Federating Repositories -
Reference Framework and Best Practices
Context

Open Grid Forum (OGF), Digital Repositories Research Group (DR-RG)
http://www.ogf.org/gf/group_info/view.php?group=dr-rg
Status of this document

This document is in a first draft version and is currently being discussed within OGF DR-RG. It provides an analysis of repository federation techniques, aiming to include a broad range of existing experiences. As such, it is a broad analysis, yet it is necessarily not the only approach and may be complemented with other works in the future. Accordingly, this document does not define any standards.
Abstract

Digital repositories are a key tool for managing and preserving digital objects in cultural heritage, research, commercial, or other environments. This report looks at how disparate repositories and other agents (e.g. registries, added-value services, grid-based analysis) can be networked in a decentralised environment. Particularly, it looks at design patterns for repository federation to guide research and implementation in the field.
History
	Date
	Author
	Log

	02.01.2010
	Andreas Aschenbrenner
	Outline and Draft

Outline

30.
Glossary

1.
Repositories in Grid Environments
4
1.1. A Repository Framework
4
1.2. Objectives for this Document
4
2.
Repository Federation
7
2.1. Interoperability in Digital Repositories
7
2.2. Pattern Language
9
2.3. Federation Pattern: Distributed Query
10
2.4. Federation Pattern: Notification
11
2.5. Federation Pattern: Harvest
13
3.
Four Steps to Build a Repository Federation
17
4.
Conclusions
19

0. Glossary

Object: Digital objects are (mostly file-based) containers for data and related metadata. The data can be of various types: structured, semi-structured (e.g. XML-based), or unstructured data such as images or videos. The related metadata can be suited to the particular needs and comprehend a flexible framework for descriptive, administrative (e.g. audit trails) or other metadata. Notably, objects may link to other objects, thereby establishing a reference network of objects and other information sources.
Federation: Linking disparate systems transparently, making it appear as if only interacting with a single integrated system. The concept of federation is very similar to "virtualisation", although in common terminology usually hardware resources are "virtualised" and software systems are "federated". In a repository context, various disparate repositories can be federated to exchange and link their contents. In this report, "federation" also includes the interaction between a repository and other agents (e.g. search portals, analysis and visualization environments, or dedicated services such as format conversion).
Repository: Software system for managing digital objects. Their features go beyond simple operations (e.g. create, retrieve, update, delete), and may provide various generic mechanisms for version management, scientific and/or interactive workflows, collaborative editing of digital objects, and others.
Note that this definition emphasises a repository to be a "software system". For embedding a repository into a specific community context and ensuring the trustworthiness of the system, there is clearly a range of organisational roles and responsibilities that need to be assumed.
 However, this report focuses on the technical mechanisms that can be provided on an infrastructure level in a generic way, in order to be applicable for a range of different communities and application contexts.

1. Repositories in Grid Environments
This report provides an account of current techniques and tools for federating digital repositories, and what is needed to build a repository federation. But what actually is a "repository federation" ? - This chapter aims to define this, and to thereby scope this report. In that it focuses on the "federation"; a definition of the term "repository" and various application contexts are provided in the accompanying "Repository Case Studies".

1.1. A Repository Framework

The accompanying report on "Repository Case Studies" identifies three conceptual layers that establish a trustworthy repository system, focusing on the management of information objects over time:
· storage and file management - the infrastructure; handles files across virtualized storage hardware,
· object management - the management layer; works on information objects without defining their contents, and

· community semantics - the community context; deals with the semantics of information objects.
The report also argues that the work on digital repositories in the OGF DR-RG focuses on the middle layer - object management -, since it aims to discuss techniques that are layered above the level of hardware and grid-based data management (i.e. above the storage and file management layer; addressed by other OGF RGs), yet techniques that are generic and applicable in just any community context (i.e. below the community-specific data curation layer). Some of the functionalities covered by the object management layer include: persistent identification and preservation, metadata management, life-cycle support, data quality, and others.
Likewise, "federation" in this context addresses the networking of digital repositories amongst each other and with other agents (including search portals, analysis and visualization environments, and dedicated services such as format conversion) on an object management layer. Its techniques deal with the interoperability of disparate repositories and agents with regards to their metadata and their object handling mechanisms. As one benefit of repository federation techniques, the user does not necessarily know in which repository system her digital objects are being managed when accessing them via various portals and dedicated tools, or even that there are multiple interacting repositories in the first place. In other words, where data grid techniques aim to virtualize storage (hardware), repository federation aims to virtualize information.
1.2. Objectives for this Document
Figure 1 shows a repository's interfaces to its environment: (a) to a storage infrastructure (the storage interface, could be a data grid or a cloud); (b) to other repositories and other agents (including computational grids for data analysis); as well as (c) the community-specific portals and machine interfaces that fuel individual applications.
[image: image1.png]user
(human interface)
| {machine interface)

other
repositories
or other agents

| &

repository

[@
(a) Open Storage Interface
storage Eb) Federation Interface

Figure 1 - Environmental model of a repository system.

As outlined above, this report focuses on the Federation Interface that links disparate repositories as well as other agents. With regard to the Storage Interface, some groups argue that one of the existing data protocols such as the SRM
 or a cloud-based interface such as the ones currently being created by SNIA
 can be used to be generic; other groups
 argue that repository storage needs to be tailored to the management of digital objects and expose an object format such as the RDF-based OAI-ORE rather than a generic file-based protocol. This discussion is likely to gain attention in the next couple of months and may be addressed in a future activity of the DR-RG.
With regard to the Federation Interface, this report builds on existing experience wherever available (e.g. the Open Archives Initiative OAI
, OpenRepositories
). One of the reference standards in the domain is the OAIS - the ISO Reference Model for an Open Archival Information System
. Where the OAIS builds a reference model for a single trustworthy digital archive, this report describes mechanisms for decomposing a single OAIS into multiple systems, or for connecting multiple OAIS'. We are not aware of any other standard on repository federation that addresses the issues at hand on a conceptual level, yet there are numerous actual tools and techniques for repository federation. This report provides a conceptual framework for repository federation that builds on these available tools and techniques. It therefore moves between conceptual discussions and references to actual tools and experiences in the field. While the actual tools are likely to change in a quick pace, the conceptual framework is geared to remain valid despite a changing technical environment.
Overall, this report provides a structure for repository federation, which (a) enables transfer of experiences and (b) makes research in the field comparable, and which at the same time (c) guides implementation efforts when building federations. As such it is geared at communities that have multiple repositories in place they wish to connect, or that aim to establish a decentralized information environment consisting of multiple repositories and other agents (e.g. a grid-based scientific analysis of repository data).

2. Repository Federation
This chapter introduces existing repository federation mechanisms. It thereby starts from a conceptual level and progresses to examples for actual implementation, and it builds on "pattern-driven design" as a software engineering model.
 Each pattern describes conceptually its architectural properties and its implementation context, and further presents model implementations with available standards and software.
2.3. Interoperability in Digital Repositories

Thibodeau
 distinguishes three conceptual layers of interoperability in information objects contained in trusted repositories: the physical, logical and conceptual layers. Each of these layers requires different organizational and technical measures for their management; the layer model hence supports separation of concerns, and fosters robustness and simplicity on each layer. A similar line of argumentation has been taken on interoperability levels
, and is also reflected in the repository environmental model (cf. Figure 1 - with levels: storage, repositories/agents, user).

[image: image2.png]object system

semarntics ,Conceptua™\ architecture
syntax logical pattern
encoding _physical protacol

Figure 2 - Attributes of interoperability on three layers of abstraction, pertaining to both the object and the system. An analysis of Federation particularly looks at the logical system layer.
Interoperability in repository systems can be analysed along both, the digital objects and the software systems:
· encoding (object) -- defines the byte serialization for characters, and is essential basis for machine interaction. (Please note, Dublin Core also defines "syntax encoding" and "vocabulary encoding",
 which we address in the following two items.)

· syntax (object) -- specifies the strings and statements that can be used to express semantics. In compilers for programming languages this is often referred to as the lexical rules and the grammar of how statements can be expressed. For example, an XML-document -- a prevalent syntax for describing digital objects -- that complies with the lexical rules and XML markup grammar is called "well-formed".
· semantics (object) -- define the meaning of terms and statements in a certain context, for example in a digital object. Semantics are shared, pre-established and negotiated between stakeholders, and expressed in vocabularies (flat lists) or ontologies (network of concepts and their relations). Due to the need for agreement on common semantics between stakeholders, "local" semantics tend to be more expressive than those of larger groups or "global" semantics. Other than syntax, which can be captured into a complete machine-readable specification, semantics may always be subject to human interpretation and may need informal definitions alongside the machine-readable ones.

· protocol (system) -- describes within an information system how one intellectual entity relates to others, e.g. whether they are nested or dependent on each other.
 Containers such as METS
 are structural tools to bind closely related entities together as in the case of a digital objects composed of multiple files. Looser relations are often expressed through references between objects that can be meaningful even across information systems.

· pattern (system) -- identifies recurring design problems in information systems and present a well-proven generic approach for its solution, consisting of the constituent components, their responsibilities and relationships.
,
 Patterns can be building blocks of system architecture, or define the way in which distinct information systems exchange information (e.g. triggers, workflow, conventions, timing).

· architecture (system) -- specifies the overall structure, capabilities of and interactions between system components to achieve an overall goal. Architectures are tailored towards specific requirements in a specific context; whereas it may be based on a reference architecture that is relevant in a domain or recurrent application context.
Of particular interest to us in this context are the dimensions syntax (object) and pattern (system) in the logical layer in the middle. While relevant for federation, the physical layer – encoding (object) and protocol (system) – is well researched and there are e.g. gateways between different encoding standards and programming libraries for protocols available. On the other hand, the conceptual level above – semantics (object) and architecture (system) – are closely linked to the very application context and hard to discuss on a generic level.

Overall, the physical and conceptual layers are important to define when designing a repository federation. However, the following chapters look at patterns (system), which are idiosyncratic to repository federation and for which guidance is particularly relevant in an OGF context.
2.4. Pattern Language
Pattern-driven design has been inspired by respective concepts in architecture,
 and has become an established paradigm in software architecture as well, particularly when it comes to defining and comparing the key building blocks of information systems. This section defines a pattern language for repository federation; subsequent chapters will detail the individual patterns as introduced here.

[image: image3.png]Federation

loosely-

coupled

Figure 3 - A pattern language for federation patterns. Mechanisms to filter and transform objects can be embedded into each pattern to raise the scalability and manageability of the federation.
Repository federation encompasses viewing, re-using or processing both, individual objects as well as entire sets of objects, between independent software agents. The agents involved can be digital repositories or any other agent in a repository environment (e.g. registries; search, analysis, visualisation, or other added-value services).

There are largely three high-level patterns in interaction between repositories and repository agents – Query, Notification, and Harvest (cf. Figure 3). Although each pattern is inspired by a different architectural style – Query by a client-server style, Notification by event-driven programming, and Harvest by the REST style
 –, they overlap in parts. These overlaps indicate a good coverage of conceivable patterns and application scenarios.

Each of the patterns can be extended through filters or transformations. Filters allow to better define the set of objects to be selected for federation. For example, a filter on descriptive metadata of digital objects is the Contextual Query Language (CQL)
. On the other hand, a transformation can be applied on messages as they are passed from the source to the client, an approach that is inspired by the Pipes-and-Filters style.
 All the federation patterns potentially benefit substantially from adequate filters and transformation mechanisms, both in terms of efficiency, robustness and their manageability.
Some of the challenges that are addressed by federation patterns to a different degree include

· efficiency – Efficiency in a federated environment is particularly dependent on the multiple, independent agents. Each additional agent raises the risk that the low performance of that one agent impacts detrimentally on the overall performance of the whole federation.

· consistency, completeness – As digital objects are duplicated and passed between independent agents, consistency issues may arise. Particularly in environments where objects change frequently, clients may hence be presented with old versions of an object or with processing results building on such old versions. Likewise, delays in the propagation of a newly added object through the federation may lead to an incomplete state at federated agents.

· scalability – The overall performance of a federation should not degrade with an increasing number of agents.

· openness – This thesis argues that openness is one of the key properties of federations. In particular, it characterises ‘openness’ to be constituted of the three attributes loosely-coupled, simple, and decentralised

· standard – Enabling openness and decentralisation indirectly calls for a minimum level of standardisation or also the flexibility to embed standards with regard to syntax, semantics, or structure – the other elements of the interoperability levels –, since standards support the implementation of federation mechanisms into decentralised agents that build on heterogeneous platforms and are governed independently.
2.5. Federation Pattern: Distributed Query

A Distributed Query essentially is the composition of multiple Client/Server interactions, as a query is sent to multiple sources and the responses are subsequently integrated into a single result set. The client must know all sources, and ideally the sources all provide a single standard interface for the query.

[image: image4.png]Filker,
Transform

Figure 4 - Distributed Query Pattern
Application Context:

A Distributed Query pattern is best used in a setting where objects in the disparate sources may change frequently and at any time. At the same time, however, the client wants to access the very latest object versions, and consistency problems between the various sources need to be avoided.

Another reason to opt for a Distributed Query pattern for repository federation may be technical constraints (e.g. large size of objects) or legal restrictions, as the data remains at the source institution (other than in the case of the Notification or Harvest patterns).

Forces:

Even with dedicated server interfaces, Distributed Queries often display bad efficiency. A Query is often dependent on the slowest server, when clients aim to integrate the various responses into a single result set. Thus, particularly in decentralised environments where clients have little influence on the repository's quality of service, slow response times of some sources may be prohibitive for adequate results. Underlining this, the Resource Discovery Network (RDN) was finding that even with only "five subject gateways in its cross-search there were problems of poor performance".

♦ ♦ ♦

Exemplary Implementations:

There are various implementations of the Distributed Query pattern. Z39.50 for querying metadata in library catalogues has been around since 1988. Z39.50 was widely spread and still is, along with its successor web service-based successor SRU/W (for both SOAP and REST).
One of the notable implementations in other communities is SDMX, the protocol for Statistical Data and Metadata eXchange supports federations that may span numerous organisations around the globe.
 SDMX has chosen a Query pattern, since statistical data are often subject to licenses and cannot be hosted outside of the creator's organisational environment. Another characteristic in the statistical data domain, that makes Distributed Query the suitable pattern, are the rigid consistency requirements in the face of frequent update cycles.
2.6. Federation Pattern: Notification

In a Notification pattern, the source sends messages on repository events. Triggers for notifications can be e.g. CrUD events -- the creation, update, or deletion of an object in the repository --, which allows the client to stay in sync with the current state of the repository.

We distinguish between two sub-patterns of Notification: Notification by Registration, and a Hybrid Push/Poll Notification, which are described below. Both build on the availability of a message channel, which conveys the notifications from the source to the client. Filters can be applied during the exposure into the channel respectively on read.

[image: image5.png]Fikter,
Transform

Fitter,
i Transform

Figure 5 - Notification Pattern
Application Context:

Notification is particularly suited for federation topologies where the agents are closely synchronised in their state, and need information about repository events as they occur.

Once many independent agents need to be synchronised, a Notification pattern is more timely than Harvest, and more robust than a Distributed Query pattern by way of its direct, yet de-coupled communication between the source and the client.
Forces:

A Notification pattern requires the setup of a suitable message channel where messages are actively exposed by the source. Particularly in approaches that are "by Registration", the reliability of this channel is of key importance. Also and particularly in a Hybrid approach, the latency of transporting the message from source to client must be taken into account.

♦ ♦ ♦
Pattern Details:

Notifications can be interpreted as the opposite of the Distributed Query mechanism. While in a Query the client requests information from a set of sources in a lower architectural layer, notifications are triggered by low-level events and passed on to higher level services. Notifications can e.g. be used to implement Observer patterns on CrUD events.
A Notification pattern builds on a message channel, and we distinguish broadly two approaches of how such a channel can be implemented. The first approach is "by Registration", with some messaging frameworks distinguishing between publish-subscribe (one-to-many) and point-to-point (one-to-one) models. Both messaging models require an event mechanism that allows subscription in the publish-subscribe model (which delivers immediately on the occurrence of an event), or the creation of a dedicated queue in the point-to-point model (which delivers on consumption, and hence reliably delivers messages). Because of the registration and since the notifications are passed on without delay, this pattern is often used in more tightly-coupled environments.

In contrast to these registration-based notifications, Hybrid push/poll notifications (many-to-many) can be initiated without any communication between the agents and are hence more decoupled.

Instead of the subscription process or a dedicated queue, consumers retrieve notifications from a broker. This broker may offer a notification history, such that a client can look up past notifications or it may be offline when a notification is sent and retrieve it later whenever convenient. This increased decoupling and robustness comes at the cost of immediacy, since the consumer needs to actively retrieve the notification, and hence the length of the poll cycle defines the delay.
Exemplary Implementations:

Few repositories have adopted message-oriented middleware for coordinating repository-internal processes. Since version 3.0, Fedora implements the Java Messaging Service JMS.
 The probably most comprehensive implementation of messaging is in place in the iRODS rules system that is triggered through administrative actions.
 The iRODS rule system provides a customizable framework for executing tasks -- so-called "microservices" -- on occurrence of definable events, similar to event-based notifications.
All these messaging frameworks existing in repository installations, however, are system-internal. We are not aware of an open approach that is employed as a federation mechanism across heterogeneous agents in a repository environment. Emerging such systems build on Hybrid Notification using the Atom protocol.
 Since Atom is an XML-based standard, it enables communication across heterogeneous agents with different software bases. Conditional HTTP GET requests for retrieving an Atom feed via HTTP and common caching mechanisms in web proxies potentially raise scalability even with short polling cycles.

2.7. Federation Pattern: Harvest

An intermediary between source and client -- the harvester -- collects all the relevant data from disparate sources, and provides a single, integrated portal to the client. Regular harvest cycles ensure that the data gathered by the harvester remains up-to-date.

The harvest mechanisms may amongst other vary as to how the sources are identified, how often harvest cycles are performed, and whether a follow-up harvest cycle only updates changed data (iterative) or re-collects all the data regardless of whether or not it was updated (complete).
[image: image6.png]Fier,
Transform

-M_m‘

Figure 6 - Harvest Pattern
Application Context:

The Harvest pattern de-couples the client from the server thereby scaling the communication in the federation down from multiple tiers to only two: the client and the harvester. This potentially improves the response time for clients considerably. Therefore, the Harvest pattern is suitable for decentralised environments, in which independent sources may not offer adequate quality of service with regard to their response time.

Furthermore, the Harvest pattern is best used in environments where digital objects change infrequently due to the potential data inconsistencies introduced by the Harvester.

Forces:

The redundant storage of data may introduce inconsistencies to the original, which is further aggravated through infrequent updates. Infrequent updates, in turn, may be enforced on the overall system as harvest cycles potentially take considerable time, depending on the size of the federation, server response time, and the size and complexity of the digital objects involved.
♦ ♦ ♦

Pattern Details:

Harvesters such as those for web search engines are well researched, and there are relevant experiences from this community. However, there are some differences to harvesting mechanisms in repository environments that we will focus on in the following.
With regard to the potential inconsistencies and the load on the harvester, as mentioned above, the key mechanism is data selection: which object should be downloaded, and when? There must be a mechanism for identifying objects in the first place, and in the following we present three conceivable mechanisms.

· Web search engines usually follow-up the links parsed out of the harvested data, thereby establishing a self-referencing network of web resources. This is not feasible in repository environments, which mostly lack such densely linked content.

· In another approach, the server brokers the data to the harvester. In one way to achieve this, the server passes the ID of the next object along with a harvested resource (a "resumption token"). However, this either introduces state between the server and the client which potentially affects the robustness of the system, or it may lead to inconsistencies if the list of objects changes during the harvesting cycle.

· In an alternative approach, the repository or other object source needs to provide a list of its objects. The way such a list is provided may vary from merely a plain list, to a list with details about when the object was last updated, to a dynamic list that can be queried for specific object attributes including last update.
An additional impact on the overall efficiency of the system can be achieved by including information about the last update of an object and other metadata in the selection decision. Metadata about the last update may be useful, in case a harvester re-visits a source to only retrieve the objects that were updated since its last visit -- iterative harvesting rather than complete harvesting rounds. More extensive filtering may be applied at this point of selection.

Exemplary Implementations:

The Harvest pattern is well known in the repository community due to its implementation in OAI-PMH -- probably the most prevalent repository federation mechanism today. In September 2009, OAIster
, a "union catalog" for digital resources, cross-referenced more than 1100 repositories by way of the OAI-PMH protocol and their more than 23 million digital resources. Large repository federations include those being built by DRIVER
 for research publications, the cultural heritage portal EUROPEANA
, or ANDS
 for research data in Australia. However, we are not aware of any other implementation of the Harvest pattern or any other Federation pattern that is as widely spread.

OAI-PMH is geared at harvesting purely metadata, not the actual content of an object. However, the protocol has been employed in various contexts
 and it has also been tweaked to harvest whole objects marked up in METS
 or MPEG-DIDL
. One may argue though that these adaptations on OAI-PMH were mainly driven by the prevalence of OAI-PMH, not because OAI-PMH is really the most suitable technology for use cases other than metadata harvesting.
At the same time, we are not aware of any other significant implementation of the Harvest pattern. The low occurrence of alternative harvesting mechanisms to OAI-PMH in repository environments notwithstanding, it is quite simple to implement the Harvest pattern ad hoc using other existing mechanisms. For example, "sitemaps"
 offer the crawlers of web search engines a standard entry point to the contents of web sites, and it could equally be used to expose repository contents for harvesting by repository services. Sitemaps also offers a lastmod field that encodes the object's last modification date, to support iterative harvesting.

3. Four Steps to Build a Repository Federation
Eventually, a federation needs to be adapted to its community and application context. Taking account of the aspects identified in Figure 2, we see four high-level steps to building a repository federation:
a. object modelling
The community needs to define a common data model and metadata schema that works across the various repositories and potentially other data sources, and can serve the requirements of those applications to be built upon the repository federation. This shared data model may be a thin overlay over more detailed models contained in the various nodes of the repository federation.
In Figure 2, the three conceptual layers for objects comprehend: encoding, syntax, and semantics. Each layer needs to be defined and interoperability with the software used needs to be tested (cf. step c).
Some of the questions to be answered during this step include
· What kinds of data are we dealing with? (e.g. size of collection, size of object, formats, composition of complex objects consisting of and connecting with multiple other objects)

· Is it allowed to change data, and if so how often are updates expected? (e.g. support for separate phases in the data lifecycle, versioning)

· How are the data described? (e.g. metadata fields, metadata evolution over time)

· What system requirements are implied? (functionalities for handling, e.g. video streams)

· Are there rights management, data de-personalisation, or other administrative prerequisites?

b. system design
The architectural design of the federation has a huge impact on the dynamics of the data, its availability and the form it is available in. While the objects in the federation are directly derived from the individual objects in a source node, they can be transformed in this process in order to suit the specific application context of the federation. For example, while the original source node in a climate data repository network may contain high-resolution satellite images, parameter files, and other documents, their federation may choose to only provide thumbs of the images in a portal (and not the other files).
In Figure 2, the three conceptual layers for objects comprehend: protocol, pattern, and architecture. Each layer needs to be specified, and the additional components to implement a specific federation pattern embedded in an overall architecture need to be identified.
Some of the questions to be answered during this step include
· Should the data be transferred within the federation, or is it sufficient to transfer the metadata and link to the "original" data?

· What are the consistency requirements, as data are propagated across different nodes in the federation? (e.g. how immediate does the propagation need to occur)

· What are the technical constraints with regard to server load and performance within all nodes of the federation?

· Are there existing infrastructure components (or even team skills) in the community or in partner communities that can be used?

c. implementation
Take the specifications from step a and b, test and implement them. This may involve to go back to step a or b to refine the specifications. Organisational decisions (e.g. where hardware and software maintenance for central services is hosted) may further impact on the functioning of the federation in the short and the long term.
d. dissemination
Building a repository federation does not stop with its successful launch. Besides routine maintenance work for the federation infrastructure, the following activities need to be catered for
· add / exclude a partner node (e.g. quality of service requirements for and continuous audit of federation nodes)

· add / exclude an application, added-value service (e.g. visualisation or analysis components) or other agents in the repository federation

· refine metadata schema, infrastructure services, or other federation components that may lead to a version update
4. Conclusions

"Research cannot flourish if data are not preserved and made accessible. All concerned must act accordingly."

Digital repositories are a key tool for managing and preserving digital objects in cultural heritage, research, commercial, or other environments. Much work has been done on building repositories - tailor-made for specific communities or generic repository software packages that can be adapted for specialised application contexts.

This report has looked at how disparate repositories and other agents (e.g. search portals, analysis and visualization environments, or dedicated services such as format conversion) can be networked in a decentralised environment. It identified various attributes both pertaining to the data as well as the overall information system, which need to be synchronised in order to achieve interoperability across distributed repositories. Without being too detailed about specific (maybe transient) technologies, it aimed to contribute concepts and structure to the field.
As one component of repository federation, this report looked at design patterns that vary with regard to their scalability properties and in how immediately changes to digital objects are propagated across the federation. These patterns support the federation of distinct repositories, embedding objects in scientific workflows, as well as the interaction between a repository and another agent, including grid-based analysis of repository contents. In that, the federation patterns focus on the transfer of the data to relevant services; they do not address mobile services that may be executed within the repository. The execution of external code within the repository may raise security concerns and may have implications on the trustworthiness of the repository, which are outside the scope of this report.
Overall, this report provides a structure for repository federation, which (a) enables transfer of experiences and (b) makes research in the field comparable, and which at the same time (c) guides implementation efforts when building federations. Details on actual technologies and experiences of live federations can be found in the numerous references to the report.
� For non-technical tasks, roles and responsibilities of digital repositories, please see e.g.�* Trusted digital repositories: Attributes and responsibilities. An RLG-OCLC report. May 2002. http://www.oclc.org/programs/ourwork/past/trustedrep/repositories.pdf�* Reference Model for an Open Archival Information System (OAIS). ISO 14721:2003�http://public.ccsds.org/publications/archive/650x0b1.pdf

� Storage Resource Manager. OGF Grid Storage Management WG (GSM-WG). http://www.ogf.org/gf/group_info/view.php?group=gsm-wg

� Storage Networking Industry Association (SNIA): Cloud Data Management Interface (CDMI). http://www.snia.org/cloud

� repository storage based on object models:�(1) DuraCloud. http://www.duraspace.org/duracloud.php�(2) Andreas Aschenbrenner, Tobias Blanke, Neil P Chue Hong, Nicholas Ferguson, and Mark Hedges. A Workshop Series for Grid/Repository Integration. D-Lib Magazine, 15(1/2), January/February 2009.�(3) Steve Hitchcock, Dave Tarrant, Adrian Brown, Ben O’Steen, Neil Jefferies, and Leslie Carr. Towards smart storage for repository preservation services. In: Proceedings of the Fifth International Conference on Preservation of Digital Objects (iPRES), London, UK, September 29-30 2008.

� Open Archives Initiative, OAI. http://www.openarchives.org/

� OpenRepositories. http://openrepositories.org/

� Reference Model for an Open Archival Information System (OAIS). ISO 14721:2003�http://public.ccsds.org/publications/archive/650x0b1.pdf

� C. Alexander, S. Ishikawa, and M. Silverstein. A pattern language: towns, buildings, construction. Oxford University Press, 1977.

� Kenneth Thibodeau, Overview of Technological Approaches to Digital Preservation and Challenges in Coming Years, 2002, http://www.clir.org/pubs/reports/pub107/thibodeau.html

� Tolk, A. and Muguira, J.A. (2003). The Levels of Conceptual Interoperability Model (LCIM). Proceedings IEEE Fall Simulation Interoperability Workshop, IEEE CS Press. http://www.sisostds.org/index.php?tg=fileman&idx=get&id=2&gr=Y&path=Simulation+Interoperability+Workshops%2F2003+Fall+SIW%2F2003+Fall+SIW+Papers+and+Presentations&file=03F-SIW-007.pdf

� Mary S. Woodley. DCMI Glossary, April 2004. http://dublincore.org/documents/usageguide/glossary.shtml#E.

� Carl Lagoze. The Warwick Framework – A Container Architecture for Diverse Sets of Metadata. D-Lib Magazine, July/August 1996. http://www.dlib.org/dlib/july96/lagoze/07lagoze.html�Andy Powell, Mikael Nilsson, Ambjörn Naeve, Pete Johnston, and Thomas Baker. DCMI Abstract Model. Technical report, June 2007. http://dublincore.org/documents/abstract-model/

� Metadata Encoding and Transmission Standard (METS). http://www.loc.gov/standards/mets/�Jerome Mcdonough. METS: standardized encoding for digital library objects. International Journal on Digital Libraries, (2):148–158, April.

� Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A pattern language : towns, buildings, construction. Oxford University Press, 1977.

� Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-Oriented Software Architecture – A Pattern Language for Distributed Computing, volume 4 of Software Design Patterns. John Wiley & Sons Ltd., 2007.

� C. Alexander, S. Ishikawa, and M. Silverstein. A pattern language: towns, buildings, construction. Oxford University Press, 1977.

� Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software Architectures. PhD thesis, University of California, Irvine, 2000.

� Contextual Query Language, CQL. SRU Version 1.2 Specifications, August 2008. http://www.loc.gov/standards/sru/specs/cql.html

� Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. Pattern-Oriented Software Architecture, Volume 1: A System of Patterns. John Wiley & Sons, August 1996.

� Leona Carpenter. OAI for Beginners – the Open Archives Forum online tutorial, 2003. http://www.oaforum.org/tutorial/english/intro.htm.

� Statistical Data and Metadata Exchange Initiative. SDMX User Guide, January 2007. http://sdmx.org/docs/2007/Conf07/doc%2031%20Capacity%20Building%20Room%20Document%20-%20UserGuide%20-%20Working%20Draft.doc

� Fedora Messaging Guide. Fedora Commons Report, Viewed August 2009.�http://www.fedora-commons.org/documentation/3.0/userdocs/server/messaging/index.html

� Arcot Rajasekar, Mike Wan, Reagan Moore, and Wayne Schroeder. A Prototype Rule-based Distributed Data Management System. In Proceedings of the HPDC workshop on “Next Generation Distributed Data Management”, Paris, France, May 2006.

� Marc Wilhelm Küster, Christoph Ludwig: Software Reuse through Resource Registries - Position Paper. In: Proceedings of the 19th Australian Conference on Software Engineering. 2008.

� Cesare Pautasso and Erik Wilde. Why is the Web Loosely Coupled? A Multi-Faceted Metric for Service Design. In Proceedings of the 18th International World Wide Web Conference, pages 911–920, Madrid, Spain, April 2009. ACM Press.

� OAIster. www.oaister.org.

� Martin Feijen, Wolfram Horstmann, Paolo Manghi, Mary Robinson, and Rosemary Russell. DRIVER: Building the Network for Accessing Digital Repositories across Europe. Ariadne, 53, October 2007. http://www.ariadne.ac.uk/issue53/feijen-et-al/

� Rob Davies. Europeana: An Infrastructure for Adding Local Content. Ariadne, 57, October 2008.�http://www.ariadne.ac.uk/issue57/davies/

� Australian National Data Service, ANDS. http://ands.org.au/

� e.g.�* Liz Lyon et al.: eBank UK: linking research data, scholarly communication and learning. In Proceedings of the UK e-Science All Hands Conference, pp. 711–719. Engineering and Physical Sciences Research Council, 2004.�* Churngwei Chu, Walter E. Baskin, Juliet Z. Pao, and Michael L. Nelson. Oai-pmh architecture for the nasa langley research center atmospheric science data center. In Julio Gonzalo, Costantino Thanos, M. Felisa Verdejo, and Rafael C. Carrasco, editors, Proceedings of the ECDL 2006, Lecture Notes in Computer Science, volume 4172, pages 524–527. Springer, 2006.�* Uwe Schindler, Benny Bräuer, and Michael Diepenbroek. Data information service based on open archives initiative protocols and apache lucene. In Proceedings of the German e-Science Conference (GES), Baden-Baden, Germany, 2007. Max-Planck Society.

� Robert Tansley. Building a Distributed, Standards-based Repository Federation - The China Digital Museum Project. D-Lib Magazine, 12(7/8), July/August 2006.

� Herbert Van de Sompel, Michael L. Nelson, Carl Lagoze, and Simeon Warner. Resource Harvesting within the OAI-PMH Framework. D-Lib Magazine, 10(12), December 2004.

� Sitemaps XML format. Format Specification, February 2008. http://www.sitemaps.org/protocol.php

� Data's shameful neglect (Editorial), Nature 461, 145 (10 September 2009) | doi:10.1038/461145a, http://www.nature.com/nature/journal/v461/n7261/full/461145a.html

