Properties for indirection:
The following properties allow for data to be accessed in a non-sequential or non-contiguous format by using indirection values to locate the data contents. When parsing, the indirection value is used to access the contents in the data stream to populate the infoset. When unparsing, an indirection value is created to store the contents in the data stream when creating the data stream from the infoset. The indirection value does not exist in the infoset, but only in the data stream.
[bookmark: _GoBack]The LeadingAlignment and TrailingAlignment regions apply to the indirection value in the data stream. The initiator and terminator as well as all regions between the LeftFraming and RightFraming regions are applied to the data content accessed through the indirection value.
	Property Name
	Description

	indirectKind
	Enum

Specifies the type of indirection value used to access the the contents in the data stream.

Valid values ‘pointer’, ‘offset’, ‘none’.

‘pointer’ means a numeric value gives an implementation-dependent starting position of the content.	Comment by Mike Beckerle: Need to be explicit about the assumption of bytes here. Otherwise the consistent thing would be that this pointer is measured in alignmentUnits.

I don’t think we want to go there.

‘offset’ means a numeric value that when added to indirectBase gives the starting position of the content.

‘none’ means no indirection is used and is the default value.

Annotation: dfdl:choice, dfdl:element, dfdl:group, dfdl:simpleType, dfdl:sequence

	indirectType
	QName

Name of a simple type derived from xs:integer or any subtype of it.	Comment by Mike Beckerle: Do we need this much flexibility? Why not limit this to xs:long or xs:int only?

This type, with its DFDL annotations specifies the representation of the indirection value.

It is a schema definition error if the xs:simpleType specifies any of:
· dfdl:lengthKind 'delimited', 'endOfParent', or 'pattern'
· dfdl:lengthKind 'explicit' where length is an expression
· dfdl:outputValueCalc
· dfdl:initiator or dfdl:terminator other than empty string
· dfdl:alignment other than '1' 	Comment by Mike Beckerle: And also must specify alignmentUnits=”bytes”
· dfdl:leadingSkip or dfdl:trailingSkip other than '0'.

Annotation: dfdl:choice, dfdl:element, dfdl:group, dfdl:simpleType, dfdl:sequence

	indirectBase
	String

Provides the relative path to a prior element upon which the offset is based.	Comment by Mike Beckerle: We need to specify is the offset from the start of the element at this path, or the end of the element at this path. I suggest start is the right choice, and you use start in the examples below.

Required only when dfdl:indirectKind is ‘offset’.

Annotation: dfdl:choice, dfdl:element, dfdl:group, dfdl:simpleType, dfdl:sequence

	indirectEmptyValue	Comment by Mike Beckerle: We should avoid the term “empty” here, as it is already too overloaded in DFDL.

Is this only about indirectKind ‘pointer’ ? Seems so. If so then I suggest indirectNullPointerValue as the name.
	Integer

Specifies the indirection value that indicates when the data content is empty. If this property is specified, all underlying elements must contain a default value specification or it is a schema definition error.	Comment by Mike Beckerle: What happens on unparse ? I don’t really understand what infoset situation would result in a null pointer being written out. 	Comment by Mike Beckerle: It would seem to me that you could just say this is a parse error, and backtracking would allow an array element to therefore not be created, or a choice to backtrack to another alternative, and that would avoid the need to deal with default values. Could that work?

Annotation: dfdl:choice, dfdl:element, dfdl:group, dfdl:simpleType, dfdl:sequence

The following example illustrates how to describe a pointer to a null-terminated string (common in languages like C).
<xs:element name="myString" type="xs:string"
 dfdl:lengthKind="delimited" dfdl:encoding="UTF-8"
 dfdl:terminator="%NUL;" dfdl:indirectKind="pointer"
 dfdl:indirectType="ptr32_t" dfdl:indirectEmptyValue="0"
 default=""/>
<xs:simpleType name="ptr32_t" dfdl:representation="binary"
 dfdl:lengthKind="explicit" dfdl:length="4"
 dfdl:byteOrder="bigEndian">
 <xs:restriction base="integer"/>
</xs:simpleType>
The data stream may look like the following for a string value of “test”.
Location Hex values
00000000 0012A000

0012A000 7465737400
 t e s t
The following example defines an array of 3 pointers to complex elements defined by ns0:myStruct.
<xs:element name="myArray" type="ns0:myStruct"
 dfdl:lengthKind="implicit" dfdl:indirectKind="pointer"
 dfdl:indirectType="ptr32_t" dfdl:indirectEmptyValue="0"
 minOccurs="3" maxOccurs="3" dfdl:occursCountKind="fixed"/>
<xs:simpleType name="ptr32_t" dfdl:representation="binary"
 dfdl:lengthKind="explicit" dfdl:length="4"
 dfdl:byteOrder="bigEndian">
 <xs:restriction base="integer"/>
</xs:simpleType>
The data stream may look like the following with the contents of each occurrence in a different location and the contents of the 2nd occurrence being empty.
Location Hex values
00000000 00147000 00000000 00146000
00146000 ...
00147000 ...

The following example defines an offset to a 6 byte hexBinary value with the offset being calculated from the start of the current element.
<xs:element name="myData" type="xs:hexBinary"
 dfdl:lengthKind="explicit" dfdl:length="6"
 dfdl:indirectKind="offset" dfdl:indirectType="uint"
 dfdl:indirectBase="."/>
<xs:simpleType name="uint" dfdl:representation="binary"
 dfdl:lengthKind="explicit" dfdl:length="4"
 dfdl:byteOrder="bigEndian">
 <xs:restriction base="unsignedInt"/>
</xs:simpleType>
The data stream may look like the following for a hexBinary value of “123456789ABC”.
Location Hex values
00000100 00000108	Comment by Mike Beckerle: So unparsing, starting at 100, the next available location would be 104 (after the 4 byte offset itself), so the offset’s value would be 4, and the data would start at 104 maybe?

This would require that the DFDL processor just keep track of the current “end” location, and new storage would always be allocated there.

 I think we may need functions like dfdl:offsetFrom(basePath, targetPath) which returns the offset from the base element’s start to the start of the targetPath element. Given that, maybe that and dfdl:outputValueCalc is all we need for unparsing? We already have dfdl:valueLength and dfdl:contentLength functions for measuring things.

We need to look at the TIFF format use case.
00000208 123456789ABC

