DFDL connects one or more XML schema to one or more byte token input streams by specifying

· transforms between logical tokens of one type and tokens of other logical types

· the definite order in which to read tokens to populate XML instances

· the definite context for each element that defines the token stream from which it is populated

Inputs and Outputs

By default, the user’s original XML schema is the default output schema and, aside from annotation blocks, it is not modified by DFDL

By default, DFDL assumes an initial external byte token input stream

Additional XML schemas are specified in ‘hidden’ schema inside the DFDL annotation blocks. If named, they can be referred to in subsequent DFDL instructions (e.g. valuecalc) or externally
Additional byte token input streams are specified by ‘input’ annotations. 
There are a set of reserved names for logical input byte token streams and output XML instances that are not bound to real streams or XML outputs by the DFDL description –it is the job of the parser to do this binding. It is also possible to provide URIs as names that bind the DFDL schema to particular inputs and imply the destination of XML output instances (serialized XML text) and to provide input bytes inline.

Context Changes

Each open element tag in the XML schema defines zero or more context changes that identify, for each context change, a transform (name plus parameter values). If more than one context change is defined, the order must be well defined (e.g. explicit from the order of the ‘use’ annotations. It may be possible to infer this order given the set of transforms that exist, but, given extensibility, it isn’t clear that anything but an explicit ordering in the DFDL schema would be robust.)
Creating an XML simply type element implies removing one token from context which, via the transform, implies removing zero or more tokens from the outer context. 

A closing element tag in the schema implies the context is released.
Parsing Order
DFDL parsing begins at the top of the default XML output schema and the beginning of the default byte token input stream. 

Logical ordering proceeds depth first through the schema. When ‘hidden’ blocks are encountered, they are parsed as if they were directly in the user’s schema at that point. Simple types are not considered parsed until the close tag is encountered, i.e. hidden blocks within an annotation on a simple type are logically ordered before the value of the simple type.
It is possible to redirect the input stream via an ‘input’ annotation. The redirection is active until the element on which it is defined is closed.
