
GWD-R
DRMAA-WG
drmaa-wg@ogf.org

Peter Tröger, Hasso-Plattner-Institute (editor)
Daniel Templeton, Cloudera (editor)

March 2011

1

Distributed Resource Management Application API Version 22

(DRMAA) - Draft 23

Status of This Document4

Group Working Draft Recommendation (GWD-R)5

(See footnote)
1

6

Obsoletes7

This document obsoletes GFD-R.022 [7], GFD-R-P.130 [9], and GWD-R.133 [8].8

Copyright Notice9

Copyright c© Open Grid Forum (2005-2011). Some Rights Reserved. Distribution is unlimited.10

Trademark11

All company, product or service names referenced in this document are used for identification purposes only12

and may be trademarks of their respective owners.13

Abstract14

This document describes the Distributed Resource Management Application API Version 2 (DRMAA), which15

provides a generalized API to Distributed Resource Management (DRM) systems in order to facilitate the16

development of portable application programs and high-level libraries for such systems. DRMAA defines17

interfaces for a tightly coupled, but still portable access by abstracting the fundamental functions available18

in the majority of DRM systems. The scope is limited to job submission, job control, and retrieval of job19

and machine monitoring information.20

This document acts as root specification for the abstract API concepts and the behavioral rules that must be21

fulfilled by a DRMAA-compliant implementation. The programming language representation of the abstract22

API concepts must be formulated by a separate language binding specification derived from this document.23

The intended audience for this specification are DRMAA language binding designers, DRM system vendors,24

high-level API designers and meta-scheduler architects. End users are expected to rely on product-specific25

documentation for the DRMAA API implementation in their particular programming language.26

1 This is the non-normative annotated version of the specification with line numbers. It includes historical information
concerning the content and why features were included or discarded by the working group. It also emphasizes the consequences
of some aspects that may not be immediately apparent. This document in only intended for internal working group discussions.

drmaa-wg@ogf.org 1

mailto:drmaa-wg@ogf.org
http://www.drmaa.org/
http://www.drmaa.org/
mailto:drmaa-wg@ogf.org

GWD-R March 2011

Contents27

1 Introduction . 328

1.1 Notational Conventions . 329

1.2 Language Bindings . 430

1.3 Slots and Queues . 431

1.4 Multithreading . 532

2 Namespace . 533

3 Common Type Definitions . 534

4 Common Data Structures and Enumerations . 635

4.1 OperatingSystem enumeration . 736

4.2 CpuArchitecture enumeration . 837

4.3 ResourceLimitType enumeration . 938

4.4 JobTemplatePlaceholder enumeration . 1039

4.5 Queue structure . 1040

4.6 Version structure . 1141

4.7 Machine structure . 1142

4.8 JobInfo structure . 1343

5 Common Exceptions . 1644

6 The DRMAA Session Concept . 1845

6.1 SessionManager Interface . 1846

7 Working with Jobs . 2147

7.1 The DRMAA State Model . 2148

7.2 JobSession Interface . 2449

7.3 DrmaaCallback Interface . 2750

7.4 JobTemplate Structure . 2751

7.5 Job Interface . 3652

7.6 JobArray Interface . 3853

8 Working with Advance Reservation . 3954

8.1 ReservationSession Interface . 3955

8.2 ReservationTemplate structure . 4056

8.3 Reservation Interface . 4357

9 Monitoring the DRM System . 4458

9.1 MonitoringSession Interface . 4559

10 Annex A: Complete DRMAA IDL Specification . 4760

11 Security Considerations . 5261

12 Contributors . 5262

13 Intellectual Property Statement . 5363

14 Disclaimer . 5364

15 Full Copyright Notice . 5465

16 References . 5466

drmaa-wg@ogf.org 2

mailto:drmaa-wg@ogf.org

GWD-R March 2011

1 Introduction67

This document describes the Distributed Resource Management Application API Version 2 (DRMAA) in-68

terface semantics in a generalized way by using the OMG Interface Definition Language (IDL) [4] syntax for69

a language-agnostic description. Based on this abstract specification, language binding standards have to70

be designed that map the described concepts into a library interface for a particular programming language71

(e.g. C, Java, Python). While this document has the responsibility to ensure consistent API semantics over72

all possible DRMAA implementations, the language binding has the responsibility to ensure source-code73

portability for DRMAA applications on different DRM systems.74

An effort has been made to choose an API layout that is not unique to a specific language. However, in some75

cases, various languages disagree over some points. In those cases, the most meritous approach was taken,76

irrespective of language.77

There are other relevant OGF standards in the area of job submission and monitoring. An in-depth com-78

parison and positioning of the obsoleted DRMAA1 specification was provided by another publication [10].79

The DRMAA specification is based on the following stakeholders:80

• Distributed resource management system / DRM system / DRMS : Any system that supports the con-81

cept of distributing computational jobs on execution resources through the help of a central scheduling82

entity. Examples are multi-processor systems controlled by a operating system scheduler, cluster sys-83

tems with multiple machines controlled by a central scheduler software, grid systems, or cloud systems84

with a job concept.85

• DRMAA implementation, DRMAA library : The implementation of a DRMAA language binding spec-86

ification with the functional semantics described in this document. The resulting artifact is expected87

to be a library that is deployed together with the DRM system that is wrapped by the particular88

implementation.89

• (DRMAA-based) application: Software that utilizes the DRMAA implementation for gaining access to90

one or multiple DRM systems in a standardized way.91

• Submission host : A execution resource in the DRM system that runs the DRMAA-based application.92

• Execution host : A execution resource in the DRM system that can run a job submitted through the93

DRMAA implementation.94

1.1 Notational Conventions95

In this document, IDL language elements and definitions are represented in a fixed-width font.96

The key words “MUST” “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD97

NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described in RFC 2119 [1].98

Memory quantities are expressed in kibibyte (KiB), the unit established by the International Electrotechnical99

Commission (IEC) in 1999. 1 kibibyte equals 1024 bytes.100

Parts of the specification which are normative for derived language binding specifications only are graphically
marked as shaded box.

drmaa-wg@ogf.org 3

mailto:drmaa-wg@ogf.org

GWD-R March 2011

1.2 Language Bindings101

A language binding specification derived from this document MUST define a mapping between the IDL
constructs and specific programming language constructs, with focus on source code portability for the
resulting DRMAA-based applications.

A language binding SHOULD NOT rely completely on the OMG language mapping standards available for
many programming languages, since they have a huge overhead of irrelevant CORBA-related mapping rules.
Therefore, language binding authors must carefully decide if a binding decision reflects a natural and simple
mapping of the intended purpose for the DRMAA interfaces. The binding SHOULD reuse OMG value type
mappings (e.g. IDL long long to Java long), and SHOULD define custom mappings for the other types.
The language binding MUST use the described concept mapping in a consistent manner for its overal API
layout.

Due to the usage of IDL, all method groups for a particular purpose (e.g. job control) are described in terms
of interfaces, and not classes. The mapping to a class concept depends on the specific language-mapping
rules.

It may be the case that IDL constructs do not map directly to any language construct. In this case it MUST
be ensured that the chosen mapping retains the intended semantic of the DRMAA interface definition.

Access to scalar attributes (string, boolean, long) MUST operate in a pass-by-value mode. A language
binding must ensure that this behavior is always fulfilled. For non-scalar attributes, the language binding
MUST specify a consistent access strategy for all these attributes – either pass-by-value or pass-by-reference
– according to the use cases of language binding implementations.

This specification tries to consider the possibility of a Remote Procedure Call (RPC) scenario in a DRMAA-
conformant language mapping. It SHOULD therefore be ensured that the programming language type for
an IDL struct definition supports the serialization and comparison of instances. These capabilities should
be accomplished through whatever mechanism is most natural for the specific programming language.

A language binding MUST define a way to declare an invalid value (UNSET). In case, a definition per data
type needs to be provided. The UNSET value for a boolean data type MUST translate to False. Unclear if

UNSET for
numeric val-
ues could be
zero.

102

(See footnote)
2

103

1.3 Slots and Queues104

DRMAA supports the notion of slots and queues as resources of a DRM system. A DRMAA application105

can request them in advance reservation and job submission. However, slots and queues SHALL be opaque106

concepts from the viewpoint of a DRMAA implementation, meaning that the requirements given by the107

application are just passed through to the DRM system. This is reasoned by the large variation in interpreting108

that concepts in the different DRM systems, which makes it impossible to define a common understanding109

on the level of the DRMAA API.110

2 The concept of a UNSET value was decided on a conf call (Aug 25th 2010). Boolean in C should use custom enumeration
(TRUE, FALSE, INVALID) or pointer to static values. A numerical UNSET in C should use a magic number, since all long
attributes are unsigned, it could be MIN INT. With Python, just use None. For Java, Dan has an idea.

drmaa-wg@ogf.org 4

mailto:drmaa-wg@ogf.org

GWD-R March 2011

(See footnote)
3

111

1.4 Multithreading112

High-level APIs such as SAGA [3] are expected to utilize DRMAA for asynchronous operations, based on the113

assumption that re-entrancy is supported by DRMAA implementations. For this reason, implementations114

SHOULD ensure the proper functioning of the library in case of re-entrant library calls. A DRMAA library115

SHOULD allow a multithreaded application to use DRMAA interfaces without any explicit synchronization116

among the application threads. DRMAA implementers should document their work as thread safe if they117

meet the above criteria. Providers of non-thread-safe DRMAA implementations should document all the118

interfaces that are thread unsafe and provide a list of interfaces and their dependencies on external thread119

unsafe routines.120

2 Namespace121

The DRMAA interfaces and structures are encapsulated by a naming scope, which avoids conflicts with122

other APIs used in the same application.123

module DRMAA2 {124

Language binding authors MUST map the IDL module encapsulation to an according package or namespace
concept and MAY change the module name according to programming language conventions.

(See footnote)
4

125

3 Common Type Definitions126

The DRMAA specification defines some custom types to express special value semantics not expressible in127

IDL.128

typedef sequence <string > OrderedStringList;129

typedef sequence <string > StringList;130

typedef sequence <Job > JobList;131

typedef sequence <Queue > QueueList;132

typedef sequence <Machine > MachineList;133

typedef sequence <Reservation > ReservationList;134

typedef sequence < sequence <string ,2> > Dictionary;135

typedef string AbsoluteTime;136

typedef long long TimeAmount;137

native ZERO_TIME;138

native INFINITE_TIME;139

OrderedStringList: An unbounded list of strings, which supports element insertion, element deletion, and140

iteration over elements while keeping an element order.141

3 As one example, queues can be either treated as representation of execution hosts (Sun Grid Engine) or as central waiting
line located at the scheduler (LSF).

4 Comparison to DRMAA v1.0: The IDL module name was change to DRMAA2, in order to intentionally break backward
compatibility of the interface.

drmaa-wg@ogf.org 5

mailto:drmaa-wg@ogf.org

GWD-R March 2011

StringList: An unbounded list of strings, without any demand on element order.142

JobList: An unbounded list of Job instances, without any demand on element order.143

MachineList: An unbounded list of Machine instances, without any demand on element order.144

QueueList: An unbounded list of Queue instances, without any demand on element order.145

ReservationList: An unbounded list of Reservation instances, without any demand on element order.146

Dictionary: An unbounded dictionary type for storing key-value pairs, without any demand on element147

order.148

AbsoluteTime: Expression of a point in time, with a resolution at least to seconds.149

TimeAmount: Expression of an amount of time, with a resolution at least to seconds.150

ZERO TIME: A constant value of type TimeAmount that expresses a zero amount of time.151

INFINITE TIME: A constant value of type TimeAmount that expresses an infinite amount of time.152

A language binding MUST replace these type definitions with semantically equal reference or value types in
the according language. This may include the creation of new complex language types for one or more of the
above concepts. The language binding MUST define a consistent mapping on module level, and a mechanism
for obtaining the RFC822 string representation from a given AbsoluteTime or TimeAmount instance.

(See footnote)
5

153

4 Common Data Structures and Enumerations154

DRMAA defines a set of data structures commonly used by different interfaces to express information for155

and from the DRM system. A DRMAA implementation is allowed to extend the specified structures, if156

explicitely noted in the description of the particular structure (e.g. as with JobInfo). Behavioral aspects of157

such extended attributes are out of scope for DRMAA. Implementations SHALL only extend data structures158

in the way specified by the language binding.159

A language binding MUST define a consistent mechanism to realize implementation-specific structure and
enumeration extension, without breaking the portability of DRMAA-based applications that rely on the
original version of the structure. Object oriented languages MAY use inheritance mechanisms for this
purpose.

Language bindings SHOULD define numerical values for all constants and enumeration members, in order
to foster binary portability of DRMAA-based applications. Instances of these structures SHALL be treated
in a “call-by-value” fashion, meaning that the collection of struct member values is handed over as one to
the called interface method.

(See footnote)
6

160

5 The PartialTimestamp functionality from DRMAA 1.0 was completely removed. Absolute date and time values are now
expressed as RFC822 conformant data items with stringification support (conf. call Mar 31st 2009). String list for job identifiers
are replaced by Job object lists (F2F meeting July 2009)

6 Comparison to DRMAA 1.0: The binding of job template attribute names and exception names to strings was removed.
Language bindings have to define their own mapping, if needed.

drmaa-wg@ogf.org 6

mailto:drmaa-wg@ogf.org

GWD-R March 2011

4.1 OperatingSystem enumeration161

DRMAA supports the identification of an operating system installation on execution resources in the DRM162

system. The OperatingSystem enumeration is used as data type both in the advanced reservation and the163

DRM system monitoring functionalities. It defines a set of standardized identifiers for operating system164

types. The list is a shortened version of the according CIM Schema [6]. It includes only operating systems165

that are supported by the majority of DRM systems available at the time of writing:166

enum OperatingSystem {167

HPUX , LINUX , IRIX , TRUE64 , MACOS , SUNOS , WIN , WINNT , AIX , UNIXWARE ,168

BSD , OTHER_OS };169

AIX: AIX Unix by IBM.170

BSD: All operating system distributions based on the BSD kernel.171

LINUX: All operating system distributions based on the Linux kernel.172

HPUX: HP-UX Unix by Hewlett-Packard.173

IRIX: The IRIX operating system by SGI.174

MACOS: The MAC OS X operating system by Apple.175

SUNOS: SunOS or Solaris operating system by Sun / Oracle.176

TRUE64: True64 Unix by Hewlett-Packard, or DEC Digital Unix, or DEC OSF/1 AXP.177

UNIXWARE: UnixWare system by SCO group.178

WIN: Windows 95, Windows 98, Windows ME.179

WINNT: Microsoft Windows operating systems based on the NT kernel180

OTHER OS: An operating system type not specified in this list.181

Daniel Katz
would like
to add Cray
here.

182

Implementations SHOULD NOT add new operating system identifiers to this enumeration, even if they are183

supported by the underlying DRM system.184

The operating system information is only useful in conjunction with version information (see Section 9.1),185

which is also the reporting approach taken in most DRM systems. Examples:186

• The Apple MacOS X operating system commonly denoted as “Snow Leopard” would be reported as187

“MACOS” with the version structure [“10”,“6”]188

• The Microsoft Windows 7 operating system would be reported as “WINNT” with the version infor-189

mation [“6”,“1”], which is the internal version number reported by the Windows API.190

• All Linux distributions would be reported as operating system type “LINUX” with the major revision191

of the kernel, such as [“2”,“6”].192

• The Solaris operating system is reported as “SUNOS”, together with the internal version number, e.g.193

[“5”,“10”] for Solaris 10.194

The DRMAA OperatingSystem enumeration can be mapped to other high-level APIs. Table 1 gives a195

non-normative set of examples.196

drmaa-wg@ogf.org 7

mailto:drmaa-wg@ogf.org

GWD-R March 2011

DRMAA OperatingSystem value JSDL jsdl:OperatingSystemTypeEnumeration value
HPUX HPUX
LINUX LINUX
IRIX IRIX

TRUE64 Tru64 UNIX, OSF
MACOS MACOS
SUNOS SunOS, SOLARIS

WIN WIN95, WIN98, Windows R Me
WINNT WINNT, Windows 2000, Windows XP

AIX AIX
UNIXWARE SCO UnixWare, SCO OpenServer

BSD BSDUNIX, FreeBSD, NetBSD, OpenBSD
OTHER OS Other

Table 1: Mapping example for the DRMAA OperatingSystem enumeration

4.2 CpuArchitecture enumeration197

DRMAA supports identifying the processor instruction set architecture on execution resources in the DRM198

system. The CpuArchitecture enumeration is used as data type both in the advanced reservation and the199

DRM system monitoring functionalities. It defines a set of standardized identifiers for processor architecture200

families. The list is a shortened version of the according CIM Schema [6], It includes only processor families201

that are supported by the majority of DRM systems available at the time of writing:202

enum CpuArchitecture {203

ALPHA , ARM , CELL , PARISC , X86 , X64 , IA64 , MIPS , PPC , PPC64 ,204

SPARC , SPARC64 , OTHER_CPU };205

ALPHA: The DEC Alpha / Alpha AXP processor architecture.206

ARM: The ARM processor architecture.207

CELL: The Cell processor architecture.208

PA-RISC: The PA-RISC processor architecture.209

X86: The IA-32 line of the X86 processor architecture family, with 32bit support only.210

X64: The X86-64 line of the X86 processor architecture family, with 64bit support.211

IA-64: The Itanium processor architecture.212

MIPS: The MIPS processor architecture.213

PPC: The PowerPC processor architecture, all models with 32bit support only.214

PPC64: The PowerPC processor architecture, all models with 64bit support.215

SPARC: The SPARC processor architecture, all models with 32bit support only.216

SPARC64: The SPARC processor architecture, all models with 64bit support.217

OTHER CPU: A processor architecture not specified in this list.218

drmaa-wg@ogf.org 8

mailto:drmaa-wg@ogf.org

GWD-R March 2011

The DRMAA CpuArchitecture enumeration can be mapped to other high-level APIs. Table 2 gives a219

non-normative set of examples.220

The reporting and job configuration for processor architectures SHOULD operate on a “as-is” base, if sup-221

ported by the DRM system. This means that the reported architecture should reflect the current operation222

mode of the processor with the running operating system. For example, X64 processors executing a 32-bit223

operating system typically report themself as X86 processor.224

DRMAA CpuArchitecture value JSDL jsdl:ProcessorArchitectureEnumeration value
ALPHA other

ARM arm
CELL other

PA-RISC parisc
X86 x86 32
X64 x86 64

IA-64 ia64
MIPS mips
PPC powerpc

PPC64 powerpc
SPARC sparc

SPARC64 sparc
OTHER other

Table 2: Mapping example for DRMAA CpuArchitecture enumeration

4.3 ResourceLimitType enumeration225

Modern DRM systems expose resource constraint capabilities from the operating system for jobs on the226

execution host. The ResourceLimitType enumeration represents the typical ulimit(3) parameters [5] in227

different DRM systems. All parameters relate to the operating system process representing some job on the228

execution host.229

enum ResourceLimitType {230

CORE_FILE_SIZE , CPU_TIME , DATA_SEG_SIZE , FILE_SIZE , OPEN_FILES ,231

STACK_SIZE , VIRTUAL_MEMORY , WALLCLOCK_TIME };232

CORE FILE SIZE: The maximum size of the core dump file created on fatal errors of the process, in233

Kibibyte. Setting this value to zero SHOULD disable the creation of core dump files on the execution234

host.235

CPU TIME: The maximum accumulated time in seconds the process is allowed to perform computations236

on all processors in the execution host.237

DATA SEG SIZE: The maximum amount of memory the process can allocate on the heap e.g. for object238

creation, in Kibibyte.239

FILE SIZE: The maximum file size the process can generate, in Kibibyte.240

OPEN FILES: The maximum number of file descriptors the process is allowed to have open at the same241

time.242

drmaa-wg@ogf.org 9

mailto:drmaa-wg@ogf.org

GWD-R March 2011

STACK SIZE: The maximum amount of memory the process can allocate on the stack, e.g. for local243

variables, in Kibibyte.244

VIRTUAL MEMORY: The maximum amount of memory the process is allowed to allocate, in Kibibyte.245

WALLCLOCK TIME: The maximum wall clock time in seconds the job is allowed to exist in any of the246

“Started” or “Queued” states (see Section 7.1).247

Explanations
need approval
by the group.
Does WALL-
CLOCK TIME
also include
queued time
? (Daniel
Katz: no)

248

Daniel Katz
- Are there
systems that
have a wall-
clock time
limit in their
schedulers?

249

(See footnote)
7

250

4.4 JobTemplatePlaceholder enumeration251

The JobTemplatePlaceholder enumeration defines constant macros to be used in string attributes of a252

JobTemplate instance.253

enum JobTemplatePlaceholder {254

HOME_DIRECTORY ,WORKING_DIRECTORY ,HOST_NAME ,USER_NAME ,PARAMETRIC_INDEX };255

A HOME_DIRECTORY placeholder SHOULD be only allowed at the beginning of a JobTemplate attribute value.256

It denotes the remaining portion as a directory / file path resolved relative to the job users home directory257

at the execution host.258

A WORKING_DIRECTORY placeholder SHOULD be only allowed at the beginning of a JobTemplate attribute259

value. It denotes the remaining portion as a directory / file path resolved relative to the jobs working260

directory at the execution host.261

The HOST_NAME placeholder SHOULD be usable at any position within an attribute value that supports place262

holders. It SHALL be substituted by the full-qualified name of the execution host were the job is executed.263

The USER_NAME placeholder SHOULD be usable at any position within an attribute value that supports264

place holders. It SHALL be substituted by the job users account name on the execution host.265

The PARAMETRIC_INDEX placeholder SHOULD be usable at any position within an attribute value that266

supports place holders. It SHALL be substituted by the parametric job index in a JobSession::runBulkJobs267

call (see Section 7.2.6). If the job template is used for a JobSession:runJob call, PARAMETRIC_INDEX should268

be substituted with a constant implementation-specific value.269

(See footnote)
8

270

4.5 Queue structure271

The Queue structure denotes a job waiting queue in the DRM system. Queue is an opaque concept from the272

perspective of the DRMAA application (see Section 1.3). The Queue struct contains read-only information.273

Implementations MAY extend this structure with implementation-specific attributes.274

7 “Pipe size” was not added, since there is no use case in DRM systems with a job concept. “Max user processes” was
omitted because it operates on the notion of users, which is not an explicit concept in DRMAA.

8 Placeholders for other job template attributes were rejected, in order to avoid circular dependencies (Conf. call Oct 20th
2010)

drmaa-wg@ogf.org 10

mailto:drmaa-wg@ogf.org

GWD-R March 2011

struct Queue {275

string name;276

TimeAmount maxWallclockTime;277

};278

4.5.1 name279

This attribute contains the name of the queue as reported by the DRM system. The format of the queue280

name is implementation-specific. The naming scheme SHOULD be consistent for all strings returned.281

4.5.2 maxWallclockTime282

This attribute contains the maximum amount of wallclock time allowed for jobs submitted to the queue.283

The attribute value is UNSET when there is no restriction. If this value is not UNSET, then any job submitted284

to this queue SHOULD enter one of the “Terminated” states when the wallclock time limit is reached.285

Termination
condition
must be ap-
proved by the
group

286

4.6 Version structure287

The Version structure denotes versioning information for an operating system, DRM system, or DRMAA288

implementation.289

struct Version {290

string major;291

string minor;292

};293

Both the major and the minor part are expressed as strings, in order to allow specific extensions with294

character combinations such as “rev”. Original version strings containing a dot, e.g. Linux “2.6”, SHOULD295

be interpreted as having the major part before the dot, and the minor part after the dot. The dot character296

SHOULD NOT be added to the Version attributes.297

4.7 Machine structure298

The Machine structure describes the properties of a particular execution host in the DRM system. Im-299

plementations MAY extend this structure with implementation-specific additional information. It contains300

read-only information. An implementation or its DRM system MAY restrict jobs in their resource utilization301

even below the limits described in the Machine structure. The limits given here MAY be imposed by the302

hardware configuration, or MAY be be imposed by DRM system policies.303

struct Machine {304

string name;305

long sockets;306

long coresPerSocket;307

long threadsPerCore;308

double load;309

long physMemory;310

long virtMemory;311

drmaa-wg@ogf.org 11

mailto:drmaa-wg@ogf.org

GWD-R March 2011

OperatingSystem machineOS;312

Version machineOSVersion;313

CpuArchitecture machineArch;314

};315

4.7.1 name316

This attribute describes the name of the machine as reported by the DRM system. The format of the317

machine name is implementation-specific, but MAY be a DNS host name. The naming scheme SHOULD be318

consistent for all strings returned.319

4.7.2 sockets320

This attribute describes the number of processor sockets (CPUs) usable for jobs on the machine from oper-321

ating system perspective. The attribute value MUST be greater than 0. In the case where the correct value322

is unknown to the implementation, the value MUST be set to 1.323

4.7.3 coresPerSocket324

This attribute describes the number of cores per socket usable for jobs on the machine from operating system325

perspective. The attribute value MUST be greater than 0. In case where the correct value is unknown to326

the implementation, the value MUST be set to 1.327

4.7.4 threadsPerCore328

This attribute describes the number of threads that can be executed in parallel by a job on one core in the329

machine. The attribute value MUST be greater than 0. In case where the correct value is unknown to the330

implementation, the value MUST be set to 1.331

4.7.5 load332

This attributes describes the 1-minute average load on the given machine, similar to the Unix uptime com-333

mand. The value has only informative character, and should not be utilized by end user applications for job334

scheduling purposes. An implementation MAY provide delayed or averaged data here, if necessary due to335

implementation issues. The implementation strategy on non-Unix systems is undefined.336

4.7.6 physMemory337

This attribute describes the amount of physical memory in Kibibyte available on the machine.338

4.7.7 virtMemory339

This attribute describes the amount of virtual memory in Kibibyte available for a job executing on this340

machine. The virtual memory amount is defined as the sum of physical memory installed plus the configured341

swap space for the operating system. The value is expected to be used as indicator whether or not an342

application is able to get its memory allocation needs fulfilled on a particular machine. Implementations343

SHOULD derive this value directly from operating system information, without further consideration of344

additional memory allocation restrictions such as address space range or already running processes.345

drmaa-wg@ogf.org 12

mailto:drmaa-wg@ogf.org

GWD-R March 2011

4.7.8 machineOS346

This attribute describes the operating system installed on the described machine, with semantics as specified347

in Section 4.1.348

4.7.9 machineOSVersion349

This attribute describes the operating system version of the machine, with semantics as specified in Section350

4.1.351

4.7.10 machineArch352

This attribute describes the instruction set architecture of the machine, with semantics as specified in Section353

4.2.354

4.8 JobInfo structure355

The JobInfo structure describes job information that is available for the DRMAA-based application.356

struct JobInfo {357

string jobId;358

Dictionary resourceUsage;359

long exitStatus;360

string terminatingSignal;361

string annotation;362

JobState jobState;363

any jobSubState;364

OrderedStringList allocatedMachines;365

string submissionMachine;366

string jobOwner;367

string queueName;368

TimeAmount wallclockTime;369

long cpuTime;370

AbsoluteTime submissionTime;371

AbsoluteTime dispatchTime;372

AbsoluteTime finishTime ;};373

The structure is used in two occasions - first for the expression of information about a single job, and second374

as filter expression when retrieving a list of jobs from the DRMAA implementation.375

In both usage scenarios, the structure information has to be understood as snapshot of the live DRM system.376

Multiple values being set in one structure instance should be interpreted as “occurring at the same time”.377

In real implementations, some granularity limits must be assumed - for example, the wallclockTime and378

the cpuTime attributes might hold values that were measured with a very small delay one after each other.379

In the use case of job information monitoring, it is assumed that the DRM system has three job information380

states: running, buffered, purged. Only information for jobs that are still running or are still held in the381

buffer of finished job information will be reported completely. In this case, the information SHOULD reflect382

the current status of the job as as close as possible to the time of the call.383

drmaa-wg@ogf.org 13

mailto:drmaa-wg@ogf.org

GWD-R March 2011

If jobs have been purged out to accounting, different attributes might not contain valid data. Implementa-384

tions MAY decide to return only partially filled JobInfo instances due to performance restrictions in the385

communication with the DRM system.386

For additional DRMS-specific information, the JobInfo structure MAY be extended by the DRMAA imple-387

mentation (see Section 4).388

(See footnote)
9

389

4.8.1 jobId390

For monitoring: Returns the stringified job identifier assigned to the job by the DRM system.391

For filtering: Returns the job with the chosen job identifier.392

4.8.2 resourceUsage393

For monitoring: Returns resource consumption information for the given job. The dictionary keys are394

implementation-specific.395

For filtering: Returns the jobs that have the dictionary key-value pairs as subset of their own.396

Standardize
resource
usage key
names ?!?

397

4.8.3 exitStatus398

For monitoring: The process exit status of the job, as reported by the operating system. If the job is not in399

one of the terminated states, the value should be UNSET.400

For filtering: Return the jobs with the given exitStatus value. Jobs without exit status information should401

be filtered out by asking for the appropriate states.402

4.8.4 terminatingSignal403

For monitoring: This attribute specifies the UNIX signal that reasoned the end of the job. Implementations404

should document the extent to which they can gather such information in the particular DRM system (e.g.405

with Windows hosts).406

For filtering: Returns the jobs with the given terminatingSignal value.407

4.8.5 annotation408

For monitoring: Gives a human-readable annotation describing why the job is in its current state or sub-state.409

The support for this information is optional.410

For filtering: This attribute is ignored for filtering.411

9 In comparison to DRMAA 1.0, the JobInfo value type was heavily extended for providing more information (solves issue
#2827). JobInfo::hasCoreDump is no longer supported, since the information is useless without according core file staging
support, which is not implementable in a portable way. (conf. call Jun 9th 2010)

Some DRM systems (SGE / Condor at least) support the automated modification of job template attributes after submission,
and therefore allow to fetch the true job template attributes at run-time from the job. The monitoring for such data was
intentionally not included in DRMAA (mailing list July 2010).

drmaa-wg@ogf.org 14

mailto:drmaa-wg@ogf.org

GWD-R March 2011

4.8.6 jobState412

For monitoring: This attribute specifies the jobs current state according to the DRMAA job state model413

(see Section 7.1).414

For filtering: Returns all jobs in the specified state. If the given state is simulated by the implementation415

(see Section 7.1), the implementation SHOULD raise an InvalidArgumentException explaining that this416

filter can never match.417

4.8.7 jobSubState418

For monitoring: This attribute specifies the jobs current DRMAA implementation specific sub-state (see419

Section 7.1).420

For filtering: Returns all jobs in the specified sub-state. If the given sub-state is not supported by the imple-421

mentation (see Section 7.1), the implementation SHOULD raise an InvalidArgumentException explaining422

that this filter can never match.423

4.8.8 allocatedMachines424

This attribute expresses the set of machines that are utilized for job execution. Implementations MAY425

decide to give the ordering of machine names a particular meaning, for example putting the master node in426

a parallel job at first position. This decision should be documented for the user. For performance reasons,427

only the machine names are returned, and SHOULD be equal to the according Machine::name attribute in428

monitoring data.429

For monitoring: This attribute lists the set of names of the machines to which this job has been assigned.430

For filtering: Returns the list of jobs which have a set of assigned machines that is a superset of the given431

set of machines.432

4.8.9 submissionMachine433

This attribute provides the machine name of the submission host for this job. For performance reasons,434

only the machine name is returned, and SHOULD be equal to the according Machine::name attribute in435

monitoring data.436

For monitoring: This attribute specifies the machine from which this job was submitted.437

For filtering: Returns the set of jobs that were submitted from the specified machine.438

4.8.10 jobOwner439

For monitoring: This attribute specifies the job owner as reported by the DRM system.440

For filtering: Returns all jobs owned by the specified user.441

4.8.11 queueName442

For monitoring: This attribute specifies the queue in which the job was queued or started (see Section 1.3).443

For filtering: Returns all jobs that were queued or started in the specified queue.444

drmaa-wg@ogf.org 15

mailto:drmaa-wg@ogf.org

GWD-R March 2011

4.8.12 wallclockTime445

For monitoring: Accumulated time the job spent in “Queued” or “Started” states . Implementations MAY
Same discus-
sion as above

446

determine this value by subtracting the current time or finishTime by the dispatchTime of the job.447

For filtering: Returns all jobs that have consumed at least the specified amount of wall clock time.448

4.8.13 cpuTime449

For monitoring: This attribute specifies the amount of CPU time consumed by the job. This value includes450

only time the job spent in JobState::RUNNING (see Section 7.1).451

For filtering: Returns all jobs that have consumed at least the specified amount of CPU time.452

4.8.14 submissionTime453

For monitoring: This attribute specifies the time at which the job was submitted. Implementations SHOULD454

use the submission time recorded by the DRM system, if available.455

For filtering: Returns all jobs that were submitted at or after the specified submission time.456

4.8.15 dispatchTime457

For monitoring: The time the job first entered a “Started” state (see Section 7.1). On job restart or re-458

scheduling, this value does not change.459

For filtering: Returns all jobs that entered a “Started” state at, or after the specified dispatch time.460

4.8.16 finishTime461

For monitoring: The time the job first entered a “Terminated” state (see Section 7.1).462

For filtering: Returns all jobs that entered a “Terminated” state at or after the specified finish time.463

Resolve how
to report slot
assignments
for jobs

464

5 Common Exceptions465

The exception model specific error information that can be returned by a DRMAA implementation on466

method calls.467

exception DeniedByDrmException {string message ;};468

exception DrmCommunicationException {string message ;};469

exception TryLaterException {string message ;};470

exception SessionManagementException {string message ;};471

exception TimeoutException {string message ;};472

exception InternalException {string message ;};473

exception InvalidArgumentException {string message ;};474

exception InvalidSessionException {string message ;};475

exception InvalidStateException {string message ;};476

exception OutOfMemoryException {string message ;};477

exception UnsupportedAttributeException {string message ;};478

drmaa-wg@ogf.org 16

mailto:drmaa-wg@ogf.org

GWD-R March 2011

exception UnsupportedOperationException {string message ;};479

If not defined otherwise, the exceptions have the following meaning:480

DeniedByDrmException: The DRM system rejected the operation due to security issues.481

DrmCommunicationException: The DRMAA implementation could not contact the DRM system. The482

problem source is unknown to the implementation, so it is unknown if the problem is transient or not.483

TryLaterException: The DRMAA implementation detected a transient problem with performing the484

operation, for example due to excessive load. The application is recommended to retry the call.485

SessionManagementException: A problem was encountered while trying to create / open / close /486

destroy a session.487

TimeoutException: The timeout given in one the waiting functions was reached without successfully488

finishing the waiting attempt.489

InternalException: An unexpected or internal error occurred in the DRMAA library, for example a system490

call failure. It is unknown if the problem is transient or not.491

InvalidArgumentException: From the viewpoint of the DRMAA library, a function parameter is invalid492

or inappropriate for the particular function call.493

InvalidSessionException: The session used for the function is not valid, for example since it was closed494

before.495

InvalidStateException: The function call is not allowed in the current state of the job.496

OutOfMemoryException: This exception can be thrown by any method at any time when the DRMAA497

implementation has run out of free memory.498

UnsupportedAttributeException: The optional attribute is not supported by the DRMAA implemen-499

tation.500

UnsupportedOperationException: The function is not supported by the DRMAA implementation. One501

example is the registration of an event callback function.502

.

We might
want to
introduce
InvalidTemplateException
for separating
input
parameter
issues

503

The DRMAA specification assumes that programming languages targeted by language bindings typically

drmaa-wg@ogf.org 17

mailto:drmaa-wg@ogf.org

GWD-R March 2011

support the concept of exceptions. If a destination language does not support them (like ANSI C), the
language binding specification SHOULD map error conditions to an appropriate consistent concept. A
language binding MAY chose to model exceptions as numeric error code return values, and return values as
additional output parameters of the operation. In this case, the language binding specification SHOULD
specify numeric values for all DRMAA error constants.

The representation of exceptions in the language binding MUST support a possibility to express an exception
cause as textual description. Implementations MAY use this text to express DRMS-specific error conditions
that are outside of the DRMAA scope.

Object-oriented language bindings MAY decide to derive all exceptions from one or multiple exception base
classes, in order to support generic catch clauses. Whenever it is appropriate, language bindings SHOULD
replace DRMAA exceptions by their semantically equivalent native exception from the application runtime
environment.

Language bindings MAY decide to introduce a hierarchical ordering of the DRMAA exceptions through class
derivation. In this case, any new exceptions added for aggregation purposes SHOULD be prevented from
being thrown, for example by marking them as abstract.

The UnsupportedAttributeException may either be raised by the setter function for the attribute or by
the job submission function. A consistent decision for either one or the other approach MUST be made by
the language binding specification.

(See footnote)
10

504

6 The DRMAA Session Concept505

DRMAA relies on an overall session concept, which supports the persistency of job and advance reservation506

information over multiple application runs. This supports short-lived applications that need to work with507

DRM system state spanning multiple application runs. Typical examples are job submission portals or508

command-line tools. The session concept is also intended to allow implementations to perform DRM system509

attach / detach operations at dedicated points in the application control flow.510

6.1 SessionManager Interface511

interface SessionManager{512

readonly attribute string drmsName;513

readonly attribute Version drmaaVersion;514

readonly attribute boolean reservationSupported;515

JobSession createJobSession(in string sessionName ,516

in string contactString);517

ReservationSession createReservationSession(in string sessionName ,518

in string contactString);519

MonitoringSession createMonitoringSession (in string contactString);520

10 Comparsion to DRMAA 1.0: The InconsistentStateException was removed, since it is semantically equal to the In-
validStateException (conf. call Jan 7th 2010) The former HoldInconsistentStateException, ReleaseInconsistentStateException,
ResumeInconsistentStateException, and SuspendInconsistentStateException from DRMAA v1.0 are now expressed as single
InvalidStateException with different meaning per raising method. (F2F meeting July 2009)

drmaa-wg@ogf.org 18

mailto:drmaa-wg@ogf.org

GWD-R March 2011

JobSession openJobSession(in string sessionName);521

ReservationSession openReservationSession(in string sessionName);522

void closeJobSession(in JobSession s);523

void closeReservationSession(in ReservationSession s);524

void closeMonitoringSession(in MonitoringSession s);525

void destroyJobSession(in string sessionName);526

void destroyReservationSession(in string sessionName);527

StringList getJobSessions ();528

StringList getReservationSessions ();529

};530

The SessionManager interface is the main interface for establishing communication with a given DRM sys-531

tem. By the help of this interface, sessions for job management, monitoring, and/or reservation management532

can be maintained.533

Job and reservation sessions maintain persistent state information (about jobs and reservations created)534

between application runs. State data SHOULD be persisted by the library implementation or the DRMS535

itself (if supported) after closing the session through the according method in the SessionManager interface.536

The re-opening of a session MUST be possible on the machine where the session was originally created.537

Implementations MAY also offer to re-open the session on another machine.538

The state information SHOULD be kept until the job or reservation session is explicitly reaped by the539

according destroy method in the SessionManager interface. If an implementation runs out of resources for540

storing the session information, the closing function SHOULD throw a SessionManagementException. If541

an application ends without closing the session properly, the behavior of the DRMAA implementation is542

undefined.543

An implementation MUST allow the application to have multiple sessions of the same or different types544

instantiated at the same time. This includes the proper coordination of parallel calls to session methods545

that share state information.546

(See footnote)
11

547

6.1.1 drmsName548

A system identifier denoting a specific type of DRM system, e.g. “LSF” or “GridWay”. It is intended549

to support conditional code blocks in the DRMAA application that rely on DRMS-specific details of the550

DRMAA implementation. Implementations SHOULD NOT make versioning information of the particular551

DRM system a part of this attribute value.552

6.1.2 drmaaVersion553

A combination of minor / major version number information for the DRMAA implementation. The major554

version number MUST be the constant value “2”, the minor version number SHOULD be used by the555

11 Comparison to DRMAA 1.0: The concept of a factory from GFD.130 was removed (solves issue #6276). Version 2.0 of
DRMAA supports restartable sessions by the newly introduced SessionManager interface. It allows creating multiple concurrent
sessions for job submission (solves issue #2821), which can be restarted by their generated session name (solves issue #2820).
Session.init() and Session.exit() functionalities are moved to the according session creation and closing routines. The descriptions
were fixed accordingly (solves issue #2822). The AlreadyActiveSession error was removed. (F2F meeting July 2009) The
drmaaImplementation attribute from DRMAA 1.0 was removed, since it was redundant to the drmsInfo attribute. This one is
now available in the new SessionManager interface. (F2F meeting July 2009).

drmaa-wg@ogf.org 19

mailto:drmaa-wg@ogf.org

GWD-R March 2011

DRMAA implementation for expressing its own versioning information.556

6.1.3 reservationSupported557

The attribute indicates if advance reservation is supported by the DRMAA implementation. If False, all558

methods related to advance reservation will raise an UnsupportedOperationExeption if being used.559
New, needs
group ap-
proval

560

(See footnote)
12

561

6.1.4 createJobSession / createReservationSession / createMonitoringSession562

The method creates a new session instance of the particular type for the application. On successful completion563

of this method, the necessary initalization for making the session usable MUST be completed. Examples are564

the connection establishment from the DRMAA library to the DRM system, or the prefetching of information565

from non-thread-safe operating system calls, such as getHostByName.566

The contactString parameter is an implementation-dependent string that SHALL allow the application to567

specify which DRM system instance to use. A contact string represents a specific installation of a specific568

DRM system, e.g. a Condor central manager machine at a given IP address, or a Grid Engine ‘root’ and569

‘cell’. Contact strings are always implementation dependent and therefore opaque to the application. If570

contactString has the value UNSET, a default DRM system SHOULD be contacted. The manual configu-571

ration or automated detection of a default contact is implementation-specific.572

The sessionName parameter denotes a specific name to be used for the new session. If a session with such573

a name was created before, the method MUST throw an InvalidArgumentException. In all other cases,574

including if the provided name has the value UNSET, a new session MUST be created with a unique name575

generated by the implementation. A MonitoringSession instance has no persistent state, and therefore576

does not support the name concept.577

If the DRM system does not support advance reservation, than createReservationSession SHALL throw578

an UnsupportedOperationException.579

6.1.5 openJobSession / openReservationSession580

The method is used to open a persisted JobSession or ReservationSession instance that has previously581

been created under the given sessionName. The implementation MUST support the case that the session582

have been created by the same application or by a different application running on the same machine. The583

implementation MAY support the case that the session was created or updated on a different machine. If584

no session with the given sessionName exists, an InvalidArgumentException MUST be raised.585

If the session described by sessionName was already opened before, implementations MAY return the same586

job or reservation session instance.587

If the DRM system does not support advance reservation, openReservationSession SHALL throw an588

UnsupportedOperationException.589

12This attribute is intended to avoid test calls for checking if advance reservation is supported by the implementation

drmaa-wg@ogf.org 20

mailto:drmaa-wg@ogf.org

GWD-R March 2011

6.1.6 closeJobSession / closeReservationSession / closeMonitoringSession590

The method MUST do whatever work is required to disengage from the DRM system. It SHOULD be callable591

only once, by only one of the application threads. This SHOULD be ensured by the library implementation.592

Additional calls beyond the first SHOULD lead to a NoActiveSessionException error notification.593

For JobSession or ReservationSession instances, the according state information MUST be saved to some594

stable storage before the method returns. This method SHALL NOT affect any jobs or reservations in the595

session (e.g., queued and running jobs remain queued and running).596

If the DRM system does not support advance reservation, closeReservationSession SHALL throw an597

UnsupportedOperationException.598

6.1.7 destroyJobSession / destroyReservationSession599

The method MUST do whatever work is required to reap persistent session state and cached job state600

information for the given session name. If session instances for the given name exist, they MUST become601

invalid after this method was finished sucessfully. Invalid sessions MUST throw InvalidSessionException602

on every attempt of utilization. This method SHALL NOT affect any jobs or reservations in the session in603

their operation, e.g. queued and running jobs remain queued and running.604

If the DRM system does not support advance reservation, destroyReservationSession SHALL throw an605

UnsupportedOperationException.606

6.1.8 getJobSessions / getReservationSessions607

This method returns a list of JobSession or ReservationSession names that are valid input for a openJobSession608

or openReservationSession call.609

If the DRM system does not support advance reservation, getReservationSessions SHALL throw an610

UnsupportedOperationException.611

7 Working with Jobs612

A DRMAA job represents a single computational activity that is executed by the DRM system on a execution613

host, typically as operating system process. The JobSession interface represents all control and monitoring614

functions commonly available in DRM systems for such jobs as a whole, while the Job interface represents the615

common functionality for single jobs. Sets of jobs resulting from a bulk submission are separately represented616

by the JobArray interface. JobTemplate instances allow to formulate conditions and requirements for the617

job execution by the DRM system.618

7.1 The DRMAA State Model619

DRMAA defines the following job states:620

enum JobState {621

UNDETERMINED , QUEUED , QUEUED_HELD , RUNNING , SUSPENDED , REQUEUED ,622

REQUEUED_HELD , DONE , FAILED };623

UNDETERMINED: The job status cannot be determined. This is a permanent issue, not being solvable624

by querying again for the job state.625

drmaa-wg@ogf.org 21

mailto:drmaa-wg@ogf.org

GWD-R March 2011

QUEUED: The job is queued for being scheduled and executed.626

QUEUED HELD: The job has been placed on hold by the system, the administrator, or the submitting627

user.628

RUNNING: The job is running on a execution host.629

SUSPENDED: The job has been suspended by the user, the system or the administrator.630

REQUEUED: The job was re-queued by the DRM system, and is eligible to run.631

REQUEUED HELD: The job was re-queued by the DRM system, and is currently placed on hold.632

DONE: The job finished without an error.633

FAILED: The job exited abnormally before finishing.634

If a DRMAA job state has no representation in the underlying DRMS, the DRMAA implementation MAY635

never report that job state value. However, all DRMAA implementations MUST provide the JobState636

enumeration as given here. An implementation SHOULD NOT return any job state value other than those637

defined in the JobState enumeration.638

The status values relate to the DRMAA job state transition model, as shown in Figure 1.639

TerminatedStartedQueued

QUEUED

QUEUED_HELD

RUNNING

SUSPENDED

DONE

FAILED

UNDETERMINED

REQUEUED

REQUEUED_HELD

runJob()
runBulkJobs()

Figure 1: DRMAA Job State Transition Model

The transition diagram in Figure 1 expresses the clasification of possible job states into “Queued”, “Started”,640

and “Terminated”. This is relevant for the job waiting functions (see Section 7.2 and Section 7.5), which641

drmaa-wg@ogf.org 22

mailto:drmaa-wg@ogf.org

GWD-R March 2011

operate on job state classes only. The “Terminated” class of states is final, meaning that further state642

transition is not allowed.643

Implementations SHALL NOT introduce other job transitions (e.g. from RUNNING to QUEUED) beside the ones644

stated in Figure 1, even if they might happen in the underlying DRM system. In this case, implementations645

MAY emulate the neccessary intermediate steps for the DRMAA-based application.646

When an application requests job state information, the implementation SHOULD also provide the subState647

value to explain DRM-specific information about the job state. The possible values of this attribute are648

implementation-specific, but should be documented properly. Examples are extra states for staging phases649

or details on the hold reason. Implementations SHOULD define a DRMS-specific data structure for the650

sub-state information that can be converted to / from the data type defined by the language binding.651

The IDL definition declares the sub state attributes as type any, expressing the fact that the language
binding MUST map the data type to a generic language type (e.g. void*, Object) that maintains source code
portability across DRMAA implementations and still accepts an UNSET value.

The DRMAA job state model can be mapped to other high-level API state models. Table 3 gives a non-652

normative set of examples.653

DRMAA JobState SAGA JobState [3] OGSA-BES Job State [2]
UNDETERMINED N/A N/A
QUEUED Running Pending (Queued)
QUEUED HELD Running Pending (Queued)
RUNNING Running Running (Executing)
SUSPENDED Suspended Running (Suspended)
REQUEUED Running Pending (Queued)
REQUEUED HELD Running Pending (Queued)
DONE Done Finished
FAILED Cancelled, Failed Cancelled, Failed

Table 3: Example Mapping of DRMAA Job States Re-check job
state map-
ping

654

(See footnote)
13

655

13 Comparison to DRMAA 1.0:
The differentiation between the system hold, user hold, and system / user hold job states was removed (conf. call Jan

20th 2009). There is only one hold state now. A job can now change its state from one of the SUSPENDED states to the
QUEUED ACTIVE state (conf. call Jan 20th 2009, solves issue #2788). The job state UNDETERMINED is now clearer
defined. It expressed a permanent issue, meaning that the job state will not change by just waiting. Temporary problems in
the detection of the job state are now expressed by the TryLaterException (conf. call Feb 5th 2009, solves issue #2783). The
description of the FAILED state was extended to support a more specific differentiation between different job failure reasons.
The new subState feature allows the DRMAA implementation to provide better information, if available. There was no portable
way of standardizing extended failure information in a better way. (conf. call May 12th 2009, solves issue #5875) The different
suspend job states from DRMAA1 (user suspended, system suspended, user / system suspended) are now combined into one
suspend state. DRM systems with the need to express the different suspend reasons can use the new sub-state feature (conf.
call Mar 5th 2010).

drmaa-wg@ogf.org 23

mailto:drmaa-wg@ogf.org

GWD-R March 2011

7.2 JobSession Interface656

A job session instance acts as container for job instances controlled through the DRMAA API. The session657

methods support the submission of new jobs, the monitoring and the control of existing jobs. The relationship658

between jobs and their session MUST be persisted, as described in Section 6.1.659

interface JobSession {660

readonly attribute string contact;661

readonly attribute string sessionName;662

readonly attribute boolean notificationSupported;663

JobList getJobs(in JobInfo filter);664

Job runJob(in JobTemplate jobTemplate);665

JobArray runBulkJobs(666

in JobTemplate jobTemplate ,667

in long beginIndex ,668

in long endIndex ,669

in long step);670

Job waitAnyStarted(in JobList jobs , in TimeAmount timeout);671

Job waitAnyTerminated(in JobList jobs , in TimeAmount timeout);672

void registerEventNotification(in DrmaaCallback callback);673

};674

(See footnote)
14

675

7.2.1 contact676

This attribute contains the contact value that was used in the SessionManager::createJobSession call677

for this instance (see Section 6.1). If no value was originally provided, the default contact string from the678

implementation MUST be returned. This attribute is read-only.679

7.2.2 sessionName680

This attribute contains the sessionName value that was used in the SessionManager::createJobSession681

or SessionManager::openJobSession call for this instance (see Section 6.1). This attribute is read-only.682

14 Comparison to DRMAA 1.0: The original separation between synchronize() and wait() was replaced by a complete new
synchronization semantic in the API. DRMAA2 has now two methods, waitStarted() and waitTerminated(). The first waits
for any state that expresses that the job was started, the second for any terminal status. Both methods are available on
session level (wait for any of the given jobs to start / end) or on single job level (solves issue #5880 and #2838). The function
returns always a Job object, in order to allow chaining, e.g. job.wait(JobStatus.RUNNING).hold(). The session-level functions
implement the old DRMAA wait(SESSION ANY). The old synchronize() semantics are no longer directly supported - instead,
the DRMAA application should use a looped Job.wait... / JobSession.waitAny... call. The result is a more condensed and
responsive API, were the application can decide to keep the user informed during synchronization on a set of jobs. DRMAA
library implementations should also become easier to design, since the danger of multithreading side effects inside the DRMAA
API is reduced by this change. As a side effect, JOB IDS SESSION ANY and JOB IDS SESSION ALL are no longer needed.
The special consideration of a partial failures during SESSION ALL wait activities is also no longer necessary (F2F meeting
July 2009). The JobSession now allows to fetch also information about jobs that were not submitted through DRMAA (conf.
call June 23th 2010).

drmaa-wg@ogf.org 24

mailto:drmaa-wg@ogf.org

GWD-R March 2011

7.2.3 notificationSupported683

The attribute indicates if event notification is supported by the DRMAA implementation for the job session.684

If False, then registerEventNotification will raise an UnsupportedOperationExeption if being used.685
New, needs
group ap-
proval

686

7.2.4 getJobs687

This method returns a sequence of jobs that belong to the job session. The filter parameter allows one688

to choose a subset of the session jobs as return value. The attribute semantics for the filter argument are689

explained in Section 4.8. If no job matches or the session has no jobs attached, the method MUST return690

an empty sequence instance. If filter is UNSET, all session jobs MUST be returned.691

Time-dependent effects of this method, such as jobs no longer matching to filter criteria on evaluation time,692

are implementation-specific. The purpose of the filter parameter is to keep scalability with a large number693

of jobs per session. Applications therefore must consider the possibly changed state of jobs during their694

evaluation of the method result.695

7.2.5 runJob696

The runJob method submits a job with the attributes defined in the job template parameter. It returns a697

Job object that represents the job in the underlying DRM system. Depending on the job template settings,698

submission attempts may be rejected with an InvalidArgumentException. The error details SHOULD699

provide further information about the attribute(s) responsible for the rejection.700

When this method returns a valid Job instance, the following conditions SHOULD be fulfilled:701

• The job is part of the persistent state of the job session.702

• All non-DRMAA and DRMAA interfaces to the DRM system report the job as being submitted to703

the DRM system.704

• The job has one of the DRMAA job states.705

7.2.6 runBulkJobs706

The runBulkJobs method creates a set of parametric jobs, each with attributes defined in the given707

job template. Each job in the set is identical, except for the job template attributes that include the708

JobTemplatePlaceholder::PARAMETRIC_INDEX macro (see Section 7.4).709

If any of the resulting parametric job templates is not accepted by the DRM system, the method call MUST710

raise an InvalidArgumentException. No job from the set SHOULD be submitted in this case.711

The first job in the set has an index equal to the beginIndex parameter of the method call. The smallest valid712

value for beginIndex is 1. The next job has an index equal to beginIndex + step, and so on. The last job713

has an index equal to beginIndex + n * step, where n is equal to(endIndex - beginIndex) / step. The714

index of the last job may not be equal to endIndex if the difference between beginIndex and endIndex is not715

evenly divisible by step. The beginIndex value must be less than or equal to the endIndex value, and only716

positive index numbers are allowed, otherwise the method SHOULD raise an InvalidArgumentException.717

Implementations MAY provide custom ways for the job to determine its index number.718

drmaa-wg@ogf.org 25

mailto:drmaa-wg@ogf.org

GWD-R March 2011

The runBulkJobs method returns a JobArray (see Section 7.6) instance that represents the set of Job objects719

created by the method call under a common array identifier. For each of the jobs in the array, the same720

conditions as for the result of runJob SHOULD apply.721

The largest valid value for endIndex MUST be defined by the language binding.

(See footnote)
15

722

7.2.7 waitAnyStarted / waitAnyTerminated723

The waitAnyStarted method blocks until any of the jobs referenced in the jobs parameter entered one of724

the “Started” states. The waitAnyTerminated method blocks until any of the jobs referenced in the jobs725

parameter entered one of the “Terminated” states (see Section 7.1). If the input list contains jobs that are726

not part of the session, waitAnyStarted SHALL fail with an InvalidArgumentException.727

The timeout argument specifies the desired behavior when a result is not immediately available. The con-728

stant value INFINITE_TIME may be specified to wait indefinitely for a result. The constant value ZERO_TIME729

may be specified to return immediately. Alternatively, a number of seconds may be specified to indicate730

how long to wait for a result to become available. If the invocation exits on timeout, an TimeoutException731

SHALL be raised.732

In a multi-threaded environment with multiple JobSession::waitAny... calls, only one of the active thread733

SHOULD get the status change notification for a particular job, while the other threads SHOULD continue734

waiting. If there are no more queryable jobs left in the session, all remaining waiting threads SHOULD fail735

with an InvalidStateException. If thread A is waiting for a specific job with Job::wait..., and another736

thread, thread B, waiting for that same job or with JobSession::waitAny..., than B SHOULD receive the737

notification that the job has finished, thread A SHOULD fail with an InvalidStateException. Waiting for738

a job state is a read-only operation.739

An application waiting for some condition to happen in all jobs of a set is expected to perform looped calls740

of these waiting functions.741

(See footnote)
16

742

7.2.8 registerEventNotification743

This method is used to register a DrmaaCallback interface (see Section 7.3) implemented by the DRMAA-744

based application. If the callback functionality is not supported by the DRMAA implementation, the method745

SHALL raise an UnsupportedOperationException. Implementations MAY support the registration of746

multiple callback methods.747

A language binding specification MUST define how the reference to an interface-compliant method can be
given as argument to this method.

15 There was a discussion (mailing list Jan 2011) about having specialized job templates for bulk submission, with support
for the start / end index and a slots limit. We rejected that, since job templates are intended for re-usage.

16 People typically ask for the waitAll..() counterparts of these functions. Since they are so easy to implement in the
application itself, we could not see any benefit in adding them. Due to there intended long-blocking operation, the DRM
system would no be able to offer any better (meaning much faster) implementation to be wrapped by DRMAA.

drmaa-wg@ogf.org 26

mailto:drmaa-wg@ogf.org

GWD-R March 2011

7.3 DrmaaCallback Interface748

The DrmaaCallback interface allows the DRMAA library or the DRM system to inform the application about749

relevant events from the DRM system in a asynchronous fashion. One expected use case is loseless monitoring750

of job state transitions. The support for such callback functionality is optional, but all implementations751

MUST define the DrmaaCallback interface type as given in the language binding.752

interface DrmaaCallback {753

void notify(in DrmaaNotification notification);754

};755

struct DrmaaNotification {756

DrmaaEvent event;757

Job job;758

JobState jobState;759

};760

enum DrmaaEvent {761

NEW_STATE , MIGRATED , ATTRIBUTE_CHANGE762

};763

The application callback interface is registered through the JobSession::registerEventNotification764

method (see Section 7.2). The DrmaaNotification structure represents the notification information from765

the DRM system. Implementations MAY extend this structure for further information (see Section 4). All766

given information SHOULD be valid at least at the time of notification generation.767

The DrmaaEvent enumeration defines standard event types for notification:768

NEW STATE The job entered a new state, which is described in the jobState attribute of the notification769

structure.770

MIGRATED The job was migrated to another execution host, and is now in the given state.771

ATTRIBUTE CHANGE A monitoring attribute of the job, such as the memory consumption, changed772

to a new value. The jobState attribute MAY have the value UNSET on this event.773

DRMAA implementations SHOULD protect themself from unexpected behavior of the called application.774

This includes indefinite delays or unexpected exceptions from the callee. An implementation SHOULD775

also disallow any library calls while the callback function is running, to avoid recursion scenarios. It is776

RECOMMENDED to raise TryLaterException in this case.777

Scalability issues of the notification facility are out of scope for this specification. Implementations MAY778

decide to support non-standardized throttling configuration options.779

(See footnote)
17

780

7.4 JobTemplate Structure781

In order to define the attributes associated with a job, a DRMAA application uses the JobTemplate struc-782

ture. It specifies any required job parameters and is passed to the DRMAA JobSession instance when job783

execution is requested.784

17 We intentionally did not add subState to the notification information, since this would make callback interface implemen-
tations specific for the DRM system, without any chance for creating a portable DRMAA application.

drmaa-wg@ogf.org 27

mailto:drmaa-wg@ogf.org

GWD-R March 2011

struct JobTemplate {785

StringList attributeNames;786

string remoteCommand;787

OrderedStringList args;788

boolean submitAsHold;789

boolean rerunnable;790

Dictionary jobEnvironment;791

string workingDirectory;792

string jobCategory;793

StringList email;794

boolean emailOnStarted;795

boolean emailOnTerminated;796

string jobName;797

string inputPath;798

string outputPath;799

string errorPath;800

boolean joinFiles;801

string reservationId;802

string queueName;803

long minSlots;804

long maxSlots;805

long priority;806

OrderedStringList candidateMachines;807

long minPhysMemory;808

OperatingSystem machineOS;809

CpuArchitecture machineArch;810

AbsoluteTime startTime;811

Dictionary drmsSpecific;812

AbsoluteTime deadlineTime;813

Dictionary stageInFiles;814

Dictionary stageOutFiles;815

Dictionary softResourceLimits;816

Dictionary hardResourceLimits;817

string accountingId;818

};819

The DRMAA job template concept makes a distinction between mandatory and optional attributes. Manda-820

tory attributes MUST be supported by the implementation in the sense that they are evaluated on job821

submission. Optional attributes MAY be evaluated on job submission, but MUST be provided as part of the822

JobTemplate structure in the implementation. If an unsupported optional attribute has a value different to823

UNSET, the job submission MUST fail with a UnsupportedAttributeException. DRMAA applications are824

expected to check for the availability of optional attributes before using them.825

Implementations MUST set all attribute values to UNSET on struct allocation. This ensures that both the826

DRMAA application and the library implementation can determine untouched attribute members. If not827

described differently in the following sections, all attributes SHOULD be allowed to have the UNSET value828

on job submission.829

drmaa-wg@ogf.org 28

mailto:drmaa-wg@ogf.org

GWD-R March 2011

An implementation SHALL NOT extend the JobTemplate structure with implementation-specific attributes,830

but SHOULD supported according keys in the drmsSpecific attribute (see Section 7.4.9).831

An implementation MAY support JobTemplatePlaceholder macros in more occasions than defined in this832

specification.833

A language binding specification SHOULD define how a JobTemplate instance is convertible to a string
for printing, through whatever mechanism is most natural for the implementation language. The resulting
string MUST contain the values of all set properties.

The initialization to UNSET SHOULD be realized without additional methods in the DRMAA interface, if
possible. The according approach MUST be specified by the language binding.

Which
attributes
should allow
the new
HOST NAME
and
USER NAME
place holders
?

834

(See footnote)
18

835

7.4.1 attributeNames836

The attributeNames list of strings SHALL enumerate the names of the required and of the supported837

optional job template attributes.838

This doesnt
make sense
anymore,
since job
templates
are now value
types.

839

This is especially intended for languages which do not provide an inherit notion of struct introspection and
therefore map job template attribute access to getter / setter functions.

The support for this attribute is mandatory.840

7.4.2 remoteCommand841

This attribute describes the command to be executed on the remote host. In case this parameter contains842

path information, it MUST be seen as relative to the execution host file system and is therefore evaluated843

there. The implementation SHOULD NOT relate the value of this attribute to binary file management or844

file staging activities. The behavior with an UNSET value is implementation-specific.845

The support for this attribute is mandatory.846

18 Comparison to DRMAA 1.0: JobTemplate is now a value type, meaning that it maps to a struct in C. This removes the
need for DRMAA-defined methods for construction and destruction of job templates. An eventual RPC scenario for DRMAA
gets easier with this approach, since it is closer to the JSDL concept of a job description document.

Supported string placeholders for job template attributes are now listed in the JobTemplatePlaceholder enumeration, and
must be filled with values by the language binding. Invalid job template settings are now only detected on job submission, not
when the attribute is set.

Implementation-specific job template extensions were decided to be no longer supported, which hopefully fosters portable
DRMAA-based source code. Implementation-specific job template settings are now covered by the drmsSpecific dictionary.
This more generic approach also makes the old nativeOptions obsolete, so it was removed. Implementations therefore should
support all relevant native settings explicitly as keys in the drmsSpecific dictionary. (conf. call May 26th 2010).

DRMAA1 supported the utilization of new DRM features through an old DRMAA implementation, based on the
nativeSpecification field. A conf call (Jul 14th 2010) voted for dropping this intentionally. Implementations instead should
be creative with their supported key names.

drmaa-wg@ogf.org 29

mailto:drmaa-wg@ogf.org

GWD-R March 2011

7.4.3 args847

This attribute contains the list of command-line arguments for the job(s) to be executed.848

The support for this attribute is mandatory.849

7.4.4 submitAsHold850

This attribute defines if the job(s) should be submitted as QUEUED or QUEUED_HELD (see Section 7.1). Since851

the boolean UNSET value defaults to False, jobs are submitted as non-held if this attribute is not set.852

The support for this attribute is mandatory.853

7.4.5 rerunnable854

This flag indicates if the submitted job(s) can safely be restarted by the DRM system, for example on a855

node failure or some other re-scheduling event. Since the boolean UNSET value defaults to False, jobs are856

submitted as not rerunnable if this attribute is not set. This attribute SHOULD NOT be used by the857

implementation to let the application denote the checkpointability of a job.858

How should
check-
pointability
be denoted ?

859

The support for this attribute is mandatory.860

(See footnote)
19

861

7.4.6 jobEnvironment862

This attribute holds the environment variable key-value pairs for the execution machine(s). The values863

SHOULD override the execution host environment values if there is a collision.864

The support for this attribute is mandatory.865

7.4.7 workingDirectory866

This attribute specifies the directory where the job or the bulk jobs are executed. If the attribute value867

is UNSET, the behavior is implementation dependent. Otherwise, the attribute value MUST be evaluated868

relative to the file system on the execution host. The attribute value MUST be allowed to contain either the869

JobTemplatePlaceholder::HOME_DIRECTORY or the JobTemplatePlaceholder::PARAMETRIC_INDEX place-870

holder (see Section 4.4).871

The workingDirectory attribute should be specified by the application in a syntax that is common at the872

host where the job is executed. Implementations MAY perform according validity checks on job submission.873

If the attribute is set and no placeholder is used, an absolute directory specification is expected. If the874

attribute is set and the job was submitted successfully and the directory does not exist on the execution875

host, the job MUST enter the state JobState::FAILED.876

The support for this attribute is mandatory.877

19 The differentiation between rerunnable and checkpointable was decided on a conf call (Aug 25th 2010)

drmaa-wg@ogf.org 30

mailto:drmaa-wg@ogf.org

GWD-R March 2011

7.4.8 jobCategory878

DRMAA facilitates writing DRM-enabled applications even though the deployment properties, in particular879

the configuration of the DRMS, cannot be known in advance.880

Through the jobCategory string attribute, a DRMAA application can specify additional needs of the job(s)881

that are to be mapped by the implementation or DRM system itself to DRMS-specific options. It is intended882

as non-programmatic extension of DRMAA job submission capabilities. The mapping is performed during883

the process of job submission. Each category expresses a particular type of job execution that demands884

site-specific configuration, for example path settings, environment variables, or application starters such as885

MPIRUN.886

A valid input SHOULD be one of the returned strings in MonitoringSession::drmsJobCategoryNames (see887

Section 9.1), otherwise an InvalidArgumentException SHOULD be raised.888

A non-normative recommendation of category names is maintained at:889

http://www.drmaa.org/jobcategories/890

In case the name is not taken from the DRMAA working group recommendations, it should be self-891

explanatory for the user to understand the implications on job execution. Implementations are recommended892

to provide a library configuration facility, which allows site administrators to link job category names with893

specific product- and site-specific configuration options, such as submission wrapper shell scripts.894

The interpretation of the supported jobCategory values is implementation-specific. The order of prece-895

dence for the jobCategory attribute value, the drmsSpecific attribute value, or other attribute values896

is implementation-specific. It is RECOMMENDED to overrule job template settings with a conflicting897

jobCategory setting, and overrule a given jobCategory with a conflicting drmsSpecific setting.898

The support for this attribute is mandatory.899

7.4.9 drmsSpecific900

This dictionary allows the application to pass DRMS-specific native options as key-value pairs during job901

submission. In contrast to the usage of predefined configuration sets with the jobCategory attribute, this902

supports passing DRMS-specific options directly. The interpretation of keys and values in this dictionary is903

implementation-specific. Valid key strings should be documented by the implementation.904

The order of precedence rules is described in the jobCategory section above.905

The support for this attribute is mandatory.906

7.4.10 email907

This attribute holds a list of email addresses that should be used to report DRM information. Content and908

formatting of the emails are defined by the implementation or the DRM system. If the attribute value is909

UNSET, no emails SHOULD be sent to the user running the job(s), even if the DRM system default behavior910

is to send emails on some event.911

The support for this attribute is optional. If an implementation cannot configure the email notification912

functionality of the DRM system, or if the DRM system has no such functionality, the attribute SHOULD913

NOT be supported in the implementation.914

This became
an optional
attribute,
since we
mandate the
’switch off’
semantic in
case of UNSET

915

drmaa-wg@ogf.org 31

http://www.drmaa.org/jobcategories/
mailto:drmaa-wg@ogf.org

GWD-R March 2011

(See footnote)
20

916

7.4.11 emailOnStarted / emailOnTerminated917

The emailOnStarted flag indicates if the given email address(es) SHOULD get a notification when the job918

(or any of the bulk jobs) entered one of the “Started” states. emailOnTerminated fulfills the same purpose919

for the ”Terminated” states. Since the boolean UNSET value defaults to False, the notification about state920

changes SHOULD NOT be sent if the attribute is not set.921

The support for this attribute is optional. It SHALL only be supported if the email attribute is supported922

in the implementation.923

7.4.12 jobName924

The job name attributes allows the specification of an additional non-unique string identifier for the job(s).925

The implementation MAY truncate any client-provided job name to an implementation-defined length.926

The support for this attribute is mandatory.927

7.4.13 inputPath / outputPath / errorPath928

This attribute specifies standard input / output / error stream of the job as a path to a file. If the attribute929

value is UNSET, the behavior is implementation dependent. Otherwise, the attribute value MUST be evaluated930

relative to the file system of the execution host in a syntax that is common at the host. Implementations931

MAY perform according validity checks on job submission. The attribute value MUST be allowed to contain932

any of the JobTemplatePlaceholder placeholders (see Section 4.4). If the attribute is set and no placeholder933

is used, an absolute file path specification is expected.934

If the outputPath or errorPath file does not exist at the time the job is about to be executed, the file935

SHALL first be created. An existing outputPath or errorPath file SHALL be opened in append mode.936

If the attribute is set and the job was submitted successfully and the file cannot be created / read / written937

on the execution host, the job MUST enter the state JobState::FAILED.938

The support for this attribute is mandatory.939

7.4.14 joinFiles940

Specifies whether the error stream should be intermixed with the output stream. Since the boolean UNSET941

value defaults to False, intermixing SHALL NOT happen if the attribute is not set.942

If this attribute is set to True, the implementation SHALL ignore the value of the errorPath attribute and943

intermix the standard error stream with the standard output stream as specified by the outputPath.944

The support for this attribute is mandatory.945

20 The blockEmail attribute in the JobTemplate was replaced by the UNSET semantic for the email adresses. (conf. call
July 28th 2010).

drmaa-wg@ogf.org 32

mailto:drmaa-wg@ogf.org

GWD-R March 2011

7.4.15 stageInFiles / stageOutFiles946

Specifies what files should be transfered (staged) as part of the job execution. The data staging operation947

MUST be a copy operation between the submission host and the execution host(s). File transfers between948

execution hosts are not covered by DRMAA.949

The attribute value is formulated as dictionary. For each key-value pair in the dictionary, the key defines950

the source path of one file or directory, and the value defines the destination path of one file or directory951

for the copy operation. For stageInFiles, the submission host acts as source, and the execution host(s)952

act as destination. For stageOutFiles, the execution host(s) acts as source, and the submission host act as953

destination.954

All values MUST be evaluated relative to the file system on the host in a syntax that is common at that955

host. Implementations MAY perform according validity checks on job submission. Paths on the execution956

host(s) MUST be allowed to contain any of the JobTemplatePlaceholder placeholders. Paths on the sub-957

mission host MUST be allowed to contain the JobTemplatePlaceholder::PARAMETRIC_INDEX placeholder958

(see Section 4.4). If no placeholder is used in the values, an absolute path specification on the particular959

host SHOULD be assumed by the implementation.960

Jobs SHOULD NOT enter JobState::DONE unless all staging operations are finished. The behavior in961

case of missing files is implementation-specific. The support for wildcard operators in path specifications is962

implementation-specific.963

The support for this attribute is optional.964
Needs final
approval by
the group.

965

(See footnote)
21

966

7.4.16 reservationId967

Specifies the identifier of the advance reservation associated with the job(s). The application is expected968

to create an advance reservation through the ReservationSession interface, the resulting reservationId969

(see Section 8.3) then acts as valid input for this job template attribute. Implementations MAY support an970

reservation identifier from non-DRMAA information sources as valid input.971

The support for this attribute is mandatory.972

7.4.17 queueName973

This attribute specifies the name of the queue the job(s) should be submitted to. In case this attribute974

value is UNSET, and MonitoringSession::getAllQueues returns a list with a minimum length of 1, the975

implementation SHOULD use the DRM systems default queue.976

The MonitoringSession::getAllQueues method (see 9.1) supports the determination of valid queue names.977

Implementations SHOULD allow these queue names to be used in the queueName attribute. Implementa-978

tions MAY also support queue names from other non-DRMAA information sources as valid input. If no979

21 Comparsion to DRMAA 1.0: New job template attributes for file transfers were introduced. They allow to express a set
of file staging activities, similar to the approach in LSF and SAGA. They replace the old transferFiles attribute, the according
FileTransferMode data structure and the special host definition syntax in inputPath / outputPath / errorPath (different conf.
calls, SAGA F2F meeting, solves issue #5876)

drmaa-wg@ogf.org 33

mailto:drmaa-wg@ogf.org

GWD-R March 2011

default queue is defined or if the given queue name is not valid, the job submission MUST lead to an980

InvalidArgumentException.981

If MonitoringSession::getAllQueues returns an empty list, this attribute MUST be only accepted with982

the value UNSET.983

Since the meaning of “queues” is implementation-specific, there is no implication on the effects in the DRM984

system when using this attribute. As one example, requesting a number of slots for a job in one queue has no985

implication on the number of utilized machines at run-time. Implementations therefore SHOULD document986

the effects of this attribute accordingly.987

The support for this attribute is mandatory.988

7.4.18 minSlots / maxSlots989

This attribute expresses the minimum / maximum number of slots requested per job (see also Section 1.3).990

If the value of minSlots is UNSET, it SHOULD default to 1. If the value of maxSlots is UNSET, it SHOULD991

default to the value of minSlots.992

Implementations MAY interprete the slot count as number of concurrent processes being allowed on one993

machine. If this interpretation is taken, and minSlots is greater than 1, than the jobCategory SHOULD994

also be demanded on job submission, in order to express the nature of the intended parallel job execution.995

The support for this attribute is mandatory.996

7.4.19 priority997

This attribute specifies the scheduling priority for the job. The intepretation of the given value incl. an998

UNSET value is implementation-specific.999

The support for this attribute is mandatory.1000

7.4.20 candidateMachines1001

Requests that the job(s) should run on any subset (with minimum size of 1), or all of the given machines.1002

If the attribute value is UNSET, it should default to the result of the MonitoringSession::getAllMachines1003

method. If this resource demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised1004

on job submission time. If the problem can only be detected after job submission, the job should enter1005

JobState::FAILED.1006

The support for this attribute is mandatory.1007

7.4.21 minPhysMemory1008

This attribute denotes the minimum amount of physical memory in Kibibyte expected on the / all execution1009

host(s). If this resource demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised1010

at job submission time. If the problem can only be detected after job submission, the job SHOULD enter1011

JobState::FAILED accordingly.1012

The support for this attribute is mandatory.1013

drmaa-wg@ogf.org 34

mailto:drmaa-wg@ogf.org

GWD-R March 2011

7.4.22 machineOS1014

This attribute denotes the expected operating system type on the / all execution host(s). If this resource de-1015

mand cannot be fulfilled, an InvalidArgumentException SHOULD be raised on job submission time. If the1016

problem can only be detected after job submission, the job SHOULD enter JobState::FAILED accordingly.1017

The support for this attribute is mandatory.1018

(See footnote)
22

1019

7.4.23 machineArch1020

This attribute denotes the expected machine architecture on the / all execution host(s). If this resource1021

demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised on job submission time. If1022

the problem can only be detected after job submission, the job should enter JobState::FAILED.1023

The support for this attribute is mandatory.1024

7.4.24 startTime1025

This attribute specifies the earliest time when the job may be eligible to be run.1026

The support for this attribute is mandatory.1027

7.4.25 deadlineTime1028

Specifies a deadline after which the implementation or the DRM system SHOULD change the job state to1029

any of the “Terminated” states (see Section 7.1).1030

The support for this attribute is optional.1031

7.4.26 softResourceLimits / hardResourceLimits1032

This attribute specifies the soft / hard limits on resource utilization of the job(s) on the execution host(s).1033

The valid dictionary keys and their value semantics are defined in Section 4.3. An implementation MAY1034

map the settings to an ulimit(3) on the operating system, if available.1035

The support for this attribute is optional. If only a subset of the attributes from ResourceLimitType is1036

supported by the implementation, and some of the unsupported attributes are used, the job submission1037

SHOULD raise an InvalidArgumentException expressing the fact that resource limits are supported in1038

general.1039

Conflicts of these attribute values with any other job template attribute or with referenced advanced reser-1040

vations are handled in an implementation-specific manner. Implementations SHOULD try to delegate the1041

decision about parameter combination validity to the DRM system, in order to ensure similar semantics in1042

different DRMAA implementations for this system.1043

Unclear what
happens from
DRMAA per-
spective if
a soft limit
is violated.
We have no
signals.

1044

(See footnote)
23

1045

22 Requesting a particular operating system version is not supported by the majority of DRM systems (conf call Jul 28th
2010)

23 In comparison to DRMAA 1.0, resource usage limitations can now be expressed by two dictionaries and an according

drmaa-wg@ogf.org 35

mailto:drmaa-wg@ogf.org

GWD-R March 2011

7.4.27 accountingId1046

This attribute denotes a string that can be used by the DRM system for job accounting purposes. Im-1047

plementations SHOULD NOT utilize this information as authentication token, but only as identification1048

information in addition to the implementation-specific authentication (see Section 11).1049

The support for this attribute is optional.1050

7.5 Job Interface1051

Every job in the JobSession is expressed by an own instance of the Job interface. It allows one to instruct1052

the DRM system for a job status change, and to query the status attributes of the job in the DRM system.1053

interface Job {1054

readonly attribute string jobId;1055

readonly attribute JobSession session;1056

readonly attribute JobTemplate jobTemplate;1057

void suspend ();1058

void resume ();1059

void hold ();1060

void release ();1061

void terminate ();1062

JobState getState(out any jobSubState);1063

JobInfo getInfo ();1064

Job waitStarted(in TimeAmount timeout);1065

Job waitTerminated(in TimeAmount timeout);1066

};1067

(See footnote)
24

1068

7.5.1 jobId1069

This attribute provides the string job identifier assigned to the job by the DRM system. It is intended as1070

performant alternative for fetching a complete JobInfo instance for this information.1071

7.5.2 session1072

This attribute offers a reference to the JobSession instance that represents the session used for the job1073

submission creating this Job instance.1074

standardized set of valid dictionary keys (LimitType). The idea is to allow a direct mapping to ulimit(3) semantics, which are
supported by the majority of DRM system today. A separate run duration limit is no longer needed, since this is covered by
the new CPU TIME limit parameter. (conf. call Jun 9th 2010).

24 In comparison to DRMAA v1.0, DRMAA2 replaces the identification of jobs by strings with Job objects. This enables a
tighter integration of job meta-data and identity, for the price of reduced performance in (so far not existing) DRMAA RPC
scenarios. The former DRMAA control() with the JobControlAction structure is now split up into dedicated functions (such
as hold() and release()) on the Job object.

Even though the DRMAAv2 surveys showed interest in interactive job support, this feature was intentionally left out. Reasons
are the missing support in some major DRM systems, and the lack of a relevant DRMAA-related use case (conf. call Jan 7th
2010)

Issue #5877 (support for direct job signaling) was rejected, even though there was an according request from the SAGA WG.
Issue #2782 (change attributes of submitted, but pending jobs) was rejected based on group decision.

drmaa-wg@ogf.org 36

mailto:drmaa-wg@ogf.org

GWD-R March 2011

7.5.3 jobTemplate1075

This attribute provides a reference to a JobTemplate instance that has equal values to the one that was1076

used for the job submission creating this Job instance.1077

7.5.4 suspend / resume / hold / release / terminate1078

The job control functions allow modifying the status of the single job in the DRM system, according to the1079

state model presented in Section 7.1.1080

The suspend method triggers a transition from RUNNING to SUSPENDED state. The resume method triggers1081

a transition from SUSPENDED to RUNNING state. The hold method triggers a transition from QUEUED to1082

QUEUED_HELD, or from REQUEUED to REQUEUED_HELD state. The release method triggers a transition from1083

QUEUED_HELD to QUEUED, or from REQUEUED_HELD to REQUEUED state. The terminate method triggers a1084

transition from any of the “Started” states to one of the “Terminated” states. If the job is in an inappropriate1085

state for the particular method, the method MUST raise an InvalidStateException.1086

The methods SHOULD return after the action has been acknowledged by the DRM system, but MAY1087

return before the action has been completed. Some DRMAA implementations MAY allow this method1088

to be used to control jobs submitted externally to the DRMAA session, such as jobs submitted by other1089

DRMAA sessions in other DRMAA implementations or jobs submitted via native utilities. This behavior is1090

implementation-specific.1091

7.5.5 getState1092

This method allows one to gather the current status of the job according to the DRMAA state model,1093

together with an implementation specific sub state (see Section 7.1). It is intended as performant alternative1094

for fetching a complete JobInfo instance for state checks. The timing conditions are described in Section1095

4.8.1096

(See footnote)
25

1097

7.5.6 getInfo1098

This method returns a JobInfo instance for the particular job under the conditions described in Section 4.8.1099

7.5.7 waitStarted / waitTerminated1100

The waitStarted method blocks until the job entered one of the “Started” states. The waitTerminated1101

method blocks until the job entered one of the “Terminated” states (see Section 7.1). The timeout argument1102

specifies the desired behavior when a result is not immediately available. The constant value INFINITE_TIME1103

may be specified to wait indefinitely for a result. The constant value ZERO_TIME may be specified to return1104

immediately. Alternatively, a number of seconds may be specified to indicate how long to wait for a result to1105

become available. If the invocation exits on timeout, an TimeoutException SHALL be raised. If the job is1106

in an inappropriate state for the particular method, the method MUST raise an InvalidStateException.1107

25 The getState() function now also returns job subState information. This is intended as additional information for the given
DRMAA job state, and can be used for expressing the hold state differentiation from DRMAA 1.0 (conf. call Mar 31st 2009).

drmaa-wg@ogf.org 37

mailto:drmaa-wg@ogf.org

GWD-R March 2011

7.6 JobArray Interface1108

The following section explains the set of methods and attributes defined in the JobArray interface. Any1109

instance of this interface represent an job array, a common concept in many DRM systems for a job set created1110

by one operation. In DRMAA, JobArray instances are only created by the runBulkJobs operation (see1111

Section 7.2). JobArray instances differ from the JobList data structure due to their potential for representing1112

a DRM system concept, while JobList is a DRMAA-only concept mainly realized by the language binding1113

sequence support. Implementations SHOULD realize the JobArray functionality as wrapper for DRM system1114

job arrays, if possible. If the DRM system has only single job support or incomplete job array support with1115

respect to the DRMAA-provided functionality, implementations MUST realize the JobArray functionality1116

on their own, for example based on looped operations with a list of jobs.1117

interface JobArray {1118

readonly attribute string jobArrayId;1119

readonly attribute JobList jobs;1120

readonly attribute JobSession session;1121

readonly attribute JobTemplate jobTemplate;1122

void suspend ();1123

void resume ();1124

void hold ();1125

void release ();1126

void terminate ();1127

};1128
Completely
new, needs
group ap-
proval

1129

(See footnote)
26

1130

7.6.1 jobArrayId1131

This attribute provides the string job identifier assigned to the job array by the DRM system. If the DRM1132

system has no job array support, the implementation MUST generate a system-wide unique identifier for1133

the result of the successful runBulkJobs operation.1134

7.6.2 jobs1135

This attribute provides the static list of jobs that are part of the job array.1136

(See footnote)
27

1137

7.6.3 session1138

This attribute offers a reference to a JobSession instance that represents the session which was used for the1139

job submission creating this JobArray instance.1140

26 We are aware of the fact that some systems (e.g. LSF at the time of writing) do not support all DRMAA control operations
offered for JobArrays. Since we intended to avoid optional DRMAA operations wherever we could, the text here mandates
the implementation to simulate the JobArray support on its own. For example, looping over all jobs in the array and calling
“suspend” for each one is trivial to implement and fulfills the same purpose.

27 We were asked for offering a filter support similar to JobSession here. This was rejected by discussion on the list (Jan
2011), since the number of jobs returned here is normally comparatively short. In this case, the DRM system cannot provide
any benefit over the looped check in the application itself.

drmaa-wg@ogf.org 38

mailto:drmaa-wg@ogf.org

GWD-R March 2011

7.6.4 jobTemplate1141

This attribute provides a reference to a JobTemplate instance that has equal values to the one that was1142

used for the job submission creating this JobArray instance.1143

(See footnote)
28

1144

7.6.5 suspend / resume / hold / release / terminate1145

The job control functions allow modifying the status of the job array in the DRM system, with the same1146

semantic as with the counterparts in the Job interface (see Section 7.5). If one of the jobs in the array is in1147

an inappropriate state for the particular method, the method MUST raise an InvalidStateException.1148

The methods SHOULD return after the action has been acknowledged by the DRM system for all jobs in1149

the array, but MAY return before the action has been completed. Some DRMAA implementations MAY1150

allow this method to be used to control job arrays created externally to the DRMAA session, such as job1151

arrays submitted by other DRMAA sessions in other DRMAA implementations or job arrays submitted via1152

native utilities. This behavior is implementation-specific.1153

8 Working with Advance Reservation1154

Adance reservation is a DRM system concept that allows the reservation of execution resources for jobs1155

to be submitted. DRMAA encapsulates such functionality of a DRM system with the interfaces and data1156

structures described in this chapter.1157

DRMAA implementations for DRM systems that do not support advance reservation still MUST imple-1158

mented the described interfaces, in order to keep source code portability for DRMAA-based applications.1159

8.1 ReservationSession Interface1160

Every ReservationSession instance represents a set of advance reservations in the DRM system. Every1161

Reservation instance SHALL belong only to one ReservationSession instance.1162

interface ReservationSession {1163

readonly attribute string contact;1164

readonly attribute string sessionName;1165

Reservation getReservation(in string reservationId);1166

Reservation requestReservation(in ReservationTemplate reservationTemplate);1167

ReservationList getReservations ();1168

};1169

If the DRM system does not support advance reservation, all methods in this interface SHALL throw an1170

UnsupportedOperationException.1171

28 The use case from SAGA perspective is that the user can easily resubmit the same job - just changing for example some
command line parameter, but leaving the remainder fixed (mail by Andre Merzky, July 29th 2010).

drmaa-wg@ogf.org 39

mailto:drmaa-wg@ogf.org

GWD-R March 2011

8.1.1 contact1172

This attribute contains the contact value that was used in the createReservationSession call for this1173

instance (see Section 6.1). If no value was originally provided, the default contact string from the implemen-1174

tation MUST be returned. This attribute is read-only.1175

8.1.2 sessionName1176

This attribute contains the name of the session that was used for creating or opening this Reservation1177

instance (see Section 6.1). This attribute is read-only.1178

8.1.3 getReservation1179

This method returns a Reservation instance that belongs to the session instance and has the given1180

reservationId. If no reservation matches, the method SHALL raise an InvalidArgumentException. Time-1181

dependent effects of this method are implementation-specific.1182

8.1.4 requestReservation1183

The requestReservation method SHALL request an advance reservation in the DRM system with at-1184

tributes defined in the provided ReservationTemplate. On a successful reservation, the method returns a1185

Reservation instance that represents the advance reservation in the underlying DRM system.1186

The method SHALL raise an InvalidArgumentException if the reservation cannot be performed by the1187

DRM system. It SHOULD further provide detailed information about the rejection cause in the extended1188

error information (see Section 5).1189

In case some of the conditions are not fulfilled after the reservation was succesfully created, for example due1190

to execution host outages, the reservation itself SHOULD remain valid.1191

8.1.5 getReservations1192

This method returns the list of reservations successfully created so far in this session, regardless of their start1193

and end time. The list of Reservation instances is only cleared in conjunction with the destruction of the1194

actual session instance through SessionManager::destroyReservationSession (see also Section 6.1).1195

8.2 ReservationTemplate structure1196

In order to define the attributes associated with an advance reservation, the DRMAA application creates1197

an ReservationTemplate instance and requests the fulfilment through the ReservationSession methods1198

in the DRM system.1199

struct ReservationTemplate {1200

StringList attributeNames;1201

string reservationName;1202

AbsoluteTime startTime;1203

AbsoluteTime endTime;1204

TimeAmount duration;1205

long minSlots;1206

long maxSlots;1207

drmaa-wg@ogf.org 40

mailto:drmaa-wg@ogf.org

GWD-R March 2011

OrderedStringList candidateMachines;1208

long minPhysMemory;1209

OperatingSystem machineOS;1210

CpuArchitecture machineArch;1211

Dictionary drmsSpecific;1212

};1213

Similar to the JobTemplate concept (see Section 7.4), there is a distinction between mandatory and op-1214

tional attributes. Mandatory attributes MUST be supported by the implementation in the sense that they1215

are evaluated in a ReservationSession::requestReservation call. Optional attributes MAY NOT be1216

evaluated in a particular implementation, but MUST be provided as part of the ReservationTemplate1217

structure in the implementation. If an optional attribute is not evaluated by the particular implementation,1218

but has a value different to UNSET, the callto ReservationSession::requestReservation MUST fail with1219

a UnsupportedAttributeException. DRMAA applications are expected to check for the availability of1220

optional attributes by the ReservationTemplate::attributeNames list.1221

Implementations MUST set all attribute values to UNSET on struct allocation. This ensures that both the1222

DRMAA application and the library implementation can determine untouched attribute members. If not1223

described differently in the following sections, all attributes SHOULD be allowed to have the UNSET value1224

when ReservationSession::requestReservation is called.1225

A language binding specification SHOULD model the ReservationTemplate representation the same way as
the JobTemplate interface (see Section 7.4), and therefore MUST define the realization of implementation-
specific attributes, printing, and and the initialization of attribute values. Complete sec-

tion needs
group ap-
proval

1226

8.2.1 attributeNames1227

The attributeNames list of strings SHALL enumerate the names of the required and the supported optional1228

reservation template attributes.1229

This doesnt
make sense
anymore,
since reser-
vation tem-
plates are
now value
types.

1230

This is especially intended for languages which do not provide an inherit notion of struct introspection and
therefore map template attribute access to getter / setter functions.

The support for this attribute is mandatory.1231

8.2.2 reservationName1232

A human-readable reservation name. If this attribute is omitted then the name of the reservation SHALL be1233

automatically defined by the implementation. The implementation MAY truncate any application-provided1234

job name to an implementation-defined length.1235

The support for this attribute is mandatory.1236

drmaa-wg@ogf.org 41

mailto:drmaa-wg@ogf.org

GWD-R March 2011

8.2.3 startTime / endTime / duration1237

The time frame in which resources should be reserved. Table 4 explains the different possible parameter1238

combinations and their semantic.1239

startTime endTime duration Description
UNSET UNSET UNSET The implementation or the DRM system is free to choose a time

frame for the reservation.
Set UNSET UNSET Invalid, SHALL leave to a InvalidAttributeException on the

reservation attempt.
UNSET Set UNSET Invalid, SHALL leave to a InvalidAttributeException on the

reservation attempt.
Set Set UNSET Perform reservation attempt to get resources in the specified time

frame.
UNSET UNSET Set Perform reservation attempt the get resources at least for the time

amount given in duration.
Set UNSET Set Implies endTime = startTime + duration

UNSET Set Set Implies startTime = endTime - duration

Set Set Set If endTime - startTime is larger than duration, perform a reser-
vation attempt where the demanded duration is fulfilled at the ear-
liest point in time after startTime, and without extending endTime.
If endTime - startTime is smaller than duration, the reserva-
tion attempt SHALL leave to a InvalidAttributeException. If
endTime - startTime and duration are equal, duration SHALL
be ignored.

Table 4: Parameter combinations for the advance reservation time frame. If duration is not supported, it
should be treated as UNSET.

The support for startTime and endTime is mandatory. The support for duration is optional.1240

8.2.4 minSlots1241

The minimum number of requested slots (see also Section 1.3). If the attribute value is UNSET, it should1242

default to 1.1243

The support for this attribute is mandatory.1244

8.2.5 maxSlots1245

The maximum number of requested slots (see also Section 1.3). If this attribute is not specified, it should1246

default to the value of minSlots.1247

The support for this attribute is mandatory.1248

8.2.6 candidateMachines1249

Requests that the reservation must be created on any subset of the given list of machines. If this attribute1250

is not specified, it should default to the result of MonitoringSession::getAllMachines (see Section 9.1).1251

The support for this attribute is optional.1252

drmaa-wg@ogf.org 42

mailto:drmaa-wg@ogf.org

GWD-R March 2011

8.2.7 minPhysMemory1253

Requests that the reservation must be created with machines that have at least the given amount of physical1254

memory in Kikibyte.1255

The support for this attribute is optional.1256

8.2.8 machineOS1257

Requests that the reservation must be created with machines that have the given type of operating system,1258

regardless of its version, with semantics as specified in Section 4.1.1259

The support for this attribute is optional.1260

(See footnote)
29

1261

8.2.9 machineArch1262

Requests that the reservation must be created with machines that have the given instruction set architecture,1263

with semantics as specified in Section 4.2.1264

The support for this attribute is optional.1265

8.2.10 drmsSpecific1266

This dictionary attribute allows the application to pass DRMS-specific native options for the advance reser-1267

vation as key-value pairs. The interpretation of keys and values in this dictionary is implementation-specific,1268

implementations MAY even ignore them. Valid key strings should be documented by the implementation.1269

The order of precedence for the drmsSpecific attribute value and other, maybe conflicting, attribute values1270

is implementation-specific. Implementations MAY decide to overrule reservation template settings with the1271

ones defined by the drmsSpecific attribute.1272

The support for this attribute is mandatory.1273

8.3 Reservation Interface1274

The Reservation interface represents attributes and methods available for an advance reservation success-1275

fully created in the DRM system.1276

interface Reservation {1277

readonly attribute string reservationId;1278

readonly attribute ReservationSession session;1279

readonly attribute ReservationTemplate reservationTemplate;1280

OrderedStringList reservedMachines;1281

AbsoluteTime reservedStartTime;1282

AbsoluteTime reservedEndTime;1283

void terminate ();1284

};1285

29 Requesting a particular operating system version is not supported by the majority of DRM systems (conf call Jul 28th
2010)

drmaa-wg@ogf.org 43

mailto:drmaa-wg@ogf.org

GWD-R March 2011

(See footnote)
30

1286

8.3.1 reservationId1287

The reservationId is an opaque string identifier for the advance reservation. If the DRM system has1288

identifiers for advance reservations, this attribute SHOULD provide the according stringified value. If not,1289

the DRMAA implementation MUST generate value this is unique in time and extend of the DRM system.1290

Relationship
to
ReservationTemplate::reservationName
?

1291

8.3.2 session1292

This attribute references the ReservationSession which was used to create the advance reservation instance.1293

8.3.3 reservationTemplate1294

This attribute provides a reference to a ReservationTemplate instance that has equal values to the one1295

that was used for the advance reservation creating this Reservation instance.1296

8.3.4 reservedMachines1297

Could that
be UNSET ?

1298

This attribute describes the set of machines which was reserved under the conditions described in the1299

according reservation template.1300

8.3.5 reservedStartTime1301

Could that
be UNSET ?

1302

This attribute describes the start time for the reservation described by this instance.1303

8.3.6 reservedEndTime1304

Could that
be UNSET ?

1305

This attribute describes the end time for the reservation described by this instance.1306

8.3.7 terminate1307

This method terminates the advance reservation in the DRM system represented by this Reservation1308

instance. .

Needs ad-
ditional ex-
planation of
expected be-
havior

1309

9 Monitoring the DRM System1310

The DRMAA monitoring facility supports four basic units of monitoring:1311

• Properties of the DRM system as a whole (e.g. DRM system version number) that are independent1312

from the particular session and contact string,1313

30 The reason for not having a separate ReservationInfo struct is that there are only three relevant attributes for this structure,
and that all of them have static semantics. There is, therefore, no need for refetching reservation information several times,
which is the case with JobInfo. Because of this, the according information can be a part of the Reservation interface itself.

drmaa-wg@ogf.org 44

mailto:drmaa-wg@ogf.org

GWD-R March 2011

• Properties of the DRM system that depend on the current contact string (e.g. list of machines in the1314

currently accessed Grid Engine cell)1315

• Properties of individual queues known from a getAllQueues call1316

• Properties of individual machines available with the current contact string (e.g. amount of physical1317

memory in a chosen machine)1318

The MonitoringSession interface in DRMAA supports the monitoring of execution resources in the DRM1319

system. This is distinct from the monitoring of jobs running in the DRM system, which is covered by the1320

JobSession and the Job interface.1321

9.1 MonitoringSession Interface1322

The MonitoringSession interface represents a set of stateless methods for fetching information about the1323

DRM system and the DRMAA implementation itself. It MAY be used to implement DRM system monitoring1324

tools like qstat.1325

interface MonitoringSession {1326

readonly attribute Version drmsVersion;1327

ReservationList getAllReservations ();1328

JobList getAllJobs(in JobInfo filter);1329

QueueList getAllQueues(in StringList names);1330

MachineList getAllMachines(in StringList names);1331

readonly attribute StringList drmsJobCategoryNames;1332

};1333

All returned data SHOULD be related to the current user running the DRMAA-based application. For1334

example, the getAllQueues function MAY be reduced to only denote queues that are usable or generally1335

accessible for the DRMAA application and user performing the query.1336

Because no guarantee can be made as to future accessibility, and because of cases where list reduction may1337

demand excessive overhead in the DRMAA implementation, an unreduced or partially reduced result MAY1338

be returned on all methods returning lists. The behavior of the DRMAA implementation in this regard1339

should be clearly documented. In all cases, the list items MUST all be valid input for job submission or1340

advance reservation through the DRMAA API.1341

9.1.1 drmsVersion1342

This attribute provides the DRM-system specific version information. While the DRM system type is avail-1343

able from the SessionManager::drmsName attribute (see Section 6.1), this attribute provides the according1344

version of the product. Applications are expected to use the information about the general DRM system type1345

for accessing product-specific features, e.g. with the JobTemplate::drmsSpecific dictionary. Applications1346

are not expected to make decisions based on versioning information from this attribute - instead, the value1347

should only be utilized for informative output to the end user.1348

9.1.2 getAllReservations1349

This method returns the list of all DRMS advance reservations accessible for the user running the DRMAA-1350

based application. In contrast to a ReservationSession::getReservations call, this method SHOULD1351

also return reservations that were created outside of DRMAA (e.g. through command-line tools) by this user.1352

drmaa-wg@ogf.org 45

mailto:drmaa-wg@ogf.org

GWD-R March 2011

The returned list MAY also contain reservations that were created by other users if the security policies of1353

the DRM system allow such global visibility. The DRM system or the DRMAA implementation is at liberty,1354

however, to restrict the set of returned reservations based on site or system policies, such as security settings1355

or scheduler load restrictions.1356

This method SHALL raise an UnsupportedOperationException if advance reservation is not supported by1357

the implementation.1358

9.1.3 getAllJobs1359

This method returns the list of all DRMS jobs visible to the user running the DRMAA-based application. In1360

contrast to a JobSession::getJobs call, this method SHOULD also return jobs that were submitted outside1361

of DRMAA (e.g. through command-line tools) by this user. The returned list MAY also contain jobs that1362

were submitted by other users if the security policies of the DRM system allow such global visibility. The1363

DRM system or the DRMAA implementation is at liberty, however, to restrict the set of returned jobs based1364

on site or system policies, such as security settings or scheduler load restrictions.1365

Querying the DRM system for all jobs might result in returning an excessive number of Job objects. Impli-1366

cations to the library implementation are out of scope for this specification.1367

The method supports a filter argument for fetching only a subset of the job information available. Both1368

the return value semantics and the filter semantics SHOULD be similar to the ones described for the1369

JobSession::getJobs method (see Section 7.2).1370

Language bindings SHOULD NOT try to solve the scalability issues by replacing the sequence type of
the return value with some iterator-like solution. This approach would break the basic snapshot semantic
intended for this method.

(See footnote)
31

1371

9.1.4 getAllQueues1372

This method returns a list of queues available for job submission in the DRM system. All Queue instances1373

in this list SHOULD be (based on their name attribute) a valid input for the JobTemplate::queueName1374

attribute (see Section 7.4). The result can be an empty list or might be incomplete, based on queue, host,1375

or system policies. It might also contain queues that are not accessible for the user (because of queue1376

configuration limits) at job submission time.1377

The names parameter supports restricting the result to Queue instances that have one of the names given in1378

the argument. If the names parameter value is UNSET, all Queue instances should be returned.1379

9.1.5 getAllMachines1380

This method returns the list of machines available in the DRM system as execution host. The returned list1381

might be empty or incomplete based on machine or system policies. The returned list might also contain1382

machines that are not accessible by the user, e.g. because of host configuration limits.1383

The names parameter supports restricting the result to Machine instances that have one of the names given1384

in the argument. If the names parameter value is UNSET, all Machine instances should be returned.1385

31 The non-argumentation about the scalability problem was the final result of a clarification attempt. We hand this one
over to the implementors. (conf call Jul 14th 2010)

drmaa-wg@ogf.org 46

mailto:drmaa-wg@ogf.org

GWD-R March 2011

9.1.6 drmsJobCategoryNames1386

This method provides the list of of valid job category names which can be used for the jobCategory attribute1387

in a job template. The semantics are described in Section 7.4.8.1388

10 Annex A: Complete DRMAA IDL Specification1389

The following text shows the complete IDL specification for the DRMAAv2 application programming inter-1390

face. The ordering of IDL constructs here has no normative meaning, but ensures the correct compilation1391

with a standard CORBA IDL compiler for syntactical correctness checks. This demands only some additional1392

forward declarations to resolve circular dependencies.1393

module DRMAA2 {1394

enum JobState {1395

UNDETERMINED , QUEUED , QUEUED_HELD , RUNNING , SUSPENDED , REQUEUED ,1396

REQUEUED_HELD , DONE , FAILED };1397

enum OperatingSystem {1398

HPUX , LINUX , IRIX , TRUE64 , MACOS , SUNOS , WIN , WINNT , AIX , UNIXWARE ,1399

BSD , OTHER_OS };1400

enum CpuArchitecture {1401

ALPHA , ARM , CELL , PARISC , X86 , X64 , IA64 , MIPS , PPC , PPC64 ,1402

SPARC , SPARC64 , OTHER_CPU };1403

enum ResourceLimitType {1404

CORE_FILE_SIZE , CPU_TIME , DATA_SEG_SIZE , FILE_SIZE , OPEN_FILES ,1405

STACK_SIZE , VIRTUAL_MEMORY , WALLCLOCK_TIME };1406

enum JobTemplatePlaceholder {1407

HOME_DIRECTORY ,WORKING_DIRECTORY ,HOST_NAME ,USER_NAME ,PARAMETRIC_INDEX };1408

enum DrmaaEvent {1409

NEW_STATE , MIGRATED , ATTRIBUTE_CHANGE1410

};1411

typedef sequence <string > OrderedStringList;1412

typedef sequence <string > StringList;1413

typedef sequence <Job > JobList;1414

typedef sequence <Queue > QueueList;1415

typedef sequence <Machine > MachineList;1416

typedef sequence <Reservation > ReservationList;1417

typedef sequence < sequence <string ,2> > Dictionary;1418

typedef string AbsoluteTime;1419

typedef long long TimeAmount;1420

native ZERO_TIME;1421

native INFINITE_TIME;1422

drmaa-wg@ogf.org 47

mailto:drmaa-wg@ogf.org

GWD-R March 2011

struct JobInfo {1423

string jobId;1424

Dictionary resourceUsage;1425

long exitStatus;1426

string terminatingSignal;1427

string annotation;1428

JobState jobState;1429

any jobSubState;1430

OrderedStringList allocatedMachines;1431

string submissionMachine;1432

string jobOwner;1433

string queueName;1434

TimeAmount wallclockTime;1435

long cpuTime;1436

AbsoluteTime submissionTime;1437

AbsoluteTime dispatchTime;1438

AbsoluteTime finishTime ;};1439

struct JobTemplate {1440

StringList attributeNames;1441

string remoteCommand;1442

OrderedStringList args;1443

boolean submitAsHold;1444

boolean rerunnable;1445

Dictionary jobEnvironment;1446

string workingDirectory;1447

string jobCategory;1448

StringList email;1449

boolean emailOnStarted;1450

boolean emailOnTerminated;1451

string jobName;1452

string inputPath;1453

string outputPath;1454

string errorPath;1455

boolean joinFiles;1456

string reservationId;1457

string queueName;1458

long minSlots;1459

long maxSlots;1460

long priority;1461

OrderedStringList candidateMachines;1462

long minPhysMemory;1463

OperatingSystem machineOS;1464

CpuArchitecture machineArch;1465

AbsoluteTime startTime;1466

Dictionary drmsSpecific;1467

AbsoluteTime deadlineTime;1468

Dictionary stageInFiles;1469

drmaa-wg@ogf.org 48

mailto:drmaa-wg@ogf.org

GWD-R March 2011

Dictionary stageOutFiles;1470

Dictionary softResourceLimits;1471

Dictionary hardResourceLimits;1472

string accountingId;1473

};1474

struct ReservationTemplate {1475

StringList attributeNames;1476

string reservationName;1477

AbsoluteTime startTime;1478

AbsoluteTime endTime;1479

TimeAmount duration;1480

long minSlots;1481

long maxSlots;1482

OrderedStringList candidateMachines;1483

long minPhysMemory;1484

OperatingSystem machineOS;1485

CpuArchitecture machineArch;1486

Dictionary drmsSpecific;1487

};1488

struct DrmaaNotification {1489

DrmaaEvent event;1490

Job job;1491

JobState jobState;1492

};1493

struct Queue {1494

string name;1495

TimeAmount maxWallclockTime;1496

};1497

struct Version {1498

string major;1499

string minor;1500

};1501

struct Machine {1502

string name;1503

long sockets;1504

long coresPerSocket;1505

long threadsPerCore;1506

double load;1507

long physMemory;1508

long virtMemory;1509

OperatingSystem machineOS;1510

Version machineOSVersion;1511

CpuArchitecture machineArch;1512

};1513

drmaa-wg@ogf.org 49

mailto:drmaa-wg@ogf.org

GWD-R March 2011

exception DeniedByDrmException {string message ;};1514

exception DrmCommunicationException {string message ;};1515

exception TryLaterException {string message ;};1516

exception SessionManagementException {string message ;};1517

exception TimeoutException {string message ;};1518

exception InternalException {string message ;};1519

exception InvalidArgumentException {string message ;};1520

exception InvalidSessionException {string message ;};1521

exception InvalidStateException {string message ;};1522

exception OutOfMemoryException {string message ;};1523

exception UnsupportedAttributeException {string message ;};1524

exception UnsupportedOperationException {string message ;};1525

interface DrmaaCallback {1526

void notify(in DrmaaNotification notification);1527

};1528

interface ReservationSession {1529

readonly attribute string contact;1530

readonly attribute string sessionName;1531

Reservation getReservation(in string reservationId);1532

Reservation requestReservation(in ReservationTemplate reservationTemplate);1533

ReservationList getReservations ();1534

};1535

interface Reservation {1536

readonly attribute string reservationId;1537

readonly attribute ReservationSession session;1538

readonly attribute ReservationTemplate reservationTemplate;1539

OrderedStringList reservedMachines;1540

AbsoluteTime reservedStartTime;1541

AbsoluteTime reservedEndTime;1542

void terminate ();1543

};1544

interface JobArray {1545

readonly attribute string jobArrayId;1546

readonly attribute JobList jobs;1547

readonly attribute JobSession session;1548

readonly attribute JobTemplate jobTemplate;1549

void suspend ();1550

void resume ();1551

void hold ();1552

void release ();1553

void terminate ();1554

};1555

drmaa-wg@ogf.org 50

mailto:drmaa-wg@ogf.org

GWD-R March 2011

interface JobSession {1556

readonly attribute string contact;1557

readonly attribute string sessionName;1558

readonly attribute boolean notificationSupported;1559

JobList getJobs(in JobInfo filter);1560

Job runJob(in JobTemplate jobTemplate);1561

JobArray runBulkJobs(1562

in JobTemplate jobTemplate ,1563

in long beginIndex ,1564

in long endIndex ,1565

in long step);1566

Job waitAnyStarted(in JobList jobs , in TimeAmount timeout);1567

Job waitAnyTerminated(in JobList jobs , in TimeAmount timeout);1568

void registerEventNotification(in DrmaaCallback callback);1569

};1570

interface Job {1571

readonly attribute string jobId;1572

readonly attribute JobSession session;1573

readonly attribute JobTemplate jobTemplate;1574

void suspend ();1575

void resume ();1576

void hold ();1577

void release ();1578

void terminate ();1579

JobState getState(out any jobSubState);1580

JobInfo getInfo ();1581

Job waitStarted(in TimeAmount timeout);1582

Job waitTerminated(in TimeAmount timeout);1583

};1584

interface MonitoringSession {1585

readonly attribute Version drmsVersion;1586

ReservationList getAllReservations ();1587

JobList getAllJobs(in JobInfo filter);1588

QueueList getAllQueues(in StringList names);1589

MachineList getAllMachines(in StringList names);1590

readonly attribute StringList drmsJobCategoryNames;1591

};1592

interface SessionManager{1593

readonly attribute string drmsName;1594

readonly attribute Version drmaaVersion;1595

readonly attribute boolean reservationSupported;1596

JobSession createJobSession(in string sessionName ,1597

in string contactString);1598

ReservationSession createReservationSession(in string sessionName ,1599

in string contactString);1600

drmaa-wg@ogf.org 51

mailto:drmaa-wg@ogf.org

GWD-R March 2011

MonitoringSession createMonitoringSession (in string contactString);1601

JobSession openJobSession(in string sessionName);1602

ReservationSession openReservationSession(in string sessionName);1603

void closeJobSession(in JobSession s);1604

void closeReservationSession(in ReservationSession s);1605

void closeMonitoringSession(in MonitoringSession s);1606

void destroyJobSession(in string sessionName);1607

void destroyReservationSession(in string sessionName);1608

StringList getJobSessions ();1609

StringList getReservationSessions ();1610

};1611

};1612

11 Security Considerations1613

The DRMAA API does not specifically assume the existence of a particular security infrastructure in the1614

DRM system. The scheduling scenario described herein presumes that security is handled at the point of job1615

authorization/execution on a particular resource. It is assumed that credentials owned by the application1616

using the API are in effect for the DRMAA implementation too.1617

It is conceivable an authorized but malicious user could use a DRMAA implementation or a DRMAA enabled1618

application to saturate a DRM system with a flood of requests. Unfortunately for the DRM system this1619

case is not distinguishable from the case of an authorized good-natured user who has many jobs to be1620

processed. For temporary load defense, implementations SHOULD utilize the TryLaterException. In case1621

of permanent issues, the implementation SHOULD raise the DeniedByDrmException.1622

DRMAA implementers should guard against buffer overflows that could be exploited through DRMAA1623

enabled interactive applications or web portals. Implementations of the DRMAA API will most likely1624

require a network to coordinate subordinate DRMS; however the API makes no assumptions about the1625

security posture provided the networking environment. Therefore, application developers should further1626

consider the security implications of “on-the-wire” communications.1627

For environments that allow remote or protocol based DRMAA clients, the implementation SHOULD offer1628

support for secure transport layers to prevent man in the middle attacks.1629

12 Contributors1630

Roger Brobst1631

Cadence Design Systems, Inc.1632

555 River Oaks Parkway1633

San Jose, CA 951341634

Email: rbrobst@cadence.com1635

1636

Daniel Gruber1637

Univa1638

1639

drmaa-wg@ogf.org 52

mailto:drmaa-wg@ogf.org

GWD-R March 2011

Mariusz Mamonski1640

1641

Daniel Templeton (Corresponding Author)1642

Cloudera1643

1644

Peter Tröger (Corresponding Author)1645

Hasso-Plattner-Institute at University of Potsdam1646

Prof.-Dr.-Helmert-Str. 2-31647

14482 Potsdam, Germany1648

Email: peter@troeger.eu1649

1650 Add miss-
ing contact
details

1651

We are grateful to numerous colleagues for support and discussions on the topics covered in this document,1652

in particular (in alphabetical order, with apologies to anybody we have missed):1653

Guillaume Alleon, Ali Anjomshoaa, Ed Baskerville, Harald Böhme, Nadav Brandes, Matthieu Cargnelli,1654

Karl Czajkowski, Piotr Domagalski, Fritz Ferstl, Paul Foley, Nicholas Geib, Becky Gietzel, Alleon Guillaume,1655

Daniel S. Katz, Andreas Haas, Tim Harsch, Greg Hewgill, Rayson Ho, Eduardo Huedo, Dieter Kranzmüller,1656

Krzysztof Kurowski, Peter G. Lane, Miron Livny, Ignacio M. Llorente, Martin v. Löwis, Andre Merzky,1657

Ruben S. Montero, Greg Newby, Steven Newhouse, Michael Primeaux, Greg Quinn, Hrabri L. Rajic, Martin1658

Sarachu, Jennifer Schopf, Enrico Sirola, Chris Smith, Ancor Gonzalez Sosa, Douglas Thain, John Tollefsrud,1659

Jose R. Valverde, and Peter Zhu.1660

13 Intellectual Property Statement1661

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that1662

might be claimed to pertain to the implementation or use of the technology described in this document or the1663

extent to which any license under such rights might or might not be available; neither does it represent that1664

it has made any effort to identify any such rights. Copies of claims of rights made available for publication1665

and any assurances of licenses to be made available, or the result of an attempt made to obtain a general1666

license or permission for the use of such proprietary rights by implementers or users of this specification can1667

be obtained from the OGF Secretariat.1668

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications,1669

or other proprietary rights which may cover technology that may be required to practice this recommendation.1670

Please address the information to the OGF Executive Director.1671

14 Disclaimer1672

This document and the information contained herein is provided on an “as-is” basis and the OGF disclaims1673

all warranties, express or implied, including but not limited to any warranty that the use of the information1674

herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular1675

purpose.1676

drmaa-wg@ogf.org 53

mailto:drmaa-wg@ogf.org

GWD-R March 2011

15 Full Copyright Notice1677

Copyright c© Open Grid Forum (2005-2011). Some Rights Reserved.1678

This document and translations of it may be copied and furnished to others, and derivative works that1679

comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and1680

distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice1681

and this paragraph are included on all such copies and derivative works. However, this document itself1682

may not be modified in any way, such as by removing the copyright notice or references to the OGF or1683

other organizations, except as needed for the purpose of developing Grid Recommendations in which case1684

the procedures for copyrights defined in the OGF Document process must be followed, or as required to1685

translate it into languages other than English.1686

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors1687

or assignees.1688

16 References16891690

[1] Scott Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119 (Best Current1691

Practice), March 1997. URL http://tools.ietf.org/html/rfc2119.1692

[2] I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pickles, D. Pulsipher, C. Smith,1693

and M. Theimer. OGSA Basic Execution Service v1.0 (GFD-R.108), nov 2008.1694

[3] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Kleijer, Andre Merzky, John1695

Shalf, and Christopher Smith. A Simple API for Grid Applications (SAGA) Version 1.1 (GFD-R-P.90),1696

jan 2008.1697

[4] Object Management Group. Common Object Request Broker Architecture (CORBA) Specification,1698

Version 3.1. http://www.omg.org/spec/CORBA/3.1/Interfaces/PDF, jan 2008.1699

[5] The IEEE and The Open Group. The Open Group Base Specifications Issue 6 IEEE Std 1003.1.1700

http://www.opengroup.org/onlinepubs/000095399/utilities/ulimit.html.1701

[6] Distributed Management Task Force (DMTF) Inc. CIM System Model White Paper CIM Version 2.7,1702

jun 2003.1703

[7] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas Haas, Bill Nitzberg,1704

Daniel Templeton, John Tollefsrud, and Peter Tröger. Distributed Resource Management Application1705

API Specification 1.0 (GFD-R.022), aug 2007.1706

[8] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas Haas, Bill Nitzberg,1707

Daniel Templeton, John Tollefsrud, and Peter Tröger. Distributed Resource Management Application1708

API Specification 1.0 (GWD-R.133), jun 2008.1709

[9] Peter Tröger, Daniel Templeton, Roger Brobst, Andreas Haas, and Hrabri Rajic. Distributed Resource1710

Management Application API 1.0 - IDL Specification (GFD-R-P.130), apr 2008.1711

[10] Peter Tröger, Hrabri Rajic, Andreas Haas, and Piotr Domagalski. Standardised job submission and1712

control in cluster and grid environments. International Journal of Grid and Utility Computing, 1:1713

134–145, dec 2009. doi: {http://dx.doi.org/10.1504/IJGUC.2009.022029}.1714

drmaa-wg@ogf.org 54

http://tools.ietf.org/html/rfc2119
mailto:drmaa-wg@ogf.org

	Introduction
	Notational Conventions
	Language Bindings
	Slots and Queues
	Multithreading

	Namespace
	Common Type Definitions
	Common Data Structures and Enumerations
	OperatingSystem enumeration
	CpuArchitecture enumeration
	ResourceLimitType enumeration
	JobTemplatePlaceholder enumeration
	Queue structure
	Version structure
	Machine structure
	JobInfo structure

	Common Exceptions
	The DRMAA Session Concept
	SessionManager Interface

	Working with Jobs
	The DRMAA State Model
	JobSession Interface
	DrmaaCallback Interface
	JobTemplate Structure
	Job Interface
	JobArray Interface

	Working with Advance Reservation
	ReservationSession Interface
	ReservationTemplate structure
	Reservation Interface

	Monitoring the DRM System
	MonitoringSession Interface

	Annex A: Complete DRMAA IDL Specification
	Security Considerations
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice
	References

