationSession,310

Reservation) are functional in this implementation.311

RESERVE SLOTS: Indicates that the advance reservation support is targeting slots. If this capability is312

not given, the advance reservation is targeting whole machines as granularity level.313

9 “Pipe size” was not added, since there is no use case in DRM systems with a job concept. “Max user processes” was
omitted because it operates on the notion of users, which is not an explicit concept in DRMAA.

The understanding of wall clock time was decided in the Apr 6th and 13th 2011 conf call. Condor and Grid Engine also add
the SUSPEND time, but LSF does not.

10 Placeholders for other job template attributes were rejected, in order to avoid circular dependencies (Conf. call Oct 20th
2010). Any extended semantic of placeholders in comparison to DRMAA1 was rejected, since the support in the DRM system
didn’t change. (conf call Apr. 20th 2011)

drmaa-wg@ogf.org 12

mailto:drmaa-wg@ogf.org

GWD-R June 2011

CALLBACK: Indicates that the implementation supports event notification through a DrmaaCallback314

interface in the application.315

BULK JOBS MAXPARALLEL: Indicates that the maxParallel parameter in the JobSession::runBulkJobs316

method is considered and supported by the implementation.317

JT EMAIL: Indicates that the optional email, emailOnStarted, and emailOnTerminated attributes in a318

job template are supported by the implementation.319

JT STAGING: Indicates that the optional JobTemplate::stageInFiles and JobTemplate::stageOutFiles320

attributes are supported by the implementation.321

JT DEADLINE: Indicates that the optional JobTemplate::deadlineTime attribute is supported by the322

implementation.323

JT MAXSLOTS: Indicates that the optional JobTemplate::maxSlots attribute is supported by the324

implementation.325

JT ACCOUNTINGID: Indicates that the optional JobTemplate::accountingId attribute is supported326

by the implementation.327

RT STARTNOW: Indicates that the ReservationTemplate::startTime attribute accepts the NOW value.328

RT DURATION: Indicates that the optional ReservationTemplate::duration attribute is supported329

by the implementation.330

RT MACHINEOS: Indicates that the optional ReservationTemplate::machineOS attribute is supported331

by the implementation.332

RT MACHINEARCH: Indicates that the optional ReservationTemplate::machineArch attribute is333

supported by the implementation.334

5 Extensible Data Structures335

DRMAA defines a set of data structures commonly used by different interfaces to express information336

for and from the DRM system. A DRMAA implementation is allowed to extend these structures with337

implementation-specific attributes in all cases. Behavioral aspects of such extended attributes are out of338

scope for DRMAA. The interpretation is implementation-specific, implementations MAY even ignore such339

attribute values.340

Implementations SHALL only extend data structures in the way specified by the language binding. The341

introspection about supported implementation-specific attributes is supported by the DrmaaReflective342

interface (see Section 5.9). Implementations SHOULD also support native introspection functionalities if343

defined by the language binding.344

A language binding MUST define a consistent mechanism to realize implementation-specific structure ex-

drmaa-wg@ogf.org 13

mailto:drmaa-wg@ogf.org

GWD-R June 2011

tension, without breaking the portability of DRMAA-based applications that relies on the original version
of the structure. Object oriented languages MAY use inheritance mechanisms for this purpose. Instances
of these structures SHALL be treated in a “call-by-value” fashion, meaning that the collection of struct
member values is handed over as one to the called interface method.

Language bindings MAY define how native introspection capabilities of the language or it’s runtime envi-
ronment can also be used to work with implementation-specific attributes. These mechanisms MUST work
in parallel to the DrmaaReflective interface.

(See footnote)
11

345

5.1 QueueInfo structure346

A queue is an opaque concept from the perspective of the DRMAA application (see Section 1.3). The347

QueueInfo struct contains read-only information, which can be extended by the implementation as described348

in Section 5.349

struct QueueInfo {350

string name;351

};352

5.1.1 name353

This attribute contains the name of the queue as reported by the DRM system. The format of the queue354

name is implementation-specific. The naming scheme SHOULD be consistent for all strings returned.355

5.2 Version structure356

The Version structure denotes versioning information for an operating system, DRM system, or DRMAA357

implementation.358

struct Version {359

string major;360

string minor;361

};362

Both the major and the minor part are expressed as strings, in order to allow extensions with character363

combinations such as “rev”. Original version strings containing a dot, e.g. Linux “2.6”, SHOULD be364

interpreted as having the major part before the dot, and the minor part after the dot. The dot character365

SHOULD NOT be added to the Version attributes.366

Implementations SHOULD NOT extend this structure with implementation-specific attributes.367

11 Comparison to DRMAA 1.0: The binding of job template attribute names and exception names to strings was removed.
Language bindings have to define their own mapping, if needed.

One example for native language introspection support could be attributes.
There was a discussion to remove the attribute ignorance possibility for implementations, in order to have a defined error

when unknown attributes are used. This was rejected on the Apr. 13th conf call, since applications do not need the error as
indication for missing attribute support. Instead, they should use the given introspection capabilities.

drmaa-wg@ogf.org 14

mailto:drmaa-wg@ogf.org

GWD-R June 2011

(See footnote)
12

368

5.3 MachineInfo structure369

The MachineInfo structure describes the properties of a particular execution host in the DRM system. It370

contains read-only information. An implementation or its DRM system MAY restrict jobs in their resource371

utilization even below the limits described in the MachineInfo structure. The limits given here MAY be372

imposed by the hardware configuration, or MAY be be imposed by DRM system policies.373

struct MachineInfo {374

string name;375

boolean available;376

long sockets;377

long coresPerSocket;378

long threadsPerCore;379

double load;380

long physMemory;381

long virtMemory;382

OperatingSystem machineOS;383

Version machineOSVersion;384

CpuArchitecture machineArch;385

};386

5.3.1 name387

This attribute describes the name of the machine as reported by the DRM system. The format of the388

machine name is implementation-specific, but MAY be a DNS host name. The naming scheme SHOULD be389

consistent among all machine struct instances.390

5.3.2 available391

This attribute expresses the usability of the machine for job execution at the time of querying. The value392

of this attribute SHALL NOT influence the validity of job template instances containing a candidateHosts393

setting, since the availability of machines is expected to change at any point in time. DRM systems may allow394

to submit jobs for unavailable machines, where these jobs are queued until the machine becomes available395

again.396

5.3.3 sockets397

This attribute describes the number of processor sockets (CPUs) usable for jobs on the machine from oper-398

ating system perspective. The attribute value MUST be greater than 0. In the case where the correct value399

is unknown to the implementation, the value MUST be set to 1.400

5.3.4 coresPerSocket401

This attribute describes the number of cores per socket usable for jobs on the machine from operating system402

perspective. The attribute value MUST be greater than 0. In case where the correct value is unknown to403

12 We could see no use case in doing implementation-specific extensions here, so this structure is not considered in DrmaaRe-
flective.

drmaa-wg@ogf.org 15

mailto:drmaa-wg@ogf.org

GWD-R June 2011

the implementation, the value MUST be set to 1.404

5.3.5 threadsPerCore405

This attribute describes the number of threads that can be executed in parallel by a job’s process on one core406

in the machine. The attribute value MUST be greater than 0. In case where the correct value is unknown407

to the implementation, the value MUST be set to 1.408

5.3.6 load409

This attributes describes the 1-minute average load on the given machine, similar to the Unix uptime com-410

mand. The value has only informative character, and should not be utilized by end user applications for job411

scheduling purposes. An implementation MAY provide delayed or averaged data here, if necessary due to412

implementation issues. The implementation strategy on non-Unix systems is undefined.413

(See footnote)
13

414

5.3.7 physMemory415

This attribute describes the amount of physical memory in kilobyte available on the machine.416

5.3.8 virtMemory417

This attribute describes the amount of virtual memory in kilobyte available for a job executing on this418

machine. The virtual memory amount is defined as the sum of physical memory installed plus the configured419

swap space for the operating system. The value is expected to be used as indicator whether or not an420

application is able to get its memory allocation needs fulfilled on a particular machine. Implementations421

SHOULD derive this value directly from operating system information, without further consideration of422

additional memory allocation restrictions such as address space range or already running processes.423

5.3.9 machineOS424

This attribute describes the operating system installed on the described machine, with semantics as specified425

in Section 4.1.426

5.3.10 machineOSVersion427

This attribute describes the operating system version of the machine, with semantics as specified in Section428

4.1.429

5.3.11 machineArch430

This attribute describes the instruction set architecture of the machine, with semantics as specified in Section431

4.2.432

13In July 2011, there was a short debate on the list if this value should be normalized by the library to ¡0,1¿. It was rejected,
since DRMAA should just forward given information from the DRM / OS, for which the maximum value is typically not known.

drmaa-wg@ogf.org 16

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.4 SlotInfo structure433

The SlotInfo structure describes the amount of reserved slots on a machine, resulting from an advance434

reservation operation (see also Section 1.3).435

Implementations SHOULD NOT extend this structure with implementation-specific attributes.436

(See footnote)
14

437

struct SlotInfo {438

string machineName;439

string slots;440

};441

5.4.1 machineName442

The name of the machine. Strings returned here SHOULD be equal to the MachineInfo::name attribute in443

the matching MachineInfo instance.444

5.4.2 slots445

The number of slots reserved on the given machine. Depending on the intepretation of slots in the imple-446

mentation, this value MAY be always one.447

5.5 JobInfo structure448

The JobInfo structure describes job information that is available for the DRMAA-based application.449

struct JobInfo {450

string jobId;451

long exitStatus;452

string terminatingSignal;453

string annotation;454

JobState jobState;455

any jobSubState;456

OrderedStringList allocatedMachines;457

string submissionMachine;458

string jobOwner;459

long slots;460

string queueName;461

TimeAmount wallclockTime;462

long cpuTime;463

AbsoluteTime submissionTime;464

AbsoluteTime dispatchTime;465

AbsoluteTime finishTime;466

};467

14 We could see no use case in realizing implementation-specific extensions here, so this structure is not considered in
DrmaaReflective.

drmaa-wg@ogf.org 17

mailto:drmaa-wg@ogf.org

GWD-R June 2011

The structure is used in two occasions - first for the expression of information about a single job, and second468

as filter expression when retrieving a list of jobs from the DRMAA implementation.469

In both usage scenarios, the structure information has to be understood as snapshot of the live DRM system.470

Multiple values being set in one structure instance should be interpreted as “occurring at the same time”.471

In real implementations, some granularity limits must be assumed - for example, the wallclockTime and472

the cpuTime attributes might hold values that were measured with a very small delay one after each other.473

DRMAA makes no assumption on the JobInfo availability for jobs in a a “Terminated” state (see Section474

8.1). Implementations SHOULD allow to fetch information about such jobs, complete or incomplete, for475

a reasonable amount of time. For such terminated jobs, implementations MAY also decide to return only476

partially filled JobInfo instances due to performance restrictions in the communication with the DRM477

system.478

For additional DRMS-specific information, the JobInfo structure MAY be extended by the DRMAA imple-479

mentation (see Section 5).480

(See footnote)
15

481

5.5.1 jobId482

For monitoring: Returns the stringified job identifier assigned to the job by the DRM system.483

For filtering: Returns the job with the chosen job identifier.484

5.5.2 exitStatus485

For monitoring: The process exit status of the job, as reported by the operating system. If the job is not in486

one of the terminated states, the value should be UNSET.487

For filtering: Return the jobs with the given exitStatus value. Jobs without exit status information should488

be filtered out by asking for the appropriate states.489

5.5.3 terminatingSignal490

For monitoring: This attribute specifies the UNIX signal that reasoned the end of the job. Implementations491

should document the extent to which they can gather such information in the particular DRM system (e.g.492

with Windows hosts).493

For filtering: Returns the jobs with the given terminatingSignal value.494

15 In comparison to DRMAA 1.0, the JobInfo value type was heavily extended for providing more information (solves issue
#2827). JobInfo::hasCoreDump is no longer supported, since the information is useless without according core file staging
support, which is not implementable in a portable way. (conf. call Jun 9th 2010) resourceUsage is no longer supported, since
this should be modelled with implementation-specific attributes (conf call Apr 13th 2011).

Some DRM systems (SGE / Condor at least) support the automated modification of job template attributes after submission,
and therefore allow to fetch the true job template attributes at run-time from the job. The monitoring for such data was
intentionally not included in DRMAA (mailing list July 2010).

A comment attribute was rejected (conf call May 11th).
Several conf. calls in 2011 ended up in the conclusion that data reaping cannot be clarified by DRMAA. There are too many

completely different use cases in local and distributed systems.

drmaa-wg@ogf.org 18

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.5.4 annotation495

For monitoring: Gives a human-readable annotation describing why the job is in its current state or sub-state.496

Implementations MAY decide to offer such description only in specific cases.497

For filtering: This attribute is ignored for filtering.498

5.5.5 jobState499

For monitoring: This attribute specifies the jobs current state according to the DRMAA job state model500

(see Section 8.1).501

For filtering: Returns all jobs in the specified state. If the given state is simulated by the implementation502

(see Section 8.1), the implementation SHOULD raise an InvalidArgumentException explaining that this503

filter can never match.504

5.5.6 jobSubState505

For monitoring: This attribute specifies the jobs current DRMAA implementation specific sub-state (see506

Section 8.1).507

For filtering: Returns all jobs in the specified sub-state. If the given sub-state is not supported by the imple-508

mentation (see Section 8.1), the implementation SHOULD raise an InvalidArgumentException explaining509

that this filter can never match.510

As the Job-
SubState is
an opaque
object then
passing -sub-
state is not
suported by
the impl..-
may simply
lead to SEG
FAULT ;-)
so filtering
using sub-
state should
be permitted
if one known
which imple-
mentation is
used.

511

5.5.7 allocatedMachines512

This attribute expresses the set of machines that are utilized for job execution. Implementations MAY513

decide to give the ordering of machine names a particular meaning, for example putting the master node in a514

parallel job at first position. This decision should be documented for the user. For performance reasons, only515

the machine names are returned, and SHOULD be equal to the according MachineInfo::name attribute in516

monitoring data.517

For monitoring: This attribute lists the set of names of the machines to which this job has been assigned.518

For filtering: Returns the list of jobs which have a set of assigned machines that is a superset of the given519

set of machines.520

5.5.8 submissionMachine521

This attribute provides the machine name of the submission host for this job. For performance reasons, only522

the machine name is returned, and SHOULD be equal to the according MachineInfo::name attribute in523

monitoring data.524

For monitoring: This attribute specifies the machine from which this job was submitted.525

For filtering: Returns the set of jobs that were submitted from the specified machine.526

drmaa-wg@ogf.org 19

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.5.9 jobOwner527

For monitoring: This attribute specifies the job owner as reported by the DRM system.528

For filtering: Returns all jobs owned by the specified user.529

5.5.10 slots530

For monitoring: This attribute reports the number slots that were allocated for the job. The value SHOULD531

be in between JobTemplate::minSlots and JobTemplate::maxSlots.532

For filtering: Return all jobs with the specified number of reserved slots.533

5.5.11 queueName534

For monitoring: This attribute specifies the name of the queue in which the job was queued or started (see535

Section 1.3).536

For filtering: Returns all jobs that were queued or started in the queue with the specified name.537

5.5.12 wallclockTime538

For monitoring: The accumulated wall clock time, with the semantics as defined in Section 4.3.539

For filtering: Returns all jobs that have consumed at least the specified amount of wall clock time.540

5.5.13 cpuTime541

For monitoring: The accumulated CPU time, with the semantics as defined in Section 4.3.542

For filtering: Returns all jobs that have consumed at least the specified amount of CPU time.543

5.5.14 submissionTime544

For monitoring: This attribute specifies the time at which the job was submitted. Implementations SHOULD545

use the submission time recorded by the DRM system, if available.546

For filtering: Returns all jobs that were submitted at or after the specified submission time.547

5.5.15 dispatchTime548

For monitoring: The time the job first entered a “Started” state (see Section 8.1). On job restart or re-549

scheduling, this value does not change.550

For filtering: Returns all jobs that entered a “Started” state at, or after the specified dispatch time.551

5.5.16 finishTime552

For monitoring: The time the job first entered a “Terminated” state (see Section 8.1).553

For filtering: Returns all jobs that entered a “Terminated” state at or after the specified finish time.554

drmaa-wg@ogf.org 20

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.6 ReservationInfo structure555

The ReservationInfo structure describes reservation information that is available for the DRMAA-based556

application.557

struct ReservationInfo {558

string reservationId;559

string reservationName;560

AbsoluteTime reservedStartTime;561

AbsoluteTime reservedEndTime;562

StringList usersACL;563

long reservedSlots;564

SlotInfoList reservedMachines;565

};566

The structure is used for the expression of information about a single advance reservation. Information567

provided in this structure SHOULD NOT change over the reservation lifetime. However, implementations568

MAY reflect the altering of advance reservations outside of DRMAA sessions.569

For additional DRMS-specific information, the ReservationInfo structure MAY be extended by the DR-570

MAA implementation (see Section 5).571

5.6.1 reservationId572

Returns the string version of the identifier assigned to the advance reservation by the DRM system.573

5.6.2 reservationName574

This attribute describes the reservation name that was stored by the implementation or DRM system, derived575

from the original reservationName attribute given in the ReservationTemplate.576

5.6.3 reservedStartTime577

This attribute describes the start time for the reservation. If the value is UNSET, it expresses an unrestricted578

start time (i.e., minus infinity) for this reservation.579

5.6.4 reservedEndTime580

This attribute describes the end time for the reservation. If the value is UNSET, the behavior is implementation-581

specific.582

(See footnote)
16

583

5.6.5 usersACL584

The list of the users that are permitted to submit jobs to the reservation.585

16Mai 18th 2011 conf call rejected to treat UNSET as unrestricted end time (i.e. “plus infinity”) here.

drmaa-wg@ogf.org 21

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.6.6 reservedSlots586

This attribute describes the number of slots reserved by the DRM system. The value SHOULD range in587

between ReservationTemplate::minSlots and ReservationTemplate::maxSlots.588

5.6.7 reservedMachines589

This attribute describes the set of machines that were reserved under the conditions described in the according590

reservation template. Each SlotInfo instance in the result describes the reservation of a particular machine,591

and of a set of slots related to this machine. The sum of all slot counts in the sequence SHOULD be equal592

to ReservationInfo::reservedSlots.593

5.7 JobTemplate structure594

In order to define the attributes associated with a job, a DRMAA application uses the JobTemplate struc-595

ture. It specifies any required job parameters and is passed to the DRMAA JobSession instance when job596

execution is requested.597

struct JobTemplate {598

string remoteCommand;599

OrderedStringList args;600

boolean submitAsHold;601

boolean rerunnable;602

Dictionary jobEnvironment;603

string workingDirectory;604

string jobCategory;605

StringList email;606

boolean emailOnStarted;607

boolean emailOnTerminated;608

string jobName;609

string inputPath;610

string outputPath;611

string errorPath;612

boolean joinFiles;613

string reservationId;614

string queueName;615

long minSlots;616

long maxSlots;617

long priority;618

OrderedStringList candidateMachines;619

long minPhysMemory;620

OperatingSystem machineOS;621

CpuArchitecture machineArch;622

AbsoluteTime startTime;623

AbsoluteTime deadlineTime;624

Dictionary stageInFiles;625

Dictionary stageOutFiles;626

Dictionary resourceLimits;627

string accountingId;628

drmaa-wg@ogf.org 22

mailto:drmaa-wg@ogf.org

GWD-R June 2011

};629

The DRMAA job template concept makes a distinction between mandatory and optional attributes. Manda-630

tory attributes MUST be supported by the implementation in the sense that they are evaluated on job631

submission. Optional attributes MAY be evaluated on job submission, but MUST be provided as part of the632

JobTemplate structure in the implementation. If an unsupported optional attribute has a value different to633

UNSET, the job submission MUST fail with a UnsupportedAttributeException. DRMAA applications are634

expected to check for the availability of optional attributes before using them (see Section 4.5).635

Implementations MUST set all attribute values to UNSET on struct allocation. This ensures that both the636

DRMAA application and the library implementation can determine untouched attribute members. If not637

described differently in the following sections, all attributes SHOULD be allowed to have the UNSET value638

on job submission.639

An implementation MAY support JobTemplatePlaceholder macros in more occasions than defined in this640

specification.641

A language binding specification SHOULD define how a JobTemplate instance is convertible to a string
for printing, through whatever mechanism is most natural for the implementation language. The resulting
string MUST contain the values of all set properties.

The initialization to UNSET SHOULD be realized without additional methods in the DRMAA interface, if
possible. The according approach MUST be specified by the language binding.

(See footnote)
17

642

5.7.1 remoteCommand643

This attribute describes the command to be executed on the remote host. In case this parameter contains644

path information, it MUST be seen as relative to the execution host file system and is therefore evaluated645

there. The implementation SHOULD NOT use the value of this attribute to trigger file staging activities.646

Instead, the file staging should be performed by the application explicitly.647

The behavior with an UNSET value is implementation-specific.648

The support for this attribute is mandatory.649

5.7.2 args650

This attribute contains the list of command-line arguments for the job(s) to be executed.651

The support for this attribute is mandatory.652

17 Comparison to DRMAA 1.0: JobTemplate is now a value type, meaning that it maps to a struct in C. This removes the
need for DRMAA-defined methods for construction and destruction of job templates. An eventual RPC scenario for DRMAA
gets easier with this approach, since it is closer to the JSDL concept of a job description document.

Supported string placeholders for job template attributes are now listed in the JobTemplatePlaceholder enumeration, and
must be filled with values by the language binding. Invalid job template settings are now only detected on job submission, not
when the attribute is set.

DRMAA1 supported the utilization of new DRM features through an old DRMAA implementation, based on the
nativeSpecification field. A conf call (Jul 14th 2010) voted for dropping this intentionally. Implementations should use
according implementation-specific attributes for this.

GridEngine does not support to request a number of slots per machine - of course in a default installation, since you can do
everything in GridEngine ... This is the reason for not having such an attribute.

drmaa-wg@ogf.org 23

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.7.3 submitAsHold653

This attribute defines if the job(s) should be submitted as QUEUED or QUEUED_HELD (see Section 8.1). Since654

the boolean UNSET value defaults to False, jobs are submitted as non-held if this attribute is not set.655

The support for this attribute is mandatory.656

5.7.4 rerunnable657

This flag indicates if the submitted job(s) can safely be restarted by the DRM system, for example on a658

node failure or some other re-scheduling event. Since the boolean UNSET value defaults to False, jobs are659

submitted as not rerunnable if this attribute is not set. This attribute SHOULD NOT be used by the660

implementation to let the application denote the checkpointability of a job.661

The support for this attribute is mandatory.662

(See footnote)
18

663

5.7.5 jobEnvironment664

This attribute holds the environment variable key-value pairs for the execution machine(s). The values665

SHOULD override the execution host environment values if there is a collision.666

The support for this attribute is mandatory.667

5.7.6 workingDirectory668

This attribute specifies the directory where the job or the bulk jobs are executed. If the attribute value669

is UNSET, the behavior is implementation dependent. Otherwise, the attribute value MUST be evaluated670

relative to the file system on the execution host. The attribute value MUST be allowed to contain either the671

JobTemplatePlaceholder::HOME_DIRECTORY or the JobTemplatePlaceholder::PARAMETRIC_INDEX place-672

holder (see Section 4.4).673

The workingDirectory attribute should be specified by the application in a syntax that is common at the674

host where the job is executed. Implementations MAY perform according validity checks on job submission.675

If the attribute is set and no placeholder is used, an absolute directory specification is expected. If the676

attribute is set and the job was submitted successfully and the directory does not exist on the execution677

host, the job MUST enter the state JobState::FAILED.678

The support for this attribute is mandatory.679

5.7.7 jobCategory680

This attribute defines the job category to be used (see Section 1.4). A valid input SHOULD be one of the681

strings in MonitoringSession::drmsJobCategoryNames (see Section 10.1), otherwise an InvalidArgumentException682

SHOULD be raised.683

The support for this attribute is mandatory.684

18 The differentiation between rerunnable and checkpointable was decided on a conf call (Aug 25th 2010). Checkpointability
indication was intentionally left out, since there is no common understanding in the DRM systems (conf call Apr. 27th, 2011).

drmaa-wg@ogf.org 24

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.7.8 email685

This attribute holds a list of email addresses that should be used to report DRM information. Content and686

formatting of the emails are defined by the implementation or the DRM system. If the attribute value is687

UNSET, no emails SHOULD be sent to the user running the job(s), even if the DRM system default behavior688

is to send emails on some event.689

The support for this attribute is optional, expressed by the DrmaaCapability::JT_EMAIL flag. If an imple-690

mentation cannot configure the email notification functionality of the DRM system, or if the DRM system691

has no such functionality, the attribute SHOULD NOT be supported in the implementation.692

(See footnote)
19

693

5.7.9 emailOnStarted / emailOnTerminated694

The emailOnStarted flag indicates if the given email address(es) SHOULD get a notification when the job695

(or any of the bulk jobs) entered one of the “Started” states. emailOnTerminated fulfills the same purpose696

for the ”Terminated” states. Since the boolean UNSET value defaults to False, the notification about state697

changes SHOULD NOT be sent if the attribute is not set.698

The support for these attributes is optional, expressed by the DrmaaCapability::JT_EMAIL flag.699

5.7.10 jobName700

The job name attributes allows the specification of an additional non-unique string identifier for the job(s).701

The implementation MAY truncate any client-provided job name to an implementation-defined length.702

The support for this attribute is mandatory.703

5.7.11 inputPath / outputPath / errorPath704

This attribute specifies standard input / output / error stream of the job as a path to a file. If the attribute705

value is UNSET, the behavior is implementation dependent. Otherwise, the attribute value MUST be evaluated706

relative to the file system of the execution host in a syntax that is common at the host. Implementations707

MAY perform according validity checks on job submission. The attribute value MUST be allowed to contain708

any of the JobTemplatePlaceholder placeholders (see Section 4.4). If the attribute is set and no placeholder709

is used, an absolute file path specification is expected.710

If the outputPath or errorPath file does not exist at the time the job is about to be executed, the file711

SHALL first be created. An existing outputPath or errorPath file SHALL be opened in append mode.712

If the attribute is set and the job was submitted successfully and the file cannot be created / read / written713

on the execution host, the job MUST enter the state JobState::FAILED.714

The support for this attribute is mandatory.715

5.7.12 joinFiles716

Specifies whether the error stream should be intermixed with the output stream. Since the boolean UNSET717

value defaults to False, intermixing SHALL NOT happen if the attribute is not set.718

19 The blockEmail attribute in the JobTemplate was replaced by the UNSET semantic for the email addresses. (conf. call
July 28th 2010). This became an optional attribute, since we mandate the ’switch off’ semantic in case of UNSET.

drmaa-wg@ogf.org 25

mailto:drmaa-wg@ogf.org

GWD-R June 2011

If this attribute is set to True, the implementation SHALL ignore the value of the errorPath attribute and719

intermix the standard error stream with the standard output stream as specified by the outputPath.720

The support for this attribute is mandatory.721

5.7.13 stageInFiles / stageOutFiles722

Specifies what files should be transferred (staged) as part of the job execution. The data staging operation723

MUST be a copy operation between the submission host and the execution host(s) (see also Section 1 for724

host types). File transfers between execution hosts are not covered by DRMAA.725

The attribute value is formulated as dictionary. For each key-value pair in the dictionary, the key defines726

the source path of one file or directory, and the value defines the destination path of one file or directory727

for the copy operation. For stageInFiles, the submission host acts as source, and the execution host(s)728

act as destination. For stageOutFiles, the execution host(s) acts as source, and the submission host act as729

destination.730

All values MUST be evaluated relative to the file system on the host in a syntax that is common at that731

host. Implementations MAY perform according validity checks on job submission. Paths on the execution732

host(s) MUST be allowed to contain any of the JobTemplatePlaceholder placeholders. Paths on the sub-733

mission host MUST be allowed to contain the JobTemplatePlaceholder::PARAMETRIC_INDEX placeholder734

(see Section 4.4). If no placeholder is used in the values, an absolute path specification on the particular735

host SHOULD be assumed by the implementation.736

Relative path specifications for the submission host should be interpreted starting from the current working737

directory of the DRMAA application at the time of job submission. The behavior for relative path specifica-738

tions on the execution is implementation-specific. Implementations MAY use JobTemplate::workingDirectory739

as starting point on the execution host in this case, if given by the application.740

Jobs SHOULD NOT enter JobState::DONE unless all staging operations are finished. The behavior in741

case of missing files is implementation-specific. The support for wildcard operators in path specifications is742

implementation-specific. Any kind of recursive or non-recursive copying behavior is implementation-specific.743

If the job category (see Section 1.4) implies a parallel job (e.g., MPI), the copy operation SHOULD target744

the parallel job master host as destination. A job category MAY also trigger file distribution to other hosts745

participating in the job execution.746

The support for this attribute is optional, expressed by the DrmaaCapability::JT_STAGING flag.747

(See footnote)
20

748

5.7.14 reservationId749

Specifies the identifier of the advance reservation associated with the job(s). The application is expected750

to create an advance reservation through the ReservationSession interface, the resulting reservationId751

(see Section 9.2) then acts as valid input for this job template attribute. Implementations MAY support a752

reservation identifier from non-DRMAA information sources as valid input.753

The support for this attribute is mandatory.754

20 Comparison to DRMAA 1.0: New job template attributes for file transfers were introduced. They allow to express a set
of file staging activities, similar to the approach in LSF and SAGA. They replace the old transferFiles attribute, the according
FileTransferMode data structure and the special host definition syntax in inputPath / outputPath / errorPath (different conf.
calls, SAGA F2F meeting, solves issue #5876)

drmaa-wg@ogf.org 26

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.7.15 queueName755

This attribute specifies the name of the queue the job(s) should be submitted to. In case this attribute756

value is UNSET, and MonitoringSession::getAllQueues returns a list with a minimum length of 1, the757

implementation SHOULD use the DRM systems default queue.758

The MonitoringSession::getAllQueues method (see 10.1) supports the determination of valid queue759

names. Implementations SHOULD allow these queue names to be used in the queueName attribute. Imple-760

mentations MAY also support queue names from other non-DRMAA information sources as valid input. If761

no default queue is defined or if the given queue name is not valid, the job submission MUST lead to an762

InvalidArgumentException.763

If MonitoringSession::getAllQueues returns an empty list, this attribute MUST be only accepted with764

the value UNSET.765

Since the meaning of “queues” is implementation-specific, there is no implication on the effects in the DRM766

system when using this attribute. As one example, requesting a number of slots for a job in one queue has no767

implication on the number of utilized machines at run-time. Implementations therefore SHOULD document768

the effects of this attribute accordingly.769

The support for this attribute is mandatory.770

5.7.16 minSlots771

This attribute expresses the minimum number of slots requested per job (see also Section 1.3). If the value772

of minSlots is UNSET, it SHOULD default to 1.773

Implementations MAY interpret the slot count as number of concurrent processes being allowed to run.774

If this interpretation is taken, and minSlots is greater than 1, than the jobCategory SHOULD also be775

demanded on job submission, in order to express the nature of the intended parallel job execution.776

The support for this attribute is mandatory.777

(See footnote)
21

778

5.7.17 maxSlots779

This attribute expresses the maximum number of slots requested per job (see also Section 1.3). If the value780

of maxSlots is UNSET, it SHOULD default to the value of minSlots.781

Implementations MAY interpret the slot count as number of concurrent processes being allowed to run.782

If this interpretation is taken, and maxSlots is greater than 1, than the jobCategory SHOULD also be783

demanded on job submission, in order to express the nature of the intended parallel job execution.784

The support for this attribute is optional, as indicated by the DrmaaCapability::JT_MAXSLOTS flag.785

(See footnote)
22 .786

21The hint regarding number of concurrent processes intentionally does not speak about processes per host - this would create
semantics for our opaque slot concept.

22Torque does not support maxSlots on job submission, conf call on May 11th decided to keep it as optional feature. Expected
use cases are billing limitations and parallel job scalability considerations

drmaa-wg@ogf.org 27

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.7.18 jobCategory787

This attribute defines the job category to be used (see Section 1.4). A valid input SHOULD be one of the788

strings in MonitoringSession::drmsJobCategoryNames (see Section 10.1), otherwise an InvalidArgumentException789

SHOULD be raised.790

The support for this attribute is mandatory.791

New, needs
group ap-
proval. Long
explanation
is now in Sec-
tion 1.4

792

5.7.19 priority793

This attribute specifies the scheduling priority for the job. The interpretation of the given value incl. an794

UNSET value is implementation-specific.795

The support for this attribute is mandatory.796

5.7.20 candidateMachines797

Requests that the job(s) should run on any subset (with minimum size of 1), or all of the given machines.798

If the attribute value is UNSET, it should default to the result of the MonitoringSession::getAllMachines799

method. If this resource demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised800

on job submission time. If the problem can only be detected after job submission, the job should enter801

JobState::FAILED.802

The support for this attribute is mandatory.803

5.7.21 minPhysMemory804

This attribute denotes the minimum amount of physical memory in kilobyte that should be available for the805

job. If the job gets more than one slot, the interpretation of this value is implementation-specific. If this806

resource demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised at job submission807

time. If the problem can only be detected after job submission, the job SHOULD enter JobState::FAILED808

accordingly.809

The support for this attribute is mandatory.810

5.7.22 machineOS811

This attribute denotes the expected operating system type on the / all execution host(s). If this resource de-812

mand cannot be fulfilled, an InvalidArgumentException SHOULD be raised on job submission time. If the813

problem can only be detected after job submission, the job SHOULD enter JobState::FAILED accordingly.814

The support for this attribute is mandatory.815

(See footnote)
23

816

23 Requesting a specific operating system version beyond the type is not supported by the majority of DRM systems (conf
call Jul 28th 2010)

drmaa-wg@ogf.org 28

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.7.23 machineArch817

This attribute denotes the expected machine architecture on the / all execution host(s). If this resource818

demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised on job submission time. If819

the problem can only be detected after job submission, the job should enter JobState::FAILED.820

The support for this attribute is mandatory.821

5.7.24 startTime822

This attribute specifies the earliest time when the job may be eligible to be run.823

The support for this attribute is mandatory.824

5.7.25 deadlineTime825

Specifies a deadline after which the implementation or the DRM system SHOULD change the job state to826

any of the “Terminated” states (see Section 8.1).827

The support for this attribute is optional, as expressed by the DrmaaCapability::JT_DEADLINE.828

5.7.26 resourceLimits829

This attribute specifies the limits on resource utilization of the job(s) on the execution host(s). The valid830

dictionary keys and their value semantics are defined in Section 4.3.831

The following resource restrictions should operate as soft limit, meaning that exceeding the limit SHOULD832

NOT influence the job state from a DRMAA perspective:833

• CORE_FILE_SIZE834

• DATA_SEG_SIZE835

• FILE_SIZE836

• OPEN_FILES837

• STACK_SIZE838

• VIRTUAL_MEMORY839

The following resource restrictions should operate as hard limit, meaning that exceeding the limit MAY840

terminate the job. The termination could be performed by the DRM system, or by the job itself if it reacts841

on a signal from the DRM system or the execution host operating system:842

• CPU_TIME843

• WALLCLOCK_TIME844

The support for this attribute is mandatory. If only a subset of the attributes from ResourceLimitType845

is supported by the implementation, and some of the unsupported attributes are used, the job submission846

SHOULD raise an InvalidArgumentException expressing the fact that resource limits are supported in847

general.848

Conflicts of these attribute values with any other job template attribute or with referenced advance reser-849

vations are handled in an implementation-specific manner. Implementations SHOULD try to delegate the850

drmaa-wg@ogf.org 29

mailto:drmaa-wg@ogf.org

GWD-R June 2011

decision about parameter combination validity to the DRM system, in order to ensure similar semantics in851

different DRMAA implementations for this system.852

(See footnote)
24

853

5.7.27 accountingId854

This attribute denotes a string that can be used by the DRM system for job accounting purposes. Im-855

plementations SHOULD NOT utilize this information as authentication token, but only as identification856

information in addition to the implementation-specific authentication (see Section 12).857

The support for this attribute is optional, as described by the DrmaaCapability::JT_ACCOUNTINGID flag.858

5.8 ReservationTemplate structure859

In order to define the attributes associated with an advance reservation, the DRMAA application creates an860

ReservationTemplate instance and requests the fulfillment through the ReservationSession methods in861

the DRM system.862

struct ReservationTemplate {863

string reservationName;864

AbsoluteTime startTime;865

AbsoluteTime endTime;866

TimeAmount duration;867

long minSlots;868

long maxSlots;869

string jobCategory;870

StringList usersACL;871

OrderedStringList candidateMachines;872

long minPhysMemory;873

OperatingSystem machineOS;874

CpuArchitecture machineArch;875

};876

Similar to the JobTemplate concept (see Section 5.7), there is a distinction between mandatory and op-877

tional attributes. Mandatory attributes MUST be supported by the implementation in the sense that they878

are evaluated in a ReservationSession::requestReservation call. Optional attributes MAY NOT be879

evaluated by the particular implementation, but MUST be provided as part of the ReservationTemplate880

structure in the implementation. If an optional attribute is not evaluated by the particular implementation,881

but has a value different to UNSET, the call to ReservationSession::requestReservation MUST fail with882

an UnsupportedAttributeException.883

24 In comparison to DRMAA 1.0, resource usage limitations can now be expressed by two dictionaries and an according
standardized set of valid dictionary keys (LimitType). The idea is to allow a direct mapping to ulimit(3) semantics, which are
supported by the majority of DRM system today. A separate run duration limit is no longer needed, since this is covered by
the new CPU TIME limit parameter. (conf. call Jun 9th 2010).

This distinguishing between different reactions on limit violation was restricted to the job entering, or not entering, the
FAILED state. All further effects (e.g., no more open() calls possible) are out of scope for DRMAA, since they relate to
operating system behavior on execution host (conf call May 4th 2011).

The attribute is mandatory, since the missing general support for resource limits can be simply expressed by raising Invali-
dArgumentException for all types.

drmaa-wg@ogf.org 30

mailto:drmaa-wg@ogf.org

GWD-R June 2011

Implementations MUST set all attribute values to UNSET on struct allocation. This ensures that both the884

DRMAA application and the library implementation can determine untouched attribute members.885

A language binding specification SHOULD model the ReservationTemplate representation the same way as
the JobTemplate interface (see Section 5.7), and therefore MUST define the realization of implementation-
specific attributes, printing, and the initialization of attribute values.

5.8.1 reservationName886

A human-readable reservation name. The implementation MAY truncate or alter any application-provided887

job name in order to adjust it to the DRMS specific constraints. The name of the reservation SHALL be888

automatically defined by the implementation if this application provides no value on its own.889

The support for this attribute is mandatory.890

5.8.2 startTime / endTime / duration891

The time frame in which resources should be reserved. Table 3 explains the different possible parameter892

combinations and their semantic.893

startTime endTime duration Description
UNSET UNSET UNSET Invalid, SHALL leave to a InvalidArgumentException on the reser-

vation attempt.
Set UNSET UNSET Invalid, SHALL leave to a InvalidArgumentException on the reser-

vation attempt.
UNSET Set UNSET Invalid, SHALL leave to a InvalidArgumentException on the reser-

vation attempt.
Set Set UNSET Perform reservation attempt to get resources in the specified time

frame.
UNSET UNSET Set Perform reservation attempt the get resources at least for the time

amount given in duration.
Set UNSET Set Implies endTime = startTime + duration

UNSET Set Set Implies startTime = endTime - duration

Set Set Set If endTime - startTime is larger than duration, perform a reser-
vation attempt where the demanded duration is fulfilled at the ear-
liest point in time after startTime, and without extending endTime.
If endTime - startTime is smaller than duration, the reserva-
tion attempt SHALL leave to a InvalidArgumentException. If
endTime - startTime and duration are equal, duration SHALL
be ignored.

Table 3: Parameter combinations for the advance reservation time frame. If duration is not supported, it
should be treated as UNSET.

The support for startTime and endTime is mandatory. The support for duration is optional, as described894

by the DrmaaCapability::RT_DURATION flag. Implementations that do not support the described ”sliding895

window” approach for the SET / SET / SET case SHOULD express this by NOT supporting the duration896

attribute.897

drmaa-wg@ogf.org 31

mailto:drmaa-wg@ogf.org

GWD-R June 2011

Implementations MAY support startTime to have the constant value NOW (see Section 3), which expresses898

that the reservation should start at the time of reservation template approval in the DRM system. The899

support for this feature is declared by the DrmaaCapability::RT_STARTNOW flag.900

5.8.3 minSlots901

The minimum number of requested slots (see also Section 1.3). If the attribute value is UNSET, it should902

default to 1.903

The support for this attribute is mandatory.904

5.8.4 maxSlots905

The maximum number of requested slots (see also Section 1.3). If the attribute value is UNSET, it should906

default to the value of minSlots.907

The support for this attribute is mandatory.908

5.8.5 usersACL909

The list of the users that would be permitted to submit jobs to the created reservation. If the attribute value910

is UNSET, it should default to the user running the application.911

The support for this attribute is mandatory.912

5.8.6 candidateMachines913

Requests that the reservation SHALL be created for exactly the given set of machines. Implementations914

and their DRM systems MAY decide to reserve only a subset of the given machines. If this attribute is not915

specified, it should default to the result of MonitoringSession::getAllMachines (see Section 10.1).916

The support for this attribute is mandatory.917

(See footnote)
25

918

5.8.7 minPhysMemory919

Requests that the reservation SHALL be created with machines that have at least the given amount of920

physical memory in kilobyte. Implementations MAY interpret this attribute value as filter for candidate921

machines, or as memory reservation demand on a shared execution resource.922

The support for this attribute is mandatory.923

(See footnote)
26

924

5.8.8 machineOS925

Requests that the reservation must be created with machines that have the given type of operating system,926

regardless of its version, with semantics as specified in Section 4.1.927

25May 18th 2011 conf call identified the subset reservation feature to be only available in some of the systems, so it is no
promise here.

26May 18th 2011 conf call identified the different understandings of memory reservation.

drmaa-wg@ogf.org 32

mailto:drmaa-wg@ogf.org

GWD-R June 2011

The support for this attribute is optional, as described by the DrmaaCapability::RT_MACHINEOS flag.928

(See footnote)
27

929

5.8.9 machineArch930

Requests that the reservation must be created with machines that have the given instruction set architecture,931

with semantics as specified in Section 4.2.932

The support for this attribute is optional, as described by the DrmaaCapability::RT_MACHINEARCH flag.933

(See footnote)
28

934

5.9 DrmaaReflective Interface935

The DrmaaReflective interface allows an application to determine the set of supported implementation-936

specific attributes in the DRMAA structures (see also Section 5). It also standardizes the read / write access937

to such attributes when their existence is determined at run-time by the application.938

Applications are expected to determine the supported optional attributes with the SessionManager::supports939

method (see Section 7.1).940

interface DrmaaReflective {941

readonly attribute StringList jobTemplateImplSpec;942

readonly attribute StringList jobInfoImplSpec;943

readonly attribute StringList reservationTemplateImplSpec;944

readonly attribute StringList reservationInfoImplSpec;945

readonly attribute StringList queueInfoImplSpec;946

readonly attribute StringList machineInfoImplSpec;947

readonly attribute StringList notificationImplSpec;948

949

string getInstanceValue(in any instance , in string name);950

void setInstanceValue(in any instance , in string name , in string value);951

string describeAttribute(in any instance , in string name);952

};953

5.9.1 jobTemplateImplSpec954

This attribute provides the list of supported implementation-specific JobTemplate attributes.955

5.9.2 jobInfoImplSpec956

This attribute provides the list of supported implementation-specific JobInfo attributes.957

5.9.3 reservationTemplateImplSpec958

This attribute provides the list of supported implementation-specific ReservationTemplate attributes.959

27May 18th 2011 conf call identified support in DRM systems to be mainly given by additional configuration only.
28May 18th 2011 conf call identified support in DRM systems to be mainly given by additional configuration only.

drmaa-wg@ogf.org 33

mailto:drmaa-wg@ogf.org

GWD-R June 2011

5.9.4 reservationInfoImplSpec960

This attribute provides the list of supported implementation-specific ReservationInfo attributes.961

5.9.5 queueInfoImplSpec962

This attribute provides the list of supported implementation-specific QueueInfo attributes.963

5.9.6 machineInfoImplSpec964

This attribute provides the list of supported implementation-specific MachineInfo attributes.965

5.9.7 notificationImplSpec966

This attribute provides the list of supported implementation-specific DrmaaNotification attributes.967

5.9.8 getInstanceValue968

This method allows to retrieve the attribute value for name from the structure instance given in the instance969

parameter. The return value is the stringified current attribute value.970

5.9.9 setInstanceValue971

This method allows to set the attribute name to value in the structure instance given in the instance972

parameter. In case the conversion from string input into the native attribute type leads to an error,973

InvalidArgumentException SHALL be thrown.974

5.9.10 describeAttribute975

This method returns a human-readable description of an attributes purpose, for the attribute described by976

name in the structure instance referenced by instance. The content and language of the return value is977

implementation-specific, but should consider the use case of portal applications.978

6 Common Exceptions979

The exception model specifies error information that can be returned by a DRMAA implementation on980

method calls.981

exception DeniedByDrmsException {string message ;};982

exception DrmCommunicationException {string message ;};983

exception TryLaterException {string message ;};984

exception SessionManagementException {string message ;};985

exception TimeoutException {string message ;};986

exception InternalException {string message ;};987

exception InvalidArgumentException {string message ;};988

exception InvalidSessionException {string message ;};989

exception InvalidStateException {string message ;};990

exception OutOfResourceException {string message ;};991

exception UnsupportedAttributeException {string message ;};992

exception UnsupportedOperationException {string message ;};993

drmaa-wg@ogf.org 34

mailto:drmaa-wg@ogf.org

GWD-R June 2011

If not defined otherwise, the exceptions have the following meaning:994

DeniedByDrmsException: The DRM system rejected the operation due to security issues.995

DrmCommunicationException: The DRMAA implementation could not contact the DRM system. The996

problem source is unknown to the implementation, so it is unknown if the problem is transient or not.997

TryLaterException: The DRMAA implementation detected a transient problem with performing the998

operation, for example due to excessive load. The application is recommended to retry the call.999

TimeoutException: The timeout given in one the waiting functions was reached without successfully1000

finishing the waiting attempt.1001

InternalException: An unexpected or internal error occurred in the DRMAA library, for example a system1002

call failure. It is unknown if the problem is transient or not.1003

InvalidArgumentException: From the viewpoint of the DRMAA library, a function parameter is in-1004

valid or inappropriate for the particular function call. If the parameter is a structure, the exception1005

description SHOULD contain the name(s) of the problematic attribute(s).1006

InvalidSessionException: The session used for the function is not valid, for example since it was closed1007

before.1008

InvalidStateException: The function call is not allowed in the current state of the job.1009

OutOfResourceException: This exception can be thrown by any method at any time when the DRMAA1010

implementation has run out of operating system resources, such as buffer, main memory, or disk space.1011

UnsupportedAttributeException: The optional attribute is not supported by the DRMAA implemen-1012

tation.1013

UnsupportedOperationException: The function is not supported by the DRMAA implementation. One1014

example is the registration of an event callback function.1015

The DRMAA specification assumes that programming languages targeted by language bindings typically

drmaa-wg@ogf.org 35

mailto:drmaa-wg@ogf.org

GWD-R June 2011

support the concept of exceptions. If a destination language does not support them (like ANSI C), the
language binding specification SHOULD map error conditions to an appropriate consistent concept.

A language binding MAY chose to model exceptions as numeric error codes. In this case, the language
binding specification SHOULD specify numeric values for all DRMAA error constants.

The representation of exceptions in the language binding MUST support a possibility to express an exception
cause as textual description. This is intended as specialization of the general error information. Implemen-
tations MAY use this text also to express DRMS-specific error conditions that are outside of the DRMAA
scope.

Object-oriented language bindings MAY decide to derive all exceptions from one or multiple exception base
classes, in order to support generic catch clauses. Whenever it is appropriate, language bindings SHOULD
replace a DRMAA exception by some semantically equivalent native exception from the application runtime
environment.

Language bindings MAY decide to introduce a hierarchical ordering of the DRMAA exceptions through class
derivation. In this case, any new exceptions added for aggregation purposes SHOULD be prevented from
being thrown, for example by marking them as abstract.

The UnsupportedAttributeException may either be raised by the setter function for the attribute or by
the job submission function. A consistent decision for either one or the other approach MUST be made by
the language binding specification.

(See footnote)
29

1016

7 The DRMAA Session Concept1017

DRMAA relies on an overall session concept, which supports the persistency of job and advance reservation1018

information over multiple application runs. This supports short-lived applications that need to work with1019

DRM system state spanning multiple application runs. Typical examples are job submission portals or1020

command-line tools. The session concept is also intended to allow implementations to perform DRM system1021

attach / detach operations at dedicated points in the application control flow.1022

7.1 SessionManager Interface1023

interface SessionManager{1024

readonly attribute string drmsName;1025

readonly attribute Version drmsVersion;1026

readonly attribute string drmaaName;1027

readonly attribute Version drmaaVersion;1028

boolean supports(in DrmaaCapability capability);1029

JobSession createJobSession(in string sessionName ,1030

in string contactString);1031

ReservationSession createReservationSession(in string sessionName ,1032

29 Comparison to DRMAA 1.0: The InconsistentStateException was removed, since it is semantically equal to the In-
validStateException (conf. call Jan 7th 2010) The former HoldInconsistentStateException, ReleaseInconsistentStateException,
ResumeInconsistentStateException, and SuspendInconsistentStateException from DRMAA v1.0 are now expressed as single
InvalidStateException with different meaning per raising method. (F2F meeting July 2009)

drmaa-wg@ogf.org 36

mailto:drmaa-wg@ogf.org

GWD-R June 2011

in string contactString);1033

MonitoringSession createMonitoringSession (in string contactString);1034

JobSession openJobSession(in string sessionName);1035

ReservationSession openReservationSession(in string sessionName);1036

void closeJobSession(in JobSession s);1037

void closeReservationSession(in ReservationSession s);1038

void closeMonitoringSession(in MonitoringSession s);1039

void destroyJobSession(in string sessionName);1040

void destroyReservationSession(in string sessionName);1041

StringList getJobSessions ();1042

StringList getReservationSessions ();1043

void registerEventNotification(in DrmaaCallback callback);1044

};1045

The SessionManager interface is the main interface for establishing communication with a given DRM sys-1046

tem. By the help of this interface, sessions for job management, monitoring, and/or reservation management1047

can be maintained.1048

Job and reservation sessions maintain persistent state information (about jobs and reservations created)1049

between application runs. State data SHOULD be persisted by the library implementation or the DRMS1050

itself (if supported). The data SHOULD be written to stable storage when the session is closed by the1051

according method in the SessionManager interface.1052

The re-opening of a session MUST work on the machine where the session was originally created. Imple-1053

mentations MAY also offer to re-open the session on another machine, if the state information is accessible.1054

The state information SHOULD be kept until the job or reservation session is explicitly reaped by the1055

according destroy method in the SessionManager interface. If an implementation runs out of resources for1056

storing the session information, the closing function SHOULD throw an OutOfResourceException. If an1057

application ends without closing the session properly, the behavior is unspecified.1058

An implementation MUST allow the application to have multiple sessions of the same or different types1059

instantiated at the same time. This includes the proper coordination of parallel calls to session methods1060

that share state information.1061

A SessionManager instance SHALL be available as singleton at DRMAA application start. Language
bindings MAY realize this by mapping the session manager operations to global functions.

(See footnote)
30

1062

7.1.1 drmsName1063

A system identifier denoting a specific type of DRM system, e.g., “LSF” or “GridWay”. Implementations1064

SHOULD NOT make versioning information of the particular DRM system a part of this attribute value.1065

30 Comparison to DRMAA 1.0: The concept of a factory from GFD.130 was removed (solves issue #6276). Version 2.0 of
DRMAA supports restartable sessions by the newly introduced SessionManager interface. It allows creating multiple concurrent
sessions for job submission (solves issue #2821), which can be restarted by their generated session name (solves issue #2820).
Session.init() and Session.exit() functionalities are moved to the according session creation and closing routines. The descriptions
were fixed accordingly (solves issue #2822). The AlreadyActiveSession error was removed. (F2F meeting July 2009) The
drmaaImplementation attribute from DRMAA 1.0 was removed, since it was redundant to the drmsInfo attribute. This one is
now available in the new SessionManager interface. (F2F meeting July 2009).

drmaa-wg@ogf.org 37

mailto:drmaa-wg@ogf.org

GWD-R June 2011

The value should only be utilized for informative output to the end user.1066

7.1.2 drmsVersion1067

This attribute provides the DRM-system specific version information.1068

The value should only be utilized for informative output to the end user.1069

7.1.3 drmaaName1070

This attribute contains a string identifying the vendor of the DRMAA implementation.1071

The value should only be utilized for informative output to the end user.1072
New, needs
group ap-
proval

1073

7.1.4 drmaaVersion1074

A combination of minor / major version number information for the DRMAA implementation. The major1075

version number MUST be the constant value “2”, the minor version number SHOULD be used by the1076

DRMAA implementation for expressing its own versioning information.1077

The minor version number should only be utilized for informative output to the end user.1078

7.1.5 createJobSession / createReservationSession / createMonitoringSession1079

The method creates a new session instance of the particular type for the application. On successful completion1080

of this method, the necessary initialization for making the session usable MUST be completed. Examples are1081

the connection establishment from the DRMAA library to the DRM system, or the prefetching of information1082

from non-thread-safe operating system calls, such as getHostByName.1083

The contactString parameter is an implementation-dependent string that SHALL allow the application to1084

specify which DRM system instance to use. A contact string represents a specific installation of a specific1085

DRM system, e.g., a Condor central manager machine at a given IP address, or a Grid Engine ‘root’ and1086

‘cell’. Contact strings are always implementation dependent and therefore opaque to the application. If1087

contactString has the value UNSET, a default DRM system SHOULD be contacted. The manual configu-1088

ration or automated detection of a default contact is implementation-specific.1089

The sessionName parameter denotes a unique name to be used for the new session. If a session with such1090

a name was created before, the method MUST throw an InvalidArgumentException. In all other cases,
What means
-before-

1091

including if the provided name has the value UNSET, a new session MUST be created with a unique name1092

generated by the implementation.
Should we
state that
is enough
that session
names must
be unique
for tuple
(DRMS,user)
?

1093

A MonitoringSession instance has no persistent state, and therefore does not support the name concept.1094

If the DRM system does not support advance reservation, than createReservationSession SHALL throw1095

an UnsupportedOperationException.1096

If Monitor-
ingSession
is a single-
ton, we can
get rid of the
creation func-
tion at all.
Currently, it
is confusing
that there is
no destruc-
tion method.
We might
also rename
it to open().

1097

drmaa-wg@ogf.org 38

mailto:drmaa-wg@ogf.org

GWD-R June 2011

7.1.6 openJobSession / openReservationSession1098

The method is used to open a persisted JobSession or ReservationSession instance that has previously1099

been created under the given sessionName. The implementation MUST support the case that the session1100

have been created by the same application or by a different application running on the same machine. The1101

implementation MAY support the case that the session was created or updated on a different machine. If1102

no session with the given sessionName exists, an InvalidArgumentException MUST be raised.1103

If the session described by sessionName was already opened before, implementations MAY return the same1104

job or reservation session instance.1105

If the DRM system does not support advance reservation, openReservationSession SHALL throw an1106

UnsupportedOperationException.1107

7.1.7 closeJobSession / closeReservationSession / closeMonitoringSession1108

The method MUST perform the necessary action to disengage from the DRM system. It SHOULD be callable1109

only once, by only one of the application threads. This SHOULD be ensured by the library implementation.1110

Additional calls beyond the first SHOULD lead to a NoActiveSessionException error notification.1111

For JobSession or ReservationSession instances, the according state information MUST be saved to some1112

stable storage before the method returns. This method SHALL NOT affect any jobs or reservations in the1113

session (e.g., queued and running jobs remain queued and running).1114

If the DRM system does not support advance reservation, closeReservationSession SHALL throw an1115

UnsupportedOperationException.1116

Allow the
language
binding to
implicitly call
close on ses-
sion object
destruction,
or to add a
close method
to the accord-
ing session
objects.

1117

7.1.8 destroyJobSession / destroyReservationSession1118

The method MUST do whatever work is required to reap persistent session state and cached job state1119

information for the given session name. It is intended to be used when no session instance with this particular1120

name is open. If session instances for the given name exist, they MUST become invalid after this method1121

was finished successfully. Invalid sessions MUST throw InvalidSessionException on every attempt of1122

utilization. This method SHALL NOT affect any jobs or reservations in the session in their operation, e.g.,1123

queued and running jobs remain queued and running.1124

If the DRM system does not support advance reservation, destroyReservationSession SHALL throw an1125

UnsupportedOperationException.1126

7.1.9 getJobSessions / getReservationSessions1127

This method returns a list of JobSession or ReservationSession names that are valid input for a openJobSession1128

or openReservationSession call.1129

If the DRM system does not support advance reservation, getReservationSessions SHALL throw an1130

UnsupportedOperationException.1131

.

All getXYZ
methods in
the API re-
turn XYZ,
apart from
these two
which return
the name of
XYZ. IMHO,
they should
either re-
turn XYZ,
or should
be called
listXXX

1132

drmaa-wg@ogf.org 39

mailto:drmaa-wg@ogf.org

GWD-R June 2011

7.1.10 registerEventNotification1133

This method is used to register a DrmaaCallback interface (see Section 8.3) implemented by the DRMAA-1134

based application. If the callback functionality is not supported by the DRMAA implementation, the method1135

SHALL raise an UnsupportedOperationException, and the capability DrmaaCapability::CALLBACK MUST1136

NOT be indicated (see Section 4.5). Implementations with callback support SHOULD allow to perform mul-1137

tiple registration calls, which updates the callback target function.1138

If the argument of the method call is UNSET, the currently registered callback MUST be unregistered. After1139

this method call returned, no more events SHALL be delivered to the application. If no callback target is1140

registered, the method should return immediately.1141

A language binding specification MUST define how the reference to an interface-compliant method can be
given as argument to this method. It MUST also clarify how to pass an UNSET callback method reference.

8 Working with Jobs1142

A DRMAA job represents a single computational activity that is executed by the DRM system on one or1143

more execution hosts, as one or more operating system processes. The JobSession interface represents all1144

control and monitoring functions commonly available in DRM systems for such jobs as a whole, while the Job1145

interface represents the common functionality for single jobs. Sets of jobs resulting from a bulk submission1146

are separately represented by the JobArray interface. JobTemplate instances allow to formulate conditions1147

and requirements for the job execution by the DRM system.1148

8.1 The DRMAA State Model1149

DRMAA defines the following job states:1150

enum JobState {1151

UNDETERMINED , QUEUED , QUEUED_HELD , RUNNING , SUSPENDED , REQUEUED ,1152

REQUEUED_HELD , DONE , FAILED };1153

UNDETERMINED: The job status cannot be determined. This is a permanent issue, not being solvable1154

by querying again for the job state.1155

QUEUED: The job is queued for being scheduled and executed.1156

QUEUED HELD: The job has been placed on hold by the system, the administrator, or the submitting1157

user.1158

RUNNING: The job is running on an execution host.1159

SUSPENDED: The job has been suspended by the user, the system or the administrator.1160

REQUEUED: The job was re-queued by the DRM system, and is eligible to run.1161

REQUEUED HELD: The job was re-queued by the DRM system, and is currently placed on hold.1162

DONE: The job finished without an error.1163

FAILED: The job exited abnormally before finishing.1164

drmaa-wg@ogf.org 40

mailto:drmaa-wg@ogf.org

GWD-R June 2011

If a DRMAA job state has no representation in the underlying DRMS, the DRMAA implementation MAY1165

never report that job state value. However, all DRMAA implementations MUST provide the JobState1166

enumeration as given here. An implementation SHOULD NOT return any job state value other than those1167

defined in the JobState enumeration.1168

The status values relate to the DRMAA job state transition model, as shown in Figure 1.1169

TerminatedStartedQueued

QUEUED

QUEUED_HELD

RUNNING

SUSPENDED

DONE

FAILED

UNDETERMINED

REQUEUED

REQUEUED_HELD

runJob()
runBulkJobs()

Figure 1: DRMAA Job State Transition Model

The transition diagram in Figure 1 expresses the classification of possible job states into “Queued”, “Started”,1170

and “Terminated”. This is relevant for the job waiting functions (see Section 8.2 and Section 8.4), which1171

operate on job state classes only. The “Terminated” class of states is final, meaning that further state1172

transition is not allowed.1173

Implementations SHALL NOT introduce other job transitions (e.g., from RUNNING to QUEUED) beside the ones1174

stated in Figure 1, even if they might happen in the underlying DRM system. In this case, implementations1175

MAY emulate the necessary intermediate steps for the DRMAA-based application.1176

When an application requests job state information, the implementation SHOULD also provide the subState1177

value to explain DRM-specific information about the job state. The possible values of this attribute are1178

implementation-specific, but should be documented properly. Examples are extra states for staging phases1179

or details on the hold reason. Implementations SHOULD define a DRMS-specific data structure for the1180

sub-state information that can be converted to / from the data type defined by the language binding.1181

drmaa-wg@ogf.org 41

mailto:drmaa-wg@ogf.org

GWD-R June 2011

The IDL definition declares the sub state attributes as type any, expressing the fact that the language
binding MUST map the data type to a generic language type (e.g., void*, Object) that maintains source
code portability across DRMAA implementations and still accepts an UNSET value.

The DRMAA job state model can be mapped to other high-level API state models. Table 4 gives a non-1182

normative set of examples.1183

DRMAA JobState SAGA JobState [3] OGSA-BES Job State [2]
UNDETERMINED N/A N/A
QUEUED Running Pending (Queued)
QUEUED HELD Running Pending (Queued)
RUNNING Running Running (Executing)
SUSPENDED Suspended Running (Suspended)
REQUEUED Running Running (Queued)
REQUEUED HELD Running Running (Queued)
DONE Done Finished
FAILED Cancelled, Failed Cancelled, Failed

Table 4: Example Mapping of DRMAA Job States

(See footnote)
31

1184

8.2 JobSession Interface1185

A job session instance acts as container for job instances controlled through the DRMAA API. The session1186

methods support the submission of new jobs, the monitoring and the control of existing jobs. The relationship1187

between jobs and their session MUST be persisted, as described in Section 7.1.1188

interface JobSession {1189

readonly attribute string contact;1190

readonly attribute string sessionName;1191

readonly attribute StringList jobCategories;1192

JobList getJobs(in JobInfo filter);1193

JobArray getJobArray(in string jobArrayId);1194

Job runJob(in JobTemplate jobTemplate);1195

JobArray runBulkJobs(1196

31 Comparison to DRMAA 1.0:
The differentiation between the system hold, user hold, and system / user hold job states was removed (conf. call Jan

20th 2009). There is only one hold state now. A job can now change its state from one of the SUSPENDED states to the
QUEUED ACTIVE state (conf. call Jan 20th 2009, solves issue #2788). The job state UNDETERMINED is now clearer
defined. It expressed a permanent issue, meaning that the job state will not change by just waiting. Temporary problems in
the detection of the job state are now expressed by the TryLaterException (conf. call Feb 5th 2009, solves issue #2783). The
description of the FAILED state was extended to support a more specific differentiation between different job failure reasons.
The new subState feature allows the DRMAA implementation to provide better information, if available. There was no portable
way of standardizing extended failure information in a better way. (conf. call May 12th 2009, solves issue #5875) The different
suspend job states from DRMAA1 (user suspended, system suspended, user / system suspended) are now combined into one
suspend state. DRM systems with the need to express the different suspend reasons can use the new sub-state feature (conf.
call Mar 5th 2010).

REQUEUED and REQUEUED HELD maps to RUNNING in BES, since BES does not allow a transition between Running
and Pending (mailing list, APr. 2011)

drmaa-wg@ogf.org 42

mailto:drmaa-wg@ogf.org

GWD-R June 2011

in JobTemplate jobTemplate ,1197

in long beginIndex ,1198

in long endIndex ,1199

in long step ,1200

in long maxParallel);1201

Job waitAnyStarted(in JobList jobs , in TimeAmount timeout);1202

Job waitAnyTerminated(in JobList jobs , in TimeAmount timeout);1203

};1204

(See footnote)
32

1205

8.2.1 contact1206

This attribute contains the contact value that was used in the SessionManager::createJobSession call1207

for this instance (see Section 7.1). If no value was originally provided, the default contact string from the1208

implementation MUST be returned. This attribute is read-only.1209

8.2.2 sessionName1210

This attribute contains the sessionName value that resulted from the SessionManager::createJobSession1211

or SessionManager::openJobSession call for this instance (see Section 7.1). This attribute is read-only.1212

8.2.3 jobCategories1213

This method provides the list of valid job category names which can be used for the jobCategory attribute1214

in a JobTemplate instance. Further details about job categories are described in Section 1.4.1215

8.2.4 getJobs1216

This method returns a sequence of jobs that belong to the job session. The filter parameter allows one1217

to choose a subset of the session jobs as return value. The semantics of the filter argument are explained1218

in Section 5.5. If no job matches or the session has no jobs attached, the method MUST return an empty1219

sequence instance. If filter is UNSET, all session jobs MUST be returned.1220

Time-dependent effects of this method, such as jobs no longer matching to filter criteria on evaluation time,1221

are implementation-specific. The purpose of the filter parameter is to keep scalability with a large number1222

of jobs per session. Applications therefore must consider the possibly changed state of jobs during their1223

evaluation of the method result.1224

32 Comparison to DRMAA 1.0: The original separation between synchronize() and wait() was replaced by a complete new
synchronization semantic in the API. DRMAA2 has now two methods, waitStarted() and waitTerminated(). The first waits
for any state that expresses that the job was started, the second for any terminal status. Both methods are available on
session level (wait for any of the given jobs to start / end) or on single job level (solves issue #5880 and #2838). The function
returns always a Job object, in order to allow chaining, e.g. job.wait(JobStatus.RUNNING).hold(). The session-level functions
implement the old DRMAA wait(SESSION ANY). The old synchronize() semantics are no longer directly supported - instead,
the DRMAA application should use a looped Job.wait... / JobSession.waitAny... call. The result is a more condensed and
responsive API, were the application can decide to keep the user informed during synchronization on a set of jobs. DRMAA
library implementations should also become easier to design, since the danger of multithreading side effects inside the DRMAA
API is reduced by this change. As a side effect, JOB IDS SESSION ANY and JOB IDS SESSION ALL are no longer needed.
The special consideration of a partial failures during SESSION ALL wait activities is also no longer necessary (F2F meeting
July 2009). The JobSession now allows to fetch also information about jobs that were not submitted through DRMAA (conf.
call June 23th 2010).

drmaa-wg@ogf.org 43

mailto:drmaa-wg@ogf.org

GWD-R June 2011

8.2.5 getJobArray1225

This method returns the JobArray instance with the given ID. If the session does not / no longer contain1226

the according job array, InvalidArgumentException SHALL be thrown.1227

(See footnote)
33

1228

8.2.6 runJob1229

The runJob method submits a job with the attributes defined in the job template parameter. It returns a1230

Job object that represents the job in the underlying DRM system. Depending on the job template settings,1231

submission attempts may be rejected with an InvalidArgumentException. The error details SHOULD1232

provide further information about the attribute(s) responsible for the rejection.1233

When this method returns a valid Job instance, the following conditions SHOULD be fulfilled:1234

• The job is part of the persistent state of the job session.1235

• All non-DRMAA and DRMAA interfaces to the DRM system report the job as being submitted to1236

the DRM system.1237

• The job has one of the DRMAA job states.1238

8.2.7 runBulkJobs1239

The runBulkJobs method creates a set of parametric jobs, each with attributes defined in the given1240

job template. Each job in the set is identical, except for the job template attributes that include the1241

JobTemplatePlaceholder::PARAMETRIC_INDEX macro (see Section 5.7).1242

If any of the resulting parametric job templates is not accepted by the DRM system, the method call MUST1243

raise an InvalidArgumentException. No job from the set SHOULD be submitted in this case.1244

The first job in the set has an index equal to the beginIndex parameter of the method call. The smallest valid1245

value for beginIndex is 1. The next job has an index equal to beginIndex + step, and so on. The last job1246

has an index equal to beginIndex + n * step, where n is equal to(endIndex - beginIndex) / step. The1247

index of the last job may not be equal to endIndex if the difference between beginIndex and endIndex is not1248

evenly divisible by step. The beginIndex value must be less than or equal to the endIndex value, and only1249

positive index numbers are allowed, otherwise the method SHOULD raise an InvalidArgumentException.1250

Jobs can determine the index number at run time with the mechanism described in Section 8.6.1251

The maxParallel parameter allows to specify how many of the bulk job’s instances are allowed to run1252

in parallel on the utilized resources. Implementations MAY consider this value if the DRM system sup-1253

ports such functionality, otherwise the parameter MUST be silently ignored. If the parameter value is1254

UNSET, no limit SHOULD be applied on the bulk job. If given, the support MUST be expressed by the1255

DrmaaCapability::BULK_JOBS_MAXPARALLEL capability flag (see Section 4.5).1256

The runBulkJobs method returns a JobArray (see Section 8.5) instance that represents the set of Job objects1257

created by the method call under a common array identifier. For each of the jobs in the array, the same1258

conditions as for the result of runJob SHOULD apply.1259

33 June 2011 conf. call decided to not support JobArray filtering in the session at this point. The face-to-face meeting in
June 2011 identified that DRM systems typically do not support the identification of bulk jobs in the system, so it would be
hard to implement the according reporting function.

drmaa-wg@ogf.org 44

mailto:drmaa-wg@ogf.org

GWD-R June 2011

The largest (syntactically) allowed value for endIndex MUST be defined by the language binding.

Further restrictions on the maximum endIndex MAY be implied by the implementation.1260

(See footnote)
34

1261

8.2.8 waitAnyStarted / waitAnyTerminated1262

The waitAnyStarted method blocks until any of the jobs referenced in the jobs parameter entered one of1263

the “Started” states. The waitAnyTerminated method blocks until any of the jobs referenced in the jobs1264

parameter entered one of the “Terminated” states (see Section 8.1). If the input list contains jobs that are1265

not part of the session, waitAnyStarted SHALL fail with an InvalidArgumentException.1266

The timeout argument specifies the desired behavior when a result is not immediately available. The con-1267

stant value INFINITE_TIME may be specified to wait indefinitely for a result. The constant value ZERO_TIME1268

may be specified to return immediately. Alternatively, a number of seconds may be specified to indicate1269

how long to wait for a result to become available. If the invocation exits on timeout, an TimeoutException1270

SHALL be raised.1271

An application waiting for some condition to happen in all jobs of a set is expected to perform looped calls1272

of these waiting functions.1273

(See footnote)
35

1274

8.3 DrmaaCallback Interface1275

The DrmaaCallback interface allows the DRMAA library or the DRM system to inform the application1276

about relevant events from the DRM system in an asynchronous fashion. One expected use case is con-1277

tinuous monitoring of job state transitions. However, the implementation MAY decide to not deliver all1278

events occurring in the DRM system. The support for such callback functionality is optional, indicated1279

by DrmaaCallback::CALLBACK, but all implementations MUST define the DrmaaCallback interface type as1280

given in the language binding.1281

interface DrmaaCallback {1282

void notify(in DrmaaNotification notification);1283

};1284

struct DrmaaNotification {1285

DrmaaEvent event;1286

Job job;1287

JobState jobState;1288

34 There was a discussion (mailing list Jan 2011) about having specialized job templates for bulk submission, with support
for the start / end index and a slots limit. We rejected that, since job templates are intended for re-usage.

The May 4th 2011 conf call identified Grid Engine, Torque and LSF as the only systems having support for maxParallel. The
feature was determined as critical enough for still adding it, therefore the ignorance rule and the MAY semantics are applied.

35 People typically ask for the waitAll..() counterparts of these functions. Since they are so easy to implement in the
application itself, we could not see any benefit in adding them. Due to their intended long-blocking operation, the DRM system
would no be able to offer any better (meaning much faster) implementation to be wrapped by DRMAA.

A section on synchronization of multi-threaded parallel wait calls was removed. This would complicate DRMAA implementa-
tions, since synchronization does not map to the obvious state polling approach. An optimization like this would be classically
a task of application-oriented APIs - so, Andre has to solve it.

drmaa-wg@ogf.org 45

mailto:drmaa-wg@ogf.org

GWD-R June 2011

};1289

enum DrmaaEvent {1290

NEW_STATE , MIGRATED , ATTRIBUTE_CHANGE1291

};1292

The application callback interface is registered through the SessionManager::registerEventNotification1293

method (see Section 7.1). The DrmaaNotification structure represents the notification information from the1294

DRM system. Implementations MAY extend this structure for further information (see Section 5). All given1295

information SHOULD be valid at least at the time of notification generation. The DrmaaNotification::jobState1296

attribute expresses the state of the job at the time of notification generation, while the DrmaaNotification::job1297

attribute allows to retrieve latest job information.1298

The DrmaaEvent enumeration defines standard event types for notification:1299

NEW STATE The job entered a new state, which is described in the jobState attribute of the notification1300

structure.1301

MIGRATED The job was migrated to another execution host, and is now in the given state.1302

ATTRIBUTE CHANGE A monitoring attribute of the job, such as the memory consumption, changed1303

to a new value. The jobState attribute MAY have the value UNSET on this event.1304

DRMAA implementations SHOULD protect themselves from unexpected behavior of the called application.1305

This includes indefinite delays or unexpected exceptions from the callee. The implementation SHOULD1306

prevent a nested callback at the time of occurrence, and MAY decide to deliver the according events at a1307

later point in time.1308

Scalability issues of the notification facility are out of scope for this specification. Implementations MAY1309

decide to support non-standardized throttling configuration options.1310

(See footnote)
36

1311

8.4 Job Interface1312

Every job in the JobSession is expressed by an own instance of the Job interface. It allows one to instruct1313

the DRM system for a job status change, and to query the status attributes of the job in the DRM system.1314

Implementations MAY return Job objects for jobs created outside of a DRMAA session.1315

interface Job {1316

readonly attribute string jobId;1317

readonly attribute JobSession session;1318

readonly attribute JobTemplate jobTemplate;1319

void suspend ();1320

void resume ();1321

void hold ();1322

void release ();1323

void terminate ();1324

JobState getState(out any jobSubState);1325

36 We intentionally did not add subState to the notification information, since this would make callback interface implemen-
tations specific for the DRM system, without any chance for creating a portable DRMAA application.

drmaa-wg@ogf.org 46

mailto:drmaa-wg@ogf.org

GWD-R June 2011

JobInfo getInfo ();1326

Job waitStarted(in TimeAmount timeout);1327

Job waitTerminated(in TimeAmount timeout);1328

};1329

(See footnote)
37

1330

8.4.1 jobId1331

This attribute provides the string job identifier assigned to the job by the DRM system. It is intended as1332

performant alternative for fetching a complete JobInfo instance for this information.1333

8.4.2 session1334

This attribute offers a reference to the JobSession instance that represents the session used for the job1335

submission creating this Job instance.1336

8.4.3 jobTemplate1337

This attribute provides a reference to a JobTemplate instance that has equal values to the one that was1338

used for the job submission creating this Job instance.1339

For jobs created outside of a DRMAA session, implementations MUST also return a JobTemplate instance,1340

which MAY be empty or only partially filled.1341

8.4.4 suspend / resume / hold / release / terminate1342

The job control functions allow modifying the status of the single job in the DRM system, according to the1343

state model presented in Section 8.1.1344

The suspend method triggers a transition from RUNNING to SUSPENDED state. The resume method triggers1345

a transition from SUSPENDED to RUNNING state. The hold method triggers a transition from QUEUED to1346

QUEUED_HELD, or from REQUEUED to REQUEUED_HELD state. The release method triggers a transition from1347

QUEUED_HELD to QUEUED, or from REQUEUED_HELD to REQUEUED state. The terminate method triggers a1348

transition from any of the “Started” states to one of the “Terminated” states. If the job is in an inappropriate1349

state for the particular method, the method MUST raise an InvalidStateException.1350

The methods SHOULD return after the action has been acknowledged by the DRM system, but MAY1351

return before the action has been completed. Some DRMAA implementations MAY allow this method1352

to be used to control jobs submitted externally to the DRMAA session, such as jobs submitted by other1353

DRMAA sessions in other DRMAA implementations or jobs submitted via native utilities. This behavior is1354

implementation-specific.1355

37 In comparison to DRMAA v1.0, DRMAA2 replaces the identification of jobs by strings with Job objects. This enables a
tighter integration of job meta-data and identity, for the price of reduced performance in (so far not existing) DRMAA RPC
scenarios. The former DRMAA control() with the JobControlAction structure is now split up into dedicated functions (such
as hold() and release()) on the Job object.

Even though the DRMAAv2 surveys showed interest in interactive job support, this feature was intentionally left out. Reasons
are the missing support in some major DRM systems, and the lack of a relevant DRMAA-related use case (conf. call Jan 7th
2010)

Issue #5877 (support for direct job signaling) was rejected, even though there was an according request from the SAGA WG.
Issue #2782 (change attributes of submitted, but pending jobs) was rejected based on group decision.

drmaa-wg@ogf.org 47

mailto:drmaa-wg@ogf.org

GWD-R June 2011

8.4.5 getState1356

This method allows one to gather the current status of the job according to the DRMAA state model,1357

together with an implementation specific sub state (see Section 8.1). It is intended as performant alternative1358

for fetching a complete JobInfo instance for state checks. The timing conditions are described in Section1359

5.5.1360

(See footnote)
38

1361

8.4.6 getInfo1362

This method returns a JobInfo instance for the particular job under the conditions described in Section 5.5.1363

8.4.7 waitStarted / waitTerminated1364

The waitStarted method blocks until the job entered one of the “Started” states. The waitTerminated1365

method blocks until the job entered one of the “Terminated” states (see Section 8.1). The timeout argument1366

specifies the desired behavior when a result is not immediately available. The constant value INFINITE_TIME1367

may be specified to wait indefinitely for a result. The constant value ZERO_TIME may be specified to return1368

immediately. Alternatively, a number of seconds may be specified to indicate how long to wait for a result to1369

become available. If the invocation exits on timeout, an TimeoutException SHALL be raised. If the job is1370

in an inappropriate state for the particular method, the method MUST raise an InvalidStateException.1371

8.5 JobArray Interface1372

The following section explains the methods and attributes defined in the JobArray interface. An instance1373

of this interface represent a job array, a common concept in many DRM systems for a set of jobs created by1374

one operation. In DRMAA, JobArray instances are only created by the runBulkJobs operation (see Section1375

8.2). JobArray instances differ from the JobList data structure due to their potential for representing1376

a DRM system concept, while JobList is a DRMAA-only concept realized by language binding support.1377

Implementations SHOULD realize the JobArray functionality as wrapper for DRM system job arrays, if1378

possible. If the DRM system has only single job support or incomplete job array support with respect to the1379

DRMAA-provided functionality, implementations MUST realize the JobArray functionality on their own,1380

for example based on looped operations with a list of jobs.1381

interface JobArray {1382

readonly attribute string jobArrayId;1383

readonly attribute JobList jobs;1384

readonly attribute JobSession session;1385

readonly attribute JobTemplate jobTemplate;1386

void suspend ();1387

void resume ();1388

void hold ();1389

void release ();1390

void terminate ();1391

};1392

38 The getState() function now also returns job subState information. This is intended as additional information for the given
DRMAA job state, and can be used for expressing the hold state differentiation from DRMAA 1.0 (conf. call Mar 31st 2009).

drmaa-wg@ogf.org 48

mailto:drmaa-wg@ogf.org

GWD-R June 2011

(See footnote)
39

1393

8.5.1 jobArrayId1394

This attribute provides the string job identifier assigned to the job array by the DRM system. If the DRM1395

system has no job array support, the implementation MUST generate a system-wide unique identifier for1396

the result of the successful runBulkJobs operation.1397

8.5.2 jobs1398

This attribute provides the static list of jobs that are part of the job array.1399

(See footnote)
40

1400

8.5.3 session1401

This attribute offers a reference to a JobSession instance that represents the session which was used for the1402

job submission creating this JobArray instance.1403

Mariusz:
what about
job objects
returned in
the monitor-
ing session?
Which ses-
sion should
be referred
then?

1404

8.5.4 jobTemplate1405

This attribute provides a reference to a JobTemplate instance that has equal values to the one that was1406

used for the job submission creating this JobArray instance.1407

(See footnote)
41

1408

8.5.5 suspend / resume / hold / release / terminate1409

The job control functions allow modifying the status of the job array in the DRM system, with the same1410

semantic as with the counterparts in the Job interface (see Section 8.4). If one of the jobs in the array is in1411

an inappropriate state for the particular method, the method MUST raise an InvalidStateException.1412

The methods SHOULD return after the action has been acknowledged by the DRM system for all jobs in1413

the array, but MAY return before the action has been completed. Some DRMAA implementations MAY1414

allow this method to be used to control job arrays created externally to the DRMAA session, such as job1415

arrays submitted by other DRMAA sessions in other DRMAA implementations or job arrays submitted via1416

native utilities. This behavior is implementation-specific.1417

Mariusz:
maybe we
should warn
here that this
operation
might not be
atomic.

1418

39 We are aware of the fact that some systems (e.g., LSF at the time of writing) do not support all DRMAA control operations
offered for job arrays. Since we intended to avoid optional DRMAA operations wherever we could, the text here mandates the
implementation to simulate the array support on its own. For example, looping over all jobs in the array and calling “suspend”
for each one is trivial to implement and fulfills the same purpose.

40 We were asked for offering a filter support similar to JobSession here. This was rejected by discussion on the list (Jan
2011), since the number of jobs returned here is normally comparatively short. In this case, the DRM system cannot provide
any benefit over the looped check in the application itself.

41 The use case from SAGA perspective is that the user can easily resubmit the same job - just changing for example some
command line parameter, but leaving the remainder fixed (mail by Andre Merzky, July 29th 2010).

drmaa-wg@ogf.org 49

mailto:drmaa-wg@ogf.org

GWD-R June 2011

8.6 The DRMAA INDEX VAR environment variable1419

DRMAA implementations SHOULD implicitly set an environment variable with the name DRMAA_INDEX_VAR1420

for each submitted job. This environment variable MUST contain the name of the environment variable1421

provided by the DRM system that holds the parametric job index. Examples are TASK_ID in GridEngine,1422

PBS_ARRAYID in Torque, or LSB_JOBINDEX in LSF. By using an indirect fetching of the environment variable1423

value, jobs are enabled to get their own parametric index regardless of the DRM system type. For DRM1424

systems that do not set such an environment variable, DRMAA_INDEX_VAR SHOULD not be set.1425

An expected implementation strategy would be the transparent addition an environment variable spec-1426

ification on job submission. However, this definition SHOULD NOT be visible for the application in1427

the JobTemplate instances. If the application defines its own DRMAA_INDEX_VAR environment variable, it1428

SHOULD override the implementation-defined value.1429

9 Working with Advance Reservation1430

Advance reservation is a DRM system concept that allows the reservation of execution resources for jobs1431

to be submitted. DRMAA encapsulates such functionality of a DRM system with the interfaces and data1432

structures described in this chapter.1433

DRMAA implementations for DRM systems that do not support advance reservation still MUST imple-1434

mented the described interfaces, in order to keep source code portability for DRMAA-based applications.1435

Support for advance reservation is expressed by the DrmaaCapability::ADVANCE_RESERVATION flag (see Sec-1436

tion 4.5). If no support is given by the implementation, all methods related to advance reservation MUST1437

raise an UnsupportedOperationExeption if being used.1438

9.1 ReservationSession Interface1439

Every ReservationSession instance represents a set of advance reservations in the DRM system. Every1440

Reservation instance SHALL belong only to one ReservationSession instance.1441

interface ReservationSession {1442

readonly attribute string contact;1443

readonly attribute string sessionName;1444

Reservation getReservation(in string reservationId);1445

Reservation requestReservation(in ReservationTemplate reservationTemplate);1446

ReservationList getReservations ();1447

};1448

9.1.1 contact1449

This attribute contains the contact value that was used in the createReservationSession call for this1450

instance (see Section 7.1). If no value was originally provided, the default contact string from the implemen-1451

tation MUST be returned. This attribute is read-only.1452

9.1.2 sessionName1453

This attribute contains the name of the session that was used for creating or opening this Reservation1454

instance (see Section 7.1). This attribute is read-only.1455

drmaa-wg@ogf.org 50

mailto:drmaa-wg@ogf.org

GWD-R June 2011

9.1.3 getReservation1456

This method returns a Reservation instance that has the given reservationId. Implementations MAY1457

support the access to reservations created outside of a DRMAA session scope, under the same regulari-1458

ties as for the MonitoringSession::getAllReservations method (see Section 10.1.1). If no reservation1459

matches, the method SHALL raise an InvalidArgumentException. Time-dependent effects of this method1460

are implementation-specific.1461

9.1.4 requestReservation1462

The requestReservation method SHALL request an advance reservation in the DRM system with at-1463

tributes defined in the provided ReservationTemplate. On a successful reservation, the method returns a1464

Reservation instance that represents the advance reservation in the underlying DRM system.1465

If the current user is not authorized to create reservations, DeniedByDrmsException SHALL be raised. If1466

the reservation cannot be performed by the DRM system due to invalid ReservationTemplate attributes,1467

or if the demanded combination of resource demands is not available, InvalidArgumentException SHALL1468

be raised. The exception SHOULD provide further details about the rejection cause in the extended error1469

information (see Section 6).1470

Some of the requested conditions might be not fulfilled after the reservation was successfully created, for1471

example due to execution host outages. In this case, the reservation itself SHOULD remain valid. A job1472

using such a reservation may spend additional time in one of the non-RUNNING states. In this case, the1473

JobInfo::jobSubState information SHOULD inform about this situation.1474

(See footnote)
42

1475

9.1.5 getReservations1476

This method returns the list of reservations successfully created so far in this session, regardless of their start1477

and end time. The list of Reservation instances is only cleared in conjunction with the destruction of the1478

actual session instance through SessionManager::destroyReservationSession (see also Section 7.1).1479

9.2 Reservation Interface1480

The Reservation interface represents attributes and methods available for an advance reservation success-1481

fully created in the DRM system. Applications MAY be able to access Reservation instances for advance1482

reservations performed outside of a DRMAA session.1483

interface Reservation {1484

readonly attribute string reservationId;1485

readonly attribute ReservationSession session;1486

readonly attribute ReservationTemplate reservationTemplate;1487

ReservationInfo getInfo ();1488

void terminate ();1489

};1490

42In DRMAA 2.0 we do not have an explicit state model for advance reservations, as the reservation state can be easily
deducted by comparing current time with reservation start and end time. For this reason, we use the subState approach for
informing the user about the described situation.

drmaa-wg@ogf.org 51

mailto:drmaa-wg@ogf.org

GWD-R June 2011

9.2.1 reservationId1491

The reservationId is an opaque string identifier for the advance reservation. If the DRM system has1492

identifiers for advance reservations, this attribute SHOULD provide the according string value. If not, the1493

DRMAA implementation MUST generate value this is unique in time and extend of the DRM system.1494

9.2.2 session1495

This attribute references the ReservationSession which was used to create the advance reservation instance.1496

9.2.3 reservationTemplate1497

This attribute provides a reference to a ReservationTemplate instance that has equal values to the one that1498

was used for the advance reservation creating this Reservation instance. For reservations created outside1499

of a DRMAA session, implementations MUST also return a ReservationTemplate instance, which MAY1500

be empty or only partially filled.1501

9.2.4 getInfo1502

This method returns a ReservationInfo instance for the particular job under the conditions described in1503

Section 5.6. This method SHOULD throw InvalidArgumentException if the reservation is already expired1504

(i.e., its end time passed) or was terminated before.1505

9.2.5 terminate1506

This method terminates the advance reservation represented by this Reservation instance. All jobs submit-1507

ted with a reference to this reservation SHOULD be terminated by the DRM system or the implementation,1508

regardless of their current state.1509

10 Monitoring the DRM System1510

The monitoring support in DRMAA focusses on the investigation of resources and cross-session data main-1511

tained by the DRM system. In contrast, session-related information is available from the JobSession and1512

ReservationSession instances, respectively.1513

10.1 MonitoringSession Interface1514

The MonitoringSession interface represents a set of stateless methods for fetching information about the1515

DRM system and the DRMAA implementation itself. It MAY be used to implement DRM system monitoring1516

tools such as qstat.1517

interface MonitoringSession {1518

ReservationList getAllReservations ();1519

JobList getAllJobs(in JobInfo filter);1520

QueueInfoList getAllQueues(in StringList names);1521

MachineInfoList getAllMachines(in StringList names);1522

};1523

drmaa-wg@ogf.org 52

mailto:drmaa-wg@ogf.org

GWD-R June 2011

All returned data SHOULD be related to the current user running the DRMAA-based application. For1524

example, the getAllQueues function MAY be reduced to only denote queues that are usable or generally1525

accessible for the DRMAA application and user performing the query.1526

Because no guarantee can be made as to future accessibility, and because of cases where list reduction may1527

demand excessive overhead in the DRMAA implementation, an unreduced or partially reduced result MAY1528

be returned on all methods returning lists. The behavior of the DRMAA implementation in this regard1529

should be clearly documented. In all cases, the list items MUST all be valid input for job submission or1530

advance reservation through the DRMAA API.1531

10.1.1 getAllReservations1532

This method returns the list of all DRMS advance reservations visible for the user running the DRMAA-1533

based application. In contrast to a ReservationSession::getReservations call, this method SHOULD1534

also return reservations that were created outside of DRMAA (e.g., through command-line tools) by this1535

user.1536

The DRM system or the DRMAA implementation is at liberty to restrict the set of returned reservations1537

based on site or system policies, such as security settings or scheduler load restrictions. The returned list1538

MAY contain reservations that were created by other users. It MAY also contain reservations that are not1539

usable for the user.1540

This method SHALL raise an UnsupportedOperationException if advance reservation is not supported by1541

the implementation.1542

10.1.2 getAllJobs1543

This method returns the list of all DRMS jobs visible to the user running the DRMAA-based application. In1544

contrast to a JobSession::getJobs call, this method SHOULD also return jobs that were submitted outside1545

of DRMAA (e.g., through command-line tools) by this user. The returned list MAY also contain jobs that1546

were submitted by other users if the security policies of the DRM system allow such global visibility. The1547

DRM system or the DRMAA implementation is at liberty, however, to restrict the set of returned jobs based1548

on site or system policies, such as security settings or scheduler load restrictions.1549

Querying the DRM system for all jobs might result in returning an excessive number of Job objects. Impli-1550

cations to the library implementation are out of scope for this specification.1551

The method supports a filter argument for fetching only a subset of the job information available. Both1552

the return value semantics and the filter semantics SHOULD be similar to the ones described for the1553

JobSession::getJobs method (see Section 8.2).1554

Language bindings SHOULD NOT try to solve the scalability issues by replacing the sequence type of
the return value with some iterator-like solution. This approach would break the basic snapshot semantic
intended for this method.

(See footnote)
43

1555

43 The non-argumentation about the scalability problem was the final result of a clarification attempt. We hand this one
over to the implementors. (conf call Jul 14th 2010)

drmaa-wg@ogf.org 53

mailto:drmaa-wg@ogf.org

GWD-R June 2011

10.1.3 getAllQueues1556

This method returns a list of queues available for job submission in the DRM system. The names from1557

all QueueInfo instances in this list SHOULD be a valid input for the JobTemplate::queueName attribute1558

(see Section 5.7). The result can be an empty list or might be incomplete, based on queue, host, or system1559

policies. It might also contain queues that are not accessible for the user (because of queue configuration1560

limits) at job submission time.1561

The names parameter supports restricting the result to QueueInfo instances that have one of the names1562

given in the argument. If the names parameter value is UNSET, all QueueInfo instances should be returned.1563

10.1.4 getAllMachines1564

This method returns the list of machines available in the DRM system as execution host. The returned list1565

might be empty or incomplete based on machine or system policies. The returned list might also contain1566

machines that are not accessible by the user, e.g., because of host configuration limits.1567

The names parameter supports restricting the result to MachineInfo instances that have one of the names1568

given in the argument. If the names parameter value is UNSET, all MachineInfo instances should be returned.1569

11 Annex A: Complete DRMAA IDL Specification1570

The following text shows the complete IDL specification for the DRMAAv2 application programming inter-1571

face. The ordering of IDL constructs here has no normative meaning, but ensures the correct compilation1572

with a standard CORBA IDL compiler for syntactical correctness checks. This demands only some additional1573

forward declarations to resolve circular dependencies.1574

module DRMAA2 {1575

enum JobState {1576

UNDETERMINED , QUEUED , QUEUED_HELD , RUNNING , SUSPENDED , REQUEUED ,1577

REQUEUED_HELD , DONE , FAILED };1578

enum OperatingSystem {1579

AIX , BSD , LINUX , HPUX , IRIX , MACOS , SUNOS , TRUE64 , UNIXWARE , WIN ,1580

WINNT , OTHER_OS };1581

enum CpuArchitecture {1582

ALPHA , ARM , CELL , PARISC , X86 , X64 , IA64 , MIPS , PPC , PPC64 ,1583

SPARC , SPARC64 , OTHER_CPU };1584

enum ResourceLimitType {1585

CORE_FILE_SIZE , CPU_TIME , DATA_SEG_SIZE , FILE_SIZE , OPEN_FILES ,1586

STACK_SIZE , VIRTUAL_MEMORY , WALLCLOCK_TIME };1587

enum JobTemplatePlaceholder {1588

HOME_DIRECTORY ,WORKING_DIRECTORY ,PARAMETRIC_INDEX };1589

drmaa-wg@ogf.org 54

mailto:drmaa-wg@ogf.org

GWD-R June 2011

enum DrmaaEvent {1590

NEW_STATE , MIGRATED , ATTRIBUTE_CHANGE1591

};1592

enum DrmaaCapability {1593

ADVANCE_RESERVATION , RESERVE_SLOTS , CALLBACK ,1594

BULK_JOBS_MAXPARALLEL ,1595

JT_EMAIL , JT_STAGING , JT_DEADLINE , JT_MAXSLOTS ,1596

JT_ACCOUNTINGID , RT_STARTNOW ,1597

RT_DURATION , RT_MACHINEOS , RT_MACHINEARCH1598

};1599

typedef sequence <string > OrderedStringList;1600

typedef sequence <string > StringList;1601

typedef sequence <Job > JobList;1602

typedef sequence <QueueInfo > QueueInfoList;1603

typedef sequence <MachineInfo > MachineInfoList;1604

typedef sequence <SlotInfo > SlotInfoList;1605

typedef sequence <Reservation > ReservationList;1606

typedef sequence < sequence <string ,2> > Dictionary;1607

typedef string AbsoluteTime;1608

typedef long long TimeAmount;1609

native ZERO_TIME;1610

native INFINITE_TIME;1611

native NOW;1612

struct JobInfo {1613

string jobId;1614

long exitStatus;1615

string terminatingSignal;1616

string annotation;1617

JobState jobState;1618

any jobSubState;1619

OrderedStringList allocatedMachines;1620

string submissionMachine;1621

string jobOwner;1622

long slots;1623

string queueName;1624

TimeAmount wallclockTime;1625

long cpuTime;1626

AbsoluteTime submissionTime;1627

AbsoluteTime dispatchTime;1628

AbsoluteTime finishTime;1629

};1630

struct ReservationInfo {1631

string reservationId;1632

string reservationName;1633

drmaa-wg@ogf.org 55

mailto:drmaa-wg@ogf.org

GWD-R June 2011

AbsoluteTime reservedStartTime;1634

AbsoluteTime reservedEndTime;1635

StringList usersACL;1636

long reservedSlots;1637

SlotInfoList reservedMachines;1638

};1639

struct JobTemplate {1640

string remoteCommand;1641

OrderedStringList args;1642

boolean submitAsHold;1643

boolean rerunnable;1644

Dictionary jobEnvironment;1645

string workingDirectory;1646

string jobCategory;1647

StringList email;1648

boolean emailOnStarted;1649

boolean emailOnTerminated;1650

string jobName;1651

string inputPath;1652

string outputPath;1653

string errorPath;1654

boolean joinFiles;1655

string reservationId;1656

string queueName;1657

long minSlots;1658

long maxSlots;1659

long priority;1660

OrderedStringList candidateMachines;1661

long minPhysMemory;1662

OperatingSystem machineOS;1663

CpuArchitecture machineArch;1664

AbsoluteTime startTime;1665

AbsoluteTime deadlineTime;1666

Dictionary stageInFiles;1667

Dictionary stageOutFiles;1668

Dictionary resourceLimits;1669

string accountingId;1670

};1671

struct ReservationTemplate {1672

string reservationName;1673

AbsoluteTime startTime;1674

AbsoluteTime endTime;1675

TimeAmount duration;1676

long minSlots;1677

long maxSlots;1678

string jobCategory;1679

drmaa-wg@ogf.org 56

mailto:drmaa-wg@ogf.org

GWD-R June 2011

StringList usersACL;1680

OrderedStringList candidateMachines;1681

long minPhysMemory;1682

OperatingSystem machineOS;1683

CpuArchitecture machineArch;1684

};1685

struct DrmaaNotification {1686

DrmaaEvent event;1687

Job job;1688

JobState jobState;1689

};1690

struct QueueInfo {1691

string name;1692

};1693

struct Version {1694

string major;1695

string minor;1696

};1697

struct MachineInfo {1698

string name;1699

boolean available;1700

long sockets;1701

long coresPerSocket;1702

long threadsPerCore;1703

double load;1704

long physMemory;1705

long virtMemory;1706

OperatingSystem machineOS;1707

Version machineOSVersion;1708

CpuArchitecture machineArch;1709

};1710

struct SlotInfo {1711

string machineName;1712

string slots;1713

};1714

exception DeniedByDrmsException {string message ;};1715

exception DrmCommunicationException {string message ;};1716

exception TryLaterException {string message ;};1717

exception SessionManagementException {string message ;};1718

exception TimeoutException {string message ;};1719

exception InternalException {string message ;};1720

exception InvalidArgumentException {string message ;};1721

drmaa-wg@ogf.org 57

mailto:drmaa-wg@ogf.org

GWD-R June 2011

exception InvalidSessionException {string message ;};1722

exception InvalidStateException {string message ;};1723

exception OutOfResourceException {string message ;};1724

exception UnsupportedAttributeException {string message ;};1725

exception UnsupportedOperationException {string message ;};1726

interface DrmaaReflective {1727

readonly attribute StringList jobTemplateImplSpec;1728

readonly attribute StringList jobInfoImplSpec;1729

readonly attribute StringList reservationTemplateImplSpec;1730

readonly attribute StringList reservationInfoImplSpec;1731

readonly attribute StringList queueInfoImplSpec;1732

readonly attribute StringList machineInfoImplSpec;1733

readonly attribute StringList notificationImplSpec;1734

1735

string getInstanceValue(in any instance , in string name);1736

void setInstanceValue(in any instance , in string name , in string value);1737

string describeAttribute(in any instance , in string name);1738

};1739

interface DrmaaCallback {1740

void notify(in DrmaaNotification notification);1741

};1742

interface ReservationSession {1743

readonly attribute string contact;1744

readonly attribute string sessionName;1745

Reservation getReservation(in string reservationId);1746

Reservation requestReservation(in ReservationTemplate reservationTemplate);1747

ReservationList getReservations ();1748

};1749

interface Reservation {1750

readonly attribute string reservationId;1751

readonly attribute ReservationSession session;1752

readonly attribute ReservationTemplate reservationTemplate;1753

ReservationInfo getInfo ();1754

void terminate ();1755

};1756

interface JobArray {1757

readonly attribute string jobArrayId;1758

readonly attribute JobList jobs;1759

readonly attribute JobSession session;1760

readonly attribute JobTemplate jobTemplate;1761

void suspend ();1762

void resume ();1763

void hold ();1764

drmaa-wg@ogf.org 58

mailto:drmaa-wg@ogf.org

GWD-R June 2011

void release ();1765

void terminate ();1766

};1767

interface JobSession {1768

readonly attribute string contact;1769

readonly attribute string sessionName;1770

readonly attribute StringList jobCategories;1771

JobList getJobs(in JobInfo filter);1772

JobArray getJobArray(in string jobArrayId);1773

Job runJob(in JobTemplate jobTemplate);1774

JobArray runBulkJobs(1775

in JobTemplate jobTemplate ,1776

in long beginIndex ,1777

in long endIndex ,1778

in long step ,1779

in long maxParallel);1780

Job waitAnyStarted(in JobList jobs , in TimeAmount timeout);1781

Job waitAnyTerminated(in JobList jobs , in TimeAmount timeout);1782

};1783

interface Job {1784

readonly attribute string jobId;1785

readonly attribute JobSession session;1786

readonly attribute JobTemplate jobTemplate;1787

void suspend ();1788

void resume ();1789

void hold ();1790

void release ();1791

void terminate ();1792

JobState getState(out any jobSubState);1793

JobInfo getInfo ();1794

Job waitStarted(in TimeAmount timeout);1795

Job waitTerminated(in TimeAmount timeout);1796

};1797

interface MonitoringSession {1798

ReservationList getAllReservations ();1799

JobList getAllJobs(in JobInfo filter);1800

QueueInfoList getAllQueues(in StringList names);1801

MachineInfoList getAllMachines(in StringList names);1802

};1803

interface SessionManager{1804

readonly attribute string drmsName;1805

readonly attribute Version drmsVersion;1806

readonly attribute string drmaaName;1807

readonly attribute Version drmaaVersion;1808

drmaa-wg@ogf.org 59

mailto:drmaa-wg@ogf.org

GWD-R June 2011

boolean supports(in DrmaaCapability capability);1809

JobSession createJobSession(in string sessionName ,1810

in string contactString);1811

ReservationSession createReservationSession(in string sessionName ,1812

in string contactString);1813

MonitoringSession createMonitoringSession (in string contactString);1814

JobSession openJobSession(in string sessionName);1815

ReservationSession openReservationSession(in string sessionName);1816

void closeJobSession(in JobSession s);1817

void closeReservationSession(in ReservationSession s);1818

void closeMonitoringSession(in MonitoringSession s);1819

void destroyJobSession(in string sessionName);1820

void destroyReservationSession(in string sessionName);1821

StringList getJobSessions ();1822

StringList getReservationSessions ();1823

void registerEventNotification(in DrmaaCallback callback);1824

};1825

};1826

12 Security Considerations1827

The DRMAA API does not specifically assume the existence of a particular security infrastructure in the1828

DRM system. The scheduling scenario described herein presumes that security is handled at the point of job1829

authorization/execution on a particular resource. It is assumed that credentials owned by the application1830

using the API are in effect for the DRMAA implementation too.1831

It is conceivable an authorized but malicious user could use a DRMAA implementation or a DRMAA enabled1832

application to saturate a DRM system with a flood of requests. Unfortunately for the DRM system this1833

case is not distinguishable from the case of an authorized good-natured user who has many jobs to be1834

processed. For temporary load defense, implementations SHOULD utilize the TryLaterException. In case1835

of permanent issues, the implementation SHOULD raise the DeniedByDrmsException.1836

DRMAA implementers should guard against buffer overflows that could be exploited through DRMAA1837

enabled interactive applications or web portals. Implementations of the DRMAA API will most likely1838

require a network to coordinate subordinate DRMS; however the API makes no assumptions about the1839

security posture provided the networking environment. Therefore, application developers should further1840

consider the security implications of “on-the-wire” communications.1841

For environments that allow remote or protocol based DRMAA clients, the implementation SHOULD offer1842

support for secure transport layers to prevent man in the middle attacks.1843

13 Contributors1844

Roger Brobst1845

Cadence Design Systems, Inc.1846

555 River Oaks Parkway1847

San Jose, CA 951341848

drmaa-wg@ogf.org 60

mailto:drmaa-wg@ogf.org

GWD-R June 2011

United States1849

Email: rbrobst@cadence.com1850

1851

Daniel Gruber1852

Univa GmbH1853

c/o Rüter und Partner1854

Prielmayerstr. 3 80335 München1855

Germany1856

Email: dgruber@univa.com1857

1858

Mariusz Mamoński1859

Poznań Supercomputing and Networking Center1860

ul. Noskowskiego 101861

61-704 Poznań1862

Poland1863

Email: mamonski@man.poznan.pl1864

1865

Daniel Templeton1866

Cloudera Inc.1867

210 Portage Avenue1868

Palo Alto, CA 943061869

United States1870

Email: daniel@cloudera.com1871

1872

Peter Tröger (Corresponding Author)1873

Hasso-Plattner-Institute at University of Potsdam1874

Prof.-Dr.-Helmert-Str. 2-31875

14482 Potsdam1876

Germany1877

Email: peter@troeger.eu1878

1879

We are grateful to numerous colleagues for support and discussions on the topics covered in this document,1880

in particular (in alphabetical order, with apologies to anybody we have missed):1881

Guillaume Alleon, Ali Anjomshoaa, Ed Baskerville, Harald Böhme, Nadav Brandes, Matthieu Cargnelli,1882

Karl Czajkowski, Piotr Domagalski, Fritz Ferstl, Paul Foley, Nicholas Geib, Becky Gietzel, Alleon Guillaume,1883

Daniel S. Katz, Andreas Haas, Tim Harsch, Greg Hewgill, Rayson Ho, Eduardo Huedo, Dieter Kranzmüller,1884

Krzysztof Kurowski, Peter G. Lane, Miron Livny, Ignacio M. Llorente, Martin v. Löwis, Andre Merzky,1885

Thijs Metsch, Ruben S. Montero, Greg Newby, Steven Newhouse, Michael Primeaux, Greg Quinn, Hrabri L.1886

Rajic, Martin Sarachu, Jennifer Schopf, Enrico Sirola, Chris Smith, Ancor Gonzalez Sosa, Douglas Thain,1887

John Tollefsrud, Jose R. Valverde, and Peter Zhu.1888

Special thanks must go the Andre Merzky, who participated as SAGA working group representative in1889

numerous DRMAA events.1890

drmaa-wg@ogf.org 61

mailto:drmaa-wg@ogf.org

GWD-R June 2011

14 Intellectual Property Statement1891

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that1892

might be claimed to pertain to the implementation or use of the technology described in this document or the1893

extent to which any license under such rights might or might not be available; neither does it represent that1894

it has made any effort to identify any such rights. Copies of claims of rights made available for publication1895

and any assurances of licenses to be made available, or the result of an attempt made to obtain a general1896

license or permission for the use of such proprietary rights by implementers or users of this specification can1897

be obtained from the OGF Secretariat.1898

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications,1899

or other proprietary rights which may cover technology that may be required to practice this recommendation.1900

Please address the information to the OGF Executive Director.1901

15 Disclaimer1902

This document and the information contained herein is provided on an “as-is” basis and the OGF disclaims1903

all warranties, express or implied, including but not limited to any warranty that the use of the information1904

herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular1905

purpose.1906

16 Full Copyright Notice1907

Copyright c© Open Grid Forum (2005-2011). Some Rights Reserved.1908

This document and translations of it may be copied and furnished to others, and derivative works that1909

comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and1910

distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice1911

and this paragraph are included on all such copies and derivative works. However, this document itself1912

may not be modified in any way, such as by removing the copyright notice or references to the OGF or1913

other organizations, except as needed for the purpose of developing Grid Recommendations in which case1914

the procedures for copyrights defined in the OGF Document process must be followed, or as required to1915

translate it into languages other than English.1916

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors1917

or assignees.1918

17 References19191920

[1] Scott Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119 (Best Current1921

Practice), March 1997. URL http://tools.ietf.org/html/rfc2119.1922

[2] I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pickles, D. Pulsipher, C. Smith,1923

and M. Theimer. OGSA Basic Execution Service v1.0 (GFD-R.108), nov 2008.1924

[3] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Kleijer, Andre Merzky, John1925

Shalf, and Christopher Smith. A Simple API for Grid Applications (SAGA) Version 1.1 (GFD-R-P.90),1926

jan 2008.1927

drmaa-wg@ogf.org 62

http://tools.ietf.org/html/rfc2119
mailto:drmaa-wg@ogf.org

GWD-R June 2011

[4] Object Management Group. Common Object Request Broker Architecture (CORBA) Specification,1928

Version 3.1. http://www.omg.org/spec/CORBA/3.1/Interfaces/PDF, jan 2008.1929

[5] The IEEE and The Open Group. The Open Group Base Specifications Issue 6 IEEE Std 1003.1.1930

http://www.opengroup.org/onlinepubs/000095399/utilities/ulimit.html.1931

[6] Distributed Management Task Force (DMTF) Inc. CIM System Model White Paper CIM Version 2.7,1932

jun 2003.1933

[7] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas Haas, Bill Nitzberg,1934

Daniel Templeton, John Tollefsrud, and Peter Tröger. Distributed Resource Management Application1935

API Specification 1.0 (GFD-R.022), aug 2007.1936

[8] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas Haas, Bill Nitzberg,1937

Daniel Templeton, John Tollefsrud, and Peter Tröger. Distributed Resource Management Application1938

API Specification 1.0 (GWD-R.133), jun 2008.1939

[9] Peter Tröger, Daniel Templeton, Roger Brobst, Andreas Haas, and Hrabri Rajic. Distributed Resource1940

Management Application API 1.0 - IDL Specification (GFD-R-P.130), apr 2008.1941

[10] Peter Tröger, Hrabri Rajic, Andreas Haas, and Piotr Domagalski. Standardised job submission and1942

control in cluster and grid environments. International Journal of Grid and Utility Computing, 1:1943

134–145, dec 2009. doi: {http://dx.doi.org/10.1504/IJGUC.2009.022029}.1944

drmaa-wg@ogf.org 63

mailto:drmaa-wg@ogf.org

	Introduction
	Notational Conventions
	Language Bindings
	Slots and Queues
	Job Categories
	Multithreading

	Namespace
	Common Type Definitions
	Enumerations
	OperatingSystem enumeration
	CpuArchitecture enumeration
	ResourceLimitType enumeration
	JobTemplatePlaceholder enumeration
	DrmaaCapability

	Extensible Data Structures
	QueueInfo structure
	Version structure
	MachineInfo structure
	SlotInfo structure
	JobInfo structure
	ReservationInfo structure
	JobTemplate structure
	ReservationTemplate structure
	DrmaaReflective Interface

	Common Exceptions
	The DRMAA Session Concept
	SessionManager Interface

	Working with Jobs
	The DRMAA State Model
	JobSession Interface
	DrmaaCallback Interface
	Job Interface
	JobArray Interface
	The DRMAA_INDEX_VAR environment variable

	Working with Advance Reservation
	ReservationSession Interface
	Reservation Interface

	Monitoring the DRM System
	MonitoringSession Interface

	Annex A: Complete DRMAA IDL Specification
	Security Considerations
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice
	References

