

drmaa-wg@ogf.org 1

GFD-R-P Peter Tröger*, Blekinge Institute Of Technology
Distributed Resource Management
Application API (DRMAA)
Working Group

*co-chairs

 2008

Distributed Resource Management Application API 2.0

Status of This Document

This document provides information to the Grid community. Distribution is unlimited.

Copyright Notice

Copyright © Open Grid Forum (2008). All Rights Reserved.

Abstract

This document describes the common base for the Distributed Resource Management
Application API v2.0 (DRMAA) bindings for procedural and object-oriented languages.

Comment [PT1]:
“TODO” marks open issues, “RAT” a
rationale for changes. TODO items arose
from experience reports, the survey
results, and tracker items.

Comment [PT2]: According to the
survey, most people can live with non-
backward compatible changes

Comment [PT3]: TODO: According to
survey, DRMAA2 should be aligned to
OGSA-BES, SAGA, and Windows HPC

Comment [PT4]: TODO: #6275 –
Define all default values.

drmaa-wg@ogf.org 2

Table of Contents
… (LEFT OUT FOR EASIER CHANGE TRACKING) …

drmaa-wg@ogf.org 3

1 Introduction

This document gives an IDL description for the DRMAA interface. The specification provided by
this document is completely language-independent, even though some of the examples are
given in Java. Adopters of this specification are expected to derive a language-binding
specification (as described in Section 2.2), which can then be centrally published by the DRMAA
working group. This ensures portability for DRMAA applications in one programming language,
and ensures consistent API semantics over all possible DRMAA language bindings.

1.1 Notational Conventions

In this document, the following conventions are used:

 IDL language elements and definitions are represented in a fixed-width font.

 References to IDL language elements and definitions are represented in italics.

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,”
“SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” are to be interpreted as
described in RFC-2119 [RFC 2119].

The document describes the DRMAA interface semantics with the help of OMG IDL [OMG IDL].
It includes a set of overall rules for the creation of specific language bindings for the given
specification. Specific examples are given for the Java language. These examples are not
normative.

1.2 Related Work

There are other relevant OGF standards in the area of job submission and monitoring. An in-
depth comparison and positioning of DRMAA v1.0 is provided by a conference publication
[IJGUC08].

2 General Concepts

2.1 Design Decisions

An effort has been made to choose design patterns that are not unique to a specific language.
However, in some cases, various languages disagree over some points. In those cases, the
most meritous approach was taken, irrespective of language.
The following text bases on the terminology of OMG IDL. For this reason, all operational
semantics are described in terms of interfaces and not of classes. This concept ensures the
possibility to map the described operational semantics to a variety of object-oriented, and even
procedural, languages. The usage of a class concept depends on the specific language-
mapping rules. The DRMAA specification assumes that destination languages for a binding
typically support the concepts of exceptions.
If a destination language does not support the notion of exceptions (like ANSI C), the language
binding SHOULD map error conditions to an appropriate consistent concept. A language binding
MAY chose to model exceptions as numeric error code return values, and return values as
additional output parameters of the operation.
Job identifiers in the DRMAA specification are represented as Strings, instead of introducing an
own Job object. Even though this could enable a tighter relation of job meta-data and identity, it
mainly increases complexity for persistent sessions and introduces unnecessary round trips in a
possible DRMAA RPC mapping (such as a WSDL binding). The representation of jobs as string
directly reflects the DRM system semantic, and therefore supports the intentional tight binding of
DRMAA application and execution environment.

Comment [PT5]: TODO: Describe
relation to GFD.130 / 133

Deleted: Similar to the DRMAA 1.0 grid
recommendation (GFD.22), t

Deleted: IDL

Deleted: IDL binding

Deleted: still

drmaa-wg@ogf.org 4

2.2 IDL language mapping

Language binding documents based on this specification MUST define a mapping between the
IDL constructs used in this specification and their specific language constructs. A language
binding SHOULD NOT rely itself completely on the OMG language mapping documents
available for many programming languages. It must be considered that the OMG mappings
bring a huge overhead of irrelevant CORBA-related mapping rules into the specification.
Therefore it must be carefully decided whether a binding decision reflects a natural and simple
mapping of the intended purpose for the DRMAA interfaces. In most situations it SHOULD be
enough to reuse value type mappings only and to define custom mappings for the reference
types.

The language binding MUST use the described concept mapping in a consistent manner for the
overall specification.

It may be the case that IDL constructs do not map directly to an according language construct.
In this case it MUST be ensured that the according construct in the particular language retains
the intended semantic of the DRMAA interface definition.

Languages without an explicit notion of enumerations MAY map the IDL enumeration values to
constant class members, enabled by the distinct naming of all enumeration values in the
specification.

Some attributes and operation parameters are scoped (“DRMAA::”), in order to avoid naming
clashes in case-insensitive programming languages. Language bindings for case-sensitive
languages SHOULD omit this explicit scoping.

This specification tries to consider the possibility of a Remote Procedure Call scenario in a
DRMAA-conformant language mapping. It SHOULD therefore be ensured that the programming
language type for an IDL valuetype definition supports the serialization and comparison of
valuetype instances. These capabilities SHOULD be accomplished through whatever
mechanism is most natural for the specific programming language.

Java binding example:

IDL Java language

module definition package keyword

interface definition public abstract interface definition

enum definition with enumeration members Enumeration members become Java int

constants in the surrounding interface definition

string type java.lang.String

long type int

long long type long

const type public static final

boolean type boolean

[readonly] attribute type Getter [and setter] methods in JavaBeans
TM

style, boolean readonly attribute names are
prefixed with “get”.

exception type Class definition, derived from

Comment [PT6]: TODO: #6277 – Relax
this formulation to ease up the Python
binding.

Comment [PT7]: RAT: Deleted last line
to solve #6276

drmaa-wg@ogf.org 5

java.lang.Exception

raises clause throws clause

valuetype definition public class definition, may additionally
implement the Cloneable, Serializable, and
Compareable interfaces

The DRMAA specification defines specialized custom types as new value types, in order to
express their intended semantics:

// unbounded native ordered string list

valuetype OrderedStringList sequence<string>;

// unbounded native string list

valuetype StringList sequence<string>;

// dictionary type, for unbounded key-value pair storage

valuetype Dictionary sequence< sequence<string,2> >;

// amount of time, at least with a resolution to seconds

valuetype TimeAmount long long;

The language-binding author SHOULD replace these type definitions directly with semantically
equal references or value types from the according language. This MAY include the creation of
new complex language types for one or more of the above concepts, depending on the context.

Java binding example:

IDL Java

StringList java.util.Set

OrderedStringList java.util.List

TimeAmount long

Dictionary java.util.Map

3 The DRMAA2 API Module

The DRMAA interfaces and structures are encapsulated by a naming scope, which avoids
conflicts with other API‟s used in the same application.

module DRMAA2{

 …

}

Language binding authors MUST map the IDL module encapsulation to an according package
or namespace concept and MAY change the module name according to programming language
conventions.

Java binding example:

IDL Java

module DRMAA2 package org.drmaa2

Deleted: factory definition ...

Deleted: IDL definition

Comment [PT8]: RAT: This
intentionally breaks backward
compatibility for existing apps.

drmaa-wg@ogf.org 6

4 Data Types

4.1 JobControlAction enumeration

The JobControlAction enumeration is used as a input parameter type by the control() method in
the Session interface. The meanings of the enumeration values are specified in the description
of the method in section 9.8.

enum JobControlAction {

SUSPEND,

 RESUME,

 HOLD,

 RELEASE,

 TERMINATE

};

4.2 JobState enumeration

The JobState enumeration is used as a input parameter type by the jobStatus() method in the
Session interface. The meanings of the enumeration values are specified in the description of
the method in section 9.11. A DRMAA language binding implementation is not required to be
able to return all of the job state values in the JobState enumeration. If a given job state has no
representation in the underlying DRMS, the DRMAA implementation MAY ignore that job state
value. All DRMAA implementations MUST, however, define the JobState enumeration, and the
definition MUST include all job state values, including those for unused job states. An
implementation SHOULD NOT return any job state value other than those defined in the
JobState enumeration.

enum JobState {

 UNDETERMINED,

 QUEUED_ACTIVE,

 SYSTEM_ON_HOLD,

 USER_ON_HOLD,

 USER_SYSTEM_ON_HOLD,

 RUNNING,

 SYSTEM_SUSPENDED,

 USER_SUSPENDED,

 USER_SYSTEM_SUSPENDED,

 DONE,

 FAILED

};

The status values relate to the DRMAA job state transition model, as shown in Figure 1.

Comment [PT9]: TODO: Survey
showed rejection of finer-grained or fewer
job states. Extensible job state model as
in OGSA-BES was demanded by some
people. One guy proposed
QUEUED_ACTIVE state for DRM systems
with migration support. Needs further
research.

Comment [PT10]: TODO: #5875 –
PS_FAILED is too unspecific, contains
both job failure and user-requested
termination

Comment [PT11]: TODO: #2788 -
Allow QUEUED_ACTIVE state after
SUSPEND state.

drmaa-wg@ogf.org 7

Figure 1: DRMAA Job State Transition Diagram

4.3 JobSubmissionState enumeration

The JobSubmissionState enumeration is used as the type of the
JobTemplate::jobSubmissionState interface attribute. In the context of the job template, the
enumeration values have the following meaning:

 HOLD_STATE: The job may be queued, but it is not eligible to run.

 ACTIVE_STATE: The job is eligible to run.

enum JobSubmissionState {

HOLD_STATE,

ACTIVE_STATE

};

4.4 FileTransferMode value type

The FileTransferMode value-type is used by a JobTemplate instance to indicate the value for the
transferFiles attribute. The type contains three attributes, which determine the streams that will
be staged in or out.

valuetype FileTransferMode {

 attribute boolean transferInputStream;

 attribute boolean transferOutputStream;

 attribute boolean transferErrorStream;

};

4.4.1 transferInputStream

This attribute defines whether to transfer an input stream file. If this attribute contains true, the
transferinputStream attribute of the corresponding job template SHALL be treated as the source
from which the input file should be copied.

4.4.2 transferOutputStream

drmaa-wg@ogf.org 8

This attribute defines whether to transfer an output stream file. If this attribute contains true, the
transferOutputStream attribute of the corresponding job template SHALL be treated as the
destination to which the output file should be copied.

4.4.3 transferErrorStream

This attribute defines whether to transfer an error stream file. If this attribute contains true, the
transferErrorStream attribute of the corresponding job template SHALL be treated as the
destination to which the error file should be copied.

4.5 Version value type

The Version value type is a holding structure for the major and minor version numbers of the
DRMAA language binding implementation as contained in the version attribute of the Session
interface. The string representation (see section 2.2) of a Version instance MUST be of the form
“<major>.<minor>”.

valuetype Version {

 readonly attribute long major;

 readonly attribute long minor;

};

4.5.1 major

This attribute SHALL contain the major version number.

4.5.2 minor

This attribute SHALL contain the minor version number.

5 Exceptions

All exceptions in specific bindings MUST contain a possibility to store and read a textual
description of the exception cause for the exception instance.
Language bindings MAY decide to derive all exceptions from given environmental exception
base class(es). Language bindings SHOULD replace exceptions with a semantically equivalent
native runtime environment exception whenever this is appropriate.

exception AlreadyActiveSessionException {string message;};

exception AuthorizationException {string message;};

exception ConflictingAttributeValuesException {string message;};

exception DefaultContactStringException {string message;};

exception DeniedByDrmException {string message;};

exception DrmCommunicationException {string message;};

exception DrmsExitException {string message;};

exception DrmsInitException {string message;};

exception ExitTimeoutException {string message;};

exception HoldInconsistentStateException {string message;};

exception IllegalStateException {string message;};

exception InternalException {string message;};

exception InvalidArgumentException {string message;};

exception InvalidAttributeFormatException {string message;};

exception InvalidAttributeValueException {string message;};

exception InvalidContactStringException {string message;};

exception InvalidJobException {string message;};

exception InvalidJobTemplateException {string message;};

exception NoActiveSessionException {string message;};

exception NoDefaultContactStringSelectedException {string message;};

exception OutOfMemoryException {string message;};

drmaa-wg@ogf.org 9

exception ReleaseInconsistentStateException {string message;};

exception ResumeInconsistentStateException {string message;};

exception SuspendInconsistentStateException {string message;};

exception TryLaterException {string message;};

exception UnsupportedAttributeException {string message;};

Language bindings MAY decide to introduce a hierarchical ordering of the DRMAA exceptions
through class derivation. In this case it MAY also happen that new exceptions are introduced for
behavior aggregation. In this case, those exceptions SHALL be marked as abstract, to prevent
them from being thrown.

If the language supports the distinction between static („checked‟) and runtime („unchecked‟)
exceptions (like Java), all but the following exceptions must be represented as checked
exception:

 InternalException

 OutOfMemoryException

 InvalidArgumentException

If a destination language does not support the notion of exceptions (like ANSI C), the language
binding SHOULD map error conditions to an appropriate consistent concept. A language binding
MAY chose to model exceptions as numeric error code return values, and return values as
additional output parameter of the operation. The mapping of exceptions to error codes is
presented in Section 10.2. A language binding SHOULD specify numeric values for all DRMAA
error constants.

5.1 AlreadyActiveSessionException

Initialization failed due to existing DRMAA session.

5.2 AuthorizationException

The user is not authorized to perform the given operation.

5.3 ConflictingAttributeValuesException

The value of this attribute conflicts with one or more previously set properties.

5.4 DefaultContactStringException

The DRMAA implementation could not use the default contact string to connect to DRM system.

5.5 DeniedByDrmException

The DRM system rejected the job. The job will never be accepted due to DRM configuration or
job template settings.

5.6 DrmCommunicationException

Could not contact DRM system.

5.7 DrmsExitException

A problem was encountered while trying to exit the session.

Comment [PT12]: TODO: All of them,
even the OO bindings ?

drmaa-wg@ogf.org 10

5.8 DrmsInitException

A problem was encountered while trying to initialize the session.

5.9 ExitTimeoutException

The wait() or synchronize() method call on the Session interface returned before all selected
jobs entered the DONE or FAILED state.

5.10 HoldInconsistentStateException

The job cannot be moved to a HOLD state.

5.11 InternalException

An unexpected or internal DRMAA error occurred, for example a system call failure.

5.12 InvalidArgumentException

A parameter value is fundamentally invalid, such as being of the wrong type or being null.

5.13 InvalidAttributeFormatException

The value for the job template property is improperly formatted, such as a badly formatted time
stamp.

5.14 InvalidAttributeValueException

The value for the job template property is invalid.

5.15 InvalidContactStringException

The given contact string is not valid.

5.16 InvalidJobException

The job specified by the given job id does not exist, or was already reaped by a call to
Session::synchronize() with dispose==TRUE.

5.17 InvalidJobTemplateException

The job template is not valid. It was either created incorrectly, i.e. not via
Session::createJobTemplate(), or it has already been deleted via Session::deleteJobTemplate()
method.

5.18 NoActiveSessionException

The method call failed because there is no active session.

5.19 NoDefaultContactStringSelectedException

No default contact string was provided or selected. DRMAA requires the default contact string
to be selected when there is more than one possible contact string due to multiple DRMAA
implementations being present and available (see also 9.2).

drmaa-wg@ogf.org 11

5.20 OutOfMemoryException

This exception can be thrown by any method at any time when the DRMAA implementation has
run out of free memory.

5.21 ReleaseInconsistentStateException

The job is not in a HOLD state, and hence cannot be released.

5.22 ResumeInconsistentStateException

The job is not in a suspended state (i.e. *_SUSPENDED), and hence cannot be resumed.

5.23 SuspendInconsistentStateException

The job is not in a state from which it can be suspended.

5.24 TryLaterException

The DRMS rejected the operation, possibly due to excessive load. A retry attempt may
succeed, however.

5.25 UnsupportedAttributeException

The given job template attribute is not supported by the current DRMAA implementation.

5.26 IllegalStateException

The JobInfo instance is not in the correct state for this kind of operation.

6 The PartialTimestamp type

The PartialTimestamp type is used by JobTemplate interface instances to represent partially
specified time stamps, as required by the Distributed Resource Management Application API
Specification 1.0. The PartialTimestamp SHOULD be an extension of the native language
date/time representation if possible and reasonable. For this reason, the following text describes
the functional requirements without a specific signature for the type definition. The IDL definition
covers this aspect by specifying a native data type.

native PartialTimestamp;

The PartialTimestamp MUST support the following fields: century (>=19), year (0-99), month (1-
12), date (1-31), hour (0-23), minute (0-59), second (0-61), zone offset hour (-11 - 12), and zone
offset minute (0-59). It MUST support the following essential operations: “get field value”, “set
field value”, “get time as native date/time object”, “convert to string” and “parse from string.” If
possible, these operations SHOULD leverage structure already present in the native date/time
class, even if this leads to a mapping with multiple classes or interfaces. The two field
operations MAY be represented as attributes.
The “get field value” operation MUST return the current value for the given field. The “set field
value” operation MUST set the current value for the given field. The “get time as native
date/time object” operation MUST resolve the partial time to a specific time that is the soonest
possible time that is not in the past, and SHOULD return that specific time as a native date/time
representation. The “convert to string” operation MUST return the partial time represented by the
PartialTimestamp as a string which adheres to the following format: [[[[CC]YY/]MM/]DD]
hh:mm[:ss] [{-|+}UU:uu], where:

 CC is the first two digits of the year [19,]
 YY is the last two digits of the year [0,99]
 MM is the two digits of the month [01,12]

Comment [PT13]: TODO: Survey
marked this as unnecessary feature. All
but the SGE implementation do not
support it. GFD.103 suggests ISO 8601 /
RFC 822 date format support instead.

drmaa-wg@ogf.org 12

 DD is the two-digit day of the month [01,31]
 hh is the two-digit hour of the day [00,23]
 mm is the two-digit minute of the day [00,59]
 ss is the two-digit second of the minute [00,61]
 UU is the two-digit hours since (before) UTC [-11,12]
 uu is the two-digit minutes since (before) UTC [0,59]

In order for this operation to be performed, the PartialTimestamp must have no unset field of a
lower order than the highest order set field, with the exception of the second and zone offset
fields. For example, if the year is set, the month, date, hour, and minute must also be set for
this operation to be performed. Failure to meet this criterion MUST result in an
InvalidArgumentException being thrown, or the corresponding error code being returned in
languages which do not support exceptions. The seconds and UTC offset are always optional.
The “parse from string” operation MUST parse a string in the above format to generate a
PartialTimestamp as the return value. If the string is not in the above format, an
InvalidArgumentException or an appropriate language-dependent exception MUST be thrown or
the corresponding error code MUST be returned in languages that do not support exceptions.
If a PartialTimestamp type is resolved to a concrete time before all fields are set, the unset fields
SHALL be filled in using the current time in such a way that the resulting concrete time is the
soonest possible time which agrees with the set fields and is not in the past. A
PartialTimestamp type MAY be resolved to a concrete time any number of times. Each
resolution will result in a concrete time that meets the above criteria for the point in time at which
the resolution took place.
The resolving of partial time information MUST be performed according to the following rules:

 If the optional UTC-offset is not specified, the offset associated with the local time zone
SHALL be used.

 If the second is not specified, then it SHALL be treated as zero.

 If the day is not specified, the current day SHALL be used unless the specified hour,
minute and second has already elapsed, in which case the next day SHALL be used.

 If the month is not specified, the current month SHALL be used unless the specified day,
hour, minute and second has already elapsed, in which case the next month SHALL be
used.

 If the year is not specified, the current year SHALL be used unless the specified month,
day, hour, minute and second has already elapsed, in which case the next year SHALL
be used.

 If the century is not specified, the current century SHALL be used unless the specified
year, month, day, hour, minute and second has already elapsed, in which case the next
century SHALL be used.

The PartialTimestamp MAY also support the following four operations: “get field modifier,” “set
field modifier,” “add to field,” and “roll field.” If possible, these operations SHOULD leverage
structure already present in the native language date/time representation. The “get field
modifier” operation MUST return any additional modifiers set for the given field. An additional
modifier is added to the field's value after it has been resolved to a specific time. The “set field
modifier” operation MUST set the additional modifiers for the given field. The “add to field”
operation MUST add a given value to the given field. If supported by the native date/time
representation, this operation SHOULD attempt to resolve out of range field values that may
result from the operation. For example, adding “1” to the date of a PartialTimestamp instance
which is set to January 31

st
 SHOULD result in the PartialTimestamp being set to February 1

st
. If

this operation is supported, the “get field modifier” and “set field modifier” operations MUST also
be supported. The “roll field” operation is similar to the “add to field” operation, except that the
operation cannot modify a field of a higher order than the given field. Such modifications are
simply lost. For example, adding “1” to the date of a PartialTimestamp which is set to January
31

st
 SHOULD result in the PartialTimestamp being set to January 1

st
.

The PartialTimestamp MUST also support a notion of unset fields. A special value is assigned to
all fields that have not been explicitly set. This special value MUST be of the same type as the
date/time properties and MAY be the maximum value for that data type.

drmaa-wg@ogf.org 13

Language bindings are free to define convenience functions in addition to the functionalities
described here.

7 JobInfo interface

The information regarding a job's execution history is encapsulated by object instances that
implement the JobInfo interface. Using the JobInfo interface, a DRMAA application can discover
information about the resource usage and exit status of a job. The structure of the JobInfo
interface is as follows:

interface JobInfo {

 readonly attribute string jobId;

 readonly attribute Dictionary resourceUsage;

 readonly attribute boolean hasExited;

 readonly attribute long exitStatus;

 readonly attribute boolean hasSignaled;

 readonly attribute string terminatingSignal;

 readonly attribute boolean hasCoreDump;

 readonly attribute boolean wasAborted;

};

In languages which do not support the notion of interfaces and objects, the JobInfo interface
SHOULD be modeled as a series of routines which utilize an opaque job object returned from
the wait() routine.

The following sections explain the meanings of the JobInfo member attributes.

7.1 jobId

This attribute provides the identifier of the completed job.

7.2 resourceUsage

This attribute SHALL contain the completed job's resource usage data. If the job did not produce
resource usage data, this attribute SHALL be null.

The user MAY reap this data only once. The implementation is free to "garbage collect" the
reaped data at a convenient time. Only the data from the current session's job Id MUST be
available. Reaping data from other session job Id's MAY be supported in a DRMAA
implementation.

7.3 hasExited

This attribute SHALL contain true if the job terminated normally. A value of false MAY indicate
that although the job has terminated normally, an exit status is not available, or that it is not
known whether the job terminated normally. In both cases the exitStatus attribute SHALL NOT
contain exit status information. A value of true indicates more detailed diagnosis can be
retrieved from the exitStatus attribute.

7.4 exitStatus

If exited is true, this attribute SHALL contain the operating system exit code of the job. If exited
is false, the getter function for this attribute MUST raise an IllegalStateException.

7.5 hasSignaled

This attribute SHALL contain true if the job terminated due to the receipt of a signal. A value of
false MAY also indicate that although the job has terminated due to the receipt of a signal, the

Comment [PT14]: TODO: #5874 –
replace POSIX-style status check by
something with one-call semantics;
proposals in tracker history and GFD.117

Comment [PT15]: TODO: #5878 –
Standardize attribute names. We need to
check RUS / JSDL for this.

Comment [PT16]: TODO: #6280 –
Align description to GFD.133

drmaa-wg@ogf.org 14

signal is not available, or that it is not known whether the job terminated due to the receipt of a
signal. In both cases terminatingSignal SHALL NOT provide signal information.

7.6 terminatingSignal

If hasSignaled is true, this attribute SHALL contain a representation of the signal that caused the
termination of the job. For signals declared by POSIX, the symbolic names SHALL be returned
(e.g., SIGABRT, SIGALRM). For signals not declared by POSIX, a DRM-dependent string
SHALL be returned.
If hasSignaled is false, the getter function for this attribute MUST raise an IllegalStateException.

7.7 hasCoreDump

If hasSignaled is true, this attribute SHALL contain true if a core image of the terminated job was
created.
If hasSignaled is false, the getter function for this attribute MUST raise an IllegalStateException.

7.8 wasAborted

This attribute SHALL contain true if the job ended before entering the running state.

8 JobTemplate interface

In order to define the attributes associated with a job, a DRMAA application uses the
JobTemplate interface. Instances of such templates are created via the active Session
implementation. A DRMAA application gets a JobTemplate from the active Session instance,
specifies in the template any required job parameters, and then passes the template back to the
DRMAA Session instance when requesting that a job be executed. When finished, the DRMAA
application SHOULD call the Session::deleteJobTemplate() method to allow the underlying
implementation to free any resources bound to the JobTemplate instance. Please refer also to
[GFD133] section 3.1.4 to 3.1.6 for more information regarding precedence rules, site-specific
requirements and job evaluation.

8.1 Interface overview

A language binding specification MUST model the JobTemplate interface in the following way:

interface JobTemplate{

 const string HOME_DIRECTORY = "$drmaa_hd_ph$";

 const string WORKING_DIRECTORY = "$drmaa_wd_ph$";

 const string PARAMETRIC_INDEX = "$drmaa_incr_ph$";

 attribute string remoteCommand;

 attribute OrderedStringList args;

 attribute DRMAA::JobSubmissionState jobSubmissionState;

 attribute Dictionary jobEnvironment;

 attribute string workingDirectory;

 attribute string jobCategory;

 attribute string nativeSpecification;

 attribute StringList email;

 attribute boolean blockEmail;

 attribute PartialTimestamp startTime;

 attribute string jobName;

 attribute string inputPath;

 attribute string outputPath;

 attribute string errorPath;

 attribute boolean joinFiles;

 attribute FileTransferMode transferFiles;

 attribute PartialTimestamp deadlineTime;

 attribute TimeAmount hardWallclockTimeLimit;

 attribute TimeAmount softWallClockTimeLimit;

Comment [PT17]: TODO: #2817 –
Windows has no concept of signals.

Comment [PT18]: TODO: #2836 –
DRMAA should provide more information
why the job was aborted

Comment [PT19]: TODO: Survey
showed serious amount of interest for
JSDL support in DRMAA. See survey
results for options.

Comment [PT20]: TODO: #5881 –
more optional JT attributes to support
resource requirement formulation. Mostly
solved by JSDL. Important question
according to survey.

drmaa-wg@ogf.org 15

 attribute TimeAmount hardRunDurationLimit;

 attribute TimeAmount softRunDurationLimit;

 readonly attribute StringList attributeNames;
 …

 [language-specific operations for implementation-specific attributes]

 …

In languages that do not support the notion of interfaces or objects, the job template attributes
SHOULD be modeled as constant parameters to generic getter and setter routines. These
routines SHOULD treat all attribute names and values as strings. In the case of such a
language, the attributeNames attribute SHOULD be modeled as a getAttributeNames() routine
that returns the names of the available attributes as a list of strings which can be used with the
generic getter and setter routines. See section 8.1.1 below.

The JobTemplate implementation MUST support the following exceptions for the setter
operations in case there is a concept of exceptions in the programming language:

 InvalidAttributeValueException – The value is invalid for the job template property, e.g. a
startTime that is in the past.

 ConflictingAttributeValuesException – the attribute value conflicts with a previously set
attribute value.

For both getter and setter operations, the following exceptions MUST be supported in case
exceptions are part of the programming language:

 NoActiveSessionException
 DrmCommunicationException
 AuthorizationException
 OutOfMemoryException
 InternalException

In most cases, a DRMAA implementation will require that job templates be created through the
Session::createJobTemplate() method. In those cases, passing a template created other than
via this method to the Session::deleteJobTemplate(), Session::runJob(), or
Session::runBulkJobs() methods MUST result in an InvalidJobTemplateException being thrown
or a corresponding error code being returned if exceptions are not supported.

A JobTemplate instance SHOULD be convertible to a string for printing. This SHOULD be
accomplished through whatever mechanism is most natural for the implementation language.
The resulting string MUST contain the values of all set properties.

Access to scalar attributes (string, Boolean, long) MUST operate in a pass-by-value
mode. An according language binding must ensure that this behavior is always fulfilled. For
non-scalar attributes, the language binding MUST specify a consistent access strategy for all
these attributes – either pass-by-value or pass-by-reference – according to the use cases of
language binding implementations.

In the DRMAA job template concept, there is a distinction between mandatory, optional and
implementation-specific attributes. A language binding implementation MUST include all
DRMAA attributes described here, both required and optional. The setter and getter
implementations for optional attributes MUST in case throw UnsupportedAttributeException.
The service provider implementation SHOULD then override the setters and getters for
supported optional attributes with methods that operate normally. In the case of a destination
language that does not support the notion of interfaces or objects, the generic getter and setter
routines should throw UnsupportedAttributeException when called with the name of an unknown
or unsupported attribute.

8.1.1 Generic getter / setter routines
In the case of a destination language that does not support the notion of interfaces or objects,
the JobTemplate interface SHOULD be modeled by a set of generic setter and getter routines.

drmaa-wg@ogf.org 16

These generic routines are as follows:

string getAttribute(string name)

 raises (DrmCommunicationException,

 AuthorizationException,

 NoActiveSessionException,

 OutOfMemoryException,

 InternalException,

 UnsupportedAttributeException);

};

This method SHALL return the string value of the specified attribute. The language binding
specification SHOULD consistently specify the string representation for non-string data types.
Valid input values are the strings returned by the getAttributeNames() operation. An invalid
attribute name leads to an UnsupportedAttributeException.

stringlist getVectorAttribute(string name)

 raises (DrmCommunicationException,

 AuthorizationException,

 NoActiveSessionException,

 OutOfMemoryException,

 InternalException,

 UnsupportedAttributeException);

};

This method SHALL return the list of string values of the specified vector attribute. A vector
attribute is one which is prefixed with “v_” in the table in section 10.3. The language binding
specification SHOULD consistently specify the string representation for non-string vector
elements. Valid input values are the strings returned by the getAttributeNames() operation. An
invalid attribute name leads to an UnsupportedAttributeException.

void setAttribute(string name, string value)

 raises (DrmCommunicationException,

 UnsupportedAttributeException,

 InvalidAttributeValueException,

 AuthorizationException,

 NoActiveSessionException,

 OutOfMemoryException,

 InternalException);

};

This method SHALL change the value of the specified attribute to the given value. Valid input
values for the name parameter are the strings returned by the getAttributeNames() operation. An
invalid attribute name leads to an UnsupportedAttributeException. An invalid value for a
particular attribute leads to an InvalidAttributeValueException. The language binding
specification SHOULD consistently specify the string representation for non-string data types.

void setVectorAttribute(string name, stringlist value)

 raises (DrmCommunicationException,

 UnsupportedAttributeException,

 InvalidAttributeValueException,

 AuthorizationException,

 NoActiveSessionException,

 OutOfMemoryException,

 InternalException);

};

This method SHALL replace the list of values of the specified vector attribute to the given list of
values. A vector attribute is one which is prefixed with “v_” in the table in section 10.3. Valid input
values for the name parameter are the strings returned by the getAttributeNames() operation. An
invalid attribute name leads to an UnsupportedAttributeException. An invalid value for a
particular attribute leads to an InvalidAttributeValueException. The language binding

drmaa-wg@ogf.org 17

specification SHOULD consistently specify the string representation for non-string vector
elements.

If a language binding uses this generic getter / setter approach, then it MUST enforce the usage
of the attribute names specification from section 10.3 for all implementations, and all attributes
listed in section 10.3 MUST be implemented.

8.2 Accessing implementation-specific attributes

A language binding MUST provide a means for accessing implementation-specific attributes, as
the getters and setters for such attributes are not defined by the JobTemplate interface. This
access method MUST be consistent for all attributes and SHOULD be clearly described in the
language binding specification. Some destination languages MAY enable more than one access
mechanism.

Some common approaches are:

8.2.1 Introspection approach
In order to access the getters and setters for implementation-specific attributes, the developer
must use the destination language's introspection mechanisms to locate and then call the
attributes' getters and setters at run time. In such a case, the list of attribute names given by the
attributeNames attribute MUST be names that are meaningful to the destination language's
introspection mechanism.

This approach makes it possible to write applications which are completely portable across
binding implementations, including previously unknown binding implementations assuming that
the naming of implementation-specific attributes is consistent and/or predictable. A significant
disadvantage to this approach is the complexity or writing fully dynamic, introspection-based
application logic.

8.2.2 Dynamic Loader Approach
In languages that support dynamic class loading, access to implementation-specific attributes
can be encapsulated in classes dedicated to accessing the job template attributes of a specific
binding implementation. After determining the binding implementation in use, an application in
such a language could dynamically load a class that is capable of setting the implementation-
specific attributes of the job template.

An advantage of this approach is that within the scope of the dynamically loaded class, the job
template may be safely cast to the implementation type without creating a run-time dependency
on the implementation class. Within the class access to the job template attributes is done
directly using the job template implementation's declared getters and setters. A disadvantage is
that such a class is needed for each binding implementation to be supported, and each such
class is limited to operating only on that specific binding implementation. Another disadvantage
is that it creates a compile-time dependency on all supported binding implementations, i.e. all
supported binding implementations must be available at the time the application is compiled.

8.2.3 Discouraged approaches
The direct casting of a job template to the job template implementation class without the use of
dynamic class loading SHOULD NOT be used. Such casting, while enabling direct access to all
job template attribute getters and setters, creates a compile-time and run-time dependency on
all supported binding implementations, i.e. such an application must be bundled with all binding
implementations, even if it will only be run on one of them.

The combination of job template attribute getters and setters with generic getters and setters,
where either set of accessors provides access to only a subset of the job template
implementations attributes, SHOULD NOT be used. A DRMAA binding MUST provide consistent
attribute access, with support for all attribute types (required, optional and implementation-
specific) in only one language-specific method.

drmaa-wg@ogf.org 18

8.3 Constants

The JobTemplate interface defines a set of constants that are used in the context of some of the
attributes:

const string HOME_DIRECTORY = "$drmaa_hd_ph$";

const string WORKING_DIRECTORY = "$drmaa_wd_ph$";

const string PARAMETRIC_INDEX = "$drmaa_incr_ph$";

The HOME_DIRECTORY constant is a placeholder used to represent the user's home directory
when building paths for the workingDirectory, inputPath, outputPath, and errorPath attributes.

The WORKING_DIRECTORY constant is a placeholder used to represent the current working
directory when building paths for the inputPath, outputPath, and errorPath attributes.

The PARAMETRIC_INDEX constant is a placeholder used to represent the id of the current
parametric job subtask when building paths for the workingDirectory, inputPath, outputPath, and
errorPath attributes.

8.4 remoteCommand

This attribute describes the command to be executed on the remote host. In case this parameter
contains path information, it MUST be seen as relative to the execution host file system and is
therefore evaluated there. The attribute value SHOULD NOT relate to binary file management or
file staging activities.

8.5 args

This attribute contains the list of command-line arguments for the job to be executed.

8.6 jobSubmissionState

Defines the state of the job at submission time. For more information see section 4.3.

8.7 jobEnvironment

This attribute holds the environment variable values for the execution machine. The values
SHOULD override the remote environment values if there is a collision. If this is not possible, the
behavior is implementation dependent.

8.8 workingDirectory

This attribute specifies the directory where the job is executed. If the attribute is not set, the
behavior is implementation dependent. The attribute value MUST be evaluated relative to the
execution host's file system. The attribute value MAY contain the HOME_DIRECTORY or
PARAMETRIC_INDEX constant values as placeholders. A HOME_DIRECTORY placeholder at
the begin denotes the remaining portion of the attribute value as a relative directory path
resolved relative to the job users home directory at the execution host. The
PARAMETRIC_INDEX placeholder MAY be used at any position within the attribute value in the
case of parametric job templates and SHALL be substituted by the underlying DRM system with
the parametric jobs' index.
The workingDirectory MUST be specified in a syntax that is common at the host where the job is
executed. If the attribute is set and no placeholder is used, an absolute directory specification is
expected. If the attribute is set and the job was submitted successfully and the directory does not
exist, the job MUST enter the state JobState.FAILED.

Comment [PT21]: TODO: #2837 –
more placeholders. Was favored by most
survey participants. Needs research about
common placeholders in today‟s DRM
systems.

Comment [PT22]: TODO: #5873 –
support for the placeholders in more of the
JT attributes. Needs research about DRM
support. Some parts might be
implementable in the DRMAA library only.

drmaa-wg@ogf.org 19

8.9 jobCategory

This attribute allows an implementation-defined string specifying how to resolve site-specific
resources and/or policies. Site administrators MAY create a job category suitable for an
application to be dispatched by the DRMS; the associated category name SHALL be specified
as a job submission attribute. The DRMAA implementation MAY then use the category name to
manage site-specific resource and functional requirements of jobs in the category. Such
requirements need to be configurable by the site operating a DRMS and deploying an
application on top of it.
More information can be found in section 2.4.1 of the DRMAA 1.0 specification document.

8.10 nativeSpecification

This attribute enables an implementation-defined string that is passed by the end user to
DRMAA to specify site-specific resources and/or policies.
As far as the DRMAA interface specification is concerned, the native specification is an
implementation-defined string and is interpreted by each DRMAA library. One MAY use the job
category and the native specification with the same job submission for policy specification. In
this case, the DRMAA library is assumed to be capable of merging the outcome of the two policy
sources in a reasonable way.
The native specification MAY be used without the requirement to maintain job categories, and
submit options MAY be specified directly.
More information can be found in section 2.4.2 of the DRMAA 1.0 specification document.

8.11 email

This attribute holds a list of email addresses that is used to report the job completion and status.

8.12 blockEmail

This Boolean parameter decides whether the sending of email is blocked by default or not,
regardless of the DRMS setting. If the parameter is TRUE, the sending of email SHALL be
blocked regardless of the DRMS setting. If the value is FALSE, the sending of email SHALL be
determined by the DRMS setting.

8.13 startTime

This attribute specifies the earliest time when the job MAY be eligible to be run.

8.14 jobName

A job name SHALL be comprised of alphanumeric and '_' characters. The DRMAA
implementation MAY truncate any client-provided job name to an implementation-defined length
that is at least 31 characters.

8.15 inputPath

Specifies the job's standard input as a path to a file. If this property is not explicitly set in the job
template, the job is started with an empty input stream, unless the job category, native
specification, or a DRMS setting causes a source for the input stream to be set. If this attribute is
set, it specifies the network path for the job's input stream file in the form:

[hostname]:file_path

If the transferFiles job template attribute is supported and has a value where the
FileTransferMode::inputStream attribute set to true, the input file SHOULD be fetched by the
underlying DRM system from the specified host, or from the submit host if no hostname was
specified.

Comment [PT23]: TODO: #5853 –
Standardize category names. Otherwise
check if this attribute was ever
implemented.

Comment [PT24]: TODO: Make
document self-contained.

Comment [PT25]: TODO: make
document self-contained.

drmaa-wg@ogf.org 20

If the transferFiles job template attribute is not supported or its value's
FileTransferMode::inputStream is set to false, then the input file is always expected at the host
where the job is executed, irrespective of whether a hostname was specified.
The PARAMETRIC_INDEX placeholder can be used at any position for parametric job
templates and SHALL be substituted by the underlying DRM system with the parametric job's
index.
A HOME_DIRECTORY placeholder at the beginning of the attribute value denotes the remaining
portion as a relative file specification resolved relative to the job's user's home directory at the
host where the file is located.
A WORKING_DIRECTORY placeholder at the beginning of the attribute value denotes the
remaining portion as a relative file specification resolved relative to the job's working directory at
the host where the file is located.
The inputPath MUST be specified in a syntax that is common at the host where the file is
located.
If set, and the job were successfully submitted, and the file can't be read, the job enters the
state, JobState.FAILED.

8.16 outputPath

Specifies how to direct the job's standard output to a file. If this attribute is not explicitly set in the
job template, the destination of the job's output stream is not defined, unless the job category,
native specification, or a DRMS setting causes a destination for the output stream to be set. If
this attribute is set, it specifies the network path of the job's output stream in the form:

[hostname]:file_path

If the transferFiles job template attribute is supported and its value's
FileTransferMode::outputStream attribute is set to true, the output file SHALL be transferred by
the underlying DRM system to the specified host or to the submit host if no hostname is
specified.
If the transferFiles job template attribute is not supported or its value's
FileTransferMode::outputStream attribute is set to false, the output file SHALL be kept at the
host where the job is executed, irrespective of whether a hostname was specified.
All output sent to the job's standard output stream SHALL be appended to that file. If the file
does not exist at the time the job is executed, the file SHALL first be created.
The PARAMETRIC_INDEX placeholder can be used at any position with parametric job
templates and SHALL be substituted by the underlying DRM system with the parametric job's
index.
A HOME_DIRECTORY placeholder at the beginning denotes the remaining portion as a relative
file specification resolved relative to the job users home directory at the host where the file is
located.
A WORKING_DIRECTORY placeholder at the beginning denotes the remaining portion as a
relative file specification resolved relative to the jobs working directory at the host where the file
is located.
The outputPath MUST be specified in a syntax that is common at the host where the file is
located. If set and the job were successfully submitted and the file can't be written before
execution the job MUST enter the state JobState.FAILED.

8.17 errorPath

Specifies how to direct the jobs‟ standard error to a file.
If not explicitly set in the job template, the destination of the job's error stream is not defined
unless the job category, native specification, or a DRMS setting causes a destination for the
error stream to be set. If this attribute is set, it specifies the network path of the jobs error stream
file in the form:

[hostname]:file_path

drmaa-wg@ogf.org 21

If the transferFiles job template attribute is supported and it‟s value's
FileTransferMode::errorStream attribute is set to true, the error file SHALL be transferred by the
underlying DRM system to the specified host or to the submit host if no hostname is specified.
If the transferFiles job template attribute is not supported or it‟s value's
FileTransferMode::errorStream is set to false, the error file is always kept at the host where the
job is executed irrespective of whether a hostname was specified.
All output sent to the job's standard error stream SHALL be appended to that file. If the file does
not exist at the time the job is executed, the file SHALL first be created.
The PARAMETRIC_INDEX placeholder can be used at any position for parametric job
templates and SHALL be substituted by the underlying DRM system with the parametric jobs'
index.
A HOME_DIRECTORY placeholder at the beginning denotes the remaining portion as a relative
file specification, resolved relative to the job users home directory at the host where the file is
located.
A WORKING_DIRECTORY placeholder at the beginning denotes the remaining portion as a
relative file specification resolved relative to the jobs working directory at the host where the file
is located.
The errorPath MUST be specified in a syntax that is common at the host where the file is
located.
If set and the job were successfully submitted and the file can't be written before execution, the
job enters the state JobState.FAILED.

8.18 joinFiles

Specifies whether the error stream should be intermixed with the output stream. If not explicitly
set in the job template, this attribute defaults to false. If this attribute is set to true, the underlying
DRM system SHALL ignore the value of the errorPath attribute and intermix the standard error
stream with the standard output stream as specified by the outputPath.

8.19 transferFiles

Specifies how to transfer files between hosts.
If this attribute is not explicitly set in the job template, the effect is the same as setting the
property to a FileTransferMode instance with all members set to false.
This attribute works in conjunction with the inputPath, outputPath and errorPath attributes.

This attribute is optional. An implementation MUST throw an UnsupportedAttributeException if
this attribute is not supported.

8.20 deadlineTime

Specifies a deadline after which the DRMS will abort or terminate the job.

This attribute is optional. An implementation MUST throw an UnsupportedAttributeException if
this attribute is not supported.

8.21 hardWallclockTimeLimit

This attribute specifies when the job's wall clock time limit has been exceeded. An
implementation SHALL terminate a job that has exceeded its wall clock time limit. Suspended
time SHALL also be counted towards this limit.

This attribute is optional. In case an implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

8.22 softWallClockTimeLimit

This attribute specifies an estimate as to how much wall clock time the job will need to complete.
Note that the suspended time is also counted towards this estimate. This attribute is intended to

drmaa-wg@ogf.org 22

assist the scheduler. If the time specified is insufficient, the implementation MAY impose a
scheduling penalty.

This attribute is optional. In case an implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

8.23 hardRunDurationLimit

This attribute specifies how long the job MAY be in a running state before its limit has been
exceeded, and therefore is terminated by the DRMS.

This attribute is optional. In case an implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

8.24 softRunDurationLimit

This attribute specifies an estimate as to how long the job will need to remain in a running state
to complete. This attribute is intended to assist the scheduler. If the time specified is insufficient,
the implementation MAY impose a scheduling penalty.

This attribute is optional. In case an implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

8.25 attributeNames

This read-only attribute specifies the list of supported attribute names. This list includes
supported DRMAA reserved attribute names (both required and optional) and implementation-
specific attribute names. The listed attribute name MUST be of a format that is meaningful to
the destination language for use in introspection, if supported, or with the getAttribute() and
setAttribute() methods if introspection is not supported. See section 10.3 for a given names of
the job template attributes.

9 Session interface

The following chapter explains the set of constants, methods and attributes defined in the
Session interface.

An application process SHALL open only one DRMAA session at a time. Another session can be
opened only after the current one is closed. Nesting of sessions SHOULD NOT be possible. Job
Id‟s SHALL remain valid from one session to another.

An implementation MAY persist job ID‟s of submitted jobs for the next session, in order to
support a restartable application (e.g. Java servlets). The behavior of those jobs in the
subsequent session is undefined. Job control routines MAY work correctly if a job ID was
generated in a previous DRMAA session provided the current DRMAA session knows how to
resolve this job ID. The burden is on the user to match previous job Id‟s with appropriate
DRMAA sessions (i.e., DRMAA implementations).

Without session persistency, it is RECOMMENDED that the DRMAA library free all the session
resources, although this is not guaranteed, so that old session resources cannot be used later.

The Session interface has explicit methods for starting and ending the session, as well as for
creating and destroying job template objects. Even though some object oriented programming
languages might prefer implicit object destruction mechanism instead of explicit cleanup calls,
this interface design reflects the close coupling of DRMAA to the underlying DRM system. It also
supports the implementation of object oriented DRMAA libraries based on a DRMAA C library.

interface Session{

Comment [PT26]: TODO: Survey
showed many requests for:
- Monitoring of DRM resources (list of
hosts etc.)
- Fetching the job list of a session
-Job workflows (but only as add-on)
- Monitoring of jobs in the DRM system not
submitted by the DRMAA session (has an
security aspect)

Comment [PT27]: TODO: #2827 –
improved monitoring of single jobs (queue
name, execution host, …) Implies new
ability to monitor not only running jobs.

Comment [PT28]: TODO: #2782 –
change attributes of submitted, but
pending jobs. Demands feature check in
DRM systems.

Comment [PT29]: TODO: Survey
showed some interest in being able to
submit jobs to specific resources

Comment [PT30]: TODO: #5876 –
Extend DRMAA by file transfer capabilities

Comment [PT31]: TODO: #5877 – add
support for job signaling

Comment [PT32]: TODO: #5880 – Add
better support for job status change
monitoring

Comment [PT33]: TODO: #2821 –
Support for multiple concurrent sessions.
Survey showed great interest in that.
Mandatory or optional ?

Comment [PT34]: TODO: #2820 –
Support for persistent sessions. Survey
showed great interest. Should be made
mandatory somehow.

drmaa-wg@ogf.org 23

9.1 Constants

The Session interface defines a set of constant values, which are used in the context of several
interface functions.

const long long TIMEOUT_WAIT_FOREVER = -1;

const long long TIMEOUT_NO_WAIT = 0;

const string JOB_IDS_SESSION_ANY = "DRMAA_JOB_IDS_SESSION_ANY";

const string JOB_IDS_SESSION_ALL = "DRMAA_JOB_IDS_SESSION_ALL";

The TIMEOUT_WAIT_FOREVER constant is used with the wait() and synchronize() methods to
indicate that a method call should not return until the given job or jobs have entered the DONE
or FAILED state.

The TIMEOUT_NO_WAIT constant is used with the wait() and synchronize() methods to
indicate that a method call should return immediately if the given job or jobs have not yet entered
the DONE or FAILED state.

The JOB_IDS_SESSION_ANY constant is used with the wait() method to indicate that a method
call may operate on any job currently in the RUNNING state in the session.

The JOB_IDS_SESSION_ALL constant is used with the control() and synchronize() methods to
indicate that a method call should operate on all jobs in the session at submission time, minus
any jobs that go out of scope during the run time of the operation. For example: If a job was in
the session at the time of calling synchronize(JOB_IDS_SESSION_ALL), and it‟s gets reaped
during the operation, the overall call will not fail. A call with JOB_IDS_SESSION_ALL to an
empty session SHALL result in a successful call. In case that a call with
JOB_IDS_SESSION_ALL fails for a partial set of the jobs in the session, the implementation
SHALL throw an InternalException. The error text of the exception should explain the problem in
detail and may give an idea of the current status of the session.

9.2 init

The init() method MUST do whatever work is required to initialize a DRMAA session for use. The
contactString parameter is an implementation-dependent string that may be used to specify
which DRM system to use. This method must be called before any other DRMAA calls, except
for the getter functions of the contact, drmsInfo, and drmaaImplementation attributes defined in
the Session interface.
If contact is null or emtpy, the default DRM system SHOULD be used, provided there is only
one DRMS available. If contact is null or empty, and more than one DRMAA implementation is
available, init() SHALL throw a NoDefaultContactStringSelectedException or return a
corresponding error code if exceptions aren't supported.
init() SHOULD be called only once, by only one of the threads. The main thread is
recommended. A call to init() by another thread or additional calls to init() by the same thread
SHOULD throw an AlreadyActiveSessionException or return a corresponding error code if
exceptions are not supported.
In the case that a DRMAA library implementation needs to perform non-thread-safe operations
(like getHostByName() C library call), it SHOULD perform them in the implementation of the
init() operation, in order to ensure thread-safe operations for all other DRMAA methods.

void init(in string contactString)

 raises (DrmsInitException,

 InvalidContactStringException,

 AlreadyActiveSessionException,

 DefaultContactStringException,

 NoDefaultContactStringSelectedException,

 OutOfMemoryException,

 DrmCommunicationException,

 AuthorizationException,

Comment [PT35]: TODO: #2822 –
improve description of contact string
parameter

Comment [PT36]: TODO: Python
people hate that – this is what
parameterized constructors are good for.

drmaa-wg@ogf.org 24

 InvalidArgumentException,

 InternalException);

Parameters

contactString - implementation-dependent string that may be used to specify which DRM
system to use. If null or empty, the DRMAA implementation will select the default DRM system
if there is only one DRMS available.

Exceptions

 DrmsInitException – failed while initializing the session.

 InvalidContactStringException – the contact parameter is invalid.

 AlreadyActiveSessionException – the session has already been initialized.

 DefaultContactStringException – the contact parameter is null or empty and the
default contact string could not be used to connect to the DRMS.

 NoDefaultContactStringSelectedException – the contact parameter is null or empty
and more than one DRMS is available.

 OutOfMemoryException – the DRMAA implementation does not have enough free
memory to perform the operation.

 DrmCommunicationException – the DRMS could not be contacted for this request.

 AuthorizationException – the user does not have permission to perform this action.

 InvalidArgumentException – an argument value is invalid.

 InternalException – an error has occurred in the DRMAA implementation.

9.3 exit

The exit() method MUST do whatever work is required to disengage from the DRM system and
allow the DRMAA implementation to perform any necessary internal cleanup. This method ends
the current DRMAA session SHALL NOT affect any jobs (e.g., queued and running jobs remain
queued and running). Any job template instances which have not yet been deleted become
invalid after exit() is called, even after a subsequent call to init(). exit() SHOULD be called only
once, by only one of the threads. Additional calls to exit() beyond the first SHALL throw a
NoActiveSessionException or return a corresponding error code if exceptions aren't supported.

void exit()

 raises (DrmsExitException,

 NoActiveSessionException,

 DrmCommunicationException,

 AuthorizationException,

 OutOfMemoryException,

 InternalException);

Exceptions

 DrmsExitException – failed while exiting the session.
 NoActiveSessionException – the session has not been initialized or exit() has already
been called

 DrmCommunicationException – the DRMS could not be contacted for this request.
 AuthorizationException – the user does not have permission to perform this action.
 OutOfMemoryException – the DRMAA implementation does not have enough free
memory to perform the operation.

 InternalException – an error has occurred in the DRMAA implementation.

9.4 createJobTemplate

The createJobTemplate() method SHALL return a new JobTemplate instance. The job template
is used to set the defining characteristics for jobs to be submitted. Once the job template has

Comment [PT37]: TODO: Python
people hate that – this is what finalizers
are good for.

drmaa-wg@ogf.org 25

been created, it should also be deleted (via deleteJobTemplate()) when no longer needed.
Failure to do so may result in a memory leak.

JobTemplate createJobTemplate()

 raises (DrmCommunicationException,

 NoActiveSessionException,

 OutOfMemoryException,

 AuthorizationException,

 InternalException);

Returns

The createJobTemplate() method SHALL return a blank JobTemplate instance.

Exceptions

 DrmCommunicationException – unable to communicate with the DRMS
 NoActiveSessionException – the session has not been initialized or exit() has already
been called

 OutOfMemoryException – the DRMAA implementation does not have enough free
memory to perform the operation.

 AuthorizationException – the user does not have permission to perform this action.
 InternalException – an error has occurred in the DRMAA implementation.

9.5 deleteJobTemplate

The deleteJobTemplate() method is used to deallocate a job template, and SHALL perform all
necessary steps required to free all memory associated with the given JobTemplate instance.
In languages where memory is not freed explicitly, e.g. languages that use garbage collectors,
this method SHALL perform all necessary steps required to prepare this job template to be
freed. In languages where finalizers are supported, the implementation of this method MAY be
empty.
This method SHALL have no effect on running jobs. This method MUST only work on
JobTemplate instances that were created with the createJobTemplate() method and have not
previously been deleted with the deleteJobTemplate() method and MUST otherwise throw an
InvalidJobTemplateException.

void deleteJobTemplate(in DRMAA::JobTemplate jobTemplate)

 raises (DrmCommunicationException,

 NoActiveSessionException,

 OutOfMemoryException,

 AuthorizationException,

 InvalidArgumentException,

 InvalidJobTemplateException,

 InternalException);

Parameters

jobTemplate - the JobTemplate instance to delete.

Exceptions

 DrmCommunicationException – unable to communicate with the DRMS.
 NoActiveSessionException – the session has not been initialized or exit() has already
been called.

 OutOfMemoryException – the DRMAA implementation does not have enough free
memory to perform the operation.

 AuthorizationException – the user does not have permission to perform this action.
 InvalidArgumentException – the argument value is invalid.
 InvalidJobTemplateException – the given job template was not created with
createJobTemplate() or has already been deleted .

 InternalException – an error has occurred in the DRMAA implementation.

drmaa-wg@ogf.org 26

9.6 runJob

The runJob() method SHALL submit a job with attributes defined in the job template given as a
parameter. The returned job identifier SHOULD be a string identical to that returned from the
underlying DRM system. This method MUST only work on JobTemplate instances that were
created with the createJobTemplate() method and have not previously been deleted with the
deleteJobTemplate() method and MUST otherwise throw an InvalidJobTemplateException.

string runJob(in DRMAA::JobTemplate jobTemplate)

 raises (TryLaterException,

 DeniedByDrmException,

 DrmCommunicationException,

 AuthorizationException,

 InvalidJobTemplateException,

 NoActiveSessionException,

 OutOfMemoryException,

 InvalidArgumentException,

 InternalException);

Parameters

jobTemplate - the job template to be used to create the job.

Returns

The runJob() method SHOULD return a job identifier string identical to that returned from the
underlying DRM system.

Exceptions

 TryLaterException – the request could not be processed due to excessive system load.
 DeniedByDrmException – the DRMS rejected the job. The job will never be accepted due
to job template or DRMS configuration settings.

 DrmCommunicationException – unable to communicate with the DRMS.
 InvalidJobTemplateException – the given job template was not created with
createJobTemplate() or has already been deleted.

 AuthorizationException – the user does not have permission to submit jobs.
 NoActiveSessionException – the session has not been initialized or exit() has already
been called.

 OutOfMemoryException – the DRMAA implementation does not have enough free
memory to perform the operation.

 InvalidArgumentException – the argument value is invalid.
 InternalException – an error has occurred in the DRMAA implementation.

9.7 runBulkJobs

The runBulkJobs() method SHALL submit a set of parametric jobs, dependent on the implied
loop index, each with attributes defined in the given job template. Each job in the set is identical
except for its index. The first parametric job has an index equal to beginIndex. The next job has
an index equal to beginIndex + step, and so on. The last job has an index equal to beginIndex +
n * step, where n is equal to (endIndex – beginIndex) / step. Note that the value of the last job's
index may not be equal to endIndex if the difference between beginIndex and endIndex is not
evenly divisible by step. The smallest valid value for beginIndex is 1. The largest valid value for
endIndex is language dependent. The beginIndex value must be less than or equal to the
endIndex value, and only positive index numbers are allowed. The index number can be
determined by the job in an implementation-specific fashion. The returned job identifiers
SHOULD be Strings identical to those returned from the underlying DRM system.

Comment [PT38]: TODO: #5884 –
apply solution from GFD.133 here

Comment [PT39]: TODO: #5884 –
apply solution from GFD.133 here

drmaa-wg@ogf.org 27

The JobTemplate interface defines a PARAMETRIC_INDEX placeholder for use in specifying
paths. This placeholder is used to represent the individual identifiers of the tasks submitted
through this method.

This method MUST only work on JobTemplate instances that were created by the
createJobTemplate() method and have not previously been deleted by the deleteJobTemplate()
or exit() method and MUST otherwise throw an InvalidJobTemplateException.

StringList runBulkJobs(in DRMAA::JobTemplate jobTemplate,

 in long beginIndex,

 in long endIndex,

 in long step)

 raises (TryLaterException,

 DeniedByDrmException,

 DrmCommunicationException,

 AuthorizationException,

 InvalidJobTemplateException,

 NoActiveSessionException,

 OutOfMemoryException,

 InvalidArgumentException,

 InternalException);

Parameters

jobTemplate - the job template to be used to create the job.
beginIndex - the starting value for the loop index.
endIndex - the terminating value for the loop index.
step - the value by which to increment the loop index each iteration.

Returns

The runBulkJobs() method SHOULD return a list of job identifier Strings identical to that returned
by the underlying DRM system

Exceptions

 TryLaterException – the request could not be processed due to excessive system load.
 DeniedByDrmException – the DRMS rejected the job. The job will never be accepted due
to job template or DRMS configuration settings.

 DrmCommunicationException – unable to communicate with the DRMS.
 InvalidJobTemplateException – the given job template was not created with
createJobTemplate() or has already been deleted.

 AuthorizationException – the user does not have permission to submit jobs.
 NoActiveSessionException – the session has not been initialized or exit() has already
been called.

 OutOfMemoryException – the DRMAA implementation does not have enough free
memory to perform the operation.

 InvalidArgumentException – an argument value is invalid.
 InternalException – an error has occurred in the DRMAA implementation.

9.8 control

The control() method SHALL hold, release, suspend, resume, or kill the job identified by
jobName respective to the operation parameter. The jobName parameter can be
JOB_IDS_SESSION_ALL (see 9.1) to act on all jobs in the session.

To avoid thread races in multi-threaded applications, the DRMAA implementation user should
explicitly synchronize this call with any other job submission calls or control calls that may
change the number of remote jobs.

The legal values for operation and their meanings SHALL be:

 JobControlAction::SUSPEND: stop the job,

drmaa-wg@ogf.org 28

 JobControlAction::RESUME: (re)start the job,

 JobControlAction::HOLD: put the job on-hold,

 JobControlAction::RELEASE: release the hold on the job, and

 JobControlAction::TERMINATE: kill the job.

This method SHALL return once the action has been acknowledged by the DRM system, but
MAY return before the action has been completed.

Some DRMAA implementations MAY allow this method to be used to control jobs submitted
externally to the DRMAA session, such as jobs submitted by other DRMAA sessions in other
DRMAA implementations or jobs submitted via native utilities.

void control(in string jobName,

 in JobControlAction operation)

 raises (DrmCommunicationException,

 AuthorizationException,

 ResumeInconsistentStateException,

 SuspendInconsistentStateException,

 HoldInconsistentStateException,

 ReleaseInconsistentStateException,

 InvalidJobException,

 NoActiveSessionException,

 OutOfMemoryException,

 InvalidArgumentException,

 InternalException);

Parameters
jobName - The string id of the job to control.

operation - the control action to be taken.

Exceptions

 DrmCommunicationException – unable to communicate with the DRMS.
 AuthorizationException – the user does not have permission to modify jobs.
 ResumeInconsistentStateException – the job is not in a state from which is can be
resumed.

 SuspendInconsistentStateException – the job is not in a state from which is can be
suspended.

 HoldInconsistentStateException – the job is not in a state from which is can be held.
 ReleaseInconsistentStateException – the job is not in a state from which is can be
released.

 InvalidJobException – the job id does not represent a valid job.
 NoActiveSessionException – the session has not been initialized or exit() has already
been called.

 OutOfMemoryException – the DRMAA implementation does not have enough free
memory to perform the operation.

 InvalidArgumentException – an argument value is invalid.
 InternalException – an error has occurred in the DRMAA implementation.

9.9 synchronize

This method SHALL wait until all jobs specified by jobList have finished execution. The jobList
parameter can be JOB_IDS_SESSION_ALL (see section 9.1) to act on all jobs in the session.

To avoid thread race conditions in multi-threaded applications, the DRMAA implementation user
should explicitly synchronize this call with any other job submission or control calls that may
change the number of remote jobs.

To prevent blocking indefinitely in this call, the caller may use a timeout specifying how many
seconds to block in this call. The constant value TIMEOUT_WAIT_FOREVER may be specified to
wait indefinitely for a result. The constant value TIMEOUT_NO_WAIT may be specified to return

Comment [PT40]: TODO: #2838 –
possibility to synchronize with job start

drmaa-wg@ogf.org 29

immediately. If the call exits before the timeout has elapsed, all the jobs have been waited on or
there was an interrupt. If the invocation exits on timeout, an ExitTimeoutException SHALL be
thrown or a corresponding error code returned if exceptions aren't supported. The caller should
check system time before and after this call in order to be sure of how much time has passed.

If at any time during the call to synchronize() no jobs are active in the session, the call to
synchronize() will return immediately.

The dispose parameter specifies how to treat the reaping of the remote job's internal data
record, which includes a record of the job's consumption of system resources during its
execution and other statistical information. If the parameter is set to true, the DRM SHALL
dispose of the job's data record. If set to false, the data record SHALL be left for future access
via the wait() method. Because a DRMAA implementation is not required to retain information
about jobs that have been reaped, the routine is not required to, but MAY distinguish between
non-existent and reaped jobs. If the routine successfully validates a job ID for an already reaped
job, it MAY return successfully without any error.

void synchronize(in StringList jobList,

 in long long timeout,

 in boolean dispose)

 raises (DrmCommunicationException,

 AuthorizationException,

 ExitTimeoutException,

 InvalidJobException,

 NoActiveSessionException,

 OutOfMemoryException,

 InvalidArgumentException,

 InternalException);

Parameters

jobList - the list of names for the jobs to synchronize.
timeout - the maximum number of seconds to wait.
dispose - specifies how to treat reaping information.

Exceptions

 DrmCommunicationException – unable to communicate with the DRMS.
 AuthorizationException – the user does not have permission to synchronize against jobs.
 ExitTimeoutException – the call was interrupted before all given jobs finished.
 InvalidJobException – the job id does not represent a valid job.
 NoActiveSessionException – the session has not been initialized or exit() has already
been called.

 OutOfMemoryException – the DRMAA implementation does not have enough free
memory to perform the operation.

 InvalidArgumentException – an argument value is invalid.
 InternalException – an error has occurred in the DRMAA implementation.

9.10 wait

This method SHALL wait for a job with jobName to finish execution or fail. If
JOB_IDS_SESSION_ANY is provided as the jobName, this method SHALL wait for any job
submitted during this DRMAA session up to the moment wait() is called. At any time during a call
to wait() with JOB_IDS_SESSION_ANY as the jobName parameter, if no jobs are active in the
session, the call to wait() SHALL fail, throwing an InvalidJobException. This method is modeled
on the wait3 POSIX routine. Only one invocation of the wait() method for a given job id MAY
succeed. The others MUST throw an InvalidJobException.

The timeout value SHALL be used to specify the desired behavior when a result is not
immediately available. The constant value TIMEOUT_WAIT_FOREVER may be specified to wait
indefinitely for a result. The constant value TIMEOUT_NO_WAIT may be specified to return
immediately. Alternatively, a number of seconds may be specified to indicate how long to wait for
a result to become available.

drmaa-wg@ogf.org 30

If the call exits before timeout seconds, either the job has been waited on successfully or there
was an abortion or termination of the job. If the invocation exits on timeout, an
ExitTimeoutException SHALL be thrown or a corresponding error code returned if exceptions
aren't supported. The caller should check system time before and after this call in order to be
sure how much time has passed.

The method SHALL reap job data records on a successful call, so any subsequent calls to wait()
SHALL fail, throwing an InvalidJobException, meaning that the job's data record has been
already been reaped. This exception is the same as if the job were unknown. (The only case
where wait() MAY be successfully called on a single job more than once is when the previous
call to wait() timed out before the job finished.)

In a multi-threaded environment with a wait() call using JOB_IDS_SESSION_ANY, only the
active thread gets the status of the finished or failed job in that case, while the other threads
continue waiting. If there are no more running or completed jobs left in the session, all remaining
waiting threads SHOULD fail with an InvalidJobException.

If thread A is waiting for a specific job, and another thread, thread B, waiting for that same job or
with JOB_IDS_SESSION_ANY, receives notification that the job has finished, thread A
SHOULD fail with an InvalidJobException. At any time during a call to wait() with
JOB_IDS_SESSION_ANY as the jobName parameter, if no jobs are active in the session, the
call to wait() SHALL fail, throwing an InvalidJobException.

When successful, the resource usage information for the job SHALL be provided as a
Dictionary of usage parameter names and their values in the returned job info. The values
contain the amount of resources consumed by the job and are implementation defined. If the
resource usage information is unavailable, the provided dictionary SHOULD be empty or null.

If the destination language does not support the notion of interfaces or objects, the wait() call
SHOULD return an opaque data structure which contains the job exit information or references
to the job exit information. The opaque data structure is decoded using the routines which
model the JobInfo interface.

JobInfo wait(in string jobName,

 in long long timeout)

 raises (DrmCommunicationException,

 AuthorizationException,

 ExitTimeoutException,

 InvalidJobException,

 NoActiveSessionException,

 OutOfMemoryException,

 InvalidArgumentException,

 InternalException);

Parameters

jobName - the id of the job for which to wait.
timeout - the maximum number of seconds to wait.

Returns

This method SHALL return the resource usage and status information as JobInfo instance.

 Exceptions

 DrmCommunicationException – unable to communicate with the DRMS.
 AuthorizationException – the user does not have permission to wait for a job.
 ExitTimeoutException – the call was interrupted before the given job finished.
 InvalidJobException – the job id does not represent a valid job.
 NoActiveSessionException – the session has not been initialized or exit() has already
been called.

 OutOfMemoryException – the DRMAA implementation does not have enough free
memory to perform the operation.

 InvalidArgumentException – an argument value is invalid.

Comment [PT41]: TODO: #5879 –
Solution applied to GFD.133 needs to be
reflected also here.

drmaa-wg@ogf.org 31

 InternalException – an error has occurred in the DRMAA implementation.

9.11 jobStatus

The jobStatus() method SHALL return the status of the job identified by jobName. The possible
values returned from this method are:

 JobState:UNDETERMINED: job status cannot be determined,

 JobState:QUEUED_ACTIVE: job is queued and waiting to be scheduled,

 JobState:SYSTEM_ON_HOLD: job has been placed on hold by the system or the
administrator,

 JobState:USER_ON_HOLD: job has been placed on hold by a user,

 JobState:USER_SYSTEM_ON_HOLD: job has been placed on hold by both the system or
administrator and a user,

 JobState:RUNNING: job has been scheduled and is running,

 JobState:SYSTEM_SUSPENDED: job has been suspended by the system or
administrator,

 JobState:USER_SUSPENDED: job has been suspended by a user,

 JobState:USER_SYSTEM_SUSPENDED: job has been suspended by both the system or
administrator and a user,

 JobState:DONE: job finished normally, and

 JobState:FAILED: job exited abnormally before finishing.

The DRMAA implementation MUST always get the status of the job from the DRM system
unless the status has already been determined to be FAILED or DONE and the status has been
successfully cached. Terminated jobs SHALL return a FAILED status. It is up to the
implementation to determine whether this method is capable of operating on jobs submitted
outside of the current DRMAA session.

JobState jobStatus(in string jobName)

 raises (DrmCommunicationException,

 AuthorizationException,

 InvalidJobException,

 NoActiveSessionException,

 OutOfMemoryException,

 InvalidArgumentException,

 InternalException);

Parameters

jobName - the id of the job whose status is to be retrieved.

Returns

The jobStatus() method SHALL return the job status.

Exceptions

 DrmCommunicationException – unable to communicate with the DRMS.
 AuthorizationException – the user does not have permission to query for a job's status.
 InvalidJobException – the job id does not represent a valid job.

 NoActiveSessionException – the session has not been initialized or exit() has already
been called.

 OutOfMemoryException – the DRMAA implementation does not have enough free
memory to perform the operation.

 InvalidArgumentException – an argument value is invalid.

 InternalException – an error has occurred in the DRMAA implementation.

Comment [PT42]: TODO: #2824 –
Clarify status query on reaped jobs

Comment [PT43]: TODO: #2783 –
Proposed / allowed reaction on this status

drmaa-wg@ogf.org 32

9.12 contact

If this attribute is read before the first call to the init() method, then it SHALL return a string
containing a comma-delimited list of default DRMAA implementation contacts strings. A contact
string represents a specific installation of a specific DRM system, e.g. a Condor central manager
machine at a given IP address or a Sun Grid Engine „root‟ and „cell‟.
If the value of the attribute is queried after a successful call to init(), this attribute SHALL contain
the contact string for the DRM system to which the session is attached.
The returned Strings are always implementation dependent and SHOULD NOT be interpreted
by the application.

readonly attribute string contact;

9.13 version

This attribute SHALL contain a Version instance containing the major and minor version
numbers of the DRMAA library. This attribute may not be read before init() has been called.

readonly attribute DRMAA::Version version;

9.14 drmsInfo

If the value of this attribute is read before the first successful call to the init() method, this
attribute SHALL return a string containing a comma-delimited list of DRM system identifiers. A
DRM system identifier denotes a specific type of DRM system, e.g. Sun Grid Engine.
If the value is read after init(), this attribute SHALL contain the selected DRM system identifier.
The Strings are implementation dependent and SHOULD NOT be interpreted by the application.

readonly attribute string drmsInfo;

9.15 drmaaImplementation

If the value of this attribute is read before the first successful call to init(), this attribute SHALL
return a string containing a comma-delimited list of DRMAA implementations. A DRMAA
implementation string denotes a specific version of a DRM system, e.g. Condor v6.6. If read
after init(), this attribute SHALL contain the selected DRMAA implementation. The returned
strings are implementation dependent and SHOULD NOT be interpreted by the application.

readonly attribute string drmaaImplementation;

drmaa-wg@ogf.org 33

10 Annex

10.1 Complete IDL specification

… (LEFT OUT FOR EASIER CHANGE TRACKING) …

drmaa-wg@ogf.org 34

10.2 Correlation of DRMAA exceptions and error codes

The following table shows how exceptions can map to error codes, similar to the definition in the
Distributed Resource Management Application API Specification 1.0 [GFD133].

Error Code Name (DRMAA_ERRNO_...) Exception Name

SUCCESS Not needed

INTERNAL_ERROR InternalException

DRM_COMMUNICATION_FAILURE DrmCommunicationException

AUTH_FAILURE AuthorizationException

INVALID_ARGUMENT InvalidArgumentException

NO_ACTIVE_SESSION NoActiveSessionException

NO_MEMORY OutOfMemoryException

INVALID_CONTACT_STRING InvalidContactStringException

DEFAULT_CONTACT_STRING_ERROR DefaultContactStringException

DRMS_INIT_FAILED DrmsInitException

ALREADY_ACTIVE_SESSION AlreadyActiveSessionException

DRMS_EXIT_ERROR DrmsExitException

INVALID_ATTRIBUTE_FORMAT InvalidAttributeFormatException

INVALID_ATTRIBUTE_VALUE InvalidAttributeValueException

CONFLICTING_ATTRIBUTE_VALUES ConflictingAttributeValuesException

TRY_LATER TryLaterException

DENIED_BY_DRM DeniedByDrmException

INVALID_JOB InvalidJobException

RESUME_INCONSISTENT_STATE ResumeInconsistentStateException

SUSPEND_INCONSISTENT_STATE SuspendInconsistentStateException

HOLD_INCONSISTENT_STATE HoldInconsistentStateException

RELEASE_INCONSISTENT_STATE ReleaseInconsistentStateException

EXIT_TIMEOUT ExitTimeoutException

NO_RUSAGE Not needed

INVALID_JOB_TEMPLATE InvalidJobTemplateException

drmaa-wg@ogf.org 35

Error Code Name (DRMAA_ERRNO_...) Exception Name

UNSUPPORTED_ATTRIBUTE UnsupportedAttributeException

The DRMAA_ERRNO_SUCCESS code reflects a successful operation call, if a language
binding models the error codes as operation return values. The
DRMAA_ERRNO_NO_RUSAGE is used to indicate that the target of a wait() call has exited
without providing resource usage information in languages which do no support the notion of
interfaces or objects. See section 8.

In comparison to [GFD133], this specification introduces two new error conditions. The
InvalidJobTemplateException is used to indicate that the job template instance currently being
used is not valid. This may be, for example, because it has already been deleted via
Session::deleteJobTemplate(). The UnsupportedAttributeException is used to indicate that for
the current DRMAA implementation the accessed attribute of a job template is unsupported.

10.3 Correlation of JobTemplate attributes and attribute name strings

The following table shows the string names for the attributes in the JobTemplate interface. The
string names are needed as input parameter for the JobTemplate.getAttribute() and
JobTemplate.setAttribute() operations (see section 8.1.1). Following the [GFD133] semantics,
JobTemplate attributes with a complex type are prefixed by “v_” (vector attribute).

String Name JobTemplate Attribute

“remote_command” JobTemplate.remoteCommand

“v_argv” JobTemplate.args

“js_state” JobTemplate.jobSubmissionState

“v_env” JobTemplate.jobEnvironment

“wd” JobTemplate.workingDirectory

“job_category” JobTemplate.jobCategory

“native_specification” JobTemplate.nativeSpecification

“v_email” JobTemplate.email

“block_email” JobTemplate.blockEmail

“start_time” JobTemplate.startTime

“job_name” JobTemplate.jobName

“input_path” JobTemplate.inputPath

“output_path” JobTemplate.outputPath

“error_path” JobTemplate.errorPath

“join_files” JobTemplate.joinFiles

drmaa-wg@ogf.org 36

String Name JobTemplate Attribute

“transfer_files” JobTemplate.transferFiles

“deadline_time” JobTemplate.deadlineTime

“wct_hlimit” JobTemplate.hardWallclockTimeLimit

“wct_slimit” JobTemplate.softWallclockTimeLimit

“run_duration_hlimit” JobTemplate.hardRunDurationLimit

“run_duration_slimit” JobTemplate.softRunDurationLimit

11 Security Considerations

Security issues are not discussed in this document. The scheduling scenario described here
assumes that security is handled at the point of job authorization/execution on a particular
resource.

12 References

[OMG IDL] Object Management Group. Common Object Request Broker Architecture: Core

Specification, Chapter 3, March 2004
[RFC 2119] S. Bradner. RFC 2119 – Key words for use in RFCs to Indicate Requirement

Levels, March 1997
[IJGUC08] Peter Tröger, Hrabri Rajic, Andreas Haas, and Piotr Domagalski. Standardized Job

Submission and Control in Cluster and Grid Environments. In International Journal
of Grid and Utility Computing (IJGUC). 2008. ISSN 1741-847X

[GFD133] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas
Haas, Bill Nitzberg, John Tollefsrud, and Peter Tröger. Distributed Resource
Management Application API Specification 1.0 (GFD.133). Grid Recommendation.
Open Grid Forum, 2008.

13 Contributors

Peter Tröger
peter@troeger.eu
Blekinge Institute of Technology

14 Acknowledgements

We are grateful to numerous colleagues for support and discussions on the topics covered in
this document, in particular (in alphabetical order, with apologies to anybody we've missed)
Guillaume Alleon, Ali Anjomshoaa, Ed Baskerville, Harald Böhme, Matthieu Cargnelli, Karl
Czajkowski, Piotr Domagalski, Fritz Ferstl, Paul Foley, Nicholas Geib, Becky Gietzel, Alleon
Guillaume, Tim Harsch, Greg Hewgill, Rayson Ho, Eduardo Huedo, Dieter Kranzmüller,
Krzysztof Kurowski, Peter G. Lane, Miron Livny, Ignacio M. Llorente, Martin v. Löwis, Andre
Merzky, Ruben S. Montero, Greg Newby, Steven Newhouse, Michael Primeaux, Greg Quinn,
Martin Sarachu, Jennifer Schopf, Enrico Sirola, Chris Smith, Ancor Gonzalez Sosa, Douglas
Thain, John Tollefsrud, Jose R. Valverde, and Peter Zhu.

Comment [PT44]: TODO: According to
survey, some people want us to consider
security details, such as the user account
the job is running under. Needs check with
both the DRM systems and GridWay.

mailto:peter@troeger.eu

drmaa-wg@ogf.org 37

15 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described
in this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use
of such proprietary rights by implementers or users of this specification can be obtained from the
OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the OGF Executive Director.

16 Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the
OGF disclaims all warranties, express or implied, including but not limited to any warranty that
the use of the information herein will not infringe any rights or any implied warranties of
merchantability or fitness for a particular purpose.

17 Full Copyright Notice

Copyright (C) Open Grid Forum (2008). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be prepared,
copied, published and distributed, in whole or in part, without restriction of any kind, provided
that the above copyright notice and this paragraph are included on all such copies and derivative
works.
However, this document itself may not be modified in any way, such as by removing the
copyright notice or references to the OGF or other organizations, except as needed for the
purpose of developing Grid Recommendations in which case the procedures for copyrights
defined in the OGF Document process must be followed, or as required to translate it into
languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its
successors or assignees.

