
GWD-R
DRMAA-WG
drmaa-wg@ogf.org

Peter Tröger, Hasso-Plattner-Institute (editor)
Daniel Templeton, Cloudera (editor)

March 2011

1

Distributed Resource Management Application API Version 22

(DRMAA) - Draft 13

Status of This Document4

Group Working Draft Recommendation (GWD-R)5

(See footnote)
1

6

Obsoletes7

This document obsoletes GFD-R.022 [7], GFD-R-P.130 [10], and GWD-R.133 [8].8

Copyright Notice9

Copyright c© Open Grid Forum (2005-2011). Some Rights Reserved. Distribution is unlimited.10

Trademark11

All company, product or service names referenced in this document are used for identification purposes only12

and may be trademarks of their respective owners.13

Abstract14

This document describes the Distributed Resource Management Application API Version 2 (DRMAA), which15

provides a generalized API to Distributed Resource Management (DRM) systems in order to facilitate the16

development of portable application programs and high-level libraries for such systems. DRMAA defines17

interfaces for a tightly coupled, but still portable access by abstracting the fundamental functions available18

in the majority of DRM systems. The scope is limited to job submission, job control, and retrieval of job19

and machine monitoring information.20

This document acts as root specification for the abstract API concepts and the behavioral rules that must be21

fulfilled by a DRMAA-compliant implementation. The programming language representation of the abstract22

API concepts must be formulated by a separate language binding specification derived from this document.23

The intended audience for this specification are DRMAA language binding designers, DRM system vendors,24

high-level API designers and meta-scheduler architects. End users are expected to rely on product-specific25

documentation for the DRMAA API implementation in their particular programming language.26

1 This is the non-normative annotated version of the specification with line numbers. It includes historical information
concerning the content and why features were included or discarded by the working group. It also emphasizes the consequences
of some aspects that may not be immediately apparent. This document in only intended for internal working group discussions.

drmaa-wg@ogf.org 1

mailto:drmaa-wg@ogf.org
http://www.drmaa.org/
http://www.drmaa.org/
mailto:drmaa-wg@ogf.org

GWD-R March 2011

Contents27

1 Introduction . 328

1.1 Notational Conventions . 329

1.2 Language Bindings . 430

1.3 Slots and Queues . 431

1.4 Multithreading . 532

2 Namespace . 533

3 Common Type Definitions . 534

4 Common Data Structures and Enumerations . 635

4.1 OperatingSystem enumeration . 736

4.2 CpuArchitecture enumeration . 837

4.3 ResourceLimitType enumeration . 938

4.4 JobTemplatePlaceholder enumeration . 1039

4.5 Queue structure . 1140

4.6 Version structure . 1141

4.7 Machine structure . 1142

4.8 JobInfo structure . 1343

5 Common Exceptions . 1644

6 The DRMAA Session Concept . 1845

6.1 SessionManager Interface . 1846

7 Working with Jobs . 2147

7.1 The DRMAA State Model . 2148

7.2 JobSession Interface . 2449

7.3 DrmaaCallback Interface . 2750

7.4 JobTemplate Structure . 2751

7.5 Job Interface . 3652

7.6 JobArray Interface . 3853

8 Working with Advance Reservation . 3954

8.1 ReservationSession Interface . 3955

8.2 ReservationTemplate structure . 4056

8.3 Reservation Interface . 4357

9 Monitoring the DRM System . 4458

9.1 MonitoringSession Interface . 4559

10 Annex A: Complete DRMAA IDL Specification . 4760

11 Security Considerations . 5261

12 Contributors . 5262

13 Intellectual Property Statement . 5363

14 Disclaimer . 5364

15 Full Copyright Notice . 5465

16 References . 5466

drmaa-wg@ogf.org 2

mailto:drmaa-wg@ogf.org

GWD-R March 2011

1 Introduction67

This document describes the Distributed Resource Management Application API Version 2 (DRMAA) in-68

terface semantics in a generalized way by using the OMG Interface Definition Language (IDL) [4] syntax for69

a language-agnostic description. Based on this abstract specification, language binding standards have to70

be designed that map the described concepts into a library interface for a particular programming language71

(e.g. C, Java, Python). While this document has the responsibility to ensure consistent API semantics over72

all possible DRMAA implementations, the language binding has the responsibility to ensure source-code73

portability for DRMAA applications on different DRM systems.74

An effort has been made to choose an API layout that is not unique to a specific language. However, in some75

cases, various languages disagree over some points. In those cases, the most meritous approach was taken,76

irrespective of language.77

There are other relevant OGF standards in the area of job submission and monitoring. An in-depth com-78

parison and positioning of the obsoleted DRMAA1 specification was provided by another publication [11].79

The DRMAA specification is based on the following stake holders:80

• Distributed resource management system / DRM system / DRMS : Any system which supports the con-81

cept of distributing computational jobs on execution resources through the help of a central scheduling82

entity. Examples are multi-processor systems controlled by a operating system scheduler, cluster sys-83

tems with multiple machines controlled by a central scheduler software, grid systems, or cloud systems84

with a job concept.85

• DRMAA implementation resp. DRMAA library : The implementation of a DRMAA language binding86

specification with the functional semantics described in this document. The resulting artifact is ex-87

pected to be a library that is deployed together with the DRM system that is wrapped by the particular88

implementation.89

• (DRMAA-based) application: Software that utilizes the DRMAA implementation for gaining access to90

one or multiple DRM systems in a standardized way.91

• Submission host : A execution resource in the DRM system that runs the DRMAA-based application.92

• Execution host : A execution resource in the DRM system that can run a job submitted through the93

DRMAA implementation.94

1.1 Notational Conventions95

In this document, IDL resp. programming language elements and definitions are represented in a fixed-width96

font.97

The key words “MUST” “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD98

NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described in RFC 2119 [1].99

Parts of the specification which are normative for derived language binding specifications only are graphically
marked as shaded box.

drmaa-wg@ogf.org 3

mailto:drmaa-wg@ogf.org

GWD-R March 2011

1.2 Language Bindings100

A language binding specification derived from this document MUST define a mapping between the IDL
constructs and specific programming language constructs, with focus on source code portability for the
resulting DRMAA-based applications.

A language binding SHOULD NOT rely itself completely on the OMG language mapping standards available
for many programming languages, since they have a huge overhead of irrelevant CORBA-related mapping
rules. Therefore, language binding authors must carefully decide if a binding decision reflects a natural and
simple mapping of the intended purpose for the DRMAA interfaces. The binding SHOULD reuse OMG
value type mappings (e.g. IDL long long to Java long), and SHOULD define custom mappings for the
other types. The language binding MUST use the described concept mapping in a consistent manner for its
overal API layout.

Due to the usage of IDL, all method groups for a particular purpose (e.g. job control) are described in terms
of interfaces, and not classes. The mapping to a class concept depends on the specific language-mapping
rules.

It may be the case that IDL constructs do not map directly to any language construct. In this case it MUST
be ensured that the chosen mapping retains the intended semantic of the DRMAA interface definition.

Access to scalar attributes (string, boolean, long) MUST operate in a pass-by-value mode. A language
binding must ensure that this behavior is always fulfilled. For non-scalar attributes, the language binding
MUST specify a consistent access strategy for all these attributes – either pass-by-value or pass-by-reference
– according to the use cases of language binding implementations.

This specification tries to consider the possibility of a Remote Procedure Call (RPC) scenario in a DRMAA-
conformant language mapping. It SHOULD therefore be ensured that the programming language type for
an IDL struct definition supports the serialization and comparison of instances. These capabilities should
be accomplished through whatever mechanism is most natural for the specific programming language.

A language binding MUST define a way to declare an invalid struct member value resp. scalar value (UNSET).
In case, a definition per data type needs to be provided. The UNSET value for a boolean data type MUST
translate to False. Unclear if

UNSET for
numeric val-
ues could be
zero.

101

(See footnote)
2

102

1.3 Slots and Queues103

DRMAA supports the notion of slots and queues as resources of a DRM system. A DRMAA application104

can request them in advance reservation and job submission. However, slots and queues SHALL be opaque105

concepts from the viewpoint of a DRMAA implementation, meaning that the requirements given by the106

application are just passed through to the DRM system. This is reasoned by the large variation in interpreting107

that concepts in the different DRM systems, which makes it impossible to define a common understanding108

on the level of the DRMAA API.109

2 The concept of a UNSET value was decided on a conf call (Aug 25th 2010). Boolean in C should use custom enumeration
(TRUE, FALSE, INVALID) or pointer to static values. A numerical UNSET in C should use a magic number, since all long
attributes are unsigned, it could be MIN INT. With Python, just use None. For Java, Dan has an idea.

drmaa-wg@ogf.org 4

mailto:drmaa-wg@ogf.org

GWD-R March 2011

(See footnote)
3

110

1.4 Multithreading111

High-level APIs such as SAGA [3] are expected to utilize DRMAA for asynchronous operations, based on the112

assumption that re-entrancy is supported by DRMAA implementations. For this reason, implementations113

SHOULD ensure the proper functioning of the library in case of re-entrant library calls. A DRMAA library114

SHOULD allow a multithreaded application to use DRMAA interfaces without any explicit synchronization115

among the application threads. DRMAA implementers should document their work as thread safe if they116

meet the above criteria. Providers of non-thread-safe DRMAA implementations should document all the117

interfaces that are thread unsafe and provide a list of interfaces and their dependencies on external thread118

unsafe routines.119

2 Namespace120

The DRMAA interfaces and structures are encapsulated by a naming scope, which avoids conflicts with121

other API’s used in the same application.122

module DRMAA2 {123

Language binding authors MUST map the IDL module encapsulation to an according package or namespace
concept and MAY change the module name according to programming language conventions.

(See footnote)
4

124

3 Common Type Definitions125

The DRMAA specification defines some custom types to express special value semantics not expressible in126

IDL.127

typedef sequence <string > OrderedStringList;128

typedef sequence <string > StringList;129

typedef sequence <Job > JobList;130

typedef sequence <Queue > QueueList;131

typedef sequence <Machine > MachineList;132

typedef sequence <Reservation > ReservationList;133

typedef sequence < sequence <string ,2> > Dictionary;134

typedef string AbsoluteTime;135

typedef long long TimeAmount;136

native ZERO_TIME;137

native INFINITE_TIME;138

native UNSET;139

3 As one example, queues can be either treated as representation of execution hosts (Sun Grid Engine) or as central waiting
line located at the scheduler (LSF).

4 Comparison to DRMAA v1.0: The IDL module name was change to DRMAA2, in order to intentionally break backward
compatibility of the interface.

drmaa-wg@ogf.org 5

mailto:drmaa-wg@ogf.org

GWD-R March 2011

OrderedStringList: An unbounded list of strings, which supports element insertion, element deletion, and140

iteration over elements while keeping an element order.141

StringList: An unbounded list of strings, without any demand on element order.142

JobList: An unbounded list of Job instances, without any demand on element order.143

MachineList: An unbounded list of Machine instances, without any demand on element order.144

QueueList: An unbounded list of Queue instances, without any demand on element order.145

ReservationList: An unbounded list of Reservation instances, without any demand on element order.146

Dictionary: An unbounded dictionary type for storing key-value pairs, without any demand on element147

order.148

AbsoluteTime: Expression of a point in time, at least with a resolution to seconds.149

TimeAmount: Expression of an amount of time, at least with a resolution to seconds.150

ZERO TIME: A constant value of type TimeAmount which expresses a zero amount of time.151

INFINITE TIME: A constant value of type TimeAmount which expresses an infinite amount of time.152

A language binding MUST replace these type definitions with semantically equal reference or value types
in the according language. This may include the creation of new complex language types for one or more
of the above concepts. The language binding MUST define a consistent mapping on module level, and a
mechanism for obtaining the RFC822 string representation from a given AbsoluteTime resp. TimeAmount

instance.

(See footnote)
5

153

4 Common Data Structures and Enumerations154

DRMAA defines a set of data structures commonly used by different interfaces to express information for155

resp. from the DRM system. A DRMAA implementation is allowed to extend the specified structures, if156

explicitely noted in the description of the particular structure (e.g. as with JobInfo). Behavioral aspects of157

such extended attributes are out of scope for DRMAA. Implementations SHALL only extend data structures158

in the way specified by the language binding.159

A language binding MUST define a consistent mechanism to realize implementation-specific structure and
enumeration extension, without breaking the portability of DRMAA-based applications that rely on the
original version of the structure. Object oriented languages MAY use inheritance mechanisms for this
purpose.

Language bindings SHOULD define numerical values for all constants and enumeration members, in order
to foster binary portability of DRMAA-based applications. Instances of these structures SHALL be treated
in a ”call-by-value” fashion, meaning that the collection of struct member values is handed over as one to
the called interface method.

5 The PartialTimestamp functionality from DRMAA 1.0 was completely removed. Absolute date and time values are now
expressed as RFC822 conformant data items with stringification support (conf. call Mar 31st 2009). String list for job identifiers
are replaced by Job object lists (F2F meeting July 2009)

drmaa-wg@ogf.org 6

mailto:drmaa-wg@ogf.org

GWD-R March 2011

(See footnote)
6

160

4.1 OperatingSystem enumeration161

DRMAA supports the identification of an operating system installation on execution resources in the DRM162

system. The OperatingSystem enumeration is used as data type both in the advanced reservation and the163

DRM system monitoring functionalities. It defines a set of standardized identifiers for operating system164

types. The list is a shortened version of the according CIM Schema [6]. It includes only operating systems165

that are supported by the majority of DRM systems available at the time of writing:166

enum OperatingSystem {167

HPUX , LINUX , IRIX , TRUE64 , MACOS , SUNOS , WIN , WINNT , AIX , UNIXWARE ,168

BSD , OTHER_OS };169

AIX: AIX Unix by IBM.170

BSD: All operating system distributions based on the BSD kernel.171

LINUX: All operating system distributions based on the Linux kernel.172

HPUX: HP-UX Unix by Hewlett-Packard.173

IRIX: The IRIX operating system by SGI.174

MACOS: The MAC OS X operating system by Apple.175

SUNOS: SunOS resp. Solaris operating system by Sun / Oracle.176

TRUE64: True64 Unix by Hewlett-Packard, or DEC Digital Unix, or DEC OSF/1 AXP.177

UNIXWARE: UnixWare system by SCO group.178

WIN: Windows 95, Windows 98, Windows ME.179

WINNT: Microsoft Windows operating systems based on the NT kernel180

OTHER OS: An operating system type not specified in this list.181

Implementations SHOULD NOT add new operating system identifiers to this enumeration, even if they are182

supported by the underlying DRM system.183

The operating system information is only useful in conjunction with version information (see Section 9.1),184

which is also the reporting approach taken in most DRM systems. Examples:185

• The Apple MacOS X operating system commonly denoted as ”Snow Leopard” would be reported as186

”MACOS” with the version structure [”10”,”6”]187

• The Microsoft Windows 7 operating system would be reported as ”WINNT” with the version infor-188

mation [”6”,”1”], which is the internal version number reported by the Windows API.189

• All Linux distributions would be reported as operating system type ”LINUX” with the major revision190

of the kernel, e.g. [”2”,”6”].191

6 Comparison to DRMAA 1.0: The binding of job template attribute names and exception names to strings was removed
from the main specification. Language bindings such as for the C programming languages have to define their own mapping.
It is recommended to keep string identifiers from DRMAA 1.0 as far as possible.

drmaa-wg@ogf.org 7

mailto:drmaa-wg@ogf.org

GWD-R March 2011

• The Solaris operating system is reported as ”SUNOS”, together with the internal version number, e.g.192

[”5”,”10”] for Solaris 10.193

The DRMAA OperatingSystem enumeration can be mapped to other high-level APIs. Table 1 gives a194

non-normative set of examples.195

DRMAA OperatingSystem value JSDL jsdl:OperatingSystemTypeEnumeration value
HPUX HPUX
LINUX LINUX
IRIX IRIX

TRUE64 Tru64 UNIX, OSF
MACOS MACOS
SUNOS SunOS, SOLARIS

WIN WIN95, WIN98, Windows R Me
WINNT WINNT, Windows 2000, Windows XP

AIX AIX
UNIXWARE SCO UnixWare, SCO OpenServer

BSD BSDUNIX, FreeBSD, NetBSD, OpenBSD
OTHER OS Other

Table 1: Mapping example for the DRMAA OperatingSystem enumeration

4.2 CpuArchitecture enumeration196

DRMAA supports identifying the processor instruction set architecture on execution resources in the DRM197

system. The CpuArchitecture enumeration is used as data type both in the advanced reservation and the198

DRM system monitoring functionalities. It defines a set of standardized identifiers for processor architecture199

families. The list is a shortened version of the according CIM Schema [6], It includes only processor families200

that are supported by the majority of DRM systems available at the time of writing:201

enum CpuArchitecture {202

ALPHA , ARM , CELL , PARISC , X86 , X64 , IA64 , MIPS , PPC , PPC64 ,203

SPARC , SPARC64 , OTHER_CPU };204

ALPHA: The DEC Alpha / Alpha AXP processor architecture.205

ARM: The ARM processor architecture.206

CELL: The Cell processor architecture.207

PA-RISC: The PA-RISC processor architecture.208

X86: The IA-32 line of the X86 processor architecture family, with 32bit support only.209

X64: The X86-64 line of the X86 processor architecture family, with 64bit support.210

IA-64: The Itanium processor architecture.211

MIPS: The MIPS processor architecture.212

PPC: The PowerPC processor architecture, all models with 32bit support only.213

PPC64: The PowerPC processor architecture, all models with 64bit support.214

drmaa-wg@ogf.org 8

mailto:drmaa-wg@ogf.org

GWD-R March 2011

SPARC: The SPARC processor architecture, all models with 32bit support only.215

SPARC64: The SPARC processor architecture, all models with 64bit support.216

OTHER CPU: A processor architecture not specified in this list.217

The DRMAA CpuArchitecture enumeration can be mapped to other high-level APIs. Table 2 gives a218

non-normative set of examples.219

The reporting and job configuration for processor architectures SHOULD operate on a ”as-is” base, if sup-220

ported by the DRM system. This means that the reported architecture should reflect the current operation221

mode of the processor with the running operating system. For example, X64 processors executing a 32-bit222

operating system typically report themself as X86 processor.223

DRMAA CpuArchitecture value JSDL jsdl:ProcessorArchitectureEnumeration value
ALPHA other

ARM arm
CELL other

PA-RISC parisc
X86 x86 32
X64 x86 64

IA-64 ia64
MIPS mips
PPC powerpc

PPC64 powerpc
SPARC sparc

SPARC64 sparc
OTHER other

Table 2: Mapping example for DRMAA CpuArchitecture enumeration

4.3 ResourceLimitType enumeration224

Modern DRM systems expose resource constraint capabilities from the operating system for jobs on the225

execution host. The ResourceLimitType enumeration represents the typical ulimit(3) parameters [5] in226

different DRM systems. All parameters relate to the operating system process representing some job on the227

execution host.228

enum ResourceLimitType {229

CORE_FILE_SIZE , CPU_TIME , DATA_SEG_SIZE , FILE_SIZE , OPEN_FILES ,230

STACK_SIZE , VIRTUAL_MEMORY , WALLCLOCK_TIME };231

CORE FILE SIZE: The maximum size of the core dump file created on fatal errors of the process, in232

Kibibyte. Setting this value to zero SHOULD disable the creation of core dump files on the execution233

host.234

CPU TIME: The maximum accumulated time in seconds the process is allowed to perform computations235

on all processors in the execution host.236

DATA SEG SIZE: The maximum amount of memory the process can allocate on the heap e.g. for object237

creation, in Kibibyte.238

drmaa-wg@ogf.org 9

mailto:drmaa-wg@ogf.org

GWD-R March 2011

FILE SIZE: The maximum file size the process can generate, in Kibibyte.239

OPEN FILES: The maximum number of file descriptors the process is allowed to have open at the same240

time.241

STACK SIZE: The maximum amount of memory the process can allocate on the stack, e.g. for local242

variables, in Kibibyte.243

VIRTUAL MEMORY: The maximum amount of memory the process is allowed to allocate, in Kibibyte.244

WALLCLOCK TIME: The maximum wall clock resp. real time in seconds the job is allowed to exist in245

any of the ”Started” or ”Queued” states (see Section 7.1).246

Explanations
need approval
by the group.
Does WALL-
CLOCK TIME
really also
include
queued time
?

247

(See footnote)
7

248

4.4 JobTemplatePlaceholder enumeration249

The JobTemplatePlaceholder enumeration defines constant macros to be used in string attributes of a250

JobTemplate instance.251

enum JobTemplatePlaceholder {252

HOME_DIRECTORY ,WORKING_DIRECTORY ,HOST_NAME ,USER_NAME ,PARAMETRIC_INDEX };253

A HOME_DIRECTORY placeholder SHOULD be only allowed at the beginning of a JobTemplate attribute value.254

It denotes the remaining portion as a directory / file path resolved relative to the job users home directory255

at the execution host.256

A WORKING_DIRECTORY placeholder SHOULD be only allowed at the beginning of a JobTemplate attribute257

value. It denotes the remaining portion as a directory / file path resolved relative to the jobs working258

directory at the execution host.259

The HOST_NAME placeholder SHOULD be usable at any position within an attribute value that supports place260

holders. It SHALL be substituted by the full-qualified name of the execution host were the job is executed.261

The USER_NAME placeholder SHOULD be usable at any position within an attribute value that supports262

place holders. It SHALL be substituted by the job users account name on the execution host.263

The PARAMETRIC_INDEX placeholder SHOULD be usable at any position within an attribute value that264

supports place holders. It SHALL be substituted by the parametric job index in a JobSession::runBulkJobs265

call (see Section 7.2.6). If the job template is used for a JobSession:runJob call, PARAMETRIC_INDEX should266

be substituted with a constant implementation-specific value.267

(See footnote)
8

268

7 ”Pipe size” was not added, since there is no use case in DRM systems with a job concept. ”Max user processes” was
omitted because it operates on the notion of users, which is not an explicit concept in DRMAA.

8 Placeholders for other job template attributes were rejected, in order to avoid circular dependencies (Conf. call Oct 20th
2010)

drmaa-wg@ogf.org 10

mailto:drmaa-wg@ogf.org

GWD-R March 2011

4.5 Queue structure269

The Queue structure denotes a job waiting queue in the DRM system. Queue is an opaque concept from the270

perspective of the DRMAA application (see Section 1.3). The Queue struct contains read-only information.271

Implementations MAY extend this structure with implementation-specific attributes.272

struct Queue {273

string name;274

TimeAmount maxWallclockTime;275

};276

4.5.1 name277

This attribute contains the name of the queue as reported by the DRM system. The format of the queue278

name is implementation-specific. The naming scheme SHOULD be consistent for all strings returned.279

4.5.2 maxWallclockTime280

This attribute contains the maximum amount of wallclock time allowed for jobs submitted to the queue.281

The attribute value is UNSET when there is no restriction. If this value is not UNSET, then any job submitted282

to this queue SHOULD enter one of the ”Terminated” states when the wallclock time limit is reached.283

Termination
condition
must be ap-
proved by the
group

284

4.6 Version structure285

The Version structure denotes versioning information for an operating system, DRM system, or DRMAA286

implementation.287

struct Version {288

string major;289

string minor;290

};291

Both the major and the minor part are expressed as strings, in order to allow specific extensions with292

character combinations such as ”rev”. Original version strings containing a dot, e.g. Linux ”2.6”, SHOULD293

be interpreted as having the major part before the dot, and the minor part after the dot. The dot character294

SHOULD NOT be added to the Version attributes.295

4.7 Machine structure296

The Machine structure describes the properties of a particular execution host in the DRM system. Im-297

plementations MAY extend this structure with implementation-specific additional information. It contains298

read-only information. An implementation resp. its DRM system MAY restrict jobs in their resource uti-299

lization even below the limits described in the Machine structure. The limits given here MAY be imposed300

by the hardware configuration, or MAY be be imposed by DRM system policies.301

struct Machine {302

string name;303

long sockets;304

drmaa-wg@ogf.org 11

mailto:drmaa-wg@ogf.org

GWD-R March 2011

long coresPerSocket;305

long threadsPerCore;306

double load;307

long physMemory;308

long virtMemory;309

OperatingSystem machineOS;310

Version machineOSVersion;311

CpuArchitecture machineArch;312

};313

4.7.1 name314

This attribute describes the name of the machine as reported by the DRM system. The format of the315

machine name is implementation-specific, but MAY be a DNS host name. The naming scheme SHOULD be316

consistent for all strings returned.317

4.7.2 sockets318

This attribute describes the number of processor sockets resp. CPUs usable for jobs on the machine from319

operating system perspective. The attribute value MUST be greater than 0. In the case where the correct320

value is unknown to the implementation, the value MUST be set to 1.321

4.7.3 coresPerSocket322

This attribute describes the number of cores per socket usable for jobs on the machine from operating system323

perspective. The attribute value MUST be greater than 0. In case where the correct value is unknown to324

the implementation, the value MUST be set to 1.325

4.7.4 threadsPerCore326

This attribute describes the number of threads that can be executed in parallel by a job on one core in the327

machine. The attribute value MUST be greater than 0. In case where the correct value is unknown to the328

implementation, the value MUST be set to 1.329

4.7.5 load330

This attributes describes the 1-minute average load on the given machine, similar to the Unix uptime com-331

mand. The value has only informative character, and should not be utilized by end user applications for job332

scheduling purposes. An implementation MAY provide delayed or averaged data here, if necessary due to333

implementation issues. The implementation strategy on non-Unix systems is undefined.334

4.7.6 physMemory335

This attribute describes the amount of physical memory in Kibibyte available on the machine.336

4.7.7 virtMemory337

This attribute describes the amount of virtual memory in Kibibyte available for a job executing on this338

machine. The virtual memory amount is defined as the sum of physical memory installed plus the configured339

drmaa-wg@ogf.org 12

mailto:drmaa-wg@ogf.org

GWD-R March 2011

swap space for the operating system. The value is expected to be used as indicator whether or not an340

application is able to get its memory allocation needs fulfilled on a particular machine. Implementations341

SHOULD derive this value directly from operating system information, without further consideration of342

additional memory allocation restrictions such as address space range or already running processes.343

4.7.8 machineOS344

This attribute describes the operating system installed on the described machine, with semantics as specified345

in Section 4.1.346

4.7.9 machineOSVersion347

This attribute describes the operating system version of the machine, with semantics as specified in Section348

4.1.349

4.7.10 machineArch350

This attribute describes the instruction set architecture of the machine, with semantics as specified in Section351

4.2.352

4.8 JobInfo structure353

The JobInfo structure describes job information that is available for the DRMAA-based application.354

struct JobInfo {355

string jobId;356

Dictionary resourceUsage;357

long exitStatus;358

string terminatingSignal;359

string annotation;360

JobState jobState;361

any jobSubState;362

OrderedStringList allocatedMachines;363

string submissionMachine;364

string jobOwner;365

string queueName;366

TimeAmount wallclockTime;367

long cpuTime;368

AbsoluteTime submissionTime;369

AbsoluteTime dispatchTime;370

AbsoluteTime finishTime ;};371

The structure is used in two occasions - first for the expression of information about a single job, and second372

as filter expression when retrieving a list of jobs from the DRMAA implementation.373

In both usage scenarios, the structure information has to be understood as snapshot of the live DRM system.374

Multiple values being set in one structure instance should be interpreted as ”occurring at the same time”.375

In real implementations, some granularity limits must be assumed - for example, the wallclockTime and376

the cpuTime attributes might hold values that were measured with a very small delay one after each other.377

drmaa-wg@ogf.org 13

mailto:drmaa-wg@ogf.org

GWD-R March 2011

In the use case of job information monitoring, it is assumed that the DRM system has three job information378

states: running, buffered, purged. Only information for jobs that are still running or are still held in the379

buffer of finished job information will be reported completely. In this case, the information SHOULD reflect380

the current status of the job as as close as possible to the time of the call.381

If jobs have been purged out to accounting, different attributes might not contain valid data. Implementa-382

tions MAY decide to return only partially filled JobInfo instances due to performance restrictions in the383

communication with the DRM system.384

For additional DRMS-specific information, the JobInfo structure MAY be extended by the DRMAA imple-385

mentation (see Section 4).386

(See footnote)
9

387

4.8.1 jobId388

For monitoring: Returns the stringified job identifier assigned to the job by the DRM system.389

For filtering: Returns the job with the chosen job identifier.390

4.8.2 resourceUsage391

For monitoring: Returns resource consumption information for the given job. The dictionary keys are392

implementation-specific.393

For filtering: Returns the jobs that have the dictionary key-value pairs as subset of their own.394

Standardize
resource
usage key
names ?!?

395

4.8.3 exitStatus396

For monitoring: The process exit status of the job, as reported by the operating system. If the job is not in397

one of the terminated states, the value should be UNSET.398

For filtering: Return the jobs with the given exitStatus value. Jobs without exit status information should399

be filtered out by asking for the appropriate states.400

4.8.4 terminatingSignal401

For monitoring: This attribute specifies the UNIX signal that reasoned the ending of the job. Implementa-402

tions should document the extent to which they can gather such information in the particular DRM system403

(e.g. with Windows hosts).404

For filtering: Returns the jobs with the given terminatingSignal value.405

9 In comparison to DRMAA 1.0, the JobInfo value type was heavily extended for providing more information (solves issue
#2827). JobInfo::hasCoreDump is no longer supported, since the information is useless without according core file staging
support, which is not implementable in a portable way. (conf. call Jun 9th 2010)

Some DRM systems (SGE / Condor at least) support the automated modification of job template attributes after submission,
and therefore allow to fetch the true job template attributes at run-time from the job. The monitoring for such data was
intentionally not included in DRMAA (mailing list July 2010).

drmaa-wg@ogf.org 14

mailto:drmaa-wg@ogf.org

GWD-R March 2011

4.8.5 annotation406

For monitoring: Gives a human-readable annotation describing why the job is in its current state or sub-state.407

The support for this information is optional.408

For filtering: This attribute is ignored for filtering.409

4.8.6 jobState410

For monitoring: This attribute specifies the jobs current state according to the DRMAA job state model411

(see Section 7.1).412

For filtering: Returns all jobs in the specified state. If the given state is simulated by the implementation413

(see Section 7.1), the implementation SHOULD raise an InvalidArgumentException explaining that this414

filter can never match.415

4.8.7 jobSubState416

For monitoring: This attribute specifies the jobs current DRMAA implementation specific sub-state (see417

Section 7.1).418

For filtering: Returns all jobs in the specified sub-state. If the given sub-state is not supported by the imple-419

mentation (see Section 7.1), the implementation SHOULD raise an InvalidArgumentException explaining420

that this filter can never match.421

4.8.8 allocatedMachines422

This attribute expresses the set of machines that are utilized for job execution. Implementations MAY423

decide to give the ordering of machine names a particular meaning, for example putting the master node in424

a parallel job at first position. This decision should be documented for the user. For performance reasons,425

only the machine names are returned, and SHOULD be equal to the according Machine::name attribute in426

monitoring data.427

For monitoring: This attribute lists the set of names of the machines to which this job has been assigned.428

For filtering: Returns the list of jobs which have a set of assigned machines that is a superset of the given429

set of machines.430

4.8.9 submissionMachine431

This attribute provides the machine name of the submission host for this job. For performance reasons,432

only the machine name is returned, and SHOULD be equal to the according Machine::name attribute in433

monitoring data.434

For monitoring: This attribute specifies the machine from which this job was submitted.435

For filtering: Returns the set of jobs that were submitted from the specified machine.436

4.8.10 jobOwner437

For monitoring: This attribute specifies the job owner as reported by the DRM system.438

For filtering: Returns all jobs owned by the specified user.439

drmaa-wg@ogf.org 15

mailto:drmaa-wg@ogf.org

GWD-R March 2011

4.8.11 queueName440

For monitoring: This attribute specifies the queue in which the job was queued resp. started (see Section441

1.3).442

For filtering: Returns all jobs that were queued resp. started in the specified queue.443

4.8.12 wallclockTime444

For monitoring: Accumulated time the job spent in ”Queued” or ”Started” states . Implementations MAY
Same discus-
sion as above

445

determine this value by subtracting the current time resp. finishTime by the dispatchTime of the job.446

For filtering: Returns all jobs that have consumed at least the specified amount of wall clock time.447

4.8.13 cpuTime448

For monitoring: This attribute specifies the amount of CPU time consumed by the job. This value includes449

only time the job spent in JobState::RUNNING (see Section 7.1).450

For filtering: Returns all jobs that have consumed at least the specified amount of CPU time.451

4.8.14 submissionTime452

For monitoring: This attribute specifies the time at which the job was submitted. Implementations SHOULD453

use the submission time recorded by the DRM system, if available.454

For filtering: Returns all jobs that were submitted at or after the specified submission time.455

4.8.15 dispatchTime456

For monitoring: The time the job first entered a ”Started” state (see Section 7.1). On job restart or re-457

scheduling, this value does not change.458

For filtering: Returns all jobs that entered a ”Started” state at, or after the specified dispatch time.459

4.8.16 finishTime460

For monitoring: The time the job first entered a ”Terminated” state (see Section 7.1).461

For filtering: Returns all jobs that entered a ”Terminated” state at or after the specified finish time.462

Resolve how
to report slot
assignments
for jobs

463

5 Common Exceptions464

The exception model specific error information that can be returned by a DRMAA implementation on465

method calls.466

exception AuthorizationException {string message ;};467

exception DefaultContactStringException {string message ;};468

exception DeniedByDrmException {string message ;};469

exception DrmCommunicationException {string message ;};470

exception TryLaterException {string message ;};471

drmaa-wg@ogf.org 16

mailto:drmaa-wg@ogf.org

GWD-R March 2011

exception SessionManagementException {string message ;};472

exception TimeoutException {string message ;};473

exception InternalException {string message ;};474

exception InvalidArgumentException {string message ;};475

exception InvalidSessionException {string message ;};476

exception InvalidStateException {string message ;};477

exception OutOfMemoryException {string message ;};478

exception UnsupportedAttributeException {string message ;};479

exception UnsupportedOperationException {string message ;};480

If not defined otherwise, the exceptions have the following meaning:481

AuthorizationException: The user is not authorized to perform the given function.482

DefaultContactStringException: The DRMAA implementation could not use the default contact string483

to connect to DRM system.484

DeniedByDrmException: The DRM system rejected the operation due to security issues.485

DrmCommunicationException: The DRMAA implementation could not contact the DRM system. The486

problem source is unknown to the implementation, so it is unknown if the problem is transient or not.487

TryLaterException: The DRMAA implementation detected a transient problem with performing the488

operation, for example due to excessive load. The application is recommended to retry the call.489

SessionManagementException: A problem was encountered while trying to create / open / close /490

destroy a session.491

TimeoutException: The timeout given in one the waiting functions was reached without successfully492

finishing the waiting attempt.493

InternalException: An unexpected or internal error occurred in the DRMAA library, for example a system494

call failure. It is unknown if the problem is transient or not.495

InvalidArgumentException: From the viewpoint of the DRMAA library, a function parameter is invalid496

or inappropriate for the particular function call.497

InvalidSessionException: The session used for the function is not valid, for example since it was closed498

before.499

InvalidStateException: The function call is not allowed in the current state of the job.500

OutOfMemoryException: This exception can be thrown by any method at any time when the DRMAA501

implementation has run out of free memory.502

UnsupportedAttributeException: The optional attribute is not supported by the DRMAA implemen-503

tation.504

UnsupportedOperationException: The function is not supported by the DRMAA implementation. One505

example is the registration of an event callback function.506

.

We might
want to
introduce
InvalidTemplateException
for separating
input
parameter
issues

507

The DRMAA specification assumes that programming languages targeted by language bindings typically

drmaa-wg@ogf.org 17

mailto:drmaa-wg@ogf.org

GWD-R March 2011

support the concept of exceptions. If a destination language does not support them (like ANSI C), the
language binding specification SHOULD map error conditions to an appropriate consistent concept. A
language binding MAY chose to model exceptions as numeric error code return values, and return values as
additional output parameters of the operation. In this case, the language binding specification SHOULD
specify numeric values for all DRMAA error constants.

The representation of exceptions in the language binding MUST support a possibility to express an exception
cause as textual description. Implementations MAY use this text to express DRMS-specific error conditions
that are outside of the DRMAA scope.

Object-oriented language bindings MAY decide to derive all exceptions from one or multiple exception base
classes, in order to support generic catch clauses. Whenever it is appropriate, language bindings SHOULD
replace DRMAA exceptions by their semantically equivalent native exception from the application runtime
environment.

Language bindings MAY decide to introduce a hierarchical ordering of the DRMAA exceptions through class
derivation. In this case, any new exceptions added for aggregation purposes SHOULD be prevented from
being thrown, for example by marking them as abstract.

The UnsupportedAttributeException may either be raised by the setter function for the attribute or by
the job submission function. A consistent decision for either one or the other approach MUST be made by
the language binding specification.

(See footnote)
10

508

6 The DRMAA Session Concept509

DRMAA relies on an overall session concept, which supports the persistency of job and advance reservation510

information over multiple application runs. This supports short-lived applications that need to work with511

DRM system state spanning multiple application runs. Typical examples are job submission portals or512

command-line tools. The session concept is also intended to allow implementations to perform DRM system513

attach / detach operations at dedicated points in the application control flow.514

6.1 SessionManager Interface515

interface SessionManager{516

readonly attribute string drmsName;517

readonly attribute Version drmaaVersion;518

readonly attribute boolean reservationSupported;519

JobSession createJobSession(in string sessionName ,520

in string contactString);521

ReservationSession createReservationSession(in string sessionName ,522

in string contactString);523

MonitoringSession createMonitoringSession (in string contactString);524

10 Comparsion to DRMAA 1.0: The InconsistentStateException was removed, since it is semantically equal to the In-
validStateException (conf. call Jan 7th 2010) The former HoldInconsistentStateException, ReleaseInconsistentStateException,
ResumeInconsistentStateException, and SuspendInconsistentStateException from DRMAA v1.0 are now expressed as single
InvalidStateException with different meaning per raising method. (F2F meeting July 2009)

drmaa-wg@ogf.org 18

mailto:drmaa-wg@ogf.org

GWD-R March 2011

JobSession openJobSession(in string sessionName);525

ReservationSession openReservationSession(in string sessionName);526

void closeJobSession(in JobSession s);527

void closeReservationSession(in ReservationSession s);528

void closeMonitoringSession(in MonitoringSession s);529

void destroyJobSession(in string sessionName);530

void destroyReservationSession(in string sessionName);531

StringList getJobSessions ();532

StringList getReservationSessions ();533

};534

The SessionManager interface is the main interface for establishing communication with a given DRM sys-535

tem. By the help of this interface, sessions for job management, monitoring, and/or reservation management536

can be maintained.537

An implementation MUST allow the application to keep multiple DRMAA job session, reservation session538

and monitoring session instances open at the same time. The implementation SHOULD take care of according539

race conditions.540

Job and reservation sessions maintain persistent state information (about jobs resp. reservations created)541

between application runs. State data SHOULD be persisted by the library implementation or the DRMS542

itself (if supported) after closing the session through the according method in the SessionManager interface.543

The re-opening of a session MUST be possible on the machine where the session was originally created.544

Implementations MAY also offer to re-open the session on another machine.545

The state information SHOULD be kept until the job resp. reservation session is explicitly reaped by the546

according destroy method in the SessionManager interface. If an implementation runs out of resources for547

storing the session information, the closing function SHOULD throw a SessionManagementException. If548

an application ends without closing the session properly, the behavior of the DRMAA implementation is549

undefined.550

(See footnote)
11

551

6.1.1 drmsName552

A system identifier denoting a specific type of DRM system, e.g. ”LSF” or ”GridWay”. It is intended553

to support conditional code blocks in the DRMAA application that rely on DRMS-specific details of the554

DRMAA implementation. Implementations SHOULD NOT make versioning information of the particular555

DRM system a part of this attribute value.556

6.1.2 drmaaVersion557

A combination of minor / major version number information for the DRMAA implementation. The major558

version number MUST be the constant value ”2”, the minor version number SHOULD be used by the559

11 Comparison to DRMAA 1.0: The concept of a factory from GFD.130 was removed (solves issue #6276). Version 2.0 of
DRMAA supports restartable sessions by the newly introduced SessionManager interface. It allows creating multiple concurrent
sessions for job submission (solves issue #2821), which can be restarted by their generated session name (solves issue #2820).
Session.init() and Session.exit() functionalities are moved to the according session creation and closing routines. The descriptions
were fixed accordingly (solves issue #2822). The AlreadyActiveSession error was removed. (F2F meeting July 2009) The
drmaaImplementation attribute from DRMAA 1.0 was removed, since it was redundant to the drmsInfo attribute. This one is
now available in the new SessionManager interface. (F2F meeting July 2009).

drmaa-wg@ogf.org 19

mailto:drmaa-wg@ogf.org

GWD-R March 2011

DRMAA implementation for expressing its own versioning information.560

6.1.3 reservationSupported561

The attribute indicates if advance reservation is supported by the DRMAA implementation. If False, all562

methods related to advance reservation will raise an UnsupportedOperationExeption if being used.563
New, needs
group ap-
proval

564

(See footnote)
12

565

6.1.4 createJobSession / createReservationSession / createMonitoringSession566

The method creates a new session instance of the particular type for the application. On successful completion567

of this method, the necessary initalization for making the session usable MUST be completed. Examples are568

the connection establishment from the DRMAA library to the DRM system, or the prefetching of information569

from non-thread-safe operating system calls, such as getHostByName.570

The contactString parameter is an implementation-dependent string that SHALL allow the application to571

specify which DRM system instance to use. A contact string represents a specific installation of a specific572

DRM system, e.g. a Condor central manager machine at a given IP address, or a Grid Engine ‘root’ and573

‘cell’. Contact strings are always implementation dependent and therefore opaque to the application. If574

contactString has the value UNSET, a default DRM system SHOULD be contacted. The manual configu-575

ration or automated detection of a default contact is implementation-specific.576

The sessionName parameter denotes a specific name to be used for the new session. If a session with such577

a name was created before, the method MUST throw an InvalidArgumentException. In all other cases,578

including if the provided name has the value UNSET, a new session MUST be created with a unique name579

generated by the implementation. A MonitoringSession instance has no persistent state, and therefore580

does not support the name concept.581

If the DRM system does not support advance reservation, than createReservationSession SHALL throw582

an UnsupportedOperationException.583

6.1.5 openJobSession / openReservationSession584

The method is used to open a persisted JobSession resp. ReservationSession instance that has previously585

been created under the given sessionName. The implementation MUST support the case that the session586

have been created by the same application or by a different application running on the same machine. The587

implementation MAY support the case that the session was created resp. updated on a different machine.588

If no session with the given sessionName exists, an InvalidArgumentException MUST be raised.589

If the session described by sessionName was already opened before, implementations MAY return the same590

JobSession resp. ReservationSession instance.591

If the DRM system does not support advance reservation, openReservationSession SHALL throw an592

UnsupportedOperationException.593

12This attribute is intended to avoid test calls for checking if advance reservation is supported by the implementation

drmaa-wg@ogf.org 20

mailto:drmaa-wg@ogf.org

GWD-R March 2011

6.1.6 closeJobSession / closeReservationSession / closeMonitoringSession594

The method MUST do whatever work is required to disengage from the DRM system. It SHOULD be callable595

only once, by only one of the application threads. This SHOULD be ensured by the library implementation.596

Additional calls beyond the first SHOULD lead to a NoActiveSessionException error notification.597

For JobSession resp. ReservationSession instances, the according state information MUST be saved to598

some stable storage before the method returns. This method SHALL NOT affect any jobs or reservations in599

the session (e.g., queued and running jobs remain queued and running).600

If the DRM system does not support advance reservation, closeReservationSession SHALL throw an601

UnsupportedOperationException.602

6.1.7 destroyJobSession / destroyReservationSession603

The method MUST do whatever work is required to reap persistent session state and cached job state604

information for the given session name. If JobSession resp. ReservationSession instances for the given605

name exist, they MUST become invalid after this method was finished sucessfully. Invalid sessions MUST606

throw InvalidSessionException on every attempt of utilization. This method SHALL NOT affect any607

jobs resp. reservations in the session in their operation, e.g. queued and running jobs remain queued and608

running.609

If the DRM system does not support advance reservation, destroyReservationSession SHALL throw an610

UnsupportedOperationException.611

6.1.8 getJobSessions / getReservationSessions612

This method returns a list of JobSession resp. ReservationSession names that are valid input for a613

openJobSession resp. openReservationSession call.614

If the DRM system does not support advance reservation, getReservationSessions SHALL throw an615

UnsupportedOperationException.616

7 Working with Jobs617

A DRMAA job represents a single computational activity that is executed by the DRM system on a execution618

host, typically as operating system process. The JobSession interface represents all control and monitoring619

functions commonly available in DRM systems for such jobs as a whole, while the Job interface represents the620

common functionality for single jobs. Sets of jobs resulting from a bulk submission are separately represented621

by the JobArray interface. JobTemplate instances allow to formulate conditions and requirements for the622

job execution by the DRM system.623

7.1 The DRMAA State Model624

DRMAA defines the following job states:625

enum JobState {626

UNDETERMINED , QUEUED , QUEUED_HELD , RUNNING , SUSPENDED , REQUEUED ,627

REQUEUED_HELD , DONE , FAILED };628

drmaa-wg@ogf.org 21

mailto:drmaa-wg@ogf.org

GWD-R March 2011

UNDETERMINED: The job status cannot be determined. This is a permanent issue, not being solvable629

by querying again for the job state.630

QUEUED: The job is queued for being scheduled and executed.631

QUEUED HELD: The job has been placed on hold by the system, the administrator, or the submitting632

user.633

RUNNING: The job is running on a execution host.634

SUSPENDED: The job has been suspended by the user, the system or the administrator.635

REQUEUED: The job was re-queued by the DRM system, and is eligible to run.636

REQUEUED HELD: The job was re-queued by the DRM system, and is currently placed on hold.637

DONE: The job finished without an error.638

FAILED: The job exited abnormally before finishing.639

If a DRMAA job state has no representation in the underlying DRMS, the DRMAA implementation MAY640

never report that job state value. However, all DRMAA implementations MUST provide the JobState641

enumeration as given here. An implementation SHOULD NOT return any job state value other than those642

defined in the JobState enumeration.643

The status values relate to the DRMAA job state transition model, as shown in Figure 1.644

TerminatedStartedQueued

QUEUED

QUEUED_HELD

RUNNING

SUSPENDED

DONE

FAILED

UNDETERMINED

REQUEUED

REQUEUED_HELD

runJob()
runBulkJobs()

Figure 1: DRMAA Job State Transition Model

drmaa-wg@ogf.org 22

mailto:drmaa-wg@ogf.org

GWD-R March 2011

The transition diagram in Figure 1 expresses the clasification of possible job states into ”Queued”, ”Started”,645

and ”Terminated”. This is relevant for the job waiting functions (see Section 7.2 and Section 7.5), which646

operate on job state classes only. The ”Terminated” class of states is final, meaning that further state647

transition is allowed.648

Implementations SHALL NOT introduce other job transitions (e.g. from RUNNING to QUEUED) beside the649

ones stated in Figure 1, even if they might happen in the underlying DRM system. In case, implementations650

MAY emulate the neccessary intermediate steps for the DRMAA-based application.651

Every job state information in DRMAA can be extended by a subState property, which expresses specialized652

information about the state coming from the implementation or the particular DRM system. The possible653

values of this attribute are implementation-specific, but should be documented properly. In case of additional654

job state information from the DRM system, such as extra states for staging phases or details on the hold655

reason, implementations SHOULD map them to the subState information. Implementations of the DRMAA656

API SHOULD define a DRMS-specific data structure for the sub-state information that can be converted to657

/ from the data type defined by the language binding.658

The IDL definition declares the sub state attributes as type any, expressing the fact that the language
binding MUST map the data type to a generic language type (e.g. void*, Object) that maintains source code
portability across DRMAA implementations and still accepts an UNSET value.

The DRMAA job state model can be mapped to other high-level API state models. Table 3 gives a non-659

normative set of examples.

Complete and
re-check job
state map-
ping

660

DRMAA JobState SAGA JobState [3] OGSA-BES Job State [2]
UNDETERMINED N/A N/A
QUEUED Running Pending (Queued)
QUEUED HELD
RUNNING Running Running (Executing)
SUSPENDED Suspended Running (Suspended)
REQUEUED
REQUEUED HELD
DONE Done Finished
FAILED Cancelled, Failed Cancelled, Failed

Table 3: Example Mapping of DRMAA Job States

(See footnote)
13

661

13 Comparison to DRMAA 1.0:
The differentiation between the system hold, user hold, and system / user hold job states was removed (conf. call Jan

20th 2009). There is only one hold state now. A job can now change its state from one of the SUSPENDED states to the
QUEUED ACTIVE state (conf. call Jan 20th 2009, solves issue #2788). The job state UNDETERMINED is now clearer
defined. It expressed a permanent issue, meaning that the job state will not change by just waiting. Temporary problems in
the detection of the job state are now expressed by the TryLaterException (conf. call Feb 5th 2009, solves issue #2783). The
description of the FAILED state was extended to support a more specific differentiation between different job failure reasons.
The new subState feature allows the DRMAA implementation to provide better information, if available. There was no portable
way of standardizing extended failure information in a better way. (conf. call May 12th 2009, solves issue #5875) The different
suspend job states from DRMAA1 (user suspended, system suspended, user / system suspended) are now combined into one
suspend state. DRM systems with the need to express the different suspend reasons can use the new sub-state feature (conf.
call Mar 5th 2010).

drmaa-wg@ogf.org 23

mailto:drmaa-wg@ogf.org

GWD-R March 2011

7.2 JobSession Interface662

A job session instance acts as container for job instances controlled through the DRMAA API. The session663

methods support the submission of new jobs, the monitoring and the control of existing jobs. The relationship664

between jobs and their session MUST be persisted, as described in Section 6.1.665

interface JobSession {666

readonly attribute string contact;667

readonly attribute string sessionName;668

readonly attribute boolean notificationSupported;669

JobList getJobs(in JobInfo filter);670

Job runJob(in JobTemplate jobTemplate);671

JobArray runBulkJobs(672

in JobTemplate jobTemplate ,673

in long beginIndex ,674

in long endIndex ,675

in long step);676

Job waitAnyStarted(in JobList jobs , in TimeAmount timeout);677

Job waitAnyTerminated(in JobList jobs , in TimeAmount timeout);678

void registerEventNotification(in DrmaaCallback callback);679

};680

(See footnote)
14

681

7.2.1 contact682

This attribute contains the contact value that was used in the SessionManager::createJobSession call683

for this instance (see Section 6.1). If no value was originally provided, the default contact string from the684

implementation MUST be returned. This attribute is read-only.685

7.2.2 sessionName686

This attribute contains the sessionName value that was used in the SessionManager::createJobSession687

or SessionManager::openJobSession call for this instance (see Section 6.1). This attribute is read-only.688

14 Comparison to DRMAA 1.0: The original separation between synchronize() and wait() was replaced by a complete new
synchronization semantic in the API. DRMAA2 has now two methods, waitStarted() and waitTerminated(). The first waits
for any state that expresses that the job was started, the second for any terminal status. Both methods are available on
session level (wait for any of the given jobs to start / end) or on single job level (solves issue #5880 and #2838). The function
returns always a Job object, in order to allow chaining, e.g. job.wait(JobStatus.RUNNING).hold(). The session-level functions
implement the old DRMAA wait(SESSION ANY). The old synchronize() semantics are no longer directly supported - instead,
the DRMAA application should use a looped Job.wait... / JobSession.waitAny... call. The result is a more condensed and
responsive API, were the application can decide to keep the user informed during synchronization on a set of jobs. DRMAA
library implementations should also become easier to design, since the danger of multithreading side effects inside the DRMAA
API is reduced by this change. As a side effect, JOB IDS SESSION ANY and JOB IDS SESSION ALL are no longer needed.
The special consideration of a partial failures during SESSION ALL wait activities is also no longer necessary (F2F meeting
July 2009). The JobSession now allows to fetch also information about jobs that were not submitted through DRMAA (conf.
call June 23th 2010).

drmaa-wg@ogf.org 24

mailto:drmaa-wg@ogf.org

GWD-R March 2011

7.2.3 notificationSupported689

The attribute indicates if event notification is supported by the DRMAA implementation for the job session.690

If False, then registerEventNotification will raise an UnsupportedOperationExeption if being used.691
New, needs
group ap-
proval

692

7.2.4 getJobs693

This method returns a sequence of jobs that belong to the job session. The filter parameter allows to694

choose a subset of the session jobs as return value. The attribute semantics for the filter argument are695

explained in Section 4.8. If no job matches or the session has no jobs attached, the method MUST return696

an empty sequence instance. If filter is UNSET, all session jobs MUST be returned.697

Time-dependent effects of this method, such as jobs no longer matching to filter criteria on evaluation time,698

are implementation-specific. The purpose of the filter parameter is to keep scalability with a large number699

of jobs per session. Applications therefore must consider the possibly changed state of jobs during their700

evaluation of the method result.701

7.2.5 runJob702

The runJob method submits a job with the attributes defined in the job template parameter. It returns a703

Job object that represents the job in the underlying DRM system. Depending on the job template settings,704

submission attempts may be rejected with an InvalidArgumentException. The error details SHOULD705

provide further information about the attribute(s) responsible for the rejection.706

When this method returns a valid Job instance, the following conditions SHOULD be fulfilled:707

• The job is part of the persistent state of the job session.708

• All non-DRMAA and DRMAA interfaces to the DRM system report the job as being submitted to709

the DRM system.710

• The job has one of the DRMAA job states.711

7.2.6 runBulkJobs712

The runBulkJobs method creates a set of parametric jobs, each with attributes defined in the given713

job template. Each job in the set is identical, except for the job template attributes that include the714

JobTemplatePlaceholder::PARAMETRIC_INDEX macro (see Section 7.4).715

If any of the resulting parametric job templates is not accepted by the DRM system, the method call MUST716

raise an InvalidArgumentException. No job from the set SHOULD be submitted in this case.717

The first job in the set has an index equal to the beginIndex parameter of the method call. The smallest valid718

value for beginIndex is 1. The next job has an index equal to beginIndex + step, and so on. The last job719

has an index equal to beginIndex + n * step, where n is equal to(endIndex - beginIndex) / step. The720

index of the last job may not be equal to endIndex if the difference between beginIndex and endIndex is not721

evenly divisible by step. The beginIndex value must be less than or equal to the endIndex value, and only722

positive index numbers are allowed, otherwise the method SHOULD raise an InvalidArgumentException.723

Implementations MAY provide custom ways for the job to determine its index number.724

drmaa-wg@ogf.org 25

mailto:drmaa-wg@ogf.org

GWD-R March 2011

The runBulkJobs method returns a JobArray (see Section 7.6) instance that represents the set of Job objects725

created by the method call under a common array identifier. For each of the jobs in the array, the same726

conditions as for the result of runJob SHOULD apply.727

The largest valid value for endIndex MUST be defined by the language binding.

(See footnote)
15

728

7.2.7 waitAnyStarted / waitAnyTerminated729

This method blocks until any of the jobs referenced in the jobs parameter entered one of the ”Started” resp.730

”Terminated” states (see Section 7.1). If the input list contains jobs that are not part of the session, the call731

to waitAnyStarted SHALL fail with an InvalidArgumentException.732

The timeout argument specifies the desired behavior when a result is not immediately available. The con-733

stant value INFINITE_TIME may be specified to wait indefinitely for a result. The constant value ZERO_TIME734

may be specified to return immediately. Alternatively, a number of seconds may be specified to indicate735

how long to wait for a result to become available. If the invocation exits on timeout, an TimeoutException736

SHALL be raised.737

In a multi-threaded environment with multiple JobSession::waitAny... calls, only one of the active thread738

SHOULD get the status change notification for a particular job, while the other threads SHOULD continue739

waiting. If there are no more queryable jobs left in the session, all remaining waiting threads SHOULD fail740

with an InvalidStateException. If thread A is waiting for a specific job with Job::wait..., and another741

thread, thread B, waiting for that same job or with JobSession::waitAny..., than B SHOULD receive the742

notification that the job has finished, thread A SHOULD fail with an InvalidStateException. Waiting for743

a job state is a read-only operation.744

An application waiting for some condition to happen in all jobs of a set is expected to perform looped calls745

of these waiting functions.746

(See footnote)
16

747

7.2.8 registerEventNotification748

This method is used to register a DrmaaCallback interface (see Section 7.3) implemented by the DRMAA-749

based application. If the callback functionality is not supported by the DRMAA implementation, the method750

SHALL raise an UnsupportedOperationException. Implementations MAY support the registration of751

multiple callback methods.752

A language binding specification MUST define how the reference to an interface-compliant method can be
given as argument to this method.

15 There was a discussion (mailing list Jan 2011) about having specialized job templates for bulk submission, with support
for the start / end index and a slots limit. We rejected that, since job templates are intended for re-usage.

16 People typically ask for the waitAll..() counterparts of these functions. Since they are so easy to implement in the
application itself, we could not see any benefit in adding them. Due to there intended long-blocking operation, the DRM
system would no be able to offer any better (meaning much faster) implementation to be wrapped by DRMAA.

drmaa-wg@ogf.org 26

mailto:drmaa-wg@ogf.org

GWD-R March 2011

7.3 DrmaaCallback Interface753

The DrmaaCallback interface allows the DRMAA library resp. the DRM system to inform the applica-754

tion about relevant events from the DRM system in a asynchronous fashion. One expected use case is755

loseless monitoring of job state transitions. The support for such callback functionality is optional, but all756

implementations MUST define the DrmaaCallback interface type as given in the language binding.757

interface DrmaaCallback {758

void notify(in DrmaaNotification notification);759

};760

struct DrmaaNotification {761

DrmaaEvent event;762

Job job;763

JobState jobState;764

};765

enum DrmaaEvent {766

NEW_STATE , MIGRATED , ATTRIBUTE_CHANGE767

};768

The application callback interface is registered through the JobSession::registerEventNotification769

method (see Section 7.2). The DrmaaNotification structure represents the notification information from770

the DRM system. Implementations MAY extend this structure for further information (see Section 4). All771

given information SHOULD be valid at least at the time of notification generation.772

The DrmaaEvent enumeration defines standard event types for notification:773

NEW STATE The job entered a new state, which is described in the jobState attribute of the notification774

structure.775

MIGRATED The job was migrated to another execution host, and is now in the given state.776

ATTRIBUTE CHANGE A monitoring attribute of the job, such as the memory consumption, changed777

to a new value. The jobState attribute MAY have the value UNSET on this event.778

DRMAA implementations SHOULD protect themself from unexpected behavior of the called application.779

This includes indefinite delays or unexpected exceptions from the callee. An implementation SHOULD780

also disallow any library calls while the callback function is running, to avoid recursion scenarios. It is781

RECOMMENDED to raise TryLaterException in this case.782

Scalability issues of the notification facility are out of scope for this specification. Implementations MAY783

decide to support non-standardized throttling configuration options.784

(See footnote)
17

785

7.4 JobTemplate Structure786

In order to define the attributes associated with a job, a DRMAA application uses the JobTemplate struc-787

ture. It specifies any required job parameters and is passed to the DRMAA JobSession instance when job788

execution is requested.789

17 We intentionally did not add subState to the notification information, since this would make callback interface implemen-
tations specific for the DRM system, without any chance for creating a portable DRMAA application.

drmaa-wg@ogf.org 27

mailto:drmaa-wg@ogf.org

GWD-R March 2011

struct JobTemplate {790

StringList attributeNames;791

string remoteCommand;792

OrderedStringList args;793

boolean submitAsHold;794

boolean rerunnable;795

Dictionary jobEnvironment;796

string workingDirectory;797

string jobCategory;798

StringList email;799

boolean emailOnStarted;800

boolean emailOnTerminated;801

string jobName;802

string inputPath;803

string outputPath;804

string errorPath;805

boolean joinFiles;806

string reservationId;807

string queueName;808

long minSlots;809

long maxSlots;810

long priority;811

OrderedStringList candidateMachines;812

long minPhysMemory;813

OperatingSystem machineOS;814

CpuArchitecture machineArch;815

AbsoluteTime startTime;816

Dictionary drmsSpecific;817

AbsoluteTime deadlineTime;818

Dictionary stageInFiles;819

Dictionary stageOutFiles;820

Dictionary softResourceLimits;821

Dictionary hardResourceLimits;822

string accountingId;823

};824

The DRMAA job template concept makes a distinction between mandatory and optional attributes. Manda-825

tory attributes MUST be supported by the implementation in the sense that they are evaluated on job826

submission. Optional attributes MAY be evaluated on job submission, but MUST be provided as part of the827

JobTemplate structure in the implementation. If an unsupported optional attribute has a value different to828

UNSET, the job submission MUST fail with a UnsupportedAttributeException. DRMAA applications are829

expected to check for the availability of optional attributes before using them.830

Implementations MUST set all attribute values to UNSET on struct allocation. This ensures that both the831

DRMAA application and the library implementation can determine untouched attribute members. If not832

described differently in the following sections, all attributes SHOULD be allowed to have the UNSET value833

on job submission.834

drmaa-wg@ogf.org 28

mailto:drmaa-wg@ogf.org

GWD-R March 2011

An implementation SHALL NOT extend the JobTemplate structure with implementation-specific attributes,835

but SHOULD supported according keys in the drmsSpecific attribute (see Section 7.4.9).836

An implementation MAY support JobTemplatePlaceholder macros in more occasions than defined in this837

specification.838

A language binding specification SHOULD define how a JobTemplate instance is convertible to a string
for printing, through whatever mechanism is most natural for the implementation language. The resulting
string MUST contain the values of all set properties.

The initialization to UNSET SHOULD be realized without additional methods in the DRMAA interface, if
possible. The according approach MUST be specified by the language binding.

Which
attributes
should allow
the new
HOST NAME
and
USER NAME
place holders
?

839

(See footnote)
18

840

7.4.1 attributeNames841

The attributeNames list of strings SHALL enumerate the names of the required and of the supported842

optional job template attributes.843

This doesnt
make sense
anymore,
since job
templates
are now value
types.

844

This is especially intended for languages which do not provide an inherit notion of struct introspection and
therefore map job template attribute access to getter / setter functions.

The support for this attribute is mandatory.845

7.4.2 remoteCommand846

This attribute describes the command to be executed on the remote host. In case this parameter contains847

path information, it MUST be seen as relative to the execution host file system and is therefore evaluated848

there. The implementation SHOULD NOT relate the value of this attribute to binary file management or849

file staging activities. The behavior with an UNSET value is implementation-specific.850

The support for this attribute is mandatory.851

18 Comparison to DRMAA 1.0: JobTemplate is now a value type, meaning that it maps to a struct in C. This removes the
need for DRMAA-defined methods for construction and destruction of job templates. An eventual RPC scenario for DRMAA
gets easier with this approach, since it is closer to the JSDL concept of a job description document.

Supported string placeholders for job template attributes are now listed in the JobTemplatePlaceholder enumeration, and
must be filled with values by the language binding. Invalid job template settings are now only detected on job submission, not
when the attribute is set.

Implementation-specific job template extensions were decided to be no longer supported, which hopefully fosters portable
DRMAA-based source code. Implementation-specific job template settings are now covered by the drmsSpecific dictionary.
This more generic approach also makes the old nativeOptions obsolete, so it was removed. Implementations therefore should
support all relevant native settings explicitly as keys in the drmsSpecific dictionary. (conf. call May 26th 2010).

DRMAA1 supported the utilization of new DRM features through an old DRMAA implementation, based on the ”nativeSpec-
ification” field. A conf call (Jul 14th 2010) voted for dropping this intentionally. Implementations instead should be creative
with their supported key names.

drmaa-wg@ogf.org 29

mailto:drmaa-wg@ogf.org

GWD-R March 2011

7.4.3 args852

This attribute contains the list of command-line arguments for the job(s) to be executed.853

The support for this attribute is mandatory.854

7.4.4 submitAsHold855

This attribute defines if the job(s) should be submitted as QUEUED or QUEUED_HELD (see Section 7.1). Since856

the boolean UNSET value defaults to False, jobs are submitted as non-held if this attribute is not set.857

The support for this attribute is mandatory.858

7.4.5 rerunnable859

This flag indicates if the submitted job(s) can safely be restarted by the DRM system, for example on a860

node failure or some other re-scheduling event. Since the boolean UNSET value defaults to False, jobs are861

submitted as not rerunnable if this attribute is not set. This attribute SHOULD NOT be used by the862

implementation to let the application denote the checkpointability of a job.863

The support for this attribute is mandatory.864

(See footnote)
19

865

7.4.6 jobEnvironment866

This attribute holds the environment variable key-value pairs for the execution machine(s). The values867

SHOULD override the execution host environment values if there is a collision.868

The support for this attribute is mandatory.869

7.4.7 workingDirectory870

This attribute specifies the directory where the job resp. the bulk jobs are executed. If the attribute value871

is UNSET, the behavior is implementation dependent. Otherwise, the attribute value MUST be evaluated872

relative to the file system on the execution host. The attribute value MUST be allowed to contain either the873

JobTemplatePlaceholder::HOME_DIRECTORY or the JobTemplatePlaceholder::PARAMETRIC_INDEX place-874

holder (see Section 4.4).875

The workingDirectory attribute should be specified by the application in a syntax that is common at the876

host where the job is executed. Implementations MAY perform according validity checks on job submission.877

If the attribute is set and no placeholder is used, an absolute directory specification is expected. If the878

attribute is set and the job was submitted successfully and the directory does not exist on the execution879

host, the job MUST enter the state JobState::FAILED.880

The support for this attribute is mandatory.881

19 The differentiation between rerunnable and checkpointable was decided on a conf call (Aug 25th 2010)

drmaa-wg@ogf.org 30

mailto:drmaa-wg@ogf.org

GWD-R March 2011

7.4.8 jobCategory882

DRMAA facilitates writing DRM-enabled applications even though the deployment properties, in particular883

the configuration of the DRMS, cannot be known in advance.884

Through the jobCategory string attribute, a DRMAA application can specify additional needs of the job(s)885

that are to be mapped by the implementation or DRM system itself to DRMS-specific options. It is intended886

as non-programmatic extension of DRMAA job submission capabilities. The mapping is performed during887

the process of job submission. Each category expresses a particular type of job execution that demands888

site-specific configuration, for example path settings, environment variables, or application starters such as889

MPIRUN.890

A valid input SHOULD be one of the returned strings in MonitoringSession::drmsJobCategoryNames (see891

Section 9.1), otherwise an InvalidArgumentException SHOULD be raised.892

A non-normative recommendation of category names is maintained at:893

http://www.drmaa.org/jobcategories/894

In case the name is not taken from the DRMAA working group recommendations, it should be self-895

explanatory for the user to understand the implications on job execution. Implementations are recommended896

to provide a library configuration facility, which allows site administrators to link job category names with897

specific product- and site-specific configuration options, such as submission wrapper shell scripts.898

The interpretation of the supported jobCategory values is implementation-specific. The order of prece-899

dence for the jobCategory attribute value, the drmsSpecific attribute value, or other attribute values900

is implementation-specific. It is RECOMMENDED to overrule job template settings with a conflicting901

jobCategory setting, and overrule a given jobCategory with a conflicting drmsSpecific setting.902

The support for this attribute is mandatory.903

7.4.9 drmsSpecific904

This dictionary allows the application to pass DRMS-specific native options as key-value pairs during job905

submission. In contrast to the usage of predefined configuration sets with the jobCategory attribute, this906

supports passing DRMS-specific options directly. The interpretation of keys and values in this dictionary is907

implementation-specific. Valid key strings should be documented by the implementation.908

The order of precedence rules is described in the jobCategory section above.909

The support for this attribute is mandatory.910

7.4.10 email911

This attribute holds a list of email addresses that should be used to report DRM information. Content and912

formatting of the emails are defined by the implementation resp. the DRM system. If the attribute value is913

UNSET, no emails SHOULD be sent to the user running the job(s), even if the DRM system default behavior914

is to send emails on some event.915

The support for this attribute is optional. If an implementation cannot configure the email notification916

functionality of the DRM system, of if the DRM system has no such support, the attribute SHOULD NOT917

be supported in the implementation.918

This became
an optional
attribute,
since we
mandate the
’switch off’
semantic in
case of UNSET

919

drmaa-wg@ogf.org 31

http://www.drmaa.org/jobcategories/
mailto:drmaa-wg@ogf.org

GWD-R March 2011

(See footnote)
20

920

7.4.11 emailOnStarted / emailOnTerminated921

This flag indicates if the given email address(es) SHOULD get a notification when the job (or any of the922

bulk jobs) entered one of the ”Started” resp. ”Terminated” states. Since the boolean UNSET value defaults923

to False, the notification about state changes SHOULD NOT be sent if the attribute is not set.924

The support for this attribute is optional. It SHALL only be supported if the email attribute is supported925

in the implementation.926

7.4.12 jobName927

The job name attributes allows the specification of an additional non-unique string identifier for the job(s).928

The implementation MAY truncate any client-provided job name to an implementation-defined length.929

The support for this attribute is mandatory.930

7.4.13 inputPath / outputPath / errorPath931

This attribute specifies standard input / output / error stream of the job as a path to a file. If the attribute932

value is UNSET, the behavior is implementation dependent. Otherwise, the attribute value MUST be evaluated933

relative to the file system of the execution host in a syntax that is common at the host. Implementations934

MAY perform according validity checks on job submission. The attribute value MUST be allowed to contain935

any of the JobTemplatePlaceholder placeholders (see Section 4.4). If the attribute is set and no placeholder936

is used, an absolute file path specification is expected.937

If the outputPath or errorPath file does not exist at the time the job is about to be executed, the file938

SHALL first be created. An existing outputPath or errorPath file SHALL be opened in append mode.939

If the attribute is set and the job was submitted successfully and the file cannot be created / read / written940

on the execution host, the job MUST enter the state JobState::FAILED.941

The support for this attribute is mandatory.942

7.4.14 joinFiles943

Specifies whether the error stream should be intermixed with the output stream. Since the boolean UNSET944

value defaults to False, intermixing SHALL NOT happen if the attribute is not set.945

If this attribute is set to True, the implementation SHALL ignore the value of the errorPath attribute and946

intermix the standard error stream with the standard output stream as specified by the outputPath.947

The support for this attribute is mandatory.948

7.4.15 stageInFiles / stageOutFiles949

Specifies what files should be transfered (staged) as part of the job execution. The data staging operation950

MUST be a copy operation between submission host and one resp. all execution hosts. File transfers between951

execution hosts are not covered by DRMAA.952

20 The blockEmail attribute in the JobTemplate was replaced by the UNSET semantic for the email adresses. (conf. call
July 28th 2010).

drmaa-wg@ogf.org 32

mailto:drmaa-wg@ogf.org

GWD-R March 2011

For each key-value pair in the dictionary, the key defines the source path of one file or directory, and the value953

defines the destination path of one file or directory for the copy operation. For stageInFiles, the submission954

host acts as source, and the execution host(s) act as destination. For stageOutFiles, the execution host(s)955

acts as source, and the submission host act as destination.956

All values MUST be evaluated relative to the file system on the host in a syntax that is common at that957

host. Implementations MAY perform according validity checks on job submission. Paths on the execution958

host(s) MUST be allowed to contain any of the JobTemplatePlaceholder placeholders. Paths on the sub-959

mission host MUST be allowed to contain the JobTemplatePlaceholder::PARAMETRIC_INDEX placeholder960

(see Section 4.4). If no placeholder is used in the values, an absolute path specification on the particular961

host SHOULD be assumed by the implementation.962

Jobs SHOULD NOT enter JobState::DONE unless all staging operations are finished. The behavior in963

case of missing files is implementation-specific. The support for wildcard operators in path specifications is964

implementation-specific.965

The support for this attribute is optional.966
Needs final
approval by
the group.

967

(See footnote)
21

968

7.4.16 reservationId969

Specifies the identifier of the advance reservation associated with the job(s). The application is expected970

to create an advance reservation through the ReservationSession interface, the resulting reservationId971

(see Section 8.3) then acts as valid input for this job template attribute. Implementations MAY support an972

reservation identifier from non-DRMAA information sources as valid input.973

The support for this attribute is mandatory.974

7.4.17 queueName975

This attribute specifies the name of the queue the job(s) should be submitted to. In case this attribute976

value is UNSET, and MonitoringSession::getAllQueues returns a list with a minimum length of 1, the977

implementation SHOULD use the DRM systems default queue.978

The MonitoringSession::getAllQueues method (see 9.1) supports the determination of valid queue names.979

Implementations SHOULD allow these queue names to be used in the queueName attribute. Implementa-980

tions MAY also support queue names from other non-DRMAA information sources as valid input. If no981

default queue is defined or if the given queue name is not valid, the job submission MUST lead to an982

InvalidArgumentException.983

If MonitoringSession::getAllQueues returns an empty list, this attribute MUST be only accepted with984

the value UNSET.985

Since the meaning of ”queues” is implementation-specific, there is no implication on the effects in the DRM986

system when using this attribute. As one example, requesting a number of slots for a job in one queue has no987

21 Comparsion to DRMAA 1.0: New job template attributes for file transfers were introduced. They allow to express a set
of file staging activities, similar to the approach in LSF and SAGA. They replace the old transferFiles attribute, the according
FileTransferMode data structure and the special host definition syntax in inputPath / outputPath / errorPath (different conf.
calls, SAGA F2F meeting, solves issue #5876)

drmaa-wg@ogf.org 33

mailto:drmaa-wg@ogf.org

GWD-R March 2011

implication on the number of utilized machines at run-time. Implementations therefore SHOULD document988

the effects of this attribute accordingly.989

The support for this attribute is mandatory.990

7.4.18 minSlots / maxSlots991

This attribute expresses the minimum / maximum number of slots requested per job (see also Section 1.3).992

If the value of minSlots is UNSET, it SHOULD default to 1. If the value of maxSlots is UNSET, it SHOULD993

default to the value of minSlots.994

Implementations MAY interprete the slot count as number of concurrent processes being allowed on one995

machine. If this interpretation is taken, and minSlots is greater than 1, than the jobCategory SHOULD996

also be demanded on job submission, in order to express the nature of the intended parallel job execution.997

The support for this attribute is mandatory.998

7.4.19 priority999

This attribute specifies the scheduling priority for the job. The intepretation of the given value incl. an1000

UNSET value is implementation-specific.1001

The support for this attribute is mandatory.1002

7.4.20 candidateMachines1003

Requests that the job(s) should run on any subset (with minimum size of 1), or all of the given machines.1004

If the attribute value is UNSET, it should default to the result of the MonitoringSession::getAllMachines1005

method. If this resource demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised1006

on job submission time. If the problem can only be detected after job submission, the job should enter1007

JobState::FAILED.1008

The support for this attribute is mandatory.1009

7.4.21 minPhysMemory1010

This attribute denotes the minimum amount of physical memory in Kibibyte expected on the / all execution1011

host(s). If this resource demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised1012

at job submission time. If the problem can only be detected after job submission, the job SHOULD enter1013

JobState::FAILED accordingly.1014

The support for this attribute is mandatory.1015

7.4.22 machineOS1016

This attribute denotes the expected operating system type on the / all execution host(s). If this resource de-1017

mand cannot be fulfilled, an InvalidArgumentException SHOULD be raised on job submission time. If the1018

problem can only be detected after job submission, the job SHOULD enter JobState::FAILED accordingly.1019

The support for this attribute is mandatory.1020

drmaa-wg@ogf.org 34

mailto:drmaa-wg@ogf.org

GWD-R March 2011

(See footnote)
22

1021

7.4.23 machineArch1022

This attribute denotes the expected machine architecture on the / all execution host(s). If this resource1023

demand cannot be fulfilled, an InvalidArgumentException SHOULD be raised on job submission time. If1024

the problem can only be detected after job submission, the job should enter JobState::FAILED.1025

The support for this attribute is mandatory.1026

7.4.24 startTime1027

This attribute specifies the earliest time when the job may be eligible to be run.1028

The support for this attribute is mandatory.1029

7.4.25 deadlineTime1030

Specifies a deadline after which the implementation resp. the DRM system SHOULD change the job state1031

to any of the ”Terminated” states (see Section 7.1).1032

The support for this attribute is optional.1033

7.4.26 softResourceLimits / hardResourceLimits1034

This attribute specifies the soft resp. hard limits on resource utilization of the job(s) on the execution host(s).1035

The valid dictionary keys and their value semantics are defined in Section 4.3. An implementation MAY1036

map the settings to an ulimit(3) on the operating system, if available.1037

The support for this attribute is optional. If only a subset of the attributes from ResourceLimitType is1038

supported by the implementation, and some of the unsupported attributes are used, the job submission1039

SHOULD raise an InvalidArgumentException expressing the fact that resource limits are supported in1040

general.1041

Conflicts of these attribute values with any other job template attribute or with referenced advanced reser-1042

vations are handled in an implementation-specific manner. Implementations SHOULD try to delegate the1043

decision about parameter combination validity to the DRM system, in order to ensure similar semantics in1044

different DRMAA implementations for this system.1045

Unclear what
happens from
DRMAA per-
spective if
a soft limit
is violated.
We have no
signals.

1046

(See footnote)
23

1047

22 Requesting a particular operating system version is not supported by the majority of DRM systems (conf call Jul 28th
2010)

23 In comparison to DRMAA 1.0, resource usage limitations can now be expressed by two dictionaries and an according
standardized set of valid dictionary keys (LimitType). The idea is to allow a direct mapping to ulimit(3) semantics, which are
supported by the majority of DRM system today. A separate run duration limit is no longer needed, since this is covered by
the new CPU TIME limit parameter. (conf. call Jun 9th 2010).

drmaa-wg@ogf.org 35

mailto:drmaa-wg@ogf.org

GWD-R March 2011

7.4.27 accountingId1048

This attribute denotes a string that can be used by the DRM system for job accounting purposes. Implemen-1049

tations SHOULD NOT utilize this information as authentication token, but only as additional identification1050

information beside the implementation-specific authentication (see Section 11).1051

The support for this attribute is optional.1052

7.5 Job Interface1053

Every job in the JobSession is expressed by an own instance of the Job interface. It allows to instruct the1054

DRM system for a job status change, and to query the status attributes of the job in the DRM system.1055

interface Job {1056

readonly attribute string jobId;1057

readonly attribute JobSession session;1058

readonly attribute JobTemplate jobTemplate;1059

void suspend ();1060

void resume ();1061

void hold ();1062

void release ();1063

void terminate ();1064

JobState getState(out any jobSubState);1065

JobInfo getInfo ();1066

Job waitStarted(in TimeAmount timeout);1067

Job waitTerminated(in TimeAmount timeout);1068

};1069

(See footnote)
24

1070

7.5.1 jobId1071

This attribute provides the string job identifier assigned to the job by the DRM system. It is intended as1072

performant alternative for fetching a complete JobInfo instance for this information.1073

7.5.2 session1074

This attribute offers a reference to the JobSession instance that represents the session used for the job1075

submission creating this Job instance.1076

24 In comparison to DRMAA v1.0, DRMAA2 replaces the identification of jobs by strings with Job objects. This enables a
tighter integration of job meta-data and identity, for the price of reduced performance in (so far not existing) DRMAA RPC
scenarios. The former DRMAA control() with the JobControlAction structure is now split up into dedicated functions (such
as hold() and release()) on the Job object.

Even though the DRMAAv2 surveys showed interest in interactive job support, this feature was intentionally left out. Reasons
are the missing support in some major DRM systems, and the lack of a relevant DRMAA-related use case (conf. call Jan 7th
2010)

Issue #5877 (support for direct job signaling) was rejected, even though there was an according request from the SAGA WG.
Issue #2782 (change attributes of submitted, but pending jobs) was rejected based on group decision.

drmaa-wg@ogf.org 36

mailto:drmaa-wg@ogf.org

GWD-R March 2011

7.5.3 jobTemplate1077

This attribute provides a reference to a JobTemplate instance that has equal values to the one that was1078

used for the job submission creating this Job instance.1079

7.5.4 suspend / resume / hold / release / terminate1080

The job control functions allow modifying the status of the single job in the DRM system, according to the1081

state model presented in Section 7.1.1082

The suspend method triggers a transition from RUNNING to SUSPENDED state. The resume method triggers1083

a transition from SUSPENDED to RUNNING state. The hold method triggers a transition from QUEUED to1084

QUEUED_HELD, or from REQUEUED to REQUEUED_HELD state. The release method triggers a transition from1085

QUEUED_HELD to QUEUED, or from REQUEUED_HELD to REQUEUED state. The terminate method triggers a1086

transition from any of the ”Started” states to one of the ”Terminated” states. If the job is in an inappropriate1087

state for the particular method, the method MUST raise an InvalidStateException.1088

The methods SHOULD return after the action has been acknowledged by the DRM system, but MAY1089

return before the action has been completed. Some DRMAA implementations MAY allow this method1090

to be used to control jobs submitted externally to the DRMAA session, such as jobs submitted by other1091

DRMAA sessions in other DRMAA implementations or jobs submitted via native utilities. This behavior is1092

implementation-specific.1093

7.5.5 getState1094

This method allows tho gather the current status of the job according to the DRMAA state model, together1095

with an implementation specific sub state (see Section 7.1). It is intended as performant alternative for1096

fetching a complete JobInfo instance for state checks. The timing conditions are described in Section 4.8.1097

(See footnote)
25

1098

7.5.6 getInfo1099

This method returns a JobInfo instance for the particular job under the conditions described in Section 4.8.1100

7.5.7 waitStarted / waitTerminated1101

This method blocks until the job entered one of the ”Started” resp. ”Terminated” states (see Section 7.1).1102

The timeout argument specifies the desired behavior when a result is not immediately available. The con-1103

stant value INFINITE_TIME may be specified to wait indefinitely for a result. The constant value ZERO_TIME1104

may be specified to return immediately. Alternatively, a number of seconds may be specified to indicate1105

how long to wait for a result to become available. If the invocation exits on timeout, an TimeoutException1106

SHALL be raised. If the job is in an inappropriate state for the particular method, the method MUST raise1107

an InvalidStateException.1108

25 The getState() function now also returns job subState information. This is intended as additional information for the given
DRMAA job state, and can be used for expressing the hold state differentiation from DRMAA 1.0 (conf. call Mar 31st 2009).

drmaa-wg@ogf.org 37

mailto:drmaa-wg@ogf.org

GWD-R March 2011

7.6 JobArray Interface1109

The following section explains the set of methods and attributes defined in the JobArray interface. Any1110

instance of this interface represent an job array, a common concept in many DRM systems for a job set created1111

by one operation. In DRMAA, JobArray instances are only created by the runBulkJobs operation (see1112

Section 7.2). JobArray instances differ from the JobList data structure due to their potential for representing1113

a DRM system concept, while JobList is a DRMAA-only concept mainly realized by the language binding1114

sequence support. Implementations SHOULD realize the JobArray functionality as wrapper for DRM system1115

job arrays, if possible. If the DRM system has only single job support or incomplete job array support with1116

respect to the DRMAA-provided functionality, implementations MUST realize the JobArray functionality1117

on their own, for example based on looped operations with a list of jobs.1118

interface JobArray {1119

readonly attribute string jobArrayId;1120

readonly attribute JobList jobs;1121

readonly attribute JobSession session;1122

readonly attribute JobTemplate jobTemplate;1123

void suspend ();1124

void resume ();1125

void hold ();1126

void release ();1127

void terminate ();1128

};1129
Completely
new, needs
group ap-
proval

1130

(See footnote)
26

1131

7.6.1 jobArrayId1132

This attribute provides the string job identifier assigned to the job array by the DRM system. If the DRM1133

system has no job array support, the implementation MUST generate a system-wide unique identifier for1134

the result of the successful runBulkJobs operation.1135

7.6.2 jobs1136

This attribute provides the static list of jobs that are part of the job array.1137

(See footnote)
27

1138

7.6.3 session1139

This attribute offers a reference to a JobSession instance that represents the session which was used for the1140

job submission creating this JobArray instance.1141

26 We are aware of the fact that some systems (e.g. LSF at the time of writing) do not support all DRMAA control operations
offered for JobArrays. Since we intended to avoid optional DRMAA operations wherever we could, the text here mandates
the implementation to simulate the JobArray support on its own. For example, looping over all jobs in the array and calling
”suspend” for each one is trivial to implement and fulfills the same purpose.

27 We were asked for offering a filter support similar to JobSession here. This was rejected by discussion on the list (Jan
2011), since the number of jobs returned here is normally comparatively short. In this case, the DRM system cannot provide
any benefit over the looped check in the application itself.

drmaa-wg@ogf.org 38

mailto:drmaa-wg@ogf.org

GWD-R March 2011

7.6.4 jobTemplate1142

This attribute provides a reference to a JobTemplate instance that has equal values to the one that was1143

used for the job submission creating this JobArray instance.1144

(See footnote)
28

1145

7.6.5 suspend / resume / hold / release / terminate1146

The job control functions allow modifying the status of the job array in the DRM system, with the same1147

semantic as with the counterparts in the Job interface (see Section 7.5). If one of the jobs in the array is in1148

an inappropriate state for the particular method, the method MUST raise an InvalidStateException.1149

The methods SHOULD return after the action has been acknowledged by the DRM system for all jobs in1150

the array, but MAY return before the action has been completed. Some DRMAA implementations MAY1151

allow this method to be used to control job arrays created externally to the DRMAA session, such as job1152

arrays submitted by other DRMAA sessions in other DRMAA implementations or job arrays submitted via1153

native utilities. This behavior is implementation-specific.1154

8 Working with Advance Reservation1155

Adance reservation is DRM system concept that allows the reservation of execution resources for jobs to be1156

submitted. DRMAA encapsulates such functionality of DRM systems with the interfaces and data structures1157

described in this chapter.1158

DRMAA implementations for DRM systems that do not support advance reservation still MUST imple-1159

mented the described interfaces, in order to keep source code portability for DRMAA-based applications.1160

8.1 ReservationSession Interface1161

Every ReservationSession instance represents a set of advance reservations in the DRM system. Every1162

Reservation instance SHALL belong only to one ReservationSession instance.1163

interface ReservationSession {1164

readonly attribute string contact;1165

readonly attribute string sessionName;1166

Reservation getReservation(in string reservationId);1167

Reservation requestReservation(in ReservationTemplate reservationTemplate);1168

ReservationList getReservations ();1169

};1170

If the DRM system does not support advance reservation, all methods in this interface SHALL throw an1171

UnsupportedOperationException.1172

28 The use case from SAGA perspective is that the user can easily resubmit the same job - just changing for example some
command line parameter, but leaving the remainder fixed (mail by Andre Merzky, July 29th 2010).

drmaa-wg@ogf.org 39

mailto:drmaa-wg@ogf.org

GWD-R March 2011

8.1.1 contact1173

This attribute contains the contact value that was used in the createReservationSession call for this1174

instance (see Section 6.1). If no value was originally provided, the default contact string from the implemen-1175

tation MUST be returned. This attribute is read-only.1176

8.1.2 sessionName1177

This attribute contains the name of the session that was used for creating or opening this Reservation1178

instance (see Section 6.1). This attribute is read-only.1179

8.1.3 getReservation1180

This method returns a Reservation instance that belongs to the session instance and has the given1181

reservationId. If no reservation matches, the method SHALL raise an InvalidArgumentException. Time-1182

dependent effects of this method are implementation-specific.1183

8.1.4 requestReservation1184

The requestReservation method SHALL request an advance reservation in the DRM system with at-1185

tributes defined in the provided ReservationTemplate. On a successful reservation, the method returns a1186

Reservation instance that represents the advance reservation in the underlying DRM system.1187

The method SHALL raise an InvalidArgumentException if the reservation cannot be performed by the1188

DRM system. It SHOULD further provide detailed information about the rejection cause in the extended1189

error information (see Section 5).1190

In case some of the conditions are not fulfilled after the reservation was succesfully created, for example due1191

to execution host outages, the reservation itself SHOULD remain valid.1192

8.1.5 getReservations1193

This method returns the list of reservations successfully created so far in this session, regardless of their start1194

and ending time. The list of Reservation instances is only cleared in conjunction with the destruction of1195

the actual session instance through SessionManager::destroyReservationSession (see also Section 6.1).1196

8.2 ReservationTemplate structure1197

In order to define the attributes associated with an advance reservation, the DRMAA application creates1198

an ReservationTemplate instance and requests the fulfilment through the ReservationSession methods1199

in the DRM system.1200

struct ReservationTemplate {1201

StringList attributeNames;1202

string reservationName;1203

AbsoluteTime startTime;1204

AbsoluteTime endTime;1205

TimeAmount duration;1206

long minSlots;1207

long maxSlots;1208

drmaa-wg@ogf.org 40

mailto:drmaa-wg@ogf.org

GWD-R March 2011

OrderedStringList candidateMachines;1209

long minPhysMemory;1210

OperatingSystem machineOS;1211

CpuArchitecture machineArch;1212

Dictionary drmsSpecific;1213

};1214

Similar to the JobTemplate concept (see Section 7.4), there is a distinction between mandatory and op-1215

tional attributes. Mandatory attributes MUST be supported by the implementation in the sense that they1216

are evaluated in a ReservationSession::requestReservation call. Optional attributes MAY NOT be1217

evaluated in a particular implementation, but MUST be provided as part of the ReservationTemplate1218

structure in the implementation. If an optional attribute is not evaluated by the particular implementation,1219

but has a value different to UNSET, the callto ReservationSession::requestReservation MUST fail with1220

a UnsupportedAttributeException. DRMAA applications are expected to check for the availability of1221

optional attributes by the ReservationTemplate::attributeNames list.1222

Implementations MUST set all attribute values to UNSET on struct allocation. This ensures that both the1223

DRMAA application and the library implementation can determine untouched attribute members. If not1224

described differently in the following sections, all attributes SHOULD be allowed to have the UNSET value1225

when ReservationSession::requestReservation is called.1226

A language binding specification SHOULD model the ReservationTemplate representation the same way as
the JobTemplate interface (see Section 7.4), and therefore MUST define the realization of implementation-
specific attributes, printing, and and the initialization of attribute values. Complete sec-

tion needs
group ap-
proval

1227

8.2.1 attributeNames1228

The attributeNames list of strings SHALL enumerate the names of the required and the supported optional1229

reservation template attributes.1230

This doesnt
make sense
anymore,
since reser-
vation tem-
plates are
now value
types.

1231

This is especially intended for languages which do not provide an inherit notion of struct introspection and
therefore map template attribute access to getter / setter functions.

The support for this attribute is mandatory.1232

8.2.2 reservationName1233

A human-readable reservation name. If this attribute is omitted then the name of the reservation SHALL be1234

automatically defined by the implementation. The implementation MAY truncate any application-provided1235

job name to an implementation-defined length.1236

The support for this attribute is mandatory.1237

drmaa-wg@ogf.org 41

mailto:drmaa-wg@ogf.org

GWD-R March 2011

8.2.3 startTime / endTime / duration1238

The time frame in which resources should be reserved. Table 4 explains the different possible parameter1239

combinations and their semantic.1240

startTime endTime duration Description
UNSET UNSET UNSET The implementation resp. DRM system is free to choose a time

frame for the reservation.
Set UNSET UNSET Invalid, SHALL leave to a InvalidAttributeException on the

reservation attempt.
UNSET Set UNSET Invalid, SHALL leave to a InvalidAttributeException on the

reservation attempt.
Set Set UNSET Perform reservation attempt to get resources in the specified time

frame.
UNSET UNSET Set Perform reservation attempt the get resources at least for the time

amount given in duration.
Set UNSET Set Implies endTime = startTime + duration

UNSET Set Set Implies startTime = endTime - duration

Set Set Set If endTime - startTime is larger than duration, perform a reser-
vation attempt were the demanded duration is fulfilled at the earli-
est point in time after startTime, and without extending endTime.
If endTime - startTime is smaller than duration, the reserva-
tion attempt SHALL leave to a InvalidAttributeException. If
endTime - startTime and duration are equal, duration SHALL
be ignored.

Table 4: Parameter combinations for the advance reservation time frame. If duration is not supported, it
should be treated as UNSET.

The support for startTime and endTime is mandatory. The support for duration is optional.1241

8.2.4 minSlots1242

The minimum number of requested slots (see also Section 1.3). If the attribute value is UNSET, it should1243

default to 1.1244

The support for this attribute is mandatory.1245

8.2.5 maxSlots1246

The maximum number of requested slots (see also Section 1.3). If this attribute is not specified, it should1247

default to the value of minSlots.1248

The support for this attribute is mandatory.1249

8.2.6 candidateMachines1250

Requests that the reservation must be created on any subset of the given list of machines. If this attribute1251

is not specified, it should default to the result of MonitoringSession::getAllMachines (see Section 9.1).1252

The support for this attribute is optional.1253

drmaa-wg@ogf.org 42

mailto:drmaa-wg@ogf.org

GWD-R March 2011

8.2.7 minPhysMemory1254

Requests that the reservation must be created with machines that have at least the given amount of physical1255

memory in Kikibyte.1256

The support for this attribute is optional.1257

8.2.8 machineOS1258

Requests that the reservation must be created with machines that have the given type of operating system,1259

regardless of its version, with semantics as specified in Section 4.1.1260

The support for this attribute is optional.1261

(See footnote)
29

1262

8.2.9 machineArch1263

Requests that the reservation must be created with machines that have the given instruction set architecture,1264

with semantics as specified in Section 4.2.1265

The support for this attribute is optional.1266

8.2.10 drmsSpecific1267

This dictionary attribute allows the application to pass DRMS-specific native options for the advance reser-1268

vation as key-value pairs. The interpretation of keys and values in this dictionary is implementation-specific,1269

implementations MAY even ignore them. Valid key strings should be documented by the implementation.1270

The order of precedence for the drmsSpecific attribute value and other, maybe conflicting, attribute values1271

is implementation-specific. Implementations MAY decide to overrule reservation template settings with the1272

ones defined by the drmsSpecific attribute.1273

The support for this attribute is mandatory.1274

8.3 Reservation Interface1275

The Reservation interface represents attributes and methods available for an advance reservation success-1276

fully created in the DRM system.1277

interface Reservation {1278

readonly attribute string reservationId;1279

readonly attribute ReservationSession session;1280

readonly attribute ReservationTemplate reservationTemplate;1281

OrderedStringList reservedMachines;1282

AbsoluteTime reservedStartTime;1283

AbsoluteTime reservedEndTime;1284

void terminate ();1285

};1286

29 Requesting a particular operating system version is not supported by the majority of DRM systems (conf call Jul 28th
2010)

drmaa-wg@ogf.org 43

mailto:drmaa-wg@ogf.org

GWD-R March 2011

(See footnote)
30

1287

8.3.1 reservationId1288

The reservationId is an opaque string identifier for the advance reservation. If the DRM system has1289

identifiers for advance reservations, this attribute SHOULD provide the according stringified value. If not,1290

the DRMAA implementation MUST generate value this is unique in time and extend of the DRM system.1291

Relationship
to
ReservationTemplate::reservationName
?

1292

8.3.2 session1293

This attribute references the ReservationSession which was used to create the advance reservation instance.1294

8.3.3 reservationTemplate1295

This attribute provides a reference to a ReservationTemplate instance that has equal values to the one1296

that was used for the advance reservation creating this Reservation instance.1297

8.3.4 reservedMachines1298

Could that
be UNSET ?

1299

This attribute describes the set of machines which was reserved under the conditions described in the1300

according reservation template.1301

8.3.5 reservedStartTime1302

Could that
be UNSET ?

1303

This attribute describes the start time for the reservation described by this instance.1304

8.3.6 reservedEndTime1305

Could that
be UNSET ?

1306

This attribute describes the end time for the reservation described by this instance.1307

8.3.7 terminate1308

This method terminates the advance reservation in the DRM system represented by this Reservation1309

instance. .

Needs ad-
ditional ex-
planation of
expected be-
havior

1310

9 Monitoring the DRM System1311

The DRMAA monitoring facility supports four basic units of monitoring:1312

• Properties of the DRM system as a whole (e.g. DRM system version number) that are independent1313

from the particular session resp. contact string,1314

30 The reason for not having a separate ReservationInfo struct is that there are only three relevant attributes for this structure,
and that all of them have static semantics. There is, therefore, no need for refetching reservation information several times,
which is the case with JobInfo. Because of this, the according information can be a part of the Reservation interface itself.

drmaa-wg@ogf.org 44

mailto:drmaa-wg@ogf.org

GWD-R March 2011

• Properties of the DRM system that depend on the current contact string (e.g. list of machines in the1315

currently accessed Grid Engine cell)1316

• Properties of individual queues known from a getAllQueues call1317

• Properties of individual machines available with the current contact string (e.g. amount of physical1318

memory in a chosen machine)1319

The MonitoringSession interface in DRMAA supports the monitoring of execution resources in the DRM1320

system. This is distinct from the monitoring of jobs running in the DRM system, which is covered by the1321

JobSession resp. Job interface.1322

9.1 MonitoringSession Interface1323

The MonitoringSession interface represents a set of stateless methods for fetching information about the1324

DRM system and the DRMAA implementation itself. It MAY be used to implement DRM system monitoring1325

tools like qstat.1326

interface MonitoringSession {1327

readonly attribute Version drmsVersion;1328

ReservationList getAllReservations ();1329

JobList getAllJobs(in JobInfo filter);1330

QueueList getAllQueues(in StringList names);1331

MachineList getAllMachines(in StringList names);1332

readonly attribute StringList drmsJobCategoryNames;1333

};1334

All returned data SHOULD be related to the current user running the DRMAA-based application. For1335

example, the getAllQueues function MAY be reduced to only denote queues that are usable or generally1336

accessible for the DRMAA application and user performing the query.1337

Because no guarantee can be made as to future accessibility, and because of cases where list reduction may1338

demand excessive overhead in the DRMAA implementation, an unreduced or partially reduced result MAY1339

be returned on all methods returning lists. The behavior of the DRMAA implementation in this regard1340

should be clearly documented. In all cases, the list items MUST all be valid input for job submission or1341

advance reservation through the DRMAA API.1342

9.1.1 drmsVersion1343

This attribute provides the DRM-system specific version information. While the DRM system type is avail-1344

able from the SessionManager::drmsName attribute (see Section 6.1), this attribute provides the according1345

version of the product. Applications are expected to use the information about the general DRM system type1346

for accessing product-specific features, e.g. with the JobTemplate::drmsSpecific dictionary. Applications1347

are not expected to make decisions based on versioning information from this attribute - instead, the value1348

should only be utilized for informative output to the end user.1349

9.1.2 getAllReservations1350

This method returns the list of all DRMS advance reservations accessible for the user running the DRMAA-1351

based application. In contrast to a ReservationSession::getReservations call, this method SHOULD1352

return also reservations that were created outside of DRMAA (e.g. through command-line tools) by this user.1353

drmaa-wg@ogf.org 45

mailto:drmaa-wg@ogf.org

GWD-R March 2011

The returned list MAY also contain reservations that were created by other users if the security policies of1354

the DRM system allow such global visibility. The DRM system or the DRMAA implementation is at liberty,1355

however, to restrict the set of returned reservations based on site or system policies, such as security settings1356

or scheduler load restrictions.1357

This method SHALL raise an UnsupportedOperationException if advance reservation is not supported by1358

the implementation.1359

9.1.3 getAllJobs1360

This method returns the list of all DRMS jobs visible to the user running the DRMAA-based application. In1361

contrast to a JobSession::getJobs call, this method SHOULD also return jobs that were submitted outside1362

of DRMAA (e.g. through command-line tools) by this user. The returned list MAY also contain jobs that1363

were submitted by other users if the security policies of the DRM system allow such global visibility. The1364

DRM system or the DRMAA implementation is at liberty, however, to restrict the set of returned jobs based1365

on site or system policies, such as security settings or scheduler load restrictions.1366

Querying the DRM system for all jobs might result in returning an excessive number of Job objects. Impli-1367

cations to the library implementation are out of scope for this specification.1368

The method supports a filter argument for fetching only a subset of the job information available. Both1369

the return value semantics and the filter semantics SHOULD be similar to the ones described for the1370

JobSession::getJobs method (see Section 7.2).1371

Language bindings SHOULD NOT try to solve the scalability issues by replacing the sequence type of the
return value with some iterator-alike solution. This approach would break the basic snapshot semantic
intended for this method.

(See footnote)
31

1372

9.1.4 getAllQueues1373

This method returns a list of queues available for job submission in the DRM system. All Queue instances1374

in this list SHOULD be (based on their name attribute) a valid input for the JobTemplate::queueName1375

attribute (see Section 7.4). The result can be an empty list or might be incomplete, based on queue, host,1376

or system policies. It might also contain queues that are not accessible for the user (because of queue1377

configuration limits) at job submission time.1378

The names parameter supports restricting the result to Queue instances that have one of the names given in1379

the argument. If the names parameter value is UNSET, all Queue instances should be returned.1380

9.1.5 getAllMachines1381

This method returns the list of machines available in the DRM system as execution host. The returned list1382

might be empty or incomplete based on machine or system policies. The returned list might also contain1383

machines that are not accessible by the user, e.g. because of host configuration limits.1384

The names parameter supports restricting the result to Machine instances that have one of the names given1385

in the argument. If the names parameter value is UNSET, all Machine instances should be returned.1386

31 The non-argumentation about the scalability problem was the final result of a clarification attempt. We hand this one
over to the implementors. (conf call Jul 14th 2010)

drmaa-wg@ogf.org 46

mailto:drmaa-wg@ogf.org

GWD-R March 2011

9.1.6 drmsJobCategoryNames1387

This method provides the list of of valid job category names which can be used for the jobCategory attribute1388

in a job template. The semantics are described in Section 7.4.8.1389

10 Annex A: Complete DRMAA IDL Specification1390

The following text shows the complete IDL specification for the DRMAAv2 application programming inter-1391

face. The ordering of IDL constructs here has no normative meaning, but ensures the correct compilation1392

with a standard CORBA IDL compiler for syntactical correctness checks. This demands only some additional1393

forward declarations to resolve circular dependencies.1394

module DRMAA2 {1395

enum JobState {1396

UNDETERMINED , QUEUED , QUEUED_HELD , RUNNING , SUSPENDED , REQUEUED ,1397

REQUEUED_HELD , DONE , FAILED };1398

enum OperatingSystem {1399

HPUX , LINUX , IRIX , TRUE64 , MACOS , SUNOS , WIN , WINNT , AIX , UNIXWARE ,1400

BSD , OTHER_OS };1401

enum CpuArchitecture {1402

ALPHA , ARM , CELL , PARISC , X86 , X64 , IA64 , MIPS , PPC , PPC64 ,1403

SPARC , SPARC64 , OTHER_CPU };1404

enum ResourceLimitType {1405

CORE_FILE_SIZE , CPU_TIME , DATA_SEG_SIZE , FILE_SIZE , OPEN_FILES ,1406

STACK_SIZE , VIRTUAL_MEMORY , WALLCLOCK_TIME };1407

enum JobTemplatePlaceholder {1408

HOME_DIRECTORY ,WORKING_DIRECTORY ,HOST_NAME ,USER_NAME ,PARAMETRIC_INDEX };1409

enum DrmaaEvent {1410

NEW_STATE , MIGRATED , ATTRIBUTE_CHANGE1411

};1412

typedef sequence <string > OrderedStringList;1413

typedef sequence <string > StringList;1414

typedef sequence <Job > JobList;1415

typedef sequence <Queue > QueueList;1416

typedef sequence <Machine > MachineList;1417

typedef sequence <Reservation > ReservationList;1418

typedef sequence < sequence <string ,2> > Dictionary;1419

typedef string AbsoluteTime;1420

typedef long long TimeAmount;1421

native ZERO_TIME;1422

native INFINITE_TIME;1423

native UNSET;1424

drmaa-wg@ogf.org 47

mailto:drmaa-wg@ogf.org

GWD-R March 2011

struct JobInfo {1425

string jobId;1426

Dictionary resourceUsage;1427

long exitStatus;1428

string terminatingSignal;1429

string annotation;1430

JobState jobState;1431

any jobSubState;1432

OrderedStringList allocatedMachines;1433

string submissionMachine;1434

string jobOwner;1435

string queueName;1436

TimeAmount wallclockTime;1437

long cpuTime;1438

AbsoluteTime submissionTime;1439

AbsoluteTime dispatchTime;1440

AbsoluteTime finishTime ;};1441

struct JobTemplate {1442

StringList attributeNames;1443

string remoteCommand;1444

OrderedStringList args;1445

boolean submitAsHold;1446

boolean rerunnable;1447

Dictionary jobEnvironment;1448

string workingDirectory;1449

string jobCategory;1450

StringList email;1451

boolean emailOnStarted;1452

boolean emailOnTerminated;1453

string jobName;1454

string inputPath;1455

string outputPath;1456

string errorPath;1457

boolean joinFiles;1458

string reservationId;1459

string queueName;1460

long minSlots;1461

long maxSlots;1462

long priority;1463

OrderedStringList candidateMachines;1464

long minPhysMemory;1465

OperatingSystem machineOS;1466

CpuArchitecture machineArch;1467

AbsoluteTime startTime;1468

Dictionary drmsSpecific;1469

AbsoluteTime deadlineTime;1470

Dictionary stageInFiles;1471

drmaa-wg@ogf.org 48

mailto:drmaa-wg@ogf.org

GWD-R March 2011

Dictionary stageOutFiles;1472

Dictionary softResourceLimits;1473

Dictionary hardResourceLimits;1474

string accountingId;1475

};1476

struct ReservationTemplate {1477

StringList attributeNames;1478

string reservationName;1479

AbsoluteTime startTime;1480

AbsoluteTime endTime;1481

TimeAmount duration;1482

long minSlots;1483

long maxSlots;1484

OrderedStringList candidateMachines;1485

long minPhysMemory;1486

OperatingSystem machineOS;1487

CpuArchitecture machineArch;1488

Dictionary drmsSpecific;1489

};1490

struct DrmaaNotification {1491

DrmaaEvent event;1492

Job job;1493

JobState jobState;1494

};1495

struct Queue {1496

string name;1497

TimeAmount maxWallclockTime;1498

};1499

struct Version {1500

string major;1501

string minor;1502

};1503

struct Machine {1504

string name;1505

long sockets;1506

long coresPerSocket;1507

long threadsPerCore;1508

double load;1509

long physMemory;1510

long virtMemory;1511

OperatingSystem machineOS;1512

Version machineOSVersion;1513

CpuArchitecture machineArch;1514

};1515

drmaa-wg@ogf.org 49

mailto:drmaa-wg@ogf.org

GWD-R March 2011

exception AuthorizationException {string message ;};1516

exception DefaultContactStringException {string message ;};1517

exception DeniedByDrmException {string message ;};1518

exception DrmCommunicationException {string message ;};1519

exception TryLaterException {string message ;};1520

exception SessionManagementException {string message ;};1521

exception TimeoutException {string message ;};1522

exception InternalException {string message ;};1523

exception InvalidArgumentException {string message ;};1524

exception InvalidSessionException {string message ;};1525

exception InvalidStateException {string message ;};1526

exception OutOfMemoryException {string message ;};1527

exception UnsupportedAttributeException {string message ;};1528

exception UnsupportedOperationException {string message ;};1529

interface DrmaaCallback {1530

void notify(in DrmaaNotification notification);1531

};1532

interface ReservationSession {1533

readonly attribute string contact;1534

readonly attribute string sessionName;1535

Reservation getReservation(in string reservationId);1536

Reservation requestReservation(in ReservationTemplate reservationTemplate);1537

ReservationList getReservations ();1538

};1539

interface Reservation {1540

readonly attribute string reservationId;1541

readonly attribute ReservationSession session;1542

readonly attribute ReservationTemplate reservationTemplate;1543

OrderedStringList reservedMachines;1544

AbsoluteTime reservedStartTime;1545

AbsoluteTime reservedEndTime;1546

void terminate ();1547

};1548

interface JobArray {1549

readonly attribute string jobArrayId;1550

readonly attribute JobList jobs;1551

readonly attribute JobSession session;1552

readonly attribute JobTemplate jobTemplate;1553

void suspend ();1554

void resume ();1555

void hold ();1556

void release ();1557

void terminate ();1558

};1559

drmaa-wg@ogf.org 50

mailto:drmaa-wg@ogf.org

GWD-R March 2011

interface JobSession {1560

readonly attribute string contact;1561

readonly attribute string sessionName;1562

readonly attribute boolean notificationSupported;1563

JobList getJobs(in JobInfo filter);1564

Job runJob(in JobTemplate jobTemplate);1565

JobArray runBulkJobs(1566

in JobTemplate jobTemplate ,1567

in long beginIndex ,1568

in long endIndex ,1569

in long step);1570

Job waitAnyStarted(in JobList jobs , in TimeAmount timeout);1571

Job waitAnyTerminated(in JobList jobs , in TimeAmount timeout);1572

void registerEventNotification(in DrmaaCallback callback);1573

};1574

interface Job {1575

readonly attribute string jobId;1576

readonly attribute JobSession session;1577

readonly attribute JobTemplate jobTemplate;1578

void suspend ();1579

void resume ();1580

void hold ();1581

void release ();1582

void terminate ();1583

JobState getState(out any jobSubState);1584

JobInfo getInfo ();1585

Job waitStarted(in TimeAmount timeout);1586

Job waitTerminated(in TimeAmount timeout);1587

};1588

interface MonitoringSession {1589

readonly attribute Version drmsVersion;1590

ReservationList getAllReservations ();1591

JobList getAllJobs(in JobInfo filter);1592

QueueList getAllQueues(in StringList names);1593

MachineList getAllMachines(in StringList names);1594

readonly attribute StringList drmsJobCategoryNames;1595

};1596

interface SessionManager{1597

readonly attribute string drmsName;1598

readonly attribute Version drmaaVersion;1599

readonly attribute boolean reservationSupported;1600

JobSession createJobSession(in string sessionName ,1601

in string contactString);1602

ReservationSession createReservationSession(in string sessionName ,1603

in string contactString);1604

drmaa-wg@ogf.org 51

mailto:drmaa-wg@ogf.org

GWD-R March 2011

MonitoringSession createMonitoringSession (in string contactString);1605

JobSession openJobSession(in string sessionName);1606

ReservationSession openReservationSession(in string sessionName);1607

void closeJobSession(in JobSession s);1608

void closeReservationSession(in ReservationSession s);1609

void closeMonitoringSession(in MonitoringSession s);1610

void destroyJobSession(in string sessionName);1611

void destroyReservationSession(in string sessionName);1612

StringList getJobSessions ();1613

StringList getReservationSessions ();1614

};1615

};1616

11 Security Considerations1617

The DRMAA API does not specifically assume the existence of a particular security infrastructure in the1618

DRM system. The scheduling scenario described herein presumes that security is handled at the point of job1619

authorization/execution on a particular resource. It is assumed that credentials owned by the application1620

using the API are in effect for the DRMAA implementation too.1621

It is conceivable an authorized but malicious user could use a DRMAA implementation or a DRMAA enabled1622

application to saturate a DRM system with a flood of requests. Unfortunately for the DRM system this1623

case is not distinguishable from the case of an authorized good-natured user that has many jobs to be1624

processed. For temporary load defense, implementations SHOULD utilize the TryLaterException. In case1625

of permanent issues, the implementation SHOULD raise the DeniedByDrmException.1626

DRMAA implementers should guard against buffer overflows that could be exploited through DRMAA1627

enabled interactive applications or web portals. Implementations of the DRMAA API will most likely1628

require a network to coordinate subordinate DRMS, however the API makes no assumptions about the1629

security posture provided the networking environment. Therefore, application developers should further1630

consider the security implications of ”on-the-wire” communications.1631

For environments that allow remote or protocol based DRMAA clients, the implementation SHOULD offer1632

support for secure transport layers to prevent man in the middle attacks.1633

12 Contributors1634

Roger Brobst1635

Cadence Design Systems, Inc.1636

555 River Oaks Parkway1637

San Jose, CA 951341638

Email: rbrobst@cadence.com1639

1640

Daniel Gruber1641

Univa1642

1643

drmaa-wg@ogf.org 52

mailto:drmaa-wg@ogf.org

GWD-R March 2011

Mariusz Mamonski1644

1645

Daniel Templeton (Corresponding Author)1646

Cloudera1647

1648

Peter Tröger (Corresponding Author)1649

Hasso-Plattner-Institute at University of Potsdam1650

Prof.-Dr.-Helmert-Str. 2-31651

14482 Potsdam, Germany1652

Email: peter@troeger.eu1653

1654 Add miss-
ing contact
details

1655

We are grateful to numerous colleagues for support and discussions on the topics covered in this document,1656

in particular (in alphabetical order, with apologies to anybody we have missed):1657

Guillaume Alleon, Ali Anjomshoaa, Ed Baskerville, Harald Böhme, Nadav Brandes, Matthieu Cargnelli, Karl1658

Czajkowski, Piotr Domagalski, Fritz Ferstl, Paul Foley, Nicholas Geib, Becky Gietzel, Alleon Guillaume,1659

Andreas Haas, Tim Harsch, Greg Hewgill, Rayson Ho, Eduardo Huedo, Dieter Kranzmüller, Krzysztof1660

Kurowski, Peter G. Lane, Miron Livny, Ignacio M. Llorente, Martin v. Löwis, Andre Merzky, Ruben S.1661

Montero, Greg Newby, Steven Newhouse, Michael Primeaux, Greg Quinn, Hrabri L. Rajic, Martin Sarachu,1662

Jennifer Schopf, Enrico Sirola, Chris Smith, Ancor Gonzalez Sosa, Douglas Thain, John Tollefsrud, Jose R.1663

Valverde, and Peter Zhu.1664

13 Intellectual Property Statement1665

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that1666

might be claimed to pertain to the implementation or use of the technology described in this document or the1667

extent to which any license under such rights might or might not be available; neither does it represent that1668

it has made any effort to identify any such rights. Copies of claims of rights made available for publication1669

and any assurances of licenses to be made available, or the result of an attempt made to obtain a general1670

license or permission for the use of such proprietary rights by implementers or users of this specification can1671

be obtained from the OGF Secretariat.1672

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications,1673

or other proprietary rights which may cover technology that may be required to practice this recommendation.1674

Please address the information to the OGF Executive Director.1675

14 Disclaimer1676

This document and the information contained herein is provided on an “As Is” basis and the OGF disclaims1677

all warranties, express or implied, including but not limited to any warranty that the use of the information1678

herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular1679

purpose.1680

drmaa-wg@ogf.org 53

mailto:drmaa-wg@ogf.org

GWD-R March 2011

15 Full Copyright Notice1681

Copyright c© Open Grid Forum (2005-2011). Some Rights Reserved.1682

This document and translations of it may be copied and furnished to others, and derivative works that1683

comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and1684

distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice1685

and this paragraph are included on all such copies and derivative works. However, this document itself1686

may not be modified in any way, such as by removing the copyright notice or references to the OGF or1687

other organizations, except as needed for the purpose of developing Grid Recommendations in which case1688

the procedures for copyrights defined in the OGF Document process must be followed, or as required to1689

translate it into languages other than English.1690

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors1691

or assignees.1692

16 References16931694

[1] Scott Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119 (Best Current1695

Practice), March 1997. URL http://tools.ietf.org/html/rfc2119.1696

[2] I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pickles, D. Pulsipher, C. Smith,1697

and M. Theimer. OGSA Basic Execution Service v1.0 (GFD-R.108), nov 2008.1698

[3] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Kleijer, Andre Merzky, John1699

Shalf, and Christopher Smith. A Simple API for Grid Applications (SAGA) Version 1.1 (GFD-R-P.90),1700

jan 2008.1701

[4] Object Management Group. Common Object Request Broker Architecture (CORBA) Specification,1702

Version 3.1. http://www.omg.org/spec/CORBA/3.1/Interfaces/PDF, jan 2008.1703

[5] The IEEE and The Open Group. The Open Group Base Specifications Issue 6 IEEE Std 1003.1.1704

http://www.opengroup.org/onlinepubs/000095399/utilities/ulimit.html.1705

[6] Distributed Management Task Force (DMTF) Inc. CIM System Model White Paper CIM Version 2.7,1706

jun 2003.1707

[7] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas Haas, Bill Nitzberg,1708

Daniel Templeton, John Tollefsrud, and Peter Tröger. Distributed Resource Management Application1709

API Specification 1.0 (GFD-R.022), aug 2007.1710

[8] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas Haas, Bill Nitzberg,1711

Daniel Templeton, John Tollefsrud, and Peter Tröger. Distributed Resource Management Application1712

API Specification 1.0 (GWD-R.133), jun 2008.1713

[9] Eric Rescorla, Brian Korver, and Internet Architectures Board. Guidelines for Writing RFC Text on1714

Security Considerations. RFC 3552 (Best Current Practice), July 2003. URL http://tools.ietf.1715

org/html/rfc3552.1716

[10] Peter Tröger, Daniel Templeton, Roger Brobst, Andreas Haas, and Hrabri Rajic. Distributed Resource1717

Management Application API 1.0 - IDL Specification (GFD-R-P.130), apr 2008.1718

drmaa-wg@ogf.org 54

http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc3552
http://tools.ietf.org/html/rfc3552
http://tools.ietf.org/html/rfc3552
mailto:drmaa-wg@ogf.org

GWD-R March 2011

[11] Peter Tröger, Hrabri Rajic, Andreas Haas, and Piotr Domagalski. Standardised job submission and1719

control in cluster and grid environments. International Journal of Grid and Utility Computing, 1:1720

134–145, dec 2009. doi: {http://dx.doi.org/10.1504/IJGUC.2009.022029}.1721

drmaa-wg@ogf.org 55

mailto:drmaa-wg@ogf.org

	Introduction
	Notational Conventions
	Language Bindings
	Slots and Queues
	Multithreading

	Namespace
	Common Type Definitions
	Common Data Structures and Enumerations
	OperatingSystem enumeration
	CpuArchitecture enumeration
	ResourceLimitType enumeration
	JobTemplatePlaceholder enumeration
	Queue structure
	Version structure
	Machine structure
	JobInfo structure

	Common Exceptions
	The DRMAA Session Concept
	SessionManager Interface

	Working with Jobs
	The DRMAA State Model
	JobSession Interface
	DrmaaCallback Interface
	JobTemplate Structure
	Job Interface
	JobArray Interface

	Working with Advance Reservation
	ReservationSession Interface
	ReservationTemplate structure
	Reservation Interface

	Monitoring the DRM System
	MonitoringSession Interface

	Annex A: Complete DRMAA IDL Specification
	Security Considerations
	Contributors
	Intellectual Property Statement
	Disclaimer
	Full Copyright Notice
	References

